1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include <linux/blk-cgroup.h> 14 #include "blk.h" 15 #include "blk-cgroup-rwstat.h" 16 #include "blk-stat.h" 17 #include "blk-throttle.h" 18 19 /* Max dispatch from a group in 1 round */ 20 #define THROTL_GRP_QUANTUM 8 21 22 /* Total max dispatch from all groups in one round */ 23 #define THROTL_QUANTUM 32 24 25 /* Throttling is performed over a slice and after that slice is renewed */ 26 #define DFL_THROTL_SLICE_HD (HZ / 10) 27 #define DFL_THROTL_SLICE_SSD (HZ / 50) 28 #define MAX_THROTL_SLICE (HZ) 29 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 30 #define MIN_THROTL_BPS (320 * 1024) 31 #define MIN_THROTL_IOPS (10) 32 #define DFL_LATENCY_TARGET (-1L) 33 #define DFL_IDLE_THRESHOLD (0) 34 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 35 #define LATENCY_FILTERED_SSD (0) 36 /* 37 * For HD, very small latency comes from sequential IO. Such IO is helpless to 38 * help determine if its IO is impacted by others, hence we ignore the IO 39 */ 40 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 41 42 /* A workqueue to queue throttle related work */ 43 static struct workqueue_struct *kthrotld_workqueue; 44 45 enum tg_state_flags { 46 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 47 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 48 }; 49 50 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 51 52 /* We measure latency for request size from <= 4k to >= 1M */ 53 #define LATENCY_BUCKET_SIZE 9 54 55 struct latency_bucket { 56 unsigned long total_latency; /* ns / 1024 */ 57 int samples; 58 }; 59 60 struct avg_latency_bucket { 61 unsigned long latency; /* ns / 1024 */ 62 bool valid; 63 }; 64 65 struct throtl_data 66 { 67 /* service tree for active throtl groups */ 68 struct throtl_service_queue service_queue; 69 70 struct request_queue *queue; 71 72 /* Total Number of queued bios on READ and WRITE lists */ 73 unsigned int nr_queued[2]; 74 75 unsigned int throtl_slice; 76 77 /* Work for dispatching throttled bios */ 78 struct work_struct dispatch_work; 79 unsigned int limit_index; 80 bool limit_valid[LIMIT_CNT]; 81 82 unsigned long low_upgrade_time; 83 unsigned long low_downgrade_time; 84 85 unsigned int scale; 86 87 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 88 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 89 struct latency_bucket __percpu *latency_buckets[2]; 90 unsigned long last_calculate_time; 91 unsigned long filtered_latency; 92 93 bool track_bio_latency; 94 }; 95 96 static void throtl_pending_timer_fn(struct timer_list *t); 97 98 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 99 { 100 return pd_to_blkg(&tg->pd); 101 } 102 103 /** 104 * sq_to_tg - return the throl_grp the specified service queue belongs to 105 * @sq: the throtl_service_queue of interest 106 * 107 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 108 * embedded in throtl_data, %NULL is returned. 109 */ 110 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 111 { 112 if (sq && sq->parent_sq) 113 return container_of(sq, struct throtl_grp, service_queue); 114 else 115 return NULL; 116 } 117 118 /** 119 * sq_to_td - return throtl_data the specified service queue belongs to 120 * @sq: the throtl_service_queue of interest 121 * 122 * A service_queue can be embedded in either a throtl_grp or throtl_data. 123 * Determine the associated throtl_data accordingly and return it. 124 */ 125 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 126 { 127 struct throtl_grp *tg = sq_to_tg(sq); 128 129 if (tg) 130 return tg->td; 131 else 132 return container_of(sq, struct throtl_data, service_queue); 133 } 134 135 /* 136 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 137 * make the IO dispatch more smooth. 138 * Scale up: linearly scale up according to lapsed time since upgrade. For 139 * every throtl_slice, the limit scales up 1/2 .low limit till the 140 * limit hits .max limit 141 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 142 */ 143 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 144 { 145 /* arbitrary value to avoid too big scale */ 146 if (td->scale < 4096 && time_after_eq(jiffies, 147 td->low_upgrade_time + td->scale * td->throtl_slice)) 148 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 149 150 return low + (low >> 1) * td->scale; 151 } 152 153 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 154 { 155 struct blkcg_gq *blkg = tg_to_blkg(tg); 156 struct throtl_data *td; 157 uint64_t ret; 158 159 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 160 return U64_MAX; 161 162 td = tg->td; 163 ret = tg->bps[rw][td->limit_index]; 164 if (ret == 0 && td->limit_index == LIMIT_LOW) { 165 /* intermediate node or iops isn't 0 */ 166 if (!list_empty(&blkg->blkcg->css.children) || 167 tg->iops[rw][td->limit_index]) 168 return U64_MAX; 169 else 170 return MIN_THROTL_BPS; 171 } 172 173 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 174 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 175 uint64_t adjusted; 176 177 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 178 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 179 } 180 return ret; 181 } 182 183 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 184 { 185 struct blkcg_gq *blkg = tg_to_blkg(tg); 186 struct throtl_data *td; 187 unsigned int ret; 188 189 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 190 return UINT_MAX; 191 192 td = tg->td; 193 ret = tg->iops[rw][td->limit_index]; 194 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 195 /* intermediate node or bps isn't 0 */ 196 if (!list_empty(&blkg->blkcg->css.children) || 197 tg->bps[rw][td->limit_index]) 198 return UINT_MAX; 199 else 200 return MIN_THROTL_IOPS; 201 } 202 203 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 204 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 205 uint64_t adjusted; 206 207 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 208 if (adjusted > UINT_MAX) 209 adjusted = UINT_MAX; 210 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 211 } 212 return ret; 213 } 214 215 #define request_bucket_index(sectors) \ 216 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 217 218 /** 219 * throtl_log - log debug message via blktrace 220 * @sq: the service_queue being reported 221 * @fmt: printf format string 222 * @args: printf args 223 * 224 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 225 * throtl_grp; otherwise, just "throtl". 226 */ 227 #define throtl_log(sq, fmt, args...) do { \ 228 struct throtl_grp *__tg = sq_to_tg((sq)); \ 229 struct throtl_data *__td = sq_to_td((sq)); \ 230 \ 231 (void)__td; \ 232 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 233 break; \ 234 if ((__tg)) { \ 235 blk_add_cgroup_trace_msg(__td->queue, \ 236 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ 237 } else { \ 238 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 239 } \ 240 } while (0) 241 242 static inline unsigned int throtl_bio_data_size(struct bio *bio) 243 { 244 /* assume it's one sector */ 245 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 246 return 512; 247 return bio->bi_iter.bi_size; 248 } 249 250 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 251 { 252 INIT_LIST_HEAD(&qn->node); 253 bio_list_init(&qn->bios); 254 qn->tg = tg; 255 } 256 257 /** 258 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 259 * @bio: bio being added 260 * @qn: qnode to add bio to 261 * @queued: the service_queue->queued[] list @qn belongs to 262 * 263 * Add @bio to @qn and put @qn on @queued if it's not already on. 264 * @qn->tg's reference count is bumped when @qn is activated. See the 265 * comment on top of throtl_qnode definition for details. 266 */ 267 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 268 struct list_head *queued) 269 { 270 bio_list_add(&qn->bios, bio); 271 if (list_empty(&qn->node)) { 272 list_add_tail(&qn->node, queued); 273 blkg_get(tg_to_blkg(qn->tg)); 274 } 275 } 276 277 /** 278 * throtl_peek_queued - peek the first bio on a qnode list 279 * @queued: the qnode list to peek 280 */ 281 static struct bio *throtl_peek_queued(struct list_head *queued) 282 { 283 struct throtl_qnode *qn; 284 struct bio *bio; 285 286 if (list_empty(queued)) 287 return NULL; 288 289 qn = list_first_entry(queued, struct throtl_qnode, node); 290 bio = bio_list_peek(&qn->bios); 291 WARN_ON_ONCE(!bio); 292 return bio; 293 } 294 295 /** 296 * throtl_pop_queued - pop the first bio form a qnode list 297 * @queued: the qnode list to pop a bio from 298 * @tg_to_put: optional out argument for throtl_grp to put 299 * 300 * Pop the first bio from the qnode list @queued. After popping, the first 301 * qnode is removed from @queued if empty or moved to the end of @queued so 302 * that the popping order is round-robin. 