1 /* 2 * Interface for controlling IO bandwidth on a request queue 3 * 4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 5 */ 6 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/blkdev.h> 10 #include <linux/bio.h> 11 #include <linux/blktrace_api.h> 12 #include "blk-cgroup.h" 13 #include "blk.h" 14 15 /* Max dispatch from a group in 1 round */ 16 static int throtl_grp_quantum = 8; 17 18 /* Total max dispatch from all groups in one round */ 19 static int throtl_quantum = 32; 20 21 /* Throttling is performed over 100ms slice and after that slice is renewed */ 22 static unsigned long throtl_slice = HZ/10; /* 100 ms */ 23 24 /* A workqueue to queue throttle related work */ 25 static struct workqueue_struct *kthrotld_workqueue; 26 static void throtl_schedule_delayed_work(struct throtl_data *td, 27 unsigned long delay); 28 29 struct throtl_rb_root { 30 struct rb_root rb; 31 struct rb_node *left; 32 unsigned int count; 33 unsigned long min_disptime; 34 }; 35 36 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \ 37 .count = 0, .min_disptime = 0} 38 39 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 40 41 struct throtl_grp { 42 /* List of throtl groups on the request queue*/ 43 struct hlist_node tg_node; 44 45 /* active throtl group service_tree member */ 46 struct rb_node rb_node; 47 48 /* 49 * Dispatch time in jiffies. This is the estimated time when group 50 * will unthrottle and is ready to dispatch more bio. It is used as 51 * key to sort active groups in service tree. 52 */ 53 unsigned long disptime; 54 55 struct blkio_group blkg; 56 atomic_t ref; 57 unsigned int flags; 58 59 /* Two lists for READ and WRITE */ 60 struct bio_list bio_lists[2]; 61 62 /* Number of queued bios on READ and WRITE lists */ 63 unsigned int nr_queued[2]; 64 65 /* bytes per second rate limits */ 66 uint64_t bps[2]; 67 68 /* IOPS limits */ 69 unsigned int iops[2]; 70 71 /* Number of bytes disptached in current slice */ 72 uint64_t bytes_disp[2]; 73 /* Number of bio's dispatched in current slice */ 74 unsigned int io_disp[2]; 75 76 /* When did we start a new slice */ 77 unsigned long slice_start[2]; 78 unsigned long slice_end[2]; 79 80 /* Some throttle limits got updated for the group */ 81 int limits_changed; 82 83 struct rcu_head rcu_head; 84 }; 85 86 struct throtl_data 87 { 88 /* List of throtl groups */ 89 struct hlist_head tg_list; 90 91 /* service tree for active throtl groups */ 92 struct throtl_rb_root tg_service_tree; 93 94 struct throtl_grp *root_tg; 95 struct request_queue *queue; 96 97 /* Total Number of queued bios on READ and WRITE lists */ 98 unsigned int nr_queued[2]; 99 100 /* 101 * number of total undestroyed groups 102 */ 103 unsigned int nr_undestroyed_grps; 104 105 /* Work for dispatching throttled bios */ 106 struct delayed_work throtl_work; 107 108 int limits_changed; 109 }; 110 111 enum tg_state_flags { 112 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */ 113 }; 114 115 #define THROTL_TG_FNS(name) \ 116 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \ 117 { \ 118 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \ 119 } \ 120 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \ 121 { \ 122 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \ 123 } \ 124 static inline int throtl_tg_##name(const struct throtl_grp *tg) \ 125 { \ 126 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \ 127 } 128 129 THROTL_TG_FNS(on_rr); 130 131 #define throtl_log_tg(td, tg, fmt, args...) \ 132 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \ 133 blkg_path(&(tg)->blkg), ##args); \ 134 135 #define throtl_log(td, fmt, args...) \ 136 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args) 137 138 static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg) 139 { 140 if (blkg) 141 return container_of(blkg, struct throtl_grp, blkg); 142 143 return NULL; 144 } 145 146 static inline unsigned int total_nr_queued(struct throtl_data *td) 147 { 148 return td->nr_queued[0] + td->nr_queued[1]; 149 } 150 151 static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg) 152 { 153 atomic_inc(&tg->ref); 154 return tg; 155 } 156 157 static void throtl_free_tg(struct rcu_head *head) 158 { 159 struct throtl_grp *tg; 160 161 tg = container_of(head, struct throtl_grp, rcu_head); 162 free_percpu(tg->blkg.stats_cpu); 163 kfree(tg); 164 } 165 166 static void throtl_put_tg(struct throtl_grp *tg) 167 { 168 BUG_ON(atomic_read(&tg->ref) <= 0); 169 if (!atomic_dec_and_test(&tg->ref)) 170 return; 171 172 /* 173 * A group is freed in rcu manner. But having an rcu lock does not 174 * mean that one can access all the fields of blkg and assume these 175 * are valid. For example, don't try to follow throtl_data and 176 * request queue links. 