1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include "blk.h" 14 #include "blk-cgroup-rwstat.h" 15 #include "blk-stat.h" 16 #include "blk-throttle.h" 17 18 /* Max dispatch from a group in 1 round */ 19 #define THROTL_GRP_QUANTUM 8 20 21 /* Total max dispatch from all groups in one round */ 22 #define THROTL_QUANTUM 32 23 24 /* Throttling is performed over a slice and after that slice is renewed */ 25 #define DFL_THROTL_SLICE_HD (HZ / 10) 26 #define DFL_THROTL_SLICE_SSD (HZ / 50) 27 #define MAX_THROTL_SLICE (HZ) 28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 29 #define MIN_THROTL_BPS (320 * 1024) 30 #define MIN_THROTL_IOPS (10) 31 #define DFL_LATENCY_TARGET (-1L) 32 #define DFL_IDLE_THRESHOLD (0) 33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 34 #define LATENCY_FILTERED_SSD (0) 35 /* 36 * For HD, very small latency comes from sequential IO. Such IO is helpless to 37 * help determine if its IO is impacted by others, hence we ignore the IO 38 */ 39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 40 41 /* A workqueue to queue throttle related work */ 42 static struct workqueue_struct *kthrotld_workqueue; 43 44 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 45 46 /* We measure latency for request size from <= 4k to >= 1M */ 47 #define LATENCY_BUCKET_SIZE 9 48 49 struct latency_bucket { 50 unsigned long total_latency; /* ns / 1024 */ 51 int samples; 52 }; 53 54 struct avg_latency_bucket { 55 unsigned long latency; /* ns / 1024 */ 56 bool valid; 57 }; 58 59 struct throtl_data 60 { 61 /* service tree for active throtl groups */ 62 struct throtl_service_queue service_queue; 63 64 struct request_queue *queue; 65 66 /* Total Number of queued bios on READ and WRITE lists */ 67 unsigned int nr_queued[2]; 68 69 unsigned int throtl_slice; 70 71 /* Work for dispatching throttled bios */ 72 struct work_struct dispatch_work; 73 unsigned int limit_index; 74 bool limit_valid[LIMIT_CNT]; 75 76 unsigned long low_upgrade_time; 77 unsigned long low_downgrade_time; 78 79 unsigned int scale; 80 81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 83 struct latency_bucket __percpu *latency_buckets[2]; 84 unsigned long last_calculate_time; 85 unsigned long filtered_latency; 86 87 bool track_bio_latency; 88 }; 89 90 static void throtl_pending_timer_fn(struct timer_list *t); 91 92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 93 { 94 return pd_to_blkg(&tg->pd); 95 } 96 97 /** 98 * sq_to_tg - return the throl_grp the specified service queue belongs to 99 * @sq: the throtl_service_queue of interest 100 * 101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 102 * embedded in throtl_data, %NULL is returned. 103 */ 104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 105 { 106 if (sq && sq->parent_sq) 107 return container_of(sq, struct throtl_grp, service_queue); 108 else 109 return NULL; 110 } 111 112 /** 113 * sq_to_td - return throtl_data the specified service queue belongs to 114 * @sq: the throtl_service_queue of interest 115 * 116 * A service_queue can be embedded in either a throtl_grp or throtl_data. 117 * Determine the associated throtl_data accordingly and return it. 118 */ 119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 120 { 121 struct throtl_grp *tg = sq_to_tg(sq); 122 123 if (tg) 124 return tg->td; 125 else 126 return container_of(sq, struct throtl_data, service_queue); 127 } 128 129 /* 130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 131 * make the IO dispatch more smooth. 132 * Scale up: linearly scale up according to lapsed time since upgrade. For 133 * every throtl_slice, the limit scales up 1/2 .low limit till the 134 * limit hits .max limit 135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 136 */ 137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 138 { 139 /* arbitrary value to avoid too big scale */ 140 if (td->scale < 4096 && time_after_eq(jiffies, 141 td->low_upgrade_time + td->scale * td->throtl_slice)) 142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 143 144 return low + (low >> 1) * td->scale; 145 } 146 147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 148 { 149 struct blkcg_gq *blkg = tg_to_blkg(tg); 150 struct throtl_data *td; 151 uint64_t ret; 152 153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 154 return U64_MAX; 155 156 td = tg->td; 157 ret = tg->bps[rw][td->limit_index]; 158 if (ret == 0 && td->limit_index == LIMIT_LOW) { 159 /* intermediate node or iops isn't 0 */ 160 if (!list_empty(&blkg->blkcg->css.children) || 161 tg->iops[rw][td->limit_index]) 162 return U64_MAX; 163 else 164 return MIN_THROTL_BPS; 165 } 166 167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 169 uint64_t adjusted; 170 171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 173 } 174 return ret; 175 } 176 177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 178 { 179 struct blkcg_gq *blkg = tg_to_blkg(tg); 180 struct throtl_data *td; 181 unsigned int ret; 182 183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 184 return UINT_MAX; 185 186 td = tg->td; 187 ret = tg->iops[rw][td->limit_index]; 188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 189 /* intermediate node or bps isn't 0 */ 190 if (!list_empty(&blkg->blkcg->css.children) || 191 tg->bps[rw][td->limit_index]) 192 return UINT_MAX; 193 else 194 return MIN_THROTL_IOPS; 195 } 196 197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 199 uint64_t adjusted; 200 201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 202 if (adjusted > UINT_MAX) 203 adjusted = UINT_MAX; 204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 205 } 206 return ret; 207 } 208 209 #define request_bucket_index(sectors) \ 210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 211 212 /** 213 * throtl_log - log debug message via blktrace 214 * @sq: the service_queue being reported 215 * @fmt: printf format string 216 * @args: printf args 217 * 218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 219 * throtl_grp; otherwise, just "throtl". 220 */ 221 #define throtl_log(sq, fmt, args...) do { \ 222 struct throtl_grp *__tg = sq_to_tg((sq)); \ 223 struct throtl_data *__td = sq_to_td((sq)); \ 224 \ 225 (void)__td; \ 226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 227 break; \ 228 if ((__tg)) { \ 229 blk_add_cgroup_trace_msg(__td->queue, \ 230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\ 231 } else { \ 232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 233 } \ 234 } while (0) 235 236 static inline unsigned int throtl_bio_data_size(struct bio *bio) 237 { 238 /* assume it's one sector */ 239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 240 return 512; 241 return bio->bi_iter.bi_size; 242 } 243 244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 245 { 246 INIT_LIST_HEAD(&qn->node); 247 bio_list_init(&qn->bios); 248 qn->tg = tg; 249 } 250 251 /** 252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 253 * @bio: bio being added 254 * @qn: qnode to add bio to 255 * @queued: the service_queue->queued[] list @qn belongs to 256 * 257 * Add @bio to @qn and put @qn on @queued if it's not already on. 258 * @qn->tg's reference count is bumped when @qn is activated. See the 259 * comment on top of throtl_qnode definition for details. 260 */ 261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 262 struct list_head *queued) 263 { 264 bio_list_add(&qn->bios, bio); 265 if (list_empty(&qn->node)) { 266 list_add_tail(&qn->node, queued); 267 blkg_get(tg_to_blkg(qn->tg)); 268 } 269 } 270 271 /** 272 * throtl_peek_queued - peek the first bio on a qnode list 273 * @queued: the qnode list to peek 274 */ 275 static struct bio *throtl_peek_queued(struct list_head *queued) 276 { 277 struct throtl_qnode *qn; 278 struct bio *bio; 279 280 if (list_empty(queued)) 281 return NULL; 282 283 qn = list_first_entry(queued, struct throtl_qnode, node); 284 bio = bio_list_peek(&qn->bios); 285 WARN_ON_ONCE(!bio); 286 return bio; 287 } 288 289 /** 290 * throtl_pop_queued - pop the first bio form a qnode list 291 * @queued: the qnode list to pop a bio from 292 * @tg_to_put: optional out argument for throtl_grp to put 293 * 294 * Pop the first bio from the qnode list @queued. After popping, the first 295 * qnode is removed from @queued if empty or moved to the end of @queued so 296 * that the popping order is round-robin. 