303 * 304 * When the first qnode is removed, its associated throtl_grp should be put 305 * too. If @tg_to_put is NULL, this function automatically puts it; 306 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 307 * responsible for putting it. 308 */ 309 static struct bio *throtl_pop_queued(struct list_head *queued, 310 struct throtl_grp **tg_to_put) 311 { 312 struct throtl_qnode *qn; 313 struct bio *bio; 314 315 if (list_empty(queued)) 316 return NULL; 317 318 qn = list_first_entry(queued, struct throtl_qnode, node); 319 bio = bio_list_pop(&qn->bios); 320 WARN_ON_ONCE(!bio); 321 322 if (bio_list_empty(&qn->bios)) { 323 list_del_init(&qn->node); 324 if (tg_to_put) 325 *tg_to_put = qn->tg; 326 else 327 blkg_put(tg_to_blkg(qn->tg)); 328 } else { 329 list_move_tail(&qn->node, queued); 330 } 331 332 return bio; 333 } 334 335 /* init a service_queue, assumes the caller zeroed it */ 336 static void throtl_service_queue_init(struct throtl_service_queue *sq) 337 { 338 INIT_LIST_HEAD(&sq->queued[0]); 339 INIT_LIST_HEAD(&sq->queued[1]); 340 sq->pending_tree = RB_ROOT_CACHED; 341 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 342 } 343 344 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, 345 struct request_queue *q, 346 struct blkcg *blkcg) 347 { 348 struct throtl_grp *tg; 349 int rw; 350 351 tg = kzalloc_node(sizeof(*tg), gfp, q->node); 352 if (!tg) 353 return NULL; 354 355 if (blkg_rwstat_init(&tg->stat_bytes, gfp)) 356 goto err_free_tg; 357 358 if (blkg_rwstat_init(&tg->stat_ios, gfp)) 359 goto err_exit_stat_bytes; 360 361 throtl_service_queue_init(&tg->service_queue); 362 363 for (rw = READ; rw <= WRITE; rw++) { 364 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 365 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 366 } 367 368 RB_CLEAR_NODE(&tg->rb_node); 369 tg->bps[READ][LIMIT_MAX] = U64_MAX; 370 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 371 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 372 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 373 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 374 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 375 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 376 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 377 /* LIMIT_LOW will have default value 0 */ 378 379 tg->latency_target = DFL_LATENCY_TARGET; 380 tg->latency_target_conf = DFL_LATENCY_TARGET; 381 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 382 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 383 384 return &tg->pd; 385 386 err_exit_stat_bytes: 387 blkg_rwstat_exit(&tg->stat_bytes); 388 err_free_tg: 389 kfree(tg); 390 return NULL; 391 } 392 393 static void throtl_pd_init(struct blkg_policy_data *pd) 394 { 395 struct throtl_grp *tg = pd_to_tg(pd); 396 struct blkcg_gq *blkg = tg_to_blkg(tg); 397 struct throtl_data *td = blkg->q->td; 398 struct throtl_service_queue *sq = &tg->service_queue; 399 400 /* 401 * If on the default hierarchy, we switch to properly hierarchical 402 * behavior where limits on a given throtl_grp are applied to the 403 * whole subtree rather than just the group itself. e.g. If 16M 404 * read_bps limit is set on the root group, the whole system can't 405 * exceed 16M for the device. 406 * 407 * If not on the default hierarchy, the broken flat hierarchy 408 * behavior is retained where all throtl_grps are treated as if 409 * they're all separate root groups right below throtl_data. 410 * Limits of a group don't interact with limits of other groups 411 * regardless of the position of the group in the hierarchy. 412 */ 413 sq->parent_sq = &td->service_queue; 414 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 415 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 416 tg->td = td; 417 } 418 419 /* 420 * Set has_rules[] if @tg or any of its parents have limits configured. 421 * This doesn't require walking up to the top of the hierarchy as the 422 * parent's has_rules[] is guaranteed to be correct. 423 */ 424 static void tg_update_has_rules(struct throtl_grp *tg) 425 { 426 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 427 struct throtl_data *td = tg->td; 428 int rw; 429 430 for (rw = READ; rw <= WRITE; rw++) 431 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 432 (td->limit_valid[td->limit_index] && 433 (tg_bps_limit(tg, rw) != U64_MAX || 434 tg_iops_limit(tg, rw) != UINT_MAX)); 435 } 436 437 static void throtl_pd_online(struct blkg_policy_data *pd) 438 { 439 struct throtl_grp *tg = pd_to_tg(pd); 440 /* 441 * We don't want new groups to escape the limits of its ancestors. 442 * Update has_rules[] after a new group is brought online. 443 */ 444 tg_update_has_rules(tg); 445 } 446 447 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 448 static void blk_throtl_update_limit_valid(struct throtl_data *td) 449 { 450 struct cgroup_subsys_state *pos_css; 451 struct blkcg_gq *blkg; 452 bool low_valid = false; 453 454 rcu_read_lock(); 455 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 456 struct throtl_grp *tg = blkg_to_tg(blkg); 457 458 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 459 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { 460 low_valid = true; 461 break; 462 } 463 } 464 rcu_read_unlock(); 465 466 td->limit_valid[LIMIT_LOW] = low_valid; 467 } 468 #else 469 static inline void blk_throtl_update_limit_valid(struct throtl_data *td) 470 { 471 } 472 #endif 473 474 static void throtl_upgrade_state(struct throtl_data *td); 475 static void throtl_pd_offline(struct blkg_policy_data *pd) 476 { 477 struct throtl_grp *tg = pd_to_tg(pd); 478 479 tg->bps[READ][LIMIT_LOW] = 0; 480 tg->bps[WRITE][LIMIT_LOW] = 0; 481 tg->iops[READ][LIMIT_LOW] = 0; 482 tg->iops[WRITE][LIMIT_LOW] = 0; 483 484 blk_throtl_update_limit_valid(tg->td); 485 486 if (!tg->td->limit_valid[tg->td->limit_index]) 487 throtl_upgrade_state(tg->td); 488 } 489 490 static void throtl_pd_free(struct blkg_policy_data *pd) 491 { 492 struct throtl_grp *tg = pd_to_tg(pd); 493 494 del_timer_sync(&tg->service_queue.pending_timer); 495 blkg_rwstat_exit(&tg->stat_bytes); 496 blkg_rwstat_exit(&tg->stat_ios); 497 kfree(tg); 498 } 499 500 static struct throtl_grp * 501 throtl_rb_first(struct throtl_service_queue *parent_sq) 502 { 503 struct rb_node *n; 504 505 n = rb_first_cached(&parent_sq->pending_tree); 506 WARN_ON_ONCE(!n); 507 if (!n) 508 return NULL; 509 return rb_entry_tg(n); 510 } 511 512 static void throtl_rb_erase(struct rb_node *n, 513 struct throtl_service_queue *parent_sq) 514 { 515 rb_erase_cached(n, &parent_sq->pending_tree); 516 RB_CLEAR_NODE(n); 517 --parent_sq->nr_pending; 518 } 519 520 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 521 { 522 struct throtl_grp *tg; 523 524 tg = throtl_rb_first(parent_sq); 525 if (!tg) 526 return; 527 528 parent_sq->first_pending_disptime = tg->disptime; 529 } 530 531 static void tg_service_queue_add(struct throtl_grp *tg) 532 { 533 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 534 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 535 struct rb_node *parent = NULL; 536 struct throtl_grp *__tg; 537 unsigned long key = tg->disptime; 538 bool leftmost = true; 539 540 while (*node != NULL) { 541 parent = *node; 542 __tg = rb_entry_tg(parent); 543 544 if (time_before(key, __tg->disptime)) 545 node = &parent->rb_left; 546 else { 547 node = &parent->rb_right; 548 leftmost = false; 549 } 550 } 551 552 rb_link_node(&tg->rb_node, parent, node); 553 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 554 leftmost); 555 } 556 557 static void throtl_enqueue_tg(struct throtl_grp *tg) 558 { 559 if (!(tg->flags & THROTL_TG_PENDING)) { 560 tg_service_queue_add(tg); 561 tg->flags |= THROTL_TG_PENDING; 562 tg->service_queue.parent_sq->nr_pending++; 563 } 564 } 565 566 static void throtl_dequeue_tg(struct throtl_grp *tg) 567 { 568 if (tg->flags & THROTL_TG_PENDING) { 569 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 570 tg->flags &= ~THROTL_TG_PENDING; 571 } 572 } 573 574 /* Call with queue lock held */ 575 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 576 unsigned long expires) 577 { 578 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 579 580 /* 581 * Since we are adjusting the throttle limit dynamically, the sleep 582 * time calculated according to previous limit might be invalid. It's 583 * possible the cgroup sleep time is very long and no other cgroups 584 * have IO running so notify the limit changes. Make sure the cgroup 585 * doesn't sleep too long to avoid the missed notification. 586 */ 587 if (time_after(expires, max_expire)) 588 expires = max_expire; 589 mod_timer(&sq->pending_timer, expires); 590 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 591 expires - jiffies, jiffies); 592 } 593 594 /** 595 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 596 * @sq: the service_queue to schedule dispatch for 597 * @force: force scheduling 598 * 599 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 600 * dispatch time of the first pending child. Returns %true if either timer 601 * is armed or there's no pending child left. %false if the current 602 * dispatch window is still open and the caller should continue 603 * dispatching. 