177 * 178 * Having a reference to blkg under an rcu allows acess to only 179 * values local to groups like group stats and group rate limits 180 */ 181 call_rcu(&tg->rcu_head, throtl_free_tg); 182 } 183 184 static void throtl_init_group(struct throtl_grp *tg) 185 { 186 INIT_HLIST_NODE(&tg->tg_node); 187 RB_CLEAR_NODE(&tg->rb_node); 188 bio_list_init(&tg->bio_lists[0]); 189 bio_list_init(&tg->bio_lists[1]); 190 tg->limits_changed = false; 191 192 /* Practically unlimited BW */ 193 tg->bps[0] = tg->bps[1] = -1; 194 tg->iops[0] = tg->iops[1] = -1; 195 196 /* 197 * Take the initial reference that will be released on destroy 198 * This can be thought of a joint reference by cgroup and 199 * request queue which will be dropped by either request queue 200 * exit or cgroup deletion path depending on who is exiting first. 201 */ 202 atomic_set(&tg->ref, 1); 203 } 204 205 /* Should be called with rcu read lock held (needed for blkcg) */ 206 static void 207 throtl_add_group_to_td_list(struct throtl_data *td, struct throtl_grp *tg) 208 { 209 hlist_add_head(&tg->tg_node, &td->tg_list); 210 td->nr_undestroyed_grps++; 211 } 212 213 static void 214 __throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg) 215 { 216 struct backing_dev_info *bdi = &td->queue->backing_dev_info; 217 unsigned int major, minor; 218 219 if (!tg || tg->blkg.dev) 220 return; 221 222 /* 223 * Fill in device details for a group which might not have been 224 * filled at group creation time as queue was being instantiated 225 * and driver had not attached a device yet 226 */ 227 if (bdi->dev && dev_name(bdi->dev)) { 228 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor); 229 tg->blkg.dev = MKDEV(major, minor); 230 } 231 } 232 233 /* 234 * Should be called with without queue lock held. Here queue lock will be 235 * taken rarely. It will be taken only once during life time of a group 236 * if need be 237 */ 238 static void 239 throtl_tg_fill_dev_details(struct throtl_data *td, struct throtl_grp *tg) 240 { 241 if (!tg || tg->blkg.dev) 242 return; 243 244 spin_lock_irq(td->queue->queue_lock); 245 __throtl_tg_fill_dev_details(td, tg); 246 spin_unlock_irq(td->queue->queue_lock); 247 } 248 249 static void throtl_init_add_tg_lists(struct throtl_data *td, 250 struct throtl_grp *tg, struct blkio_cgroup *blkcg) 251 { 252 __throtl_tg_fill_dev_details(td, tg); 253 254 /* Add group onto cgroup list */ 255 blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td, 256 tg->blkg.dev, BLKIO_POLICY_THROTL); 257 258 tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev); 259 tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev); 260 tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev); 261 tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev); 262 263 throtl_add_group_to_td_list(td, tg); 264 } 265 266 /* Should be called without queue lock and outside of rcu period */ 267 static struct throtl_grp *throtl_alloc_tg(struct throtl_data *td) 268 { 269 struct throtl_grp *tg = NULL; 270 int ret; 271 272 tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node); 273 if (!tg) 274 return NULL; 275 276 ret = blkio_alloc_blkg_stats(&tg->blkg); 277 278 if (ret) { 279 kfree(tg); 280 return NULL; 281 } 282 283 throtl_init_group(tg); 284 return tg; 285 } 286 287 static struct 288 throtl_grp *throtl_find_tg(struct throtl_data *td, struct blkio_cgroup *blkcg) 289 { 290 struct throtl_grp *tg = NULL; 291 void *key = td; 292 293 /* 294 * This is the common case when there are no blkio cgroups. 295 * Avoid lookup in this case 296 */ 297 if (blkcg == &blkio_root_cgroup) 298 tg = td->root_tg; 299 else 300 tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key)); 301 302 __throtl_tg_fill_dev_details(td, tg); 303 return tg; 304 } 305 306 static struct throtl_grp * throtl_get_tg(struct throtl_data *td) 307 { 308 struct throtl_grp *tg = NULL, *__tg = NULL; 309 struct blkio_cgroup *blkcg; 310 struct request_queue *q = td->queue; 311 312 /* no throttling for dead queue */ 313 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 314 return NULL; 315 316 rcu_read_lock(); 317 blkcg = task_blkio_cgroup(current); 318 tg = throtl_find_tg(td, blkcg); 319 if (tg) { 320 rcu_read_unlock(); 321 return tg; 322 } 323 324 /* 325 * Need to allocate a group. Allocation of group also needs allocation 326 * of per cpu stats which in-turn takes a mutex() and can block. Hence 327 * we need to drop rcu lock and queue_lock before we call alloc. 