1 /* 2 * Interface for controlling IO bandwidth on a request queue 3 * 4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 5 */ 6 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/blkdev.h> 10 #include <linux/bio.h> 11 #include <linux/blktrace_api.h> 12 #include "blk-cgroup.h" 13 14 /* Max dispatch from a group in 1 round */ 15 static int throtl_grp_quantum = 8; 16 17 /* Total max dispatch from all groups in one round */ 18 static int throtl_quantum = 32; 19 20 /* Throttling is performed over 100ms slice and after that slice is renewed */ 21 static unsigned long throtl_slice = HZ/10; /* 100 ms */ 22 23 struct throtl_rb_root { 24 struct rb_root rb; 25 struct rb_node *left; 26 unsigned int count; 27 unsigned long min_disptime; 28 }; 29 30 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \ 31 .count = 0, .min_disptime = 0} 32 33 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 34 35 struct throtl_grp { 36 /* List of throtl groups on the request queue*/ 37 struct hlist_node tg_node; 38 39 /* active throtl group service_tree member */ 40 struct rb_node rb_node; 41 42 /* 43 * Dispatch time in jiffies. This is the estimated time when group 44 * will unthrottle and is ready to dispatch more bio. It is used as 45 * key to sort active groups in service tree. 46 */ 47 unsigned long disptime; 48 49 struct blkio_group blkg; 50 atomic_t ref; 51 unsigned int flags; 52 53 /* Two lists for READ and WRITE */ 54 struct bio_list bio_lists[2]; 55 56 /* Number of queued bios on READ and WRITE lists */ 57 unsigned int nr_queued[2]; 58 59 /* bytes per second rate limits */ 60 uint64_t bps[2]; 61 62 /* IOPS limits */ 63 unsigned int iops[2]; 64 65 /* Number of bytes disptached in current slice */ 66 uint64_t bytes_disp[2]; 67 /* Number of bio's dispatched in current slice */ 68 unsigned int io_disp[2]; 69 70 /* When did we start a new slice */ 71 unsigned long slice_start[2]; 72 unsigned long slice_end[2]; 73 74 /* Some throttle limits got updated for the group */ 75 bool limits_changed; 76 }; 77 78 struct throtl_data 79 { 80 /* List of throtl groups */ 81 struct hlist_head tg_list; 82 83 /* service tree for active throtl groups */ 84 struct throtl_rb_root tg_service_tree; 85 86 struct throtl_grp root_tg; 87 struct request_queue *queue; 88 89 /* Total Number of queued bios on READ and WRITE lists */ 90 unsigned int nr_queued[2]; 91 92 /* 93 * number of total undestroyed groups 94 */ 95 unsigned int nr_undestroyed_grps; 96 97 /* Work for dispatching throttled bios */ 98 struct delayed_work throtl_work; 99 100 atomic_t limits_changed; 101 }; 102 103 enum tg_state_flags { 104 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */ 105 }; 106 107 #define THROTL_TG_FNS(name) \ 108 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \ 109 { \ 110 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \ 111 } \ 112 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \ 113 { \ 114 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \ 115 } \ 116 static inline int throtl_tg_##name(const struct throtl_grp *tg) \ 117 { \ 118 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \ 119 } 120 121 THROTL_TG_FNS(on_rr); 122 123 #define throtl_log_tg(td, tg, fmt, args...) \ 124 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \ 125 blkg_path(&(tg)->blkg), ##args); \ 126 127 #define throtl_log(td, fmt, args...) \ 128 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args) 129 130 static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg) 131 { 132 if (blkg) 133 return container_of(blkg, struct throtl_grp, blkg); 134 135 return NULL; 136 } 137 138 static inline int total_nr_queued(struct throtl_data *td) 139 { 140 return (td->nr_queued[0] + td->nr_queued[1]); 141 } 142 143 static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg) 144 { 145 atomic_inc(&tg->ref); 146 return tg; 147 } 148 149 static void throtl_put_tg(struct throtl_grp *tg) 150 { 151 BUG_ON(atomic_read(&tg->ref) <= 