604 * 605 * If @force is %true, the dispatch timer is always scheduled and this 606 * function is guaranteed to return %true. This is to be used when the 607 * caller can't dispatch itself and needs to invoke pending_timer 608 * unconditionally. Note that forced scheduling is likely to induce short 609 * delay before dispatch starts even if @sq->first_pending_disptime is not 610 * in the future and thus shouldn't be used in hot paths. 611 */ 612 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 613 bool force) 614 { 615 /* any pending children left? */ 616 if (!sq->nr_pending) 617 return true; 618 619 update_min_dispatch_time(sq); 620 621 /* is the next dispatch time in the future? */ 622 if (force || time_after(sq->first_pending_disptime, jiffies)) { 623 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 624 return true; 625 } 626 627 /* tell the caller to continue dispatching */ 628 return false; 629 } 630 631 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 632 bool rw, unsigned long start) 633 { 634 tg->bytes_disp[rw] = 0; 635 tg->io_disp[rw] = 0; 636 637 atomic_set(&tg->io_split_cnt[rw], 0); 638 639 /* 640 * Previous slice has expired. We must have trimmed it after last 641 * bio dispatch. That means since start of last slice, we never used 642 * that bandwidth. Do try to make use of that bandwidth while giving 643 * credit. 644 */ 645 if (time_after_eq(start, tg->slice_start[rw])) 646 tg->slice_start[rw] = start; 647 648 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 649 throtl_log(&tg->service_queue, 650 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 651 rw == READ ? 'R' : 'W', tg->slice_start[rw], 652 tg->slice_end[rw], jiffies); 653 } 654 655 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 656 { 657 tg->bytes_disp[rw] = 0; 658 tg->io_disp[rw] = 0; 659 tg->slice_start[rw] = jiffies; 660 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 661 662 atomic_set(&tg->io_split_cnt[rw], 0); 663 664 throtl_log(&tg->service_queue, 665 "[%c] new slice start=%lu end=%lu jiffies=%lu", 666 rw == READ ? 'R' : 'W', tg->slice_start[rw], 667 tg->slice_end[rw], jiffies); 668 } 669 670 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 671 unsigned long jiffy_end) 672 { 673 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 674 } 675 676 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 677 unsigned long jiffy_end) 678 { 679 throtl_set_slice_end(tg, rw, jiffy_end); 680 throtl_log(&tg->service_queue, 681 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 682 rw == READ ? 'R' : 'W', tg->slice_start[rw], 683 tg->slice_end[rw], jiffies); 684 } 685 686 /* Determine if previously allocated or extended slice is complete or not */ 687 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 688 { 689 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 690 return false; 691 692 return true; 693 } 694 695 /* Trim the used slices and adjust slice start accordingly */ 696 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 697 { 698 unsigned long nr_slices, time_elapsed, io_trim; 699 u64 bytes_trim, tmp; 700 701 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 702 703 /* 704 * If bps are unlimited (-1), then time slice don't get 705 * renewed. Don't try to trim the slice if slice is used. A new 706 * slice will start when appropriate. 707 */ 708 if (throtl_slice_used(tg, rw)) 709 return; 710 711 /* 712 * A bio has been dispatched. Also adjust slice_end. It might happen 713 * that initially cgroup limit was very low resulting in high 714 * slice_end, but later limit was bumped up and bio was dispatched 715 * sooner, then we need to reduce slice_end. A high bogus slice_end 716 * is bad because it does not allow new slice to start. 717 */ 718 719 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 720 721 time_elapsed = jiffies - tg->slice_start[rw]; 722 723 nr_slices = time_elapsed / tg->td->throtl_slice; 724 725 if (!nr_slices) 726 return; 727 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 728 do_div(tmp, HZ); 729 bytes_trim = tmp; 730 731 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 732 HZ; 733 734 if (!bytes_trim && !io_trim) 735 return; 736 737 if (tg->bytes_disp[rw] >= bytes_trim) 738 tg->bytes_disp[rw] -= bytes_trim; 739 else 740 tg->bytes_disp[rw] = 0; 741 742 if (tg->io_disp[rw] >= io_trim) 743 tg->io_disp[rw] -= io_trim; 744 else 745 tg->io_disp[rw] = 0; 746 747 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 748 749 throtl_log(&tg->service_queue, 750 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 751 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 752 tg->slice_start[rw], tg->slice_end[rw], jiffies); 753 } 754 755 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 756 u32 iops_limit, unsigned long *wait) 757 { 758 bool rw = bio_data_dir(bio); 759 unsigned int io_allowed; 760 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 761 u64 tmp; 762 763 if (iops_limit == UINT_MAX) { 764 if (wait) 765 *wait = 0; 766 return true; 767 } 768 769 jiffy_elapsed = jiffies - tg->slice_start[rw]; 770 771 /* Round up to the next throttle slice, wait time must be nonzero */ 772 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); 773 774 /* 775 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 776 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 777 * will allow dispatch after 1 second and after that slice should 778 * have been trimmed. 779 */ 780 781 tmp = (u64)iops_limit * jiffy_elapsed_rnd; 782 do_div(tmp, HZ); 783 784 if (tmp > UINT_MAX) 785 io_allowed = UINT_MAX; 786 else 787 io_allowed = tmp; 788 789 if (tg->io_disp[rw] + 1 <= io_allowed) { 790 if (wait) 791 *wait = 0; 792 return true; 793 } 794 795 /* Calc approx time to dispatch */ 796 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 797 798 if (wait) 799 *wait = jiffy_wait; 800 return false; 801 } 802 803 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 804 u64 bps_limit, unsigned long *wait) 805 { 806 bool rw = bio_data_dir(bio); 807 u64 bytes_allowed, extra_bytes, tmp; 808 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 809 unsigned int bio_size = throtl_bio_data_size(bio); 810 811 if (bps_limit == U64_MAX) { 812 if (wait) 813 *wait = 0; 814 return true; 815 } 816 817 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 818 819 /* Slice has just started. Consider one slice interval */ 820 if (!jiffy_elapsed) 821 jiffy_elapsed_rnd = tg->td->throtl_slice; 822 823 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 824 825 tmp = bps_limit * jiffy_elapsed_rnd; 826 do_div(tmp, HZ); 827 bytes_allowed = tmp; 828 829 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 830 if (wait) 831 *wait = 0; 832 return true; 833 } 834 835 /* Calc approx time to dispatch */ 836 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 837 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); 838 839 if (!jiffy_wait) 840 jiffy_wait = 1; 841 842 /* 843 * This wait time is without taking into consideration the rounding 844 * up we did. Add that time also. 845 */ 846 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 847 if (wait) 848 *wait = jiffy_wait; 849 return false; 850 } 851 852 /* 853 * Returns whether one can dispatch a bio or not. Also returns approx number 854 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 855 */ 856 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 857 unsigned long *wait) 858 { 859 bool rw = bio_data_dir(bio); 860 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 861 u64 bps_limit = tg_bps_limit(tg, rw); 862 u32 iops_limit = tg_iops_limit(tg, rw); 863 864 /* 865 * Currently whole state machine of group depends on first bio 866 * queued in the group bio list. So one should not be calling 867 * this function with a different bio if there are other bios 868 * queued. 869 */ 870 BUG_ON(tg->service_queue.nr_queued[rw] && 871 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 872 873 /* If tg->bps = -1, then BW is unlimited */ 874 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) { 875 if (wait) 876 *wait = 0; 877 return true; 878 } 879 880 /* 881 * If previous slice expired, start a new one otherwise renew/extend 882 * existing slice to make sure it is at least throtl_slice interval 883 * long since now. New slice is started only for empty throttle group. 884 * If there is queued bio, that means there should be an active 885 * slice and it should be extended instead. 