297 * 298 * When the first qnode is removed, its associated throtl_grp should be put 299 * too. If @tg_to_put is NULL, this function automatically puts it; 300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 301 * responsible for putting it. 302 */ 303 static struct bio *throtl_pop_queued(struct list_head *queued, 304 struct throtl_grp **tg_to_put) 305 { 306 struct throtl_qnode *qn; 307 struct bio *bio; 308 309 if (list_empty(queued)) 310 return NULL; 311 312 qn = list_first_entry(queued, struct throtl_qnode, node); 313 bio = bio_list_pop(&qn->bios); 314 WARN_ON_ONCE(!bio); 315 316 if (bio_list_empty(&qn->bios)) { 317 list_del_init(&qn->node); 318 if (tg_to_put) 319 *tg_to_put = qn->tg; 320 else 321 blkg_put(tg_to_blkg(qn->tg)); 322 } else { 323 list_move_tail(&qn->node, queued); 324 } 325 326 return bio; 327 } 328 329 /* init a service_queue, assumes the caller zeroed it */ 330 static void throtl_service_queue_init(struct throtl_service_queue *sq) 331 { 332 INIT_LIST_HEAD(&sq->queued[READ]); 333 INIT_LIST_HEAD(&sq->queued[WRITE]); 334 sq->pending_tree = RB_ROOT_CACHED; 335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 336 } 337 338 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, 339 struct request_queue *q, 340 struct blkcg *blkcg) 341 { 342 struct throtl_grp *tg; 343 int rw; 344 345 tg = kzalloc_node(sizeof(*tg), gfp, q->node); 346 if (!tg) 347 return NULL; 348 349 if (blkg_rwstat_init(&tg->stat_bytes, gfp)) 350 goto err_free_tg; 351 352 if (blkg_rwstat_init(&tg->stat_ios, gfp)) 353 goto err_exit_stat_bytes; 354 355 throtl_service_queue_init(&tg->service_queue); 356 357 for (rw = READ; rw <= WRITE; rw++) { 358 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 359 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 360 } 361 362 RB_CLEAR_NODE(&tg->rb_node); 363 tg->bps[READ][LIMIT_MAX] = U64_MAX; 364 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 365 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 366 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 367 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 368 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 369 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 370 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 371 /* LIMIT_LOW will have default value 0 */ 372 373 tg->latency_target = DFL_LATENCY_TARGET; 374 tg->latency_target_conf = DFL_LATENCY_TARGET; 375 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 376 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 377 378 return &tg->pd; 379 380 err_exit_stat_bytes: 381 blkg_rwstat_exit(&tg->stat_bytes); 382 err_free_tg: 383 kfree(tg); 384 return NULL; 385 } 386 387 static void throtl_pd_init(struct blkg_policy_data *pd) 388 { 389 struct throtl_grp *tg = pd_to_tg(pd); 390 struct blkcg_gq *blkg = tg_to_blkg(tg); 391 struct throtl_data *td = blkg->q->td; 392 struct throtl_service_queue *sq = &tg->service_queue; 393 394 /* 395 * If on the default hierarchy, we switch to properly hierarchical 396 * behavior where limits on a given throtl_grp are applied to the 397 * whole subtree rather than just the group itself. e.g. If 16M 398 * read_bps limit is set on the root group, the whole system can't 399 * exceed 16M for the device. 400 * 401 * If not on the default hierarchy, the broken flat hierarchy 402 * behavior is retained where all throtl_grps are treated as if 403 * they're all separate root groups right below throtl_data. 404 * Limits of a group don't interact with limits of other groups 405 * regardless of the position of the group in the hierarchy. 406 */ 407 sq->parent_sq = &td->service_queue; 408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 410 tg->td = td; 411 } 412 413 /* 414 * Set has_rules[] if @tg or any of its parents have limits configured. 415 * This doesn't require walking up to the top of the hierarchy as the 416 * parent's has_rules[] is guaranteed to be correct. 417 */ 418 static void tg_update_has_rules(struct throtl_grp *tg) 419 { 420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 421 struct throtl_data *td = tg->td; 422 int rw; 423 424 for (rw = READ; rw <= WRITE; rw++) { 425 tg->has_rules_iops[rw] = 426 (parent_tg && parent_tg->has_rules_iops[rw]) || 427 (td->limit_valid[td->limit_index] && 428 tg_iops_limit(tg, rw) != UINT_MAX); 429 tg->has_rules_bps[rw] = 430 (parent_tg && parent_tg->has_rules_bps[rw]) || 431 (td->limit_valid[td->limit_index] && 432 (tg_bps_limit(tg, rw) != U64_MAX)); 433 } 434 } 435 436 static void throtl_pd_online(struct blkg_policy_data *pd) 437 { 438 struct throtl_grp *tg = pd_to_tg(pd); 439 /* 440 * We don't want new groups to escape the limits of its ancestors. 441 * Update has_rules[] after a new group is brought online. 