0); 152 if (!atomic_dec_and_test(&tg->ref)) 153 return; 154 kfree(tg); 155 } 156 157 static struct throtl_grp * throtl_find_alloc_tg(struct throtl_data *td, 158 struct cgroup *cgroup) 159 { 160 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup); 161 struct throtl_grp *tg = NULL; 162 void *key = td; 163 struct backing_dev_info *bdi = &td->queue->backing_dev_info; 164 unsigned int major, minor; 165 166 /* 167 * TODO: Speed up blkiocg_lookup_group() by maintaining a radix 168 * tree of blkg (instead of traversing through hash list all 169 * the time. 170 */ 171 tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key)); 172 173 /* Fill in device details for root group */ 174 if (tg && !tg->blkg.dev && bdi->dev && dev_name(bdi->dev)) { 175 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor); 176 tg->blkg.dev = MKDEV(major, minor); 177 goto done; 178 } 179 180 if (tg) 181 goto done; 182 183 tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node); 184 if (!tg) 185 goto done; 186 187 INIT_HLIST_NODE(&tg->tg_node); 188 RB_CLEAR_NODE(&tg->rb_node); 189 bio_list_init(&tg->bio_lists[0]); 190 bio_list_init(&tg->bio_lists[1]); 191 192 /* 193 * Take the initial reference that will be released on destroy 194 * This can be thought of a joint reference by cgroup and 195 * request queue which will be dropped by either request queue 196 * exit or cgroup deletion path depending on who is exiting first. 197 */ 198 atomic_set(&tg->ref, 1); 199 200 /* Add group onto cgroup list */ 201 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor); 202 blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td, 203 MKDEV(major, minor), BLKIO_POLICY_THROTL); 204 205 tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev); 206 tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev); 207 tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev); 208 tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev); 209 210 hlist_add_head(&tg->tg_node, &td->tg_list); 211 td->nr_undestroyed_grps++; 212 done: 213 return tg; 214 } 215 216 static struct throtl_grp * throtl_get_tg(struct throtl_data *td) 217 { 218 struct cgroup *cgroup; 219 struct throtl_grp *tg = NULL; 220 221 rcu_read_lock(); 222 cgroup = task_cgroup(current, blkio_subsys_id); 223 tg = throtl_find_alloc_tg(td, cgroup); 224 if (!tg) 225 tg = &td->root_tg; 226 rcu_read_unlock(); 227 return tg; 228 } 229 230 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root) 231 { 232 /* Service tree is empty */ 233 if (!root->count) 234 return NULL; 235 236 if (!root->left) 237 root->left = rb_first(&root->rb); 238 239 if (root->left) 240 return rb_entry_tg(root->left); 241 242 return NULL; 243 } 244 245 static void rb_erase_init(struct rb_node *n, struct rb_root *root) 246 { 247 rb_erase(n, root); 248 RB_CLEAR_NODE(n); 249 } 250 251 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root) 252 { 253 if (root->left == n) 254 root->left = NULL; 255 rb_erase_init(n, &root->rb); 256 --root->count; 257 } 258 259 static void update_min_dispatch_time(struct throtl_rb_root *st) 260 { 261 struct throtl_grp *tg; 262 263 tg = throtl_rb_first(st); 264 if (!tg) 265 return; 266 267 st->min_disptime = tg->disptime; 268 } 269 270 static void 271 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg) 272 { 273 struct rb_node **node = &st->rb.rb_node; 274 struct rb_node *parent = NULL; 275 struct throtl_grp *__tg; 276 unsigned long key = tg->disptime; 277 int left = 1; 278 279 while (*node != NULL) { 280 parent = *node; 281 __tg = rb_entry_tg(parent); 282 283 if (time_before(key, __tg->disptime)) 284 node = &parent->rb_left; 285 else { 286 node = &parent->rb_right; 287 left = 0; 288 } 289 } 290 291 if (left) 292 st->left = &tg->rb_node; 293 294 rb_link_node(&tg->rb_node, parent, node); 295 rb_insert_color(&tg->rb_node, &st->rb); 296 } 297 298 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) 299 { 300 struct