886 */ 887 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 888 throtl_start_new_slice(tg, rw); 889 else { 890 if (time_before(tg->slice_end[rw], 891 jiffies + tg->td->throtl_slice)) 892 throtl_extend_slice(tg, rw, 893 jiffies + tg->td->throtl_slice); 894 } 895 896 if (iops_limit != UINT_MAX) 897 tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0); 898 899 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) && 900 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) { 901 if (wait) 902 *wait = 0; 903 return true; 904 } 905 906 max_wait = max(bps_wait, iops_wait); 907 908 if (wait) 909 *wait = max_wait; 910 911 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 912 throtl_extend_slice(tg, rw, jiffies + max_wait); 913 914 return false; 915 } 916 917 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 918 { 919 bool rw = bio_data_dir(bio); 920 unsigned int bio_size = throtl_bio_data_size(bio); 921 922 /* Charge the bio to the group */ 923 tg->bytes_disp[rw] += bio_size; 924 tg->io_disp[rw]++; 925 tg->last_bytes_disp[rw] += bio_size; 926 tg->last_io_disp[rw]++; 927 928 /* 929 * BIO_THROTTLED is used to prevent the same bio to be throttled 930 * more than once as a throttled bio will go through blk-throtl the 931 * second time when it eventually gets issued. Set it when a bio 932 * is being charged to a tg. 933 */ 934 if (!bio_flagged(bio, BIO_THROTTLED)) 935 bio_set_flag(bio, BIO_THROTTLED); 936 } 937 938 /** 939 * throtl_add_bio_tg - add a bio to the specified throtl_grp 940 * @bio: bio to add 941 * @qn: qnode to use 942 * @tg: the target throtl_grp 943 * 944 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 945 * tg->qnode_on_self[] is used. 946 */ 947 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 948 struct throtl_grp *tg) 949 { 950 struct throtl_service_queue *sq = &tg->service_queue; 951 bool rw = bio_data_dir(bio); 952 953 if (!qn) 954 qn = &tg->qnode_on_self[rw]; 955 956 /* 957 * If @tg doesn't currently have any bios queued in the same 958 * direction, queueing @bio can change when @tg should be 959 * dispatched. Mark that @tg was empty. This is automatically 960 * cleared on the next tg_update_disptime(). 961 */ 962 if (!sq->nr_queued[rw]) 963 tg->flags |= THROTL_TG_WAS_EMPTY; 964 965 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 966 967 sq->nr_queued[rw]++; 968 throtl_enqueue_tg(tg); 969 } 970 971 static void tg_update_disptime(struct throtl_grp *tg) 972 { 973 struct throtl_service_queue *sq = &tg->service_queue; 974 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 975 struct bio *bio; 976 977 bio = throtl_peek_queued(&sq->queued[READ]); 978 if (bio) 979 tg_may_dispatch(tg, bio, &read_wait); 980 981 bio = throtl_peek_queued(&sq->queued[WRITE]); 982 if (bio) 983 tg_may_dispatch(tg, bio, &write_wait); 984 985 min_wait = min(read_wait, write_wait); 986 disptime = jiffies + min_wait; 987 988 /* Update dispatch time */ 989 throtl_dequeue_tg(tg); 990 tg->disptime = disptime; 991 throtl_enqueue_tg(tg); 992 993 /* see throtl_add_bio_tg() */ 994 tg->flags &= ~THROTL_TG_WAS_EMPTY; 995 } 996 997 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 998 struct throtl_grp *parent_tg, bool rw) 999 { 1000 if (throtl_slice_used(parent_tg, rw)) { 1001 throtl_start_new_slice_with_credit(parent_tg, rw, 1002 child_tg->slice_start[rw]); 1003 } 1004 1005 } 1006 1007 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1008 { 1009 struct throtl_service_queue *sq = &tg->service_queue; 1010 struct throtl_service_queue *parent_sq = sq->parent_sq; 1011 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1012 struct throtl_grp *tg_to_put = NULL; 1013 struct bio *bio; 1014 1015 /* 1016 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1017 * from @tg may put its reference and @parent_sq might end up 1018 * getting released prematurely. Remember the tg to put and put it 1019 * after @bio is transferred to @parent_sq. 1020 */ 1021 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1022 sq->nr_queued[rw]--; 1023 1024 throtl_charge_bio(tg, bio); 1025 1026 /* 1027 * If our parent is another tg, we just need to transfer @bio to 1028 * the parent using throtl_add_bio_tg(). If our parent is 1029 * @td->service_queue, @bio is ready to be issued. Put it on its 1030 * bio_lists[] and decrease total number queued. The caller is 1031 * responsible for issuing these bios. 1032 */ 1033 if (parent_tg) { 1034 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1035 start_parent_slice_with_credit(tg, parent_tg, rw); 1036 } else { 1037 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1038 &parent_sq->queued[rw]); 1039 BUG_ON(tg->td->nr_queued[rw] <= 0); 1040 tg->td->nr_queued[rw]--; 1041 } 1042 1043 throtl_trim_slice(tg, rw); 1044 1045 if (tg_to_put) 1046 blkg_put(tg_to_blkg(tg_to_put)); 1047 } 1048 1049 static int throtl_dispatch_tg(struct throtl_grp *tg) 1050 { 1051 struct throtl_service_queue *sq = &tg->service_queue; 1052 unsigned int nr_reads = 0, nr_writes = 0; 1053 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; 1054 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; 1055 struct bio *bio; 1056 1057 /* Try to dispatch 75% READS and 25% WRITES */ 1058 1059 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1060 tg_may_dispatch(tg, bio, NULL)) { 1061 1062 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1063 nr_reads++; 1064 1065 if (nr_reads >= max_nr_reads) 1066 break; 1067 } 1068 1069 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1070 tg_may_dispatch(tg, bio, NULL)) { 1071 1072 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1073 nr_writes++; 1074 1075 if (nr_writes >= max_nr_writes) 1076 break; 1077 } 1078 1079 return nr_reads + nr_writes; 1080 } 1081 1082 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1083 { 1084 unsigned int nr_disp = 0; 1085 1086 while (1) { 1087 struct throtl_grp *tg; 1088 struct throtl_service_queue *sq; 1089 1090 if (!parent_sq->nr_pending) 1091 break; 1092 1093 tg = throtl_rb_first(parent_sq); 1094 if (!tg) 1095 break; 1096 1097 if (time_before(jiffies, tg->disptime)) 1098 break; 1099 1100 throtl_dequeue_tg(tg); 1101 1102 nr_disp += throtl_dispatch_tg(tg); 1103 1104 sq = &tg->service_queue; 1105 if (sq->nr_queued[0] || sq->nr_queued[1]) 1106 tg_update_disptime(tg); 1107 1108 if (nr_disp >= THROTL_QUANTUM) 1109 break; 1110 } 1111 1112 return nr_disp; 1113 } 1114 1115 static bool throtl_can_upgrade(struct throtl_data *td, 1116 struct throtl_grp *this_tg); 1117 /** 1118 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1119 * @t: the pending_timer member of the throtl_service_queue being serviced 1120 * 1121 * This timer is armed when a child throtl_grp with active bio's become 1122 * pending and queued on the service_queue's pending_tree and expires when 1123 * the first child throtl_grp should be dispatched. This function 1124 * dispatches bio's from the children throtl_grps to the parent 1125 * service_queue. 1126 * 1127 * If the parent's parent is another throtl_grp, dispatching is propagated 1128 * by either arming its pending_timer or repeating dispatch directly. If 1129 * the top-level service_tree is reached, throtl_data->dispatch_work is 1130 * kicked so that the ready bio's are issued. 1131 */ 1132 static void throtl_pending_timer_fn(struct timer_list *t) 1133 { 1134 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1135 struct throtl_grp *tg = sq_to_tg(sq); 1136 struct throtl_data *td = sq_to_td(sq); 1137 struct request_queue *q = td->queue; 1138 struct throtl_service_queue *parent_sq; 1139 bool dispatched; 1140 int ret; 1141 1142 spin_lock_irq(&q->queue_lock); 1143 if (throtl_can_upgrade(td, NULL)) 1144 throtl_upgrade_state(td); 1145 1146 again: 1147 parent_sq = sq->parent_sq; 1148 dispatched = false; 1149 1150 while (true) { 1151 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1152 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1153 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1154 1155 ret = throtl_select_dispatch(sq); 1156 if (ret) { 1157 throtl_log(sq, "bios disp=%u", ret); 1158 dispatched = true; 1159 } 1160 1161 if (throtl_schedule_next_dispatch(sq, false)) 1162 break; 1163 1164 /* this dispatch windows is still open, relax and repeat */ 1165 spin_unlock_irq(&q->queue_lock); 1166 cpu_relax(); 1167 spin_lock_irq(&q->queue_lock); 1168 } 1169 1170 if (!dispatched) 1171 goto out_unlock; 1172 1173 if (parent_sq) { 1174 /* @parent_sq is another throl_grp, propagate dispatch */ 1175 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1176 tg_update_disptime(tg); 1177 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1178 /* window is already open, repeat dispatching */ 1179 sq = parent_sq; 1180 tg = sq_to_tg(sq); 1181 goto again; 1182 } 1183 } 1184 } else { 1185 /* reached the top-level, queue issuing */ 1186 queue_work(kthrotld_workqueue, &td->dispatch_work); 1187 } 1188 out_unlock: 1189 spin_unlock_irq(&q->queue_lock); 1190 } 1191 1192 /** 1193 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1194 * @work: work item being executed 1195 * 1196 * This function is queued for execution when bios reach the bio_lists[] 1197 * of throtl_data->service_queue. Those bios are ready and issued by this 1198 * function. 