328 */ 329 rcu_read_unlock(); 330 spin_unlock_irq(q->queue_lock); 331 332 tg = throtl_alloc_tg(td); 333 334 /* Group allocated and queue is still alive. take the lock */ 335 spin_lock_irq(q->queue_lock); 336 337 /* Make sure @q is still alive */ 338 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 339 kfree(tg); 340 return NULL; 341 } 342 343 /* 344 * Initialize the new group. After sleeping, read the blkcg again. 345 */ 346 rcu_read_lock(); 347 blkcg = task_blkio_cgroup(current); 348 349 /* 350 * If some other thread already allocated the group while we were 351 * not holding queue lock, free up the group 352 */ 353 __tg = throtl_find_tg(td, blkcg); 354 355 if (__tg) { 356 kfree(tg); 357 rcu_read_unlock(); 358 return __tg; 359 } 360 361 /* Group allocation failed. Account the IO to root group */ 362 if (!tg) { 363 tg = td->root_tg; 364 return tg; 365 } 366 367 throtl_init_add_tg_lists(td, tg, blkcg); 368 rcu_read_unlock(); 369 return tg; 370 } 371 372 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root) 373 { 374 /* Service tree is empty */ 375 if (!root->count) 376 return NULL; 377 378 if (!root->left) 379 root->left = rb_first(&root->rb); 380 381 if (root->left) 382 return rb_entry_tg(root->left); 383 384 return NULL; 385 } 386 387 static void rb_erase_init(struct rb_node *n, struct rb_root *root) 388 { 389 rb_erase(n, root); 390 RB_CLEAR_NODE(n); 391 } 392 393 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root) 394 { 395 if (root->left == n) 396 root->left = NULL; 397 rb_erase_init(n, &root->rb); 398 --root->count; 399 } 400 401 static void update_min_dispatch_time(struct throtl_rb_root *st) 402 { 403 struct throtl_grp *tg; 404 405 tg = throtl_rb_first(st); 406 if (!tg) 407 return; 408 409 st->min_disptime = tg->disptime; 410 } 411 412 static void 413 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg) 414 { 415 struct rb_node **node = &st->rb.rb_node; 416 struct rb_node *parent = NULL; 417 struct throtl_grp *__tg; 418 unsigned long key = tg->disptime; 419 int left = 1; 420 421 while (*node != NULL) { 422 parent = *node; 423 __tg = rb_entry_tg(parent); 424 425 if (time_before(key, __tg->disptime)) 426 node = &parent->rb_left; 427 else { 428 node = &parent->rb_right; 429 left = 0; 430 } 431 } 432 433 if (left) 434 st->left = &tg->rb_node; 435 436 rb_link_node(&tg->rb_node, parent, node); 437 rb_insert_color(&tg->rb_node, &st->rb); 438 } 439 440 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) 441 { 442 struct throtl_rb_root *st = &td->tg_service_tree; 443 444 tg_service_tree_add(st, tg); 445 throtl_mark_tg_on_rr(tg); 446 st->count++; 447 } 448 449 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) 450 { 451 if (!throtl_tg_on_rr(tg)) 452 __throtl_enqueue_tg(td, tg); 453 } 454 455 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) 456 { 457 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree); 458 throtl_clear_tg_on_rr(tg); 459 } 460 461 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) 462 { 463 if (throtl_tg_on_rr(tg)) 464 __throtl_dequeue_tg(td, tg); 465 } 466 467 static void throtl_schedule_next_dispatch(struct throtl_data *td) 468 { 469 struct throtl_rb_root *st = &td->tg_service_tree; 470 471 /* 472 * If there are more bios pending, schedule more work. 473 */ 474 if (!total_nr_queued(td)) 475 return; 476 477 BUG_ON(!st->count); 478 479 update_min_dispatch_time(st); 480 481 if (time_before_eq(st->min_disptime, jiffies)) 482 throtl_schedule_delayed_work(td, 0); 483 else 484 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies)); 485 } 486 487 static inline void 488 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) 489 { 490 tg->bytes_disp[rw] = 0; 491 tg->io_disp[rw] = 0; 492 tg->slice_start[rw] = jiffies; 493 tg->slice_end[rw] = jiffies + throtl_slice; 494 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu", 495 rw == READ ? 'R' : 'W', tg->slice_start[rw], 496 tg->slice_end[rw], jiffies); 497 } 498 499 static inline void throtl_set_slice_end(struct throtl_data *td, 500 struct throtl_grp *tg, bool rw, unsigned long jiffy_end) 501 { 502 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 503 } 504 505 static inline void throtl_extend_slice(struct throtl_data *td, 506 struct throtl_grp *tg, bool rw, unsigned long jiffy_end) 507 { 508 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 509 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu", 510 rw == READ ? 