throtl_rb_root *st = &td->tg_service_tree; 301 302 tg_service_tree_add(st, tg); 303 throtl_mark_tg_on_rr(tg); 304 st->count++; 305 } 306 307 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) 308 { 309 if (!throtl_tg_on_rr(tg)) 310 __throtl_enqueue_tg(td, tg); 311 } 312 313 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) 314 { 315 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree); 316 throtl_clear_tg_on_rr(tg); 317 } 318 319 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) 320 { 321 if (throtl_tg_on_rr(tg)) 322 __throtl_dequeue_tg(td, tg); 323 } 324 325 static void throtl_schedule_next_dispatch(struct throtl_data *td) 326 { 327 struct throtl_rb_root *st = &td->tg_service_tree; 328 329 /* 330 * If there are more bios pending, schedule more work. 331 */ 332 if (!total_nr_queued(td)) 333 return; 334 335 BUG_ON(!st->count); 336 337 update_min_dispatch_time(st); 338 339 if (time_before_eq(st->min_disptime, jiffies)) 340 throtl_schedule_delayed_work(td->queue, 0); 341 else 342 throtl_schedule_delayed_work(td->queue, 343 (st->min_disptime - jiffies)); 344 } 345 346 static inline void 347 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) 348 { 349 tg->bytes_disp[rw] = 0; 350 tg->io_disp[rw] = 0; 351 tg->slice_start[rw] = jiffies; 352 tg->slice_end[rw] = jiffies + throtl_slice; 353 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu", 354 rw == READ ? 'R' : 'W', tg->slice_start[rw], 355 tg->slice_end[rw], jiffies); 356 } 357 358 static inline void throtl_set_slice_end(struct throtl_data *td, 359 struct throtl_grp *tg, bool rw, unsigned long jiffy_end) 360 { 361 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 362 } 363 364 static inline void throtl_extend_slice(struct throtl_data *td, 365 struct throtl_grp *tg, bool rw, unsigned long jiffy_end) 366 { 367 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 368 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu", 369 rw == READ ? 'R' : 'W', tg->slice_start[rw], 370 tg->slice_end[rw], jiffies); 371 } 372 373 /* Determine if previously allocated or extended slice is complete or not */ 374 static bool 375 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw) 376 { 377 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 378 return 0; 379 380 return 1; 381 } 382 383 /* Trim the used slices and adjust slice start accordingly */ 384 static inline void 385 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) 386 { 387 unsigned long nr_slices, time_elapsed, io_trim; 388 u64 bytes_trim, tmp; 389 390 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 391 392 /* 393 * If bps are unlimited (-1), then time slice don't get 394 * renewed. Don't try to trim the slice if slice is used. A new 395 * slice will start when appropriate. 396 */ 397 if (throtl_slice_used(td, tg, rw)) 398 return; 399 400 /* 401 * A bio has been dispatched. Also adjust slice_end. It might happen 402 * that initially cgroup limit was very low resulting in high 403 * slice_end, but later limit was bumped up and bio was dispached 404 * sooner, then we need to reduce slice_end. A high bogus slice_end 405 * is bad because it does not allow new slice to start. 406 */ 407 408 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice); 409 410 time_elapsed = jiffies - tg->slice_start[rw]; 411 412 nr_slices = time_elapsed / throtl_slice; 413 414 if (!nr_slices) 415 return; 416 tmp = tg->bps[rw] * throtl_slice * nr_slices; 417 do_div(tmp, HZ); 418 bytes_trim = tmp; 419 420 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; 421 422 if (!bytes_trim && !io_trim) 423 return; 424 425 if (tg->bytes_disp[rw] >= bytes_trim) 426 tg->bytes_disp[rw] -= bytes_trim; 427 else 428 tg->bytes_disp[rw] = 0; 429 430 if (tg->io_disp[rw] >= io_trim) 431 tg->io_disp[rw] -= io_trim; 432 else 433 tg->io_disp[rw] = 0; 434 435 tg->slice_start[rw] += nr_slices * throtl_slice; 436 437 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu" 438 " start=%lu end=%lu jiffies=%lu", 439 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 440 tg->slice_start[rw], tg->slice_end[rw], jiffies); 441 } 442 443 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg, 444 struct bio *bio, unsigned long *wait) 445 { 446 bool rw = bio_data_dir(bio); 447 unsigned int io_allowed; 448 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 449 u64 tmp; 450 451 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 452 453 /* Slice has just started. Consider one slice interval */ 454 if (!jiffy_elapsed) 455 jiffy_elapsed_rnd = throtl_slice; 456 457 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 458 459 /* 460 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 461 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 462 * will allow dispatch after 1 second and after that slice should 463 * have been trimmed. 464 */ 465 466 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; 467 do_div(tmp, HZ); 468 469 if (tmp > UINT_MAX) 470 io_allowed = UINT_MAX; 471 else 472 io_allowed = tmp; 473 474 if (tg->io_disp[rw] + 1 <= io_allowed) { 475 if (wait) 476 *wait = 0; 477 return 1; 478 } 479 480 /* Calc approx time to dispatch */ 481 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; 482 483 if (jiffy_wait > jiffy_elapsed) 484 jiffy_wait = jiffy_wait - jiffy_elapsed; 485 else 486 jiffy_wait = 1; 487 488 if (wait) 489 *wait = jiffy_wait; 490 return 0; 491 } 492 493 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg, 494 struct bio *bio, unsigned long *wait) 495 { 496 bool rw = bio_data_dir(bio); 497 u64 bytes_allowed, extra_bytes, tmp; 498 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 499 500 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 501 502 /* Slice has just started. Consider one slice interval */ 503 if (!jiffy_elapsed) 504 jiffy_elapsed_rnd = throtl_slice; 505 506 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 507 508 tmp = tg->bps[rw] * jiffy_elapsed_rnd; 509 do_div(tmp, HZ); 510 bytes_allowed = tmp; 511 512 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) { 513 if (wait) 514 *wait = 0; 515 return 1; 516 } 517 518 /* Calc approx time to dispatch */ 519 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed; 520 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); 521 522 if (!jiffy_wait) 523 jiffy_wait = 1; 524 525 /* 526 * This wait time is without taking into consideration the rounding 527 * up we did. Add that time also. 528 */ 529 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 530 if (wait) 531 *wait = jiffy_wait; 532 return 0; 533 } 534 535 /* 536 * Returns whether one can dispatch a bio or not. Also returns approx number 537 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 538 */ 539 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg, 540 struct bio *bio, unsigned long *wait) 541 { 542 bool rw = bio_data_dir(bio); 543 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 544 545 /* 546 * Currently whole state machine of group depends on first bio 547 * queued in the group bio list. So one should not be calling 548 * this function with a different bio if there are other bios 549 * queued. 550 */ 551 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw])); 552 553 /* If tg->bps = -1, then BW is unlimited */ 554 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { 555 if (wait) 556 *wait = 0; 557 return 1; 558 } 559 560 /* 561 * If previous slice expired, start a new one otherwise renew/extend 562 * existing slice to make sure it is at least throtl_slice interval 563 * long since now. 564 */ 565 if (throtl_slice_used(td, tg, rw)) 566 throtl_start_new_slice(td, tg, rw); 567 else { 568 if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) 569 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice); 570 } 571 572 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait) 573 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) { 574 if (wait) 