1199 */ 1200 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1201 { 1202 struct throtl_data *td = container_of(work, struct throtl_data, 1203 dispatch_work); 1204 struct throtl_service_queue *td_sq = &td->service_queue; 1205 struct request_queue *q = td->queue; 1206 struct bio_list bio_list_on_stack; 1207 struct bio *bio; 1208 struct blk_plug plug; 1209 int rw; 1210 1211 bio_list_init(&bio_list_on_stack); 1212 1213 spin_lock_irq(&q->queue_lock); 1214 for (rw = READ; rw <= WRITE; rw++) 1215 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1216 bio_list_add(&bio_list_on_stack, bio); 1217 spin_unlock_irq(&q->queue_lock); 1218 1219 if (!bio_list_empty(&bio_list_on_stack)) { 1220 blk_start_plug(&plug); 1221 while ((bio = bio_list_pop(&bio_list_on_stack))) 1222 submit_bio_noacct(bio); 1223 blk_finish_plug(&plug); 1224 } 1225 } 1226 1227 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1228 int off) 1229 { 1230 struct throtl_grp *tg = pd_to_tg(pd); 1231 u64 v = *(u64 *)((void *)tg + off); 1232 1233 if (v == U64_MAX) 1234 return 0; 1235 return __blkg_prfill_u64(sf, pd, v); 1236 } 1237 1238 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1239 int off) 1240 { 1241 struct throtl_grp *tg = pd_to_tg(pd); 1242 unsigned int v = *(unsigned int *)((void *)tg + off); 1243 1244 if (v == UINT_MAX) 1245 return 0; 1246 return __blkg_prfill_u64(sf, pd, v); 1247 } 1248 1249 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1250 { 1251 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1252 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1253 return 0; 1254 } 1255 1256 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1257 { 1258 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1259 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1260 return 0; 1261 } 1262 1263 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1264 { 1265 struct throtl_service_queue *sq = &tg->service_queue; 1266 struct cgroup_subsys_state *pos_css; 1267 struct blkcg_gq *blkg; 1268 1269 throtl_log(&tg->service_queue, 1270 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1271 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1272 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1273 1274 /* 1275 * Update has_rules[] flags for the updated tg's subtree. A tg is 1276 * considered to have rules if either the tg itself or any of its 1277 * ancestors has rules. This identifies groups without any 1278 * restrictions in the whole hierarchy and allows them to bypass 1279 * blk-throttle. 1280 */ 1281 blkg_for_each_descendant_pre(blkg, pos_css, 1282 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1283 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1284 struct throtl_grp *parent_tg; 1285 1286 tg_update_has_rules(this_tg); 1287 /* ignore root/second level */ 1288 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1289 !blkg->parent->parent) 1290 continue; 1291 parent_tg = blkg_to_tg(blkg->parent); 1292 /* 1293 * make sure all children has lower idle time threshold and 1294 * higher latency target 1295 */ 1296 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1297 parent_tg->idletime_threshold); 1298 this_tg->latency_target = max(this_tg->latency_target, 1299 parent_tg->latency_target); 1300 } 1301 1302 /* 1303 * We're already holding queue_lock and know @tg is valid. Let's 1304 * apply the new config directly. 1305 * 1306 * Restart the slices for both READ and WRITES. It might happen 1307 * that a group's limit are dropped suddenly and we don't want to 1308 * account recently dispatched IO with new low rate. 1309 */ 1310 throtl_start_new_slice(tg, READ); 1311 throtl_start_new_slice(tg, WRITE); 1312 1313 if (tg->flags & THROTL_TG_PENDING) { 1314 tg_update_disptime(tg); 1315 throtl_schedule_next_dispatch(sq->parent_sq, true); 1316 } 1317 } 1318 1319 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1320 char *buf, size_t nbytes, loff_t off, bool is_u64) 1321 { 1322 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1323 struct blkg_conf_ctx ctx; 1324 struct throtl_grp *tg; 1325 int ret; 1326 u64 v; 1327 1328 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1329 if (ret) 1330 return ret; 1331 1332 ret = -EINVAL; 1333 if (sscanf(ctx.body, "%llu", &v) != 1) 1334 goto out_finish; 1335 if (!v) 1336 v = U64_MAX; 1337 1338 tg = blkg_to_tg(ctx.blkg); 1339 1340 if (is_u64) 1341 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1342 else 1343 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1344 1345 tg_conf_updated(tg, false); 1346 ret = 0; 1347 out_finish: 1348 blkg_conf_finish(&ctx); 1349 return ret ?: nbytes; 1350 } 1351 1352 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1353 char *buf, size_t nbytes, loff_t off) 1354 { 1355 return tg_set_conf(of, buf, nbytes, off, true); 1356 } 1357 1358 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1359 char *buf, size_t nbytes, loff_t off) 1360 { 1361 return tg_set_conf(of, buf, nbytes, off, false); 1362 } 1363 1364 static int tg_print_rwstat(struct seq_file *sf, void *v) 1365 { 1366 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1367 blkg_prfill_rwstat, &blkcg_policy_throtl, 1368 seq_cft(sf)->private, true); 1369 return 0; 1370 } 1371 1372 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, 1373 struct blkg_policy_data *pd, int off) 1374 { 1375 struct blkg_rwstat_sample sum; 1376 1377 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, 1378 &sum); 1379 return __blkg_prfill_rwstat(sf, pd, &sum); 1380 } 1381 1382 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) 1383 { 1384 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1385 tg_prfill_rwstat_recursive, &blkcg_policy_throtl, 1386 seq_cft(sf)->private, true); 1387 return 0; 1388 } 1389 1390 static struct cftype throtl_legacy_files[] = { 1391 { 1392 .name = "throttle.read_bps_device", 1393 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1394 .seq_show = tg_print_conf_u64, 1395 .write = tg_set_conf_u64, 1396 }, 1397 { 1398 .name = "throttle.write_bps_device", 1399 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1400 .seq_show = tg_print_conf_u64, 1401 .write = tg_set_conf_u64, 1402 }, 1403 { 1404 .name = "throttle.read_iops_device", 1405 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1406 .seq_show = tg_print_conf_uint, 1407 .write = tg_set_conf_uint, 1408 }, 1409 { 1410 .name = "throttle.write_iops_device", 1411 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1412 .seq_show = tg_print_conf_uint, 1413 .write = tg_set_conf_uint, 1414 }, 1415 { 1416 .name = "throttle.io_service_bytes", 1417 .private = offsetof(struct throtl_grp, stat_bytes), 1418 .seq_show = tg_print_rwstat, 1419 }, 1420 { 1421 .name = "throttle.io_service_bytes_recursive", 1422 .private = offsetof(struct throtl_grp, stat_bytes), 1423 .seq_show = tg_print_rwstat_recursive, 1424 }, 1425 { 1426 .name = "throttle.io_serviced", 1427 .private = offsetof(struct throtl_grp, stat_ios), 1428 .seq_show = tg_print_rwstat, 1429 }, 1430 { 1431 .name = "throttle.io_serviced_recursive", 1432 .private = offsetof(struct throtl_grp, stat_ios), 1433 .seq_show = tg_print_rwstat_recursive, 1434 }, 1435 { } /* terminate */ 1436 }; 1437 1438 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1439 int off) 1440 { 1441 struct throtl_grp *tg = pd_to_tg(pd); 1442 const char *dname = blkg_dev_name(pd->blkg); 1443 char bufs[4][21] = { "max", "max", "max", "max" }; 1444 u64 bps_dft; 1445 unsigned int iops_dft; 1446 char idle_time[26] = ""; 1447 char latency_time[26] = ""; 1448 1449 if (!dname) 1450 return 0; 1451 1452 if (off == LIMIT_LOW) { 1453 bps_dft = 0; 1454 iops_dft = 0; 1455 } else { 1456 bps_dft = U64_MAX; 1457 iops_dft = UINT_MAX; 1458 } 1459 1460 if (tg->bps_conf[READ][off] == bps_dft && 1461 tg->bps_conf[WRITE][off] == bps_dft && 1462 tg->iops_conf[READ][off] == iops_dft && 1463 tg->iops_conf[WRITE][off] == iops_dft && 1464 (off != LIMIT_LOW || 1465 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1466 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1467 return 0; 1468 1469 if (tg->bps_conf[READ][off] != U64_MAX) 1470 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1471 tg->bps_conf[READ][off]); 1472 if (tg->bps_conf[WRITE][off] != U64_MAX) 1473 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1474 tg->bps_conf[WRITE][off]); 1475 if (tg->iops_conf[READ][off] != UINT_MAX) 1476 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1477 tg->iops_conf[READ][off]); 1478 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1479 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1480 tg->iops_conf[WRITE][off]); 1481 if (off == LIMIT_LOW) { 1482 if (tg->idletime_threshold_conf == ULONG_MAX) 1483 strcpy(idle_time, " idle=max"); 