xref: /linux/block/blk-throttle.h (revision fc143580753348c62068f30958fede937aa471ad)
1 #ifndef BLK_THROTTLE_H
2 #define BLK_THROTTLE_H
3 
4 #include "blk-cgroup-rwstat.h"
5 
6 /*
7  * To implement hierarchical throttling, throtl_grps form a tree and bios
8  * are dispatched upwards level by level until they reach the top and get
9  * issued.  When dispatching bios from the children and local group at each
10  * level, if the bios are dispatched into a single bio_list, there's a risk
11  * of a local or child group which can queue many bios at once filling up
12  * the list starving others.
13  *
14  * To avoid such starvation, dispatched bios are queued separately
15  * according to where they came from.  When they are again dispatched to
16  * the parent, they're popped in round-robin order so that no single source
17  * hogs the dispatch window.
18  *
19  * throtl_qnode is used to keep the queued bios separated by their sources.
20  * Bios are queued to throtl_qnode which in turn is queued to
21  * throtl_service_queue and then dispatched in round-robin order.
22  *
23  * It's also used to track the reference counts on blkg's.  A qnode always
24  * belongs to a throtl_grp and gets queued on itself or the parent, so
25  * incrementing the reference of the associated throtl_grp when a qnode is
26  * queued and decrementing when dequeued is enough to keep the whole blkg
27  * tree pinned while bios are in flight.
28  */
29 struct throtl_qnode {
30 	struct list_head	node;		/* service_queue->queued[] */
31 	struct bio_list		bios;		/* queued bios */
32 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
33 };
34 
35 struct throtl_service_queue {
36 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
37 
38 	/*
39 	 * Bios queued directly to this service_queue or dispatched from
40 	 * children throtl_grp's.
41 	 */
42 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
43 	unsigned int		nr_queued[2];	/* number of queued bios */
44 
45 	/*
46 	 * RB tree of active children throtl_grp's, which are sorted by
47 	 * their ->disptime.
48 	 */
49 	struct rb_root_cached	pending_tree;	/* RB tree of active tgs */
50 	unsigned int		nr_pending;	/* # queued in the tree */
51 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
52 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
53 };
54 
55 enum tg_state_flags {
56 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
57 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
58 	THROTL_TG_CANCELING	= 1 << 2,	/* starts to cancel bio */
59 };
60 
61 enum {
62 	LIMIT_LOW,
63 	LIMIT_MAX,
64 	LIMIT_CNT,
65 };
66 
67 struct throtl_grp {
68 	/* must be the first member */
69 	struct blkg_policy_data pd;
70 
71 	/* active throtl group service_queue member */
72 	struct rb_node rb_node;
73 
74 	/* throtl_data this group belongs to */
75 	struct throtl_data *td;
76 
77 	/* this group's service queue */
78 	struct throtl_service_queue service_queue;
79 
80 	/*
81 	 * qnode_on_self is used when bios are directly queued to this
82 	 * throtl_grp so that local bios compete fairly with bios
83 	 * dispatched from children.  qnode_on_parent is used when bios are
84 	 * dispatched from this throtl_grp into its parent and will compete
85 	 * with the sibling qnode_on_parents and the parent's
86 	 * qnode_on_self.
87 	 */
88 	struct throtl_qnode qnode_on_self[2];
89 	struct throtl_qnode qnode_on_parent[2];
90 
91 	/*
92 	 * Dispatch time in jiffies. This is the estimated time when group
93 	 * will unthrottle and is ready to dispatch more bio. It is used as
94 	 * key to sort active groups in service tree.