575 *wait = 0; 576 return 1; 577 } 578 579 max_wait = max(bps_wait, iops_wait); 580 581 if (wait) 582 *wait = max_wait; 583 584 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 585 throtl_extend_slice(td, tg, rw, jiffies + max_wait); 586 587 return 0; 588 } 589 590 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 591 { 592 bool rw = bio_data_dir(bio); 593 bool sync = bio->bi_rw & REQ_SYNC; 594 595 /* Charge the bio to the group */ 596 tg->bytes_disp[rw] += bio->bi_size; 597 tg->io_disp[rw]++; 598 599 /* 600 * TODO: This will take blkg->stats_lock. Figure out a way 601 * to avoid this cost. 602 */ 603 blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync); 604 } 605 606 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg, 607 struct bio *bio) 608 { 609 bool rw = bio_data_dir(bio); 610 611 bio_list_add(&tg->bio_lists[rw], bio); 612 /* Take a bio reference on tg */ 613 throtl_ref_get_tg(tg); 614 tg->nr_queued[rw]++; 615 td->nr_queued[rw]++; 616 throtl_enqueue_tg(td, tg); 617 } 618 619 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg) 620 { 621 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 622 struct bio *bio; 623 624 if ((bio = bio_list_peek(&tg->bio_lists[READ]))) 625 tg_may_dispatch(td, tg, bio, &read_wait); 626 627 if ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) 628 tg_may_dispatch(td, tg, bio, &write_wait); 629 630 min_wait = min(read_wait, write_wait); 631 disptime = jiffies + min_wait; 632 633 /* Update dispatch time */ 634 throtl_dequeue_tg(td, tg); 635 tg->disptime = disptime; 636 throtl_enqueue_tg(td, tg); 637 } 638 639 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg, 640 bool rw, struct bio_list *bl) 641 { 642 struct bio *bio; 643 644 bio = bio_list_pop(&tg->bio_lists[rw]); 645 tg->nr_queued[rw]--; 646 /* Drop bio reference on tg */ 647 throtl_put_tg(tg); 648 649 BUG_ON(td->nr_queued[rw] <= 0); 650 td->nr_queued[rw]--; 651 652 throtl_charge_bio(tg, bio); 653 bio_list_add(bl, bio); 654 bio->bi_rw |= REQ_THROTTLED; 655 656 throtl_trim_slice(td, tg, rw); 657 } 658 659 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg, 660 struct bio_list *bl) 661 { 662 unsigned int nr_reads = 0, nr_writes = 0; 663 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 664 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 665 struct bio *bio; 666 667 /* Try to dispatch 75% READS and 25% WRITES */ 668 669 while ((bio = bio_list_peek(&tg->bio_lists[READ])) 670 && tg_may_dispatch(td, tg, bio, NULL)) { 671 672 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); 673 nr_reads++; 674 675 if (nr_reads >= max_nr_reads) 676 break; 677 } 678 679 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])) 680 && tg_may_dispatch(td, tg, bio, NULL)) { 681 682 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); 683 nr_writes++; 684 685 if (nr_writes >= max_nr_writes) 686 break; 687 } 688 689 return nr_reads + nr_writes; 690 } 691 692 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl) 693 { 694 unsigned int nr_disp = 0; 695 struct throtl_grp *tg; 696 struct throtl_rb_root *st = &td->tg_service_tree; 697 698 while (1) { 699 tg = throtl_rb_first(st); 700 701 if (!tg) 702 break; 703 704 if (time_before(jiffies, tg->disptime)) 705 break; 706 707 throtl_dequeue_tg(td, tg); 708 709 nr_disp += throtl_dispatch_tg(td, tg, bl); 710 711 if (tg->nr_queued[0] || tg->nr_queued[1]) { 712 tg_update_disptime(td, tg); 713 throtl_enqueue_tg(td, tg); 714 } 715 716 if (nr_disp >= throtl_quantum) 717 break; 718 } 719 720 return nr_disp; 721 } 722 723 static void throtl_process_limit_change(struct throtl_data *td) 724 { 725 struct throtl_grp *tg; 726 struct hlist_node *pos, *n; 727 728 if (!atomic_read(&td->limits_changed)) 729 return; 730 731 throtl_log(td, "limit changed =%d", atomic_read(&td->limits_changed)); 732 733 /* 734 * Make sure updates from throtl_update_blkio_group_read_bps() group 735 * of functions to tg->limits_changed are visible. We do not 736 * want update td->limits_changed to be visible but update to 737 * tg->limits_changed not being visible yet on this cpu. Hence 738 * the read barrier. 