1484 else 1485 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1486 tg->idletime_threshold_conf); 1487 1488 if (tg->latency_target_conf == ULONG_MAX) 1489 strcpy(latency_time, " latency=max"); 1490 else 1491 snprintf(latency_time, sizeof(latency_time), 1492 " latency=%lu", tg->latency_target_conf); 1493 } 1494 1495 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1496 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1497 latency_time); 1498 return 0; 1499 } 1500 1501 static int tg_print_limit(struct seq_file *sf, void *v) 1502 { 1503 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1504 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1505 return 0; 1506 } 1507 1508 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1509 char *buf, size_t nbytes, loff_t off) 1510 { 1511 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1512 struct blkg_conf_ctx ctx; 1513 struct throtl_grp *tg; 1514 u64 v[4]; 1515 unsigned long idle_time; 1516 unsigned long latency_time; 1517 int ret; 1518 int index = of_cft(of)->private; 1519 1520 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1521 if (ret) 1522 return ret; 1523 1524 tg = blkg_to_tg(ctx.blkg); 1525 1526 v[0] = tg->bps_conf[READ][index]; 1527 v[1] = tg->bps_conf[WRITE][index]; 1528 v[2] = tg->iops_conf[READ][index]; 1529 v[3] = tg->iops_conf[WRITE][index]; 1530 1531 idle_time = tg->idletime_threshold_conf; 1532 latency_time = tg->latency_target_conf; 1533 while (true) { 1534 char tok[27]; /* wiops=18446744073709551616 */ 1535 char *p; 1536 u64 val = U64_MAX; 1537 int len; 1538 1539 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1540 break; 1541 if (tok[0] == '\0') 1542 break; 1543 ctx.body += len; 1544 1545 ret = -EINVAL; 1546 p = tok; 1547 strsep(&p, "="); 1548 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1549 goto out_finish; 1550 1551 ret = -ERANGE; 1552 if (!val) 1553 goto out_finish; 1554 1555 ret = -EINVAL; 1556 if (!strcmp(tok, "rbps") && val > 1) 1557 v[0] = val; 1558 else if (!strcmp(tok, "wbps") && val > 1) 1559 v[1] = val; 1560 else if (!strcmp(tok, "riops") && val > 1) 1561 v[2] = min_t(u64, val, UINT_MAX); 1562 else if (!strcmp(tok, "wiops") && val > 1) 1563 v[3] = min_t(u64, val, UINT_MAX); 1564 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1565 idle_time = val; 1566 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1567 latency_time = val; 1568 else 1569 goto out_finish; 1570 } 1571 1572 tg->bps_conf[READ][index] = v[0]; 1573 tg->bps_conf[WRITE][index] = v[1]; 1574 tg->iops_conf[READ][index] = v[2]; 1575 tg->iops_conf[WRITE][index] = v[3]; 1576 1577 if (index == LIMIT_MAX) { 1578 tg->bps[READ][index] = v[0]; 1579 tg->bps[WRITE][index] = v[1]; 1580 tg->iops[READ][index] = v[2]; 1581 tg->iops[WRITE][index] = v[3]; 1582 } 1583 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1584 tg->bps_conf[READ][LIMIT_MAX]); 1585 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1586 tg->bps_conf[WRITE][LIMIT_MAX]); 1587 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1588 tg->iops_conf[READ][LIMIT_MAX]); 1589 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1590 tg->iops_conf[WRITE][LIMIT_MAX]); 1591 tg->idletime_threshold_conf = idle_time; 1592 tg->latency_target_conf = latency_time; 1593 1594 /* force user to configure all settings for low limit */ 1595 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1596 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1597 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1598 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1599 tg->bps[READ][LIMIT_LOW] = 0; 1600 tg->bps[WRITE][LIMIT_LOW] = 0; 1601 tg->iops[READ][LIMIT_LOW] = 0; 1602 tg->iops[WRITE][LIMIT_LOW] = 0; 1603 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1604 tg->latency_target = DFL_LATENCY_TARGET; 1605 } else if (index == LIMIT_LOW) { 1606 tg->idletime_threshold = tg->idletime_threshold_conf; 1607 tg->latency_target = tg->latency_target_conf; 1608 } 1609 1610 blk_throtl_update_limit_valid(tg->td); 1611 if (tg->td->limit_valid[LIMIT_LOW]) { 1612 if (index == LIMIT_LOW) 1613 tg->td->limit_index = LIMIT_LOW; 1614 } else 1615 tg->td->limit_index = LIMIT_MAX; 1616 tg_conf_updated(tg, index == LIMIT_LOW && 1617 tg->td->limit_valid[LIMIT_LOW]); 1618 ret = 0; 1619 out_finish: 1620 blkg_conf_finish(&ctx); 1621 return ret ?: nbytes; 1622 } 1623 1624 static struct cftype throtl_files[] = { 1625 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1626 { 1627 .name = "low", 1628 .flags = CFTYPE_NOT_ON_ROOT, 1629 .seq_show = tg_print_limit, 1630 .write = tg_set_limit, 1631 .private = LIMIT_LOW, 1632 }, 1633 #endif 1634 { 1635 .name = "max", 1636 .flags = CFTYPE_NOT_ON_ROOT, 1637 .seq_show = tg_print_limit, 1638 .write = tg_set_limit, 1639 .private = LIMIT_MAX, 1640 }, 1641 { } /* terminate */ 1642 }; 1643 1644 static void throtl_shutdown_wq(struct request_queue *q) 1645 { 1646 struct throtl_data *td = q->td; 1647 1648 cancel_work_sync(&td->dispatch_work); 1649 } 1650 1651 struct blkcg_policy blkcg_policy_throtl = { 1652 .dfl_cftypes = throtl_files, 1653 .legacy_cftypes = throtl_legacy_files, 1654 1655 .pd_alloc_fn = throtl_pd_alloc, 1656 .pd_init_fn = throtl_pd_init, 1657 .pd_online_fn = throtl_pd_online, 1658 .pd_offline_fn = throtl_pd_offline, 1659 .pd_free_fn = throtl_pd_free, 1660 }; 1661 1662 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1663 { 1664 unsigned long rtime = jiffies, wtime = jiffies; 1665 1666 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1667 rtime = tg->last_low_overflow_time[READ]; 1668 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1669 wtime = tg->last_low_overflow_time[WRITE]; 1670 return min(rtime, wtime); 1671 } 1672 1673 /* tg should not be an intermediate node */ 1674 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1675 { 1676 struct throtl_service_queue *parent_sq; 1677 struct throtl_grp *parent = tg; 1678 unsigned long ret = __tg_last_low_overflow_time(tg); 1679 1680 while (true) { 1681 parent_sq = parent->service_queue.parent_sq; 1682 parent = sq_to_tg(parent_sq); 1683 if (!parent) 1684 break; 1685 1686 /* 1687 * The parent doesn't have low limit, it always reaches low 1688 * limit. Its overflow time is useless for children 1689 */ 1690 if (!parent->bps[READ][LIMIT_LOW] && 1691 !parent->iops[READ][LIMIT_LOW] && 1692 !parent->bps[WRITE][LIMIT_LOW] && 1693 !parent->iops[WRITE][LIMIT_LOW]) 1694 continue; 1695 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1696 ret = __tg_last_low_overflow_time(parent); 1697 } 1698 return ret; 1699 } 1700 1701 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1702 { 1703 /* 1704 * cgroup is idle if: 1705 * - single idle is too long, longer than a fixed value (in case user 1706 * configure a too big threshold) or 4 times of idletime threshold 1707 * - average think time is more than threshold 1708 * - IO latency is largely below threshold 1709 */ 1710 unsigned long time; 1711 bool ret; 1712 1713 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1714 ret = tg->latency_target == DFL_LATENCY_TARGET || 1715 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1716 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1717 tg->avg_idletime > tg->idletime_threshold || 1718 (tg->latency_target && tg->bio_cnt && 1719 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1720 throtl_log(&tg->service_queue, 1721 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1722 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1723 tg->bio_cnt, ret, tg->td->scale); 1724 return ret; 1725 } 1726 1727 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1728 { 1729 struct throtl_service_queue *sq = &tg->service_queue; 1730 bool read_limit, write_limit; 1731 1732 /* 1733 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1734 * reaches), it's ok to upgrade to next limit 1735 */ 1736 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1737 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1738 if (!read_limit && !write_limit) 1739 return true; 1740 if (read_limit && sq->nr_queued[READ] && 1741 (!write_limit || sq->nr_queued[WRITE])) 1742 return true; 1743 if (write_limit && sq->nr_queued[WRITE] && 1744 (!read_limit || sq->nr_queued[READ])) 1745 return true; 1746 1747 if (time_after_eq(jiffies, 1748 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1749 throtl_tg_is_idle(tg)) 1750 return true; 1751 return false; 1752 } 1753 1754 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1755 { 1756 while (true) { 1757 if (throtl_tg_can_upgrade(tg)) 1758 return true; 1759 tg = sq_to_tg(tg->service_queue.parent_sq); 1760 if (!tg || !tg_to_blkg(tg)->parent) 1761 return false; 1762 } 1763 return false; 1764 } 1765 1766 static bool throtl_can_upgrade(struct throtl_data *td, 1767 struct throtl_grp *this_tg) 1768 { 1769 struct cgroup_subsys_state *pos_css; 1770 struct blkcg_gq *blkg; 1771 