442 */ 443 tg_update_has_rules(tg); 444 } 445 446 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 447 static void blk_throtl_update_limit_valid(struct throtl_data *td) 448 { 449 struct cgroup_subsys_state *pos_css; 450 struct blkcg_gq *blkg; 451 bool low_valid = false; 452 453 rcu_read_lock(); 454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 455 struct throtl_grp *tg = blkg_to_tg(blkg); 456 457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { 459 low_valid = true; 460 break; 461 } 462 } 463 rcu_read_unlock(); 464 465 td->limit_valid[LIMIT_LOW] = low_valid; 466 } 467 #else 468 static inline void blk_throtl_update_limit_valid(struct throtl_data *td) 469 { 470 } 471 #endif 472 473 static void throtl_upgrade_state(struct throtl_data *td); 474 static void throtl_pd_offline(struct blkg_policy_data *pd) 475 { 476 struct throtl_grp *tg = pd_to_tg(pd); 477 478 tg->bps[READ][LIMIT_LOW] = 0; 479 tg->bps[WRITE][LIMIT_LOW] = 0; 480 tg->iops[READ][LIMIT_LOW] = 0; 481 tg->iops[WRITE][LIMIT_LOW] = 0; 482 483 blk_throtl_update_limit_valid(tg->td); 484 485 if (!tg->td->limit_valid[tg->td->limit_index]) 486 throtl_upgrade_state(tg->td); 487 } 488 489 static void throtl_pd_free(struct blkg_policy_data *pd) 490 { 491 struct throtl_grp *tg = pd_to_tg(pd); 492 493 del_timer_sync(&tg->service_queue.pending_timer); 494 blkg_rwstat_exit(&tg->stat_bytes); 495 blkg_rwstat_exit(&tg->stat_ios); 496 kfree(tg); 497 } 498 499 static struct throtl_grp * 500 throtl_rb_first(struct throtl_service_queue *parent_sq) 501 { 502 struct rb_node *n; 503 504 n = rb_first_cached(&parent_sq->pending_tree); 505 WARN_ON_ONCE(!n); 506 if (!n) 507 return NULL; 508 return rb_entry_tg(n); 509 } 510 511 static void throtl_rb_erase(struct rb_node *n, 512 struct throtl_service_queue *parent_sq) 513 { 514 rb_erase_cached(n, &parent_sq->pending_tree); 515 RB_CLEAR_NODE(n); 516 } 517 518 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 519 { 520 struct throtl_grp *tg; 521 522 tg = throtl_rb_first(parent_sq); 523 if (!tg) 524 return; 525 526 parent_sq->first_pending_disptime = tg->disptime; 527 } 528 529 static void tg_service_queue_add(struct throtl_grp *tg) 530 { 531 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 532 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 533 struct rb_node *parent = NULL; 534 struct throtl_grp *__tg; 535 unsigned long key = tg->disptime; 536 bool leftmost = true; 537 538 while (*node != NULL) { 539 parent = *node; 540 __tg = rb_entry_tg(parent); 541 542 if (time_before(key, __tg->disptime)) 543 node = &parent->rb_left; 544 else { 545 node = &parent->rb_right; 546 leftmost = false; 547 } 548 } 549 550 rb_link_node(&tg->rb_node, parent, node); 551 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 552 leftmost); 553 } 554 555 static void throtl_enqueue_tg(struct throtl_grp *tg) 556 { 557 if (!(tg->flags & THROTL_TG_PENDING)) { 558 tg_service_queue_add(tg); 559 tg->flags |= THROTL_TG_PENDING; 560 tg->service_queue.parent_sq->nr_pending++; 561 } 562 } 563 564 static void throtl_dequeue_tg(struct throtl_grp *tg) 565 { 566 if (tg->flags & THROTL_TG_PENDING) { 567 struct throtl_service_queue *parent_sq = 568 tg->service_queue.parent_sq; 569 570 throtl_rb_erase(&tg->rb_node, parent_sq); 571 --parent_sq->nr_pending; 572 tg->flags &= ~THROTL_TG_PENDING; 573 } 574 } 575 576 /* Call with queue lock held */ 577 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 578 unsigned long expires) 579 { 580 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 581 582 /* 583 * Since we are adjusting the throttle limit dynamically, the sleep 584 * time calculated according to previous limit might be invalid. It's 585 * possible the cgroup sleep time is very long and no other cgroups 586 * have IO running so notify the limit changes. Make sure the cgroup 587 * doesn't sleep too long to avoid the missed notification. 588 */ 589 if (time_after(expires, max_expire)) 590 expires = max_expire; 591 mod_timer(&sq->pending_timer, expires); 592 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 593 expires - jiffies, jiffies); 594 } 595 596 /** 597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 598 * @sq: the service_queue to schedule dispatch for 599 * @force: force scheduling 600 * 601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 602 * dispatch time of the first pending child. Returns %true if either timer 603 * is armed or there's no pending child left. %false if the current 604 * dispatch window is still open and the caller should continue 605 * dispatching. 606 * 607 * If @force is %true, the dispatch timer is always scheduled and this 608 * function is guaranteed to return %true. This is to be used when the 609 * caller can't dispatch itself and needs to invoke pending_timer 610 * unconditionally. Note that forced scheduling is likely to induce short 611 * delay before dispatch starts even if @sq