739 */ 740 smp_rmb(); 741 742 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) { 743 if (throtl_tg_on_rr(tg) && tg->limits_changed) { 744 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu" 745 " riops=%u wiops=%u", tg->bps[READ], 746 tg->bps[WRITE], tg->iops[READ], 747 tg->iops[WRITE]); 748 tg_update_disptime(td, tg); 749 tg->limits_changed = false; 750 } 751 } 752 753 smp_mb__before_atomic_dec(); 754 atomic_dec(&td->limits_changed); 755 smp_mb__after_atomic_dec(); 756 } 757 758 /* Dispatch throttled bios. Should be called without queue lock held. */ 759 static int throtl_dispatch(struct request_queue *q) 760 { 761 struct throtl_data *td = q->td; 762 unsigned int nr_disp = 0; 763 struct bio_list bio_list_on_stack; 764 struct bio *bio; 765 766 spin_lock_irq(q->queue_lock); 767 768 throtl_process_limit_change(td); 769 770 if (!total_nr_queued(td)) 771 goto out; 772 773 bio_list_init(&bio_list_on_stack); 774 775 throtl_log(td, "dispatch nr_queued=%lu read=%u write=%u", 776 total_nr_queued(td), td->nr_queued[READ], 777 td->nr_queued[WRITE]); 778 779 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack); 780 781 if (nr_disp) 782 throtl_log(td, "bios disp=%u", nr_disp); 783 784 throtl_schedule_next_dispatch(td); 785 out: 786 spin_unlock_irq(q->queue_lock); 787 788 /* 789 * If we dispatched some requests, unplug the queue to make sure 790 * immediate dispatch 791 */ 792 if (nr_disp) { 793 while((bio = bio_list_pop(&bio_list_on_stack))) 794 generic_make_request(bio); 795 blk_unplug(q); 796 } 797 return nr_disp; 798 } 799 800 void blk_throtl_work(struct work_struct *work) 801 { 802 struct throtl_data *td = container_of(work, struct throtl_data, 803 throtl_work.work); 804 struct request_queue *q = td->queue; 805 806 throtl_dispatch(q); 807 } 808 809 /* Call with queue lock held */ 810 void throtl_schedule_delayed_work(struct request_queue *q, unsigned long delay) 811 { 812 813 struct throtl_data *td = q->td; 814 struct delayed_work *dwork = &td->throtl_work; 815 816 if (total_nr_queued(td) > 0) { 817 /* 818 * We might have a work scheduled to be executed in future. 819 * Cancel that and schedule a new one. 820 */ 821 __cancel_delayed_work(dwork); 822 kblockd_schedule_delayed_work(q, dwork, delay); 823 throtl_log(td, "schedule work. delay=%lu jiffies=%lu", 824 delay, jiffies); 825 } 826 } 827 EXPORT_SYMBOL(throtl_schedule_delayed_work); 828 829 static void 830 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg) 831 { 832 /* Something wrong if we are trying to remove same group twice */ 833 BUG_ON(hlist_unhashed(&tg->tg_node)); 834 835 hlist_del_init(&tg->tg_node); 836 837 /* 838 * Put the reference taken at the time of creation so that when all 839 * queues are gone, group can be destroyed. 840 */ 841 throtl_put_tg(tg); 842 td->nr_undestroyed_grps--; 843 } 844 845 static void throtl_release_tgs(struct throtl_data *td) 846 { 847 struct hlist_node *pos, *n; 848 struct throtl_grp *tg; 849 850 hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) { 851 /* 852 * If cgroup removal path got to blk_group first and removed 853 * it from cgroup list, then it will take care of destroying 854 * cfqg also. 855 */ 856 if (!blkiocg_del_blkio_group(&tg->blkg)) 857 throtl_destroy_tg(td, tg); 858 } 859 } 860 861 static void throtl_td_free(struct throtl_data *td) 862 { 863 kfree(td); 864 } 865 866 /* 867 * Blk cgroup controller notification saying that blkio_group object is being 868 * delinked as associated cgroup object is going away. That also means that 869 * no new IO will come in this group. So get rid of this group as soon as 870 * any pending IO in the group is finished. 