1772 if (td->limit_index != LIMIT_LOW) 1773 return false; 1774 1775 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1776 return false; 1777 1778 rcu_read_lock(); 1779 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1780 struct throtl_grp *tg = blkg_to_tg(blkg); 1781 1782 if (tg == this_tg) 1783 continue; 1784 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1785 continue; 1786 if (!throtl_hierarchy_can_upgrade(tg)) { 1787 rcu_read_unlock(); 1788 return false; 1789 } 1790 } 1791 rcu_read_unlock(); 1792 return true; 1793 } 1794 1795 static void throtl_upgrade_check(struct throtl_grp *tg) 1796 { 1797 unsigned long now = jiffies; 1798 1799 if (tg->td->limit_index != LIMIT_LOW) 1800 return; 1801 1802 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1803 return; 1804 1805 tg->last_check_time = now; 1806 1807 if (!time_after_eq(now, 1808 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1809 return; 1810 1811 if (throtl_can_upgrade(tg->td, NULL)) 1812 throtl_upgrade_state(tg->td); 1813 } 1814 1815 static void throtl_upgrade_state(struct throtl_data *td) 1816 { 1817 struct cgroup_subsys_state *pos_css; 1818 struct blkcg_gq *blkg; 1819 1820 throtl_log(&td->service_queue, "upgrade to max"); 1821 td->limit_index = LIMIT_MAX; 1822 td->low_upgrade_time = jiffies; 1823 td->scale = 0; 1824 rcu_read_lock(); 1825 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1826 struct throtl_grp *tg = blkg_to_tg(blkg); 1827 struct throtl_service_queue *sq = &tg->service_queue; 1828 1829 tg->disptime = jiffies - 1; 1830 throtl_select_dispatch(sq); 1831 throtl_schedule_next_dispatch(sq, true); 1832 } 1833 rcu_read_unlock(); 1834 throtl_select_dispatch(&td->service_queue); 1835 throtl_schedule_next_dispatch(&td->service_queue, true); 1836 queue_work(kthrotld_workqueue, &td->dispatch_work); 1837 } 1838 1839 static void throtl_downgrade_state(struct throtl_data *td) 1840 { 1841 td->scale /= 2; 1842 1843 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1844 if (td->scale) { 1845 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1846 return; 1847 } 1848 1849 td->limit_index = LIMIT_LOW; 1850 td->low_downgrade_time = jiffies; 1851 } 1852 1853 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1854 { 1855 struct throtl_data *td = tg->td; 1856 unsigned long now = jiffies; 1857 1858 /* 1859 * If cgroup is below low limit, consider downgrade and throttle other 1860 * cgroups 1861 */ 1862 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1863 time_after_eq(now, tg_last_low_overflow_time(tg) + 1864 td->throtl_slice) && 1865 (!throtl_tg_is_idle(tg) || 1866 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1867 return true; 1868 return false; 1869 } 1870 1871 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1872 { 1873 while (true) { 1874 if (!throtl_tg_can_downgrade(tg)) 1875 return false; 1876 tg = sq_to_tg(tg->service_queue.parent_sq); 1877 if (!tg || !tg_to_blkg(tg)->parent) 1878 break; 1879 } 1880 return true; 1881 } 1882 1883 static void throtl_downgrade_check(struct throtl_grp *tg) 1884 { 1885 uint64_t bps; 1886 unsigned int iops; 1887 unsigned long elapsed_time; 1888 unsigned long now = jiffies; 1889 1890 if (tg->td->limit_index != LIMIT_MAX || 1891 !tg->td->limit_valid[LIMIT_LOW]) 1892 return; 1893 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1894 return; 1895 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1896 return; 1897 1898 elapsed_time = now - tg->last_check_time; 1899 tg->last_check_time = now; 1900 1901 if (time_before(now, tg_last_low_overflow_time(tg) + 1902 tg->td->throtl_slice)) 1903 return; 1904 1905 if (tg->bps[READ][LIMIT_LOW]) { 1906 bps = tg->last_bytes_disp[READ] * HZ; 1907 do_div(bps, elapsed_time); 1908 if (bps >= tg->bps[READ][LIMIT_LOW]) 1909 tg->last_low_overflow_time[READ] = now; 1910 } 1911 1912 if (tg->bps[WRITE][LIMIT_LOW]) { 1913 bps = tg->last_bytes_disp[WRITE] * HZ; 1914 do_div(bps, elapsed_time); 1915 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 1916 tg->last_low_overflow_time[WRITE] = now; 1917 } 1918 1919 if (tg->iops[READ][LIMIT_LOW]) { 1920 tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0); 1921 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 1922 if (iops >= tg->iops[READ][LIMIT_LOW]) 1923 tg->last_low_overflow_time[READ] = now; 1924 } 1925 1926 if (tg->iops[WRITE][LIMIT_LOW]) { 1927 tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0); 1928 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 1929 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 1930 tg->last_low_overflow_time[WRITE] = now; 1931 } 1932 1933 /* 1934 * If cgroup is below low limit, consider downgrade and throttle other 1935 * cgroups 1936 */ 1937 if (throtl_hierarchy_can_downgrade(tg)) 1938 throtl_downgrade_state(tg->td); 1939 1940 tg->last_bytes_disp[READ] = 0; 1941 tg->last_bytes_disp[WRITE] = 0; 1942 tg->last_io_disp[READ] = 0; 1943 tg->last_io_disp[WRITE] = 0; 1944 } 1945 1946 static void blk_throtl_update_idletime(struct throtl_grp *tg) 1947 { 1948 unsigned long now; 1949 unsigned long last_finish_time = tg->last_finish_time; 1950 1951 if (last_finish_time == 0) 1952 return; 1953 1954 now = ktime_get_ns() >> 10; 1955 if (now <= last_finish_time || 1956 last_finish_time == tg->checked_last_finish_time) 1957 return; 1958 1959 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 1960 tg->checked_last_finish_time = last_finish_time; 1961 } 1962 1963 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1964 static void throtl_update_latency_buckets(struct throtl_data *td) 1965 { 1966 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 1967 int i, cpu, rw; 1968 unsigned long last_latency[2] = { 0 }; 1969 unsigned long latency[2]; 1970 1971 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW]) 1972 return; 1973 if (time_before(jiffies, td->last_calculate_time + HZ)) 1974 return; 1975 td->last_calculate_time = jiffies; 1976 1977 memset(avg_latency, 0, sizeof(avg_latency)); 1978 for (rw = READ; rw <= WRITE; rw++) { 1979 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 1980 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 1981 1982 for_each_possible_cpu(cpu) { 1983 struct latency_bucket *bucket; 1984 1985 /* this isn't race free, but ok in practice */ 1986 bucket = per_cpu_ptr(td->latency_buckets[rw], 1987 cpu); 1988 tmp->total_latency += bucket[i].total_latency; 1989 tmp->samples += bucket[i].samples; 1990 bucket[i].total_latency = 0; 1991 bucket[i].samples = 0; 1992 } 1993 1994 if (tmp->samples >= 32) { 1995 int samples = tmp->samples; 1996 1997 latency[rw] = tmp->total_latency; 1998 1999 tmp->total_latency = 0; 2000 tmp->samples = 0; 2001 latency[rw] /= samples; 2002 if (latency[rw] == 0) 2003 continue; 2004 avg_latency[rw][i].latency = latency[rw]; 2005 } 2006 } 2007 } 2008 2009 for (rw = READ; rw <= WRITE; rw++) { 2010 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2011 if (!avg_latency[rw][i].latency) { 2012 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2013 td->avg_buckets[rw][i].latency = 2014 last_latency[rw]; 2015 continue; 2016 } 2017 2018 if (!td->avg_buckets[rw][i].valid) 2019 latency[rw] = avg_latency[rw][i].latency; 2020 else 2021 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2022 avg_latency[rw][i].latency) >> 3; 2023 2024 td->avg_buckets[rw][i].latency = max(latency[rw], 2025 last_latency[rw]); 2026 td->avg_buckets[rw][i].valid = true; 2027 last_latency[rw] = td->avg_buckets[rw][i].latency; 2028 } 2029 } 2030 2031 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2032 throtl_log(&td->service_queue, 2033 "Latency bucket %d: read latency=%ld, read valid=%d, " 2034 "write latency=%ld, write valid=%d", i, 2035 td->avg_buckets[READ][i].latency, 2036 td->avg_buckets[READ][i].valid, 2037 td->avg_buckets[WRITE][i].latency, 2038 td->avg_buckets[WRITE][i].valid); 2039 } 2040 #else 2041 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2042 { 2043 } 2044 #endif 2045 2046 void blk_throtl_charge_bio_split(struct bio *bio) 2047 { 2048 struct blkcg_gq *blkg = bio->bi_blkg; 2049 struct throtl_grp *parent = blkg_to_tg(blkg); 2050 struct throtl_service_queue *parent_sq; 2051 bool rw = bio_data_dir(bio); 2052 2053 do { 2054 if (!parent->has_rules[rw]) 2055 break; 2056 2057 atomic_inc(&parent->io_split_cnt[rw]); 2058 atomic_inc(&parent->last_io_split_cnt[rw]); 2059 2060 parent_sq = parent->service_queue.parent_sq; 2061 parent = sq_to_tg(parent_sq); 2062 } while (parent); 2063 } 2064 2065 bool __blk_throtl_bio(struct bio *bio) 2066 { 2067 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2068 struct blkcg_gq *blkg = bio->bi_blkg; 2069 struct throtl_qnode *qn = NULL; 2070 struct throtl_grp *tg = blkg_to_tg(blkg); 2071 struct throtl_service_queue *sq; 2072 bool rw = bio_data_dir(bio); 2073 bool throttled = false; 2074 struct throtl_data *td = tg->td; 2075 2076 rcu_read_lock(); 2077 2078 