95 	 */
96 	unsigned long disptime;
97 
98 	unsigned int flags;
99 
100 	/* are there any throtl rules between this group and td? */
101 	bool has_rules_bps[2];
102 	bool has_rules_iops[2];
103 
104 	/* internally used bytes per second rate limits */
105 	uint64_t bps[2][LIMIT_CNT];
106 	/* user configured bps limits */
107 	uint64_t bps_conf[2][LIMIT_CNT];
108 
109 	/* internally used IOPS limits */
110 	unsigned int iops[2][LIMIT_CNT];
111 	/* user configured IOPS limits */
112 	unsigned int iops_conf[2][LIMIT_CNT];
113 
114 	/* Number of bytes dispatched in current slice */
115 	uint64_t bytes_disp[2];
116 	/* Number of bio's dispatched in current slice */
117 	unsigned int io_disp[2];
118 
119 	unsigned long last_low_overflow_time[2];
120 
121 	uint64_t last_bytes_disp[2];
122 	unsigned int last_io_disp[2];
123 
124 	/*
125 	 * The following two fields are updated when new configuration is
126 	 * submitted while some bios are still throttled, they record how many
127 	 * bytes/ios are waited already in previous configuration, and they will
128 	 * be used to calculate wait time under new configuration.
129 	 */
130 	long long carryover_bytes[2];
131 	int carryover_ios[2];
132 
133 	unsigned long last_check_time;
134 
135 	unsigned long latency_target; /* us */
136 	unsigned long latency_target_conf; /* us */
137 	/* When did we start a new slice */
138 	unsigned long slice_start[2];
139 	unsigned long slice_end[2];
140 
141 	unsigned long last_finish_time; /* ns / 1024 */
142 	unsigned long checked_last_finish_time; /* ns / 1024 */
143 	unsigned long avg_idletime; /* ns / 1024 */
144 	unsigned long idletime_threshold; /* us */
145 	unsigned long idletime_threshold_conf; /* us */
146 
147 	unsigned int bio_cnt; /* total bios */
148 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
149 	unsigned long bio_cnt_reset_time;
150 
151 	struct blkg_rwstat stat_bytes;
152 	struct blkg_rwstat stat_ios;
153 };
154 
155 extern struct blkcg_policy blkcg_policy_throtl;
156 
157 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
158 {
159 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
160 }
161 
162 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
163 {
164 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
165 }
166 
167 /*
168  * Internal throttling interface
169  */
170 #ifndef CONFIG_BLK_DEV_THROTTLING
171 static inline int blk_throtl_init(struct gendisk *disk) { return 0; }
172 static inline void blk_throtl_exit(struct gendisk *disk) { }
173 static inline void blk_throtl_register(struct gendisk *disk) { }
174 static inline bool blk_throtl_bio(struct bio *bio) { return false; }
175 static inline void blk_throtl_cancel_bios(struct gendisk *disk) { }
176 #else /* CONFIG_BLK_DEV_THROTTLING */
177 int blk_throtl_init(struct gendisk *disk);
178 void blk_throtl_exit(struct gendisk *disk);
179 void blk_throtl_register(struct gendisk *disk);
180 bool __blk_throtl_bio(struct bio *bio);
181 void blk_throtl_cancel_bios(struct gendisk *disk);
182 
183 static inline bool blk_should_throtl(struct bio *bio)
184 {
185 	struct throtl_grp *tg = blkg_to_tg(bio->bi_blkg);
186 	int rw = bio_data_dir(bio);
187 
188 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
189 		if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
190 			bio_set_flag(bio, BIO_CGROUP_ACCT);
191 			blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
192 					bio->bi_iter.bi_size);
193 		}
194 		blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
195 	}
196 
197 	/* iops limit is always counted */
198 	if (tg->has_rules_iops[rw])
199 		return true;
200 
201 	if (tg->has_rules_bps[rw] && !bio_flagged(bio, BIO_BPS_THROTTLED))
202 		return true;
203 
204 	return false;
205 }
206 
207 static inline bool blk_throtl_bio(struct bio *bio)
208 {
209 
210 	if (!blk_should_throtl(bio))
211 		return false;
212 
213 	return __blk_throtl_bio(bio);
214 }
215 #endif /* CONFIG_BLK_DEV_THROTTLING */
216 
217 #endif
218