871 * 872 * This function is called under rcu_read_lock(). key is the rcu protected 873 * pointer. That means "key" is a valid throtl_data pointer as long as we are 874 * rcu read lock. 875 * 876 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means 877 * it should not be NULL as even if queue was going away, cgroup deltion 878 * path got to it first. 879 */ 880 void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg) 881 { 882 unsigned long flags; 883 struct throtl_data *td = key; 884 885 spin_lock_irqsave(td->queue->queue_lock, flags); 886 throtl_destroy_tg(td, tg_of_blkg(blkg)); 887 spin_unlock_irqrestore(td->queue->queue_lock, flags); 888 } 889 890 /* 891 * For all update functions, key should be a valid pointer because these 892 * update functions are called under blkcg_lock, that means, blkg is 893 * valid and in turn key is valid. queue exit path can not race becuase 894 * of blkcg_lock 895 * 896 * Can not take queue lock in update functions as queue lock under blkcg_lock 897 * is not allowed. Under other paths we take blkcg_lock under queue_lock. 898 */ 899 static void throtl_update_blkio_group_read_bps(void *key, 900 struct blkio_group *blkg, u64 read_bps) 901 { 902 struct throtl_data *td = key; 903 904 tg_of_blkg(blkg)->bps[READ] = read_bps; 905 /* Make sure read_bps is updated before setting limits_changed */ 906 smp_wmb(); 907 tg_of_blkg(blkg)->limits_changed = true; 908 909 /* Make sure tg->limits_changed is updated before td->limits_changed */ 910 smp_mb__before_atomic_inc(); 911 atomic_inc(&td->limits_changed); 912 smp_mb__after_atomic_inc(); 913 914 /* Schedule a work now to process the limit change */ 915 throtl_schedule_delayed_work(td->queue, 0); 916 } 917 918 static void throtl_update_blkio_group_write_bps(void *key, 919 struct blkio_group *blkg, u64 write_bps) 920 { 921 struct throtl_data *td = key; 922 923 tg_of_blkg(blkg)->bps[WRITE] = write_bps; 924 smp_wmb(); 925 tg_of_blkg(blkg)->limits_changed = true; 926 smp_mb__before_atomic_inc(); 927 atomic_inc(&td->limits_changed); 928 smp_mb__after_atomic_inc(); 929 throtl_schedule_delayed_work(td->queue, 0); 930 } 931 932 static void throtl_update_blkio_group_read_iops(void *key, 933 struct blkio_group *blkg, unsigned int read_iops) 934 { 935 struct throtl_data *td = key; 936 937 tg_of_blkg(blkg)->iops[READ] = read_iops; 938 smp_wmb(); 939 tg_of_blkg(blkg)->limits_changed = true; 940 smp_mb__before_atomic_inc(); 941 atomic_inc(&td->limits_changed); 942 smp_mb__after_atomic_inc(); 943 throtl_schedule_delayed_work(td->queue, 0); 944 } 945 946 static void throtl_update_blkio_group_write_iops(void *key, 947 struct blkio_group *blkg, unsigned int write_iops) 948 { 949 struct throtl_data *td = key; 950 951 tg_of_blkg(blkg)->iops[WRITE] = write_iops; 952 smp_wmb(); 953 tg_of_blkg(blkg)->limits_changed = true; 954 smp_mb__before_atomic_inc(); 955 atomic_inc(&td->limits_changed); 956 smp_mb__after_atomic_inc(); 957 throtl_schedule_delayed_work(td->queue, 0); 958 } 959 960 void throtl_shutdown_timer_wq(struct request_queue *q) 961 { 962 struct throtl_data *td = q->td; 963 964 cancel_delayed_work_sync(&td->throtl_work); 965 } 966 967 static struct blkio_policy_type blkio_policy_throtl = { 968 .ops = { 969 .blkio_unlink_group_fn = throtl_unlink_blkio_group, 970 .blkio_update_group_read_bps_fn = 971 throtl_update_blkio_group_read_bps, 972 .blkio_update_group_write_bps_fn = 973 throtl_update_blkio_group_write_bps, 974 .blkio_update_group_read_iops_fn = 975 throtl_update_blkio_group_read_iops, 976 .blkio_update_group_write_iops_fn = 977 throtl_update_blkio_group_write_iops, 978 }, 979 .plid = BLKIO_POLICY_THROTL, 980 }; 981 982 int blk_throtl_bio(struct request_queue *q, struct bio **biop) 983 { 984 struct throtl_data *td = q->td; 985 struct throtl_grp *tg; 986 struct bio *bio = *biop; 987 bool rw = bio_data_dir(bio), update_disptime = true; 988 989 if (bio->bi_rw & REQ_THROTTLED) { 990 bio->bi_rw &= ~REQ_THROTTLED; 991 return 0; 992 } 993 994 spin_lock_irq(q->queue_lock); 995 tg = throtl_get_tg(td); 996 997 if (tg->nr_queued[rw]) { 998 /* 999 * There is already another bio queued in same dir. No 1000 * need to update dispatch time. 1001 * Still update the disptime if rate limits on this group 1002 * were changed. 