'R' : 'W', tg->slice_start[rw], 511 tg->slice_end[rw], jiffies); 512 } 513 514 /* Determine if previously allocated or extended slice is complete or not */ 515 static bool 516 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw) 517 { 518 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 519 return 0; 520 521 return 1; 522 } 523 524 /* Trim the used slices and adjust slice start accordingly */ 525 static inline void 526 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) 527 { 528 unsigned long nr_slices, time_elapsed, io_trim; 529 u64 bytes_trim, tmp; 530 531 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 532 533 /* 534 * If bps are unlimited (-1), then time slice don't get 535 * renewed. Don't try to trim the slice if slice is used. A new 536 * slice will start when appropriate. 537 */ 538 if (throtl_slice_used(td, tg, rw)) 539 return; 540 541 /* 542 * A bio has been dispatched. Also adjust slice_end. It might happen 543 * that initially cgroup limit was very low resulting in high 544 * slice_end, but later limit was bumped up and bio was dispached 545 * sooner, then we need to reduce slice_end. A high bogus slice_end 546 * is bad because it does not allow new slice to start. 547 */ 548 549 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice); 550 551 time_elapsed = jiffies - tg->slice_start[rw]; 552 553 nr_slices = time_elapsed / throtl_slice; 554 555 if (!nr_slices) 556 return; 557 tmp = tg->bps[rw] * throtl_slice * nr_slices; 558 do_div(tmp, HZ); 559 bytes_trim = tmp; 560 561 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; 562 563 if (!bytes_trim && !io_trim) 564 return; 565 566 if (tg->bytes_disp[rw] >= bytes_trim) 567 tg->bytes_disp[rw] -= bytes_trim; 568 else 569 tg->bytes_disp[rw] = 0; 570 571 if (tg->io_disp[rw] >= io_trim) 572 tg->io_disp[rw] -= io_trim; 573 else 574 tg->io_disp[rw] = 0; 575 576 tg->slice_start[rw] += nr_slices * throtl_slice; 577 578 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu" 579 " start=%lu end=%lu jiffies=%lu", 580 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 581 tg->slice_start[rw], tg->slice_end[rw], jiffies); 582 } 583 584 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg, 585 struct bio *bio, unsigned long *wait) 586 { 587 bool rw = bio_data_dir(bio); 588 unsigned int io_allowed; 589 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 590 u64 tmp; 591 592 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 593 594 /* Slice has just started. Consider one slice interval */ 595 if (!jiffy_elapsed) 596 jiffy_elapsed_rnd = throtl_slice; 597 598 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 599 600 /* 601 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 602 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 603 * will allow dispatch after 1 second and after that slice should 604 * have been trimmed. 605 */ 606 607 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; 608 do_div(tmp, HZ); 609 610 if (tmp > UINT_MAX) 611 io_allowed = UINT_MAX; 612 else 613 io_allowed = tmp; 614 615 if (tg->io_disp[rw] + 1 <= io_allowed) { 616 if (wait) 617 *wait = 0; 618 return 1; 619 } 620 621 /* Calc approx time to dispatch */ 622 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; 623 624 if (jiffy_wait > jiffy_elapsed) 625 jiffy_wait = jiffy_wait - jiffy_elapsed; 626 else 627 jiffy_wait = 1; 628 629 if (wait) 630 *wait = jiffy_wait; 631 return 0; 632 } 633 634 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg, 635 struct bio *bio, unsigned long *wait) 636 { 637 bool rw = bio_data_dir(bio); 638 u64 bytes_allowed, extra_bytes, tmp; 639 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 640 641 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 642 643 /* Slice has just started. Consider one slice interval */ 644 if (!jiffy_elapsed) 645 jiffy_elapsed_rnd = throtl_slice; 646 647 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 648 649 tmp = tg->bps[rw] * jiffy_elapsed_rnd; 650 do_div(tmp, HZ); 651 bytes_allowed = tmp; 652 653 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) { 654 if (wait) 655 *wait = 0; 656 return 1; 657 } 658 659 /* Calc approx time to dispatch */ 660 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed; 661 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); 662 663 if (!jiffy_wait) 664 jiffy_wait = 1; 665 666 /* 667 * This wait time is without taking into consideration the rounding 668 * up we did. Add that time also. 669 */ 670 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 671 if (wait) 672 *wait = jiffy_wait; 673 return 0; 674 } 675 676 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) { 677 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) 678 return 1; 679 return 0; 680 } 681 682 /* 683 * Returns whether one can dispatch a bio or not. Also returns approx number 684 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 685 */ 686 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg, 687 struct bio *bio, unsigned long *wait) 688 { 689 bool rw = bio_data_dir(bio); 690 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 691 692 /* 693 * Currently whole state machine of group depends on first bio 694 * queued in the group bio list. So one should not be calling 695 * this function with a different bio if there are other bios 696 * queued. 