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) { 2079 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf, 2080 bio->bi_iter.bi_size); 2081 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1); 2082 } 2083 2084 spin_lock_irq(&q->queue_lock); 2085 2086 throtl_update_latency_buckets(td); 2087 2088 blk_throtl_update_idletime(tg); 2089 2090 sq = &tg->service_queue; 2091 2092 again: 2093 while (true) { 2094 if (tg->last_low_overflow_time[rw] == 0) 2095 tg->last_low_overflow_time[rw] = jiffies; 2096 throtl_downgrade_check(tg); 2097 throtl_upgrade_check(tg); 2098 /* throtl is FIFO - if bios are already queued, should queue */ 2099 if (sq->nr_queued[rw]) 2100 break; 2101 2102 /* if above limits, break to queue */ 2103 if (!tg_may_dispatch(tg, bio, NULL)) { 2104 tg->last_low_overflow_time[rw] = jiffies; 2105 if (throtl_can_upgrade(td, tg)) { 2106 throtl_upgrade_state(td); 2107 goto again; 2108 } 2109 break; 2110 } 2111 2112 /* within limits, let's charge and dispatch directly */ 2113 throtl_charge_bio(tg, bio); 2114 2115 /* 2116 * We need to trim slice even when bios are not being queued 2117 * otherwise it might happen that a bio is not queued for 2118 * a long time and slice keeps on extending and trim is not 2119 * called for a long time. Now if limits are reduced suddenly 2120 * we take into account all the IO dispatched so far at new 2121 * low rate and * newly queued IO gets a really long dispatch 2122 * time. 2123 * 2124 * So keep on trimming slice even if bio is not queued. 2125 */ 2126 throtl_trim_slice(tg, rw); 2127 2128 /* 2129 * @bio passed through this layer without being throttled. 2130 * Climb up the ladder. If we're already at the top, it 2131 * can be executed directly. 2132 */ 2133 qn = &tg->qnode_on_parent[rw]; 2134 sq = sq->parent_sq; 2135 tg = sq_to_tg(sq); 2136 if (!tg) 2137 goto out_unlock; 2138 } 2139 2140 /* out-of-limit, queue to @tg */ 2141 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2142 rw == READ ? 'R' : 'W', 2143 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2144 tg_bps_limit(tg, rw), 2145 tg->io_disp[rw], tg_iops_limit(tg, rw), 2146 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2147 2148 tg->last_low_overflow_time[rw] = jiffies; 2149 2150 td->nr_queued[rw]++; 2151 throtl_add_bio_tg(bio, qn, tg); 2152 throttled = true; 2153 2154 /* 2155 * Update @tg's dispatch time and force schedule dispatch if @tg 2156 * was empty before @bio. The forced scheduling isn't likely to 2157 * cause undue delay as @bio is likely to be dispatched directly if 2158 * its @tg's disptime is not in the future. 2159 */ 2160 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2161 tg_update_disptime(tg); 2162 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2163 } 2164 2165 out_unlock: 2166 spin_unlock_irq(&q->queue_lock); 2167 bio_set_flag(bio, BIO_THROTTLED); 2168 2169 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2170 if (throttled || !td->track_bio_latency) 2171 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; 2172 #endif 2173 rcu_read_unlock(); 2174 return throttled; 2175 } 2176 2177 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2178 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2179 int op, unsigned long time) 2180 { 2181 struct latency_bucket *latency; 2182 int index; 2183 2184 if (!td || td->limit_index != LIMIT_LOW || 2185 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2186 !blk_queue_nonrot(td->queue)) 2187 return; 2188 2189 index = request_bucket_index(size); 2190 2191 latency = get_cpu_ptr(td->latency_buckets[op]); 2192 latency[index].total_latency += time; 2193 latency[index].samples++; 2194 put_cpu_ptr(td->latency_buckets[op]); 2195 } 2196 2197 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2198 { 2199 struct request_queue *q = rq->q; 2200 struct throtl_data *td = q->td; 2201 2202 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), 2203 time_ns >> 10); 2204 } 2205 2206 void blk_throtl_bio_endio(struct bio *bio) 2207 { 2208 struct blkcg_gq *blkg; 2209 struct throtl_grp *tg; 2210 u64 finish_time_ns; 2211 unsigned long finish_time; 2212 unsigned long start_time; 2213 unsigned long lat; 2214 int rw = bio_data_dir(bio); 2215 2216 blkg = bio->bi_blkg; 2217 if (!blkg) 2218 return; 2219 tg = blkg_to_tg(blkg); 2220 if (!tg->td->limit_valid[LIMIT_LOW]) 2221 return; 2222 2223 finish_time_ns = ktime_get_ns(); 2224 tg->last_finish_time = finish_time_ns >> 10; 2225 2226 start_time = bio_issue_time(&bio->bi_issue) >> 10; 2227 finish_time = __bio_issue_time(finish_time_ns) >> 10; 2228 if (!start_time || finish_time <= start_time) 2229 return; 2230 2231 lat = finish_time - start_time; 2232 /* this is only for bio based driver */ 2233 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) 2234 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), 2235 bio_op(bio), lat); 2236 2237 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2238 int bucket; 2239 unsigned int threshold; 2240 2241 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); 2242 threshold = tg->td->avg_buckets[rw][bucket].latency + 2243 tg->latency_target; 2244 if (lat > threshold) 2245 tg->bad_bio_cnt++; 2246 /* 2247 * Not race free, could get wrong count, which means cgroups 2248 * will be throttled 2249 */ 2250 tg->bio_cnt++; 2251 } 2252 2253 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2254 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2255 tg->bio_cnt /= 2; 2256 tg->bad_bio_cnt /= 2; 2257 } 2258 } 2259 #endif 2260 2261 int blk_throtl_init(struct request_queue *q) 2262 { 2263 struct throtl_data *td; 2264 int ret; 2265 2266 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2267 if (!td) 2268 return -ENOMEM; 2269 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2270 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2271 if (!td->latency_buckets[READ]) { 2272 kfree(td); 2273 return -ENOMEM; 2274 } 2275 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2276 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2277 if (!td->latency_buckets[WRITE]) { 2278 free_percpu(td->latency_buckets[READ]); 2279 kfree(td); 2280 return -ENOMEM; 2281 } 2282 2283 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2284 throtl_service_queue_init(&td->service_queue); 2285 2286 q->td = td; 2287 td->queue = q; 2288 2289 td->limit_valid[LIMIT_MAX] = true; 2290 td->limit_index = LIMIT_MAX; 2291 td->low_upgrade_time = jiffies; 2292 td->low_downgrade_time = jiffies; 2293 2294 /* activate policy */ 2295 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2296 if (ret) { 2297 free_percpu(td->latency_buckets[READ]); 2298 free_percpu(td->latency_buckets[WRITE]); 2299 kfree(td); 2300 } 2301 return ret; 2302 } 2303 2304 void blk_throtl_exit(struct request_queue *q) 2305 { 2306 BUG_ON(!q->td); 2307 del_timer_sync(&q->td->service_queue.pending_timer); 2308 throtl_shutdown_wq(q); 2309 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2310 free_percpu(q->td->latency_buckets[READ]); 2311 free_percpu(q->td->latency_buckets[WRITE]); 2312 kfree(q->td); 2313 } 2314 2315 void blk_throtl_register_queue(struct request_queue *q) 2316 { 2317 struct throtl_data *td; 2318 int i; 2319 2320 td = q->td; 2321 BUG_ON(!td); 2322 2323 if (blk_queue_nonrot(q)) { 2324 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2325 td->filtered_latency = LATENCY_FILTERED_SSD; 2326 } else { 2327 td->throtl_slice = DFL_THROTL_SLICE_HD; 2328 td->filtered_latency = LATENCY_FILTERED_HD; 2329 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2330 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2331 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2332 } 2333 } 2334 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2335 /* if no low limit, use previous default */ 2336 td->throtl_slice = DFL_THROTL_SLICE_HD; 2337 #endif 2338 2339 td->track_bio_latency = !queue_is_mq(q); 2340 if (!td->track_bio_latency) 2341 blk_stat_enable_accounting(q); 2342 } 2343 2344 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2345 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2346 { 2347 if (!q->td) 2348 return -EINVAL; 2349 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2350 } 2351 2352 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2353 const char *page, size_t count) 2354 { 2355 unsigned long v; 2356 unsigned long t; 2357 2358 if (!q->td) 2359 return -EINVAL; 2360 if (kstrtoul(page, 10, &v)) 2361 return -EINVAL; 2362 t = msecs_to_jiffies(v); 2363 if (t == 0 || t > MAX_THROTL_SLICE) 2364 return -EINVAL; 2365 q->td->throtl_slice = t; 2366 return count; 2367 } 2368 #endif 2369 2370 static int __init throtl_init(void) 2371 { 2372 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2373 if (!kthrotld_workqueue) 2374 panic("Failed to create kthrotld\n"); 2375 2376 return blkcg_policy_register(&blkcg_policy_throtl); 2377 } 2378 2379 module_init(throtl_init); 2380