1003 */ 1004 if (!tg->limits_changed) 1005 update_disptime = false; 1006 else 1007 tg->limits_changed = false; 1008 1009 goto queue_bio; 1010 } 1011 1012 /* Bio is with-in rate limit of group */ 1013 if (tg_may_dispatch(td, tg, bio, NULL)) { 1014 throtl_charge_bio(tg, bio); 1015 goto out; 1016 } 1017 1018 queue_bio: 1019 throtl_log_tg(td, tg, "[%c] bio. bdisp=%u sz=%u bps=%llu" 1020 " iodisp=%u iops=%u queued=%d/%d", 1021 rw == READ ? 'R' : 'W', 1022 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw], 1023 tg->io_disp[rw], tg->iops[rw], 1024 tg->nr_queued[READ], tg->nr_queued[WRITE]); 1025 1026 throtl_add_bio_tg(q->td, tg, bio); 1027 *biop = NULL; 1028 1029 if (update_disptime) { 1030 tg_update_disptime(td, tg); 1031 throtl_schedule_next_dispatch(td); 1032 } 1033 1034 out: 1035 spin_unlock_irq(q->queue_lock); 1036 return 0; 1037 } 1038 1039 int blk_throtl_init(struct request_queue *q) 1040 { 1041 struct throtl_data *td; 1042 struct throtl_grp *tg; 1043 1044 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 1045 if (!td) 1046 return -ENOMEM; 1047 1048 INIT_HLIST_HEAD(&td->tg_list); 1049 td->tg_service_tree = THROTL_RB_ROOT; 1050 atomic_set(&td->limits_changed, 0); 1051 1052 /* Init root group */ 1053 tg = &td->root_tg; 1054 INIT_HLIST_NODE(&tg->tg_node); 1055 RB_CLEAR_NODE(&tg->rb_node); 1056 bio_list_init(&tg->bio_lists[0]); 1057 bio_list_init(&tg->bio_lists[1]); 1058 1059 /* Practically unlimited BW */ 1060 tg->bps[0] = tg->bps[1] = -1; 1061 tg->iops[0] = tg->iops[1] = -1; 1062 1063 /* 1064 * Set root group reference to 2. One reference will be dropped when 1065 * all groups on tg_list are being deleted during queue exit. Other 1066 * reference will remain there as we don't want to delete this group 1067 * as it is statically allocated and gets destroyed when throtl_data 1068 * goes away. 1069 */ 1070 atomic_set(&tg->ref, 2); 1071 hlist_add_head(&tg->tg_node, &td->tg_list); 1072 td->nr_undestroyed_grps++; 1073 1074 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work); 1075 1076 rcu_read_lock(); 1077 blkiocg_add_blkio_group(&blkio_root_cgroup, &tg->blkg, (void *)td, 1078 0, BLKIO_POLICY_THROTL); 1079 rcu_read_unlock(); 1080 1081 /* Attach throtl data to request queue */ 1082 td->queue = q; 1083 q->td = td; 1084 return 0; 1085 } 1086 1087 void blk_throtl_exit(struct request_queue *q) 1088 { 1089 struct throtl_data *td = q->td; 1090 bool wait = false; 1091 1092 BUG_ON(!td); 1093 1094 throtl_shutdown_timer_wq(q); 1095 1096 spin_lock_irq(q->queue_lock); 1097 throtl_release_tgs(td); 1098 1099 /* If there are other groups */ 1100 if (td->nr_undestroyed_grps > 0) 1101 wait = true; 1102 1103 spin_unlock_irq(q->queue_lock); 1104 1105 /* 1106 * Wait for tg->blkg->key accessors to exit their grace periods. 1107 * Do this wait only if there are other undestroyed groups out 1108 * there (other than root group). This can happen if cgroup deletion 1109 * path claimed the responsibility of cleaning up a group before 1110 * queue cleanup code get to the group. 1111 * 1112 * Do not call synchronize_rcu() unconditionally as there are drivers 1113 * which create/delete request queue hundreds of times during scan/boot 1114 * and synchronize_rcu() can take significant time and slow down boot. 1115 */ 1116 if (wait) 1117 synchronize_rcu(); 1118 1119 /* 1120 * Just being safe to make sure after previous flush if some body did 1121 * update limits through cgroup and another work got queued, cancel 1122 * it. 1123 */ 1124 throtl_shutdown_timer_wq(q); 1125 throtl_td_free(td); 1126 } 1127 1128 static int __init throtl_init(void) 1129 { 1130 blkio_policy_register(&blkio_policy_throtl); 1131 return 0; 1132 } 1133 1134 module_init(throtl_init); 1135