697 */ 698 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw])); 699 700 /* If tg->bps = -1, then BW is unlimited */ 701 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { 702 if (wait) 703 *wait = 0; 704 return 1; 705 } 706 707 /* 708 * If previous slice expired, start a new one otherwise renew/extend 709 * existing slice to make sure it is at least throtl_slice interval 710 * long since now. 711 */ 712 if (throtl_slice_used(td, tg, rw)) 713 throtl_start_new_slice(td, tg, rw); 714 else { 715 if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) 716 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice); 717 } 718 719 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait) 720 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) { 721 if (wait) 722 *wait = 0; 723 return 1; 724 } 725 726 max_wait = max(bps_wait, iops_wait); 727 728 if (wait) 729 *wait = max_wait; 730 731 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 732 throtl_extend_slice(td, tg, rw, jiffies + max_wait); 733 734 return 0; 735 } 736 737 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 738 { 739 bool rw = bio_data_dir(bio); 740 bool sync = rw_is_sync(bio->bi_rw); 741 742 /* Charge the bio to the group */ 743 tg->bytes_disp[rw] += bio->bi_size; 744 tg->io_disp[rw]++; 745 746 blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync); 747 } 748 749 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg, 750 struct bio *bio) 751 { 752 bool rw = bio_data_dir(bio); 753 754 bio_list_add(&tg->bio_lists[rw], bio); 755 /* Take a bio reference on tg */ 756 throtl_ref_get_tg(tg); 757 tg->nr_queued[rw]++; 758 td->nr_queued[rw]++; 759 throtl_enqueue_tg(td, tg); 760 } 761 762 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg) 763 { 764 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 765 struct bio *bio; 766 767 if ((bio = bio_list_peek(&tg->bio_lists[READ]))) 768 tg_may_dispatch(td, tg, bio, &read_wait); 769 770 if ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) 771 tg_may_dispatch(td, tg, bio, &write_wait); 772 773 min_wait = min(read_wait, write_wait); 774 disptime = jiffies + min_wait; 775 776 /* Update dispatch time */ 777 throtl_dequeue_tg(td, tg); 778 tg->disptime = disptime; 779 throtl_enqueue_tg(td, tg); 780 } 781 782 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg, 783 bool rw, struct bio_list *bl) 784 { 785 struct bio *bio; 786 787 bio = bio_list_pop(&tg->bio_lists[rw]); 788 tg->nr_queued[rw]--; 789 /* Drop bio reference on tg */ 790 throtl_put_tg(tg); 791 792 BUG_ON(td->nr_queued[rw] <= 0); 793 td->nr_queued[rw]--; 794 795 throtl_charge_bio(tg, bio); 796 bio_list_add(bl, bio); 797 bio->bi_rw |= REQ_THROTTLED; 798 799 throtl_trim_slice(td, tg, rw); 800 } 801 802 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg, 803 struct bio_list *bl) 804 { 805 unsigned int nr_reads = 0, nr_writes = 0; 806 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 807 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 808 struct bio *bio; 809 810 /* Try to dispatch 75% READS and 25% WRITES */ 811 812 while ((bio = bio_list_peek(&tg->bio_lists[READ])) 813 && tg_may_dispatch(td, tg, bio, NULL)) { 814 815 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); 816 nr_reads++; 817 818 if (nr_reads >= max_nr_reads) 819 break; 820 } 821 822 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])) 823 && tg_may_dispatch(td, tg, bio, NULL)) { 824 825 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); 826 nr_writes++; 827 828 if (nr_writes >= max_nr_writes) 829 break; 830 } 831 832 return nr_reads + nr_writes; 833 } 834 835 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl) 836 { 837 unsigned int nr_disp = 0; 838 struct throtl_grp *tg; 839 struct throtl_rb_root *st = &td->tg_service_tree; 840 841 while (1) { 842 tg = throtl_rb_first(st); 843 844 if (!tg) 845 break; 846 847 if (time_before(jiffies, tg->disptime)) 848 break; 849 850 throtl_dequeue_tg(td, tg); 851 852 nr_disp += throtl_dispatch_tg(td, tg, bl); 853 854 if (tg->nr_queued[0] || tg->nr_queued[1]) { 855 tg_update_disptime(td, tg); 856 throtl_enqueue_tg(td, tg); 857 } 858 859 if (nr_disp >= throtl_quantum) 860 break; 861 } 862 863 return nr_disp; 864 } 865 866 static void throtl_process_limit_change(struct throtl_data *td) 867 { 868 struct throtl_grp *tg; 869 struct hlist_node *pos, *n; 870 871 if (!td->limits_changed) 872 return; 873 874 xchg(&td->limits_changed, false); 875 876 throtl_log(td, "limits changed"); 877 878 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) { 879 if (!tg->limits_changed) 880 continue; 881 882 if (!xchg(&tg->limits_changed, false)) 883 continue; 884 885 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu" 886 " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE], 887 tg->iops[READ], tg->iops[WRITE]); 888 889 /* 890 * Restart the slices for both READ and WRITES. It 891 * might happen that a group's limit are dropped 892 * suddenly and we don't want to account recently 893 * dispatched IO with new low rate 894 */ 895 throtl_start_new_slice(td, tg, 0); 896 throtl_start_new_slice(td, tg, 1); 897 898 if (throtl_tg_on_rr(tg)) 899 tg_update_disptime(td, tg); 900 } 901 } 902 903 /* Dispatch throttled bios. Should be called without queue lock held. */ 904 static int throtl_dispatch(struct request_queue *q) 905 { 906 struct throtl_data *td = q->td; 907 unsigned int nr_disp = 0; 908 struct bio_list bio_list_on_stack; 909 struct bio *bio; 910 struct blk_plug plug; 911 912 spin_lock_irq(q->queue_lock); 913 914 throtl_process_limit_change(td); 915 916 if (!total_nr_queued(td)) 917 goto out; 918 919 bio_list_init(&bio_list_on_stack); 920 921 throtl_log(td, "dispatch nr_queued=%u read=%u write=%u", 922 total_nr_queued(td), td->nr_queued[READ], 923 td->nr_queued[WRITE]); 924 925 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack); 926 927 if (nr_disp) 928 throtl_log(td, "bios disp=%u", nr_disp); 929 930 throtl_schedule_next_dispatch(td); 931 out: 932 spin_unlock_irq(q->queue_lock); 933 934 /* 935 * If we dispatched some requests, unplug the queue to make sure 936 * immediate dispatch 937 */ 938 if (nr_disp) { 939 blk_start_plug(&plug); 940 while((bio = bio_list_pop(&bio_list_on_stack))) 941 generic_make_request(bio); 942 blk_finish_plug(&plug); 943 } 944 return nr_disp; 945 } 946 947 void blk_throtl_work(struct work_struct *work) 948 { 949 struct throtl_data *td = container_of(work, struct throtl_data, 950 throtl_work.work); 951 struct request_queue *q = td->queue; 952 953 throtl_dispatch(q); 954 } 955 956 /* Call with queue lock held */ 957 static void 958 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay) 959 { 960 961 struct delayed_work *dwork = &td->throtl_work; 962 963 /* schedule work if limits changed even if no bio is queued */ 964 if (total_nr_queued(td) || td->limits_changed) { 965 /* 966 * We might have a work scheduled to be executed in future. 967 * Cancel that and schedule a new one. 968 */ 969 __cancel_delayed_work(dwork); 970 queue_delayed_work(kthrotld_workqueue, dwork, delay); 971 throtl_log(td, "schedule work. delay=%lu jiffies=%lu", 972 delay, jiffies); 973 } 974 } 975 976 static void 977 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg) 978 { 979 /* Something wrong if we are trying to remove same group twice */ 980 BUG_ON(hlist_unhashed(&tg->tg_node)); 981 982 hlist_del_init(&tg->tg_node); 983 984 /* 985 * Put the reference taken at the time of creation so that when all 986 * queues are gone, group can be destroyed. 987 */ 988 throtl_put_tg(tg); 989 td->nr_undestroyed_grps--; 990 } 991 992 static void throtl_release_tgs(struct throtl_data *td) 993 { 994 struct hlist_node *pos, *n; 995 struct throtl_grp *tg; 996 997 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) { 998 /* 999 * If cgroup removal path got to blk_group first and removed 1000 * it from cgroup list, then it will take care of destroying 1001 * cfqg also. 1002 */ 1003 if (!blkiocg_del_blkio_group(&tg->blkg)) 1004 throtl_destroy_tg(td, tg); 1005 } 1006 } 1007 1008 /* 1009 * Blk cgroup controller notification saying that blkio_group object is being 1010 * delinked as associated cgroup object is going away. That also means that 1011 * no new IO will come in this group. So get rid of this group as soon as 1012 * any pending IO in the group is finished. 1013 * 1014 * This function is called under rcu_read_lock(). key is the rcu protected 1015 * pointer. That means "key" is a valid throtl_data pointer as long as we are 1016 * rcu read lock. 1017 * 1018 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means 1019 * it should not be NULL as even if queue was going away, cgroup deltion 1020 * path got to it first. 1021 */ 1022 void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg) 1023 { 1024 unsigned long flags; 1025 struct throtl_data *td = key; 1026 1027 spin_lock_irqsave(td->queue->queue_lock, flags); 1028 throtl_destroy_tg(td, tg_of_blkg(blkg)); 1029 spin_unlock_irqrestore(td->queue->queue_lock, flags); 1030 } 1031 1032 static void throtl_update_blkio_group_common(struct throtl_data *td, 1033 struct throtl_grp *tg) 1034 { 1035 xchg(&tg->limits_changed, true); 1036 xchg(&td->limits_changed, true); 1037 /* Schedule a work now to process the limit change */ 1038 throtl_schedule_delayed_work(td, 0); 1039 } 1040 1041 /* 1042 * For all update functions, key should be a valid pointer because these 1043 * update functions are called under blkcg_lock, that means, blkg is 1044 * valid and in turn key is valid. queue exit path can not race because 1045 * of blkcg_lock 1046 * 1047 * Can not take queue lock in update functions as queue lock under blkcg_lock 1048 * is not allowed. Under other paths we take blkcg_lock under queue_lock. 1049 */ 1050 static void throtl_update_blkio_group_read_bps(void *key, 1051 struct blkio_group *blkg, u64 read_bps) 1052 { 1053 struct throtl_data *td = key; 1054 struct throtl_grp *tg = tg_of_blkg(blkg); 1055 1056 tg->bps[READ] = read_bps; 1057 throtl_update_blkio_group_common(td, tg); 1058 } 1059 1060 static void throtl_update_blkio_group_write_bps(void *key, 1061 struct blkio_group *blkg, u64 write_bps) 1062 { 1063 struct throtl_data *td = key; 1064 struct throtl_grp *tg = tg_of_blkg(blkg); 1065 1066 tg->bps[WRITE] = write_bps; 1067 throtl_update_blkio_group_common(td, tg); 1068 } 1069 1070 static void throtl_update_blkio_group_read_iops(void *key, 1071 struct blkio_group *blkg, unsigned int read_iops) 1072 { 1073 struct throtl_data *td = key; 1074 struct throtl_grp *tg = tg_of_blkg(blkg); 1075 1076 tg->iops[READ] = read_iops; 1077 throtl_update_blkio_group_common(td, tg); 1078 } 1079 1080 static void throtl_update_blkio_group_write_iops(void *key, 1081 struct blkio_group *blkg, unsigned int write_iops) 1082 { 1083 struct throtl_data *td = key; 1084 struct throtl_grp *tg = tg_of_blkg(blkg); 1085 1086 tg->iops[WRITE] = write_iops; 1087 throtl_update_blkio_group_common(td, tg); 1088 } 1089 1090 static void throtl_shutdown_wq(struct request_queue *q) 1091 { 1092 struct throtl_data *td = q->td; 1093 1094 cancel_delayed_work_sync(&td->throtl_work); 1095 } 1096 1097 static struct blkio_policy_type blkio_policy_throtl = { 1098 .ops = { 1099 .blkio_unlink_group_fn = throtl_unlink_blkio_group, 1100 .blkio_update_group_read_bps_fn = 1101 throtl_update_blkio_group_read_bps, 1102 .blkio_update_group_write_bps_fn = 1103 throtl_update_blkio_group_write_bps, 1104 .blkio_update_group_read_iops_fn = 1105 throtl_update_blkio_group_read_iops, 1106 .blkio_update_group_write_iops_fn = 1107 throtl_update_blkio_group_write_iops, 1108 }, 1109 .plid = BLKIO_POLICY_THROTL, 1110 }; 1111 1112 bool blk_throtl_bio(struct request_queue *q, struct bio *bio) 1113 { 1114 struct throtl_data *td = q->td; 1115 struct throtl_grp *tg; 1116 bool rw = bio_data_dir(bio), update_disptime = true; 1117 struct blkio_cgroup *blkcg; 1118 bool throttled = false; 1119 1120 if (bio->bi_rw & REQ_THROTTLED) { 1121 bio->bi_rw &= ~REQ_THROTTLED; 1122 goto out; 1123 } 1124 1125 /* 1126 * A throtl_grp pointer retrieved under rcu can be used to access 1127 * basic fields like stats and io rates. If a group has no rules, 1128 * just update the dispatch stats in lockless manner and return. 1129 */ 1130 1131 rcu_read_lock(); 1132 blkcg = task_blkio_cgroup(current); 1133 tg = throtl_find_tg(td, blkcg); 1134 if (tg) { 1135 throtl_tg_fill_dev_details(td, tg); 1136 1137 if (tg_no_rule_group(tg, rw)) { 1138 blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, 1139 rw, rw_is_sync(bio->bi_rw)); 1140 rcu_read_unlock(); 1141 goto out; 1142 } 1143 } 1144 rcu_read_unlock(); 1145 1146 /* 1147 * Either group has not been allocated yet or it is not an unlimited 1148 * IO group 1149 */ 1150 spin_lock_irq(q->queue_lock); 1151 tg = throtl_get_tg(td); 1152 if (unlikely(!tg)) 1153 goto out_unlock; 1154 1155 if (tg->nr_queued[rw]) { 1156 /* 1157 * There is already another bio queued in same dir. No 1158 * need to update dispatch time. 1159 */ 1160 update_disptime = false; 1161 goto queue_bio; 1162 1163 } 1164 1165 /* Bio is with-in rate limit of group */ 1166 if (tg_may_dispatch(td, tg, bio, NULL)) { 1167 throtl_charge_bio(tg, bio); 1168 1169 /* 1170 * We need to trim slice even when bios are not being queued 1171 * otherwise it might happen that a bio is not queued for 1172 * a long time and slice keeps on extending and trim is not 1173 * called for a long time. Now if limits are reduced suddenly 1174 * we take into account all the IO dispatched so far at new 1175 * low rate and * newly queued IO gets a really long dispatch 1176 * time. 1177 * 1178 * So keep on trimming slice even if bio is not queued. 1179 */ 1180 throtl_trim_slice(td, tg, rw); 1181 goto out_unlock; 1182 } 1183 1184 queue_bio: 1185 throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu" 1186 " iodisp=%u iops=%u queued=%d/%d", 1187 rw == READ ? 'R' : 'W', 1188 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw], 1189 tg->io_disp[rw], tg->iops[rw], 1190 tg->nr_queued[READ], tg->nr_queued[WRITE]); 1191 1192 throtl_add_bio_tg(q->td, tg, bio); 1193 throttled = true; 1194 1195 if (update_disptime) { 1196 tg_update_disptime(td, tg); 1197 throtl_schedule_next_dispatch(td); 1198 } 1199 1200 out_unlock: 1201 spin_unlock_irq(q->queue_lock); 1202 out: 1203 return throttled; 1204 } 1205 1206 /** 1207 * blk_throtl_drain - drain throttled bios 1208 * @q: request_queue to drain throttled bios for 1209 * 1210 * Dispatch all currently throttled bios on @q through ->make_request_fn(). 1211 */ 1212 void blk_throtl_drain(struct request_queue *q) 1213 __releases(q->queue_lock) __acquires(q->queue_lock) 1214 { 1215 struct throtl_data *td = q->td; 1216 struct throtl_rb_root *st = &td->tg_service_tree; 1217 struct throtl_grp *tg; 1218 struct bio_list bl; 1219 struct bio *bio; 1220 1221 WARN_ON_ONCE(!queue_is_locked(q)); 1222 1223 bio_list_init(&bl); 1224 1225 while ((tg = throtl_rb_first(st))) { 1226 throtl_dequeue_tg(td, tg); 1227 1228 while ((bio = bio_list_peek(&tg->bio_lists[READ]))) 1229 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl); 1230 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) 1231 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl); 1232 } 1233 spin_unlock_irq(q->queue_lock); 1234 1235 while ((bio = bio_list_pop(&bl))) 1236 generic_make_request(bio); 1237 1238 spin_lock_irq(q->queue_lock); 1239 } 1240 1241 int blk_throtl_init(struct request_queue *q) 1242 { 1243 struct throtl_data *td; 1244 struct throtl_grp *tg; 1245 1246 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 1247 if (!td) 1248 return -ENOMEM; 1249 1250 INIT_HLIST_HEAD(&td->tg_list); 1251 td->tg_service_tree = THROTL_RB_ROOT; 1252 td->limits_changed = false; 1253 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work); 1254 1255 /* alloc and Init root group. */ 1256 td->queue = q; 1257 tg = throtl_alloc_tg(td); 1258 1259 if (!tg) { 1260 kfree(td); 1261 return -ENOMEM; 1262 } 1263 1264 td->root_tg = tg; 1265 1266 rcu_read_lock(); 1267 throtl_init_add_tg_lists(td, tg, &blkio_root_cgroup); 1268 rcu_read_unlock(); 1269 1270 /* Attach throtl data to request queue */ 1271 q->td = td; 1272 return 0; 1273 } 1274 1275 void blk_throtl_exit(struct request_queue *q) 1276 { 1277 struct throtl_data *td = q->td; 1278 bool wait = false; 1279 1280 BUG_ON(!td); 1281 1282 throtl_shutdown_wq(q); 1283 1284 spin_lock_irq(q->queue_lock); 1285 throtl_release_tgs(td); 1286 1287 /* If there are other groups */ 1288 if (td->nr_undestroyed_grps > 0) 1289 wait = true; 1290 1291 spin_unlock_irq(q->queue_lock); 1292 1293 /* 1294 * Wait for tg->blkg->key accessors to exit their grace periods. 1295 * Do this wait only if there are other undestroyed groups out 1296 * there (other than root group). This can happen if cgroup deletion 1297 * path claimed the responsibility of cleaning up a group before 1298 * queue cleanup code get to the group. 1299 * 1300 * Do not call synchronize_rcu() unconditionally as there are drivers 1301 * which create/delete request queue hundreds of times during scan/boot 1302 * and synchronize_rcu() can take significant time and slow down boot. 1303 */ 1304 if (wait) 1305 synchronize_rcu(); 1306 1307 /* 1308 * Just being safe to make sure after previous flush if some body did 1309 * update limits through cgroup and another work got queued, cancel 1310 * it. 1311 */ 1312 throtl_shutdown_wq(q); 1313 } 1314 1315 void blk_throtl_release(struct request_queue *q) 1316 { 1317 kfree(q->td); 1318 } 1319 1320 static int __init throtl_init(void) 1321 { 1322 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 1323 if (!kthrotld_workqueue) 1324 panic("Failed to create kthrotld\n"); 1325 1326 blkio_policy_register(&blkio_policy_throtl); 1327 return 0; 1328 } 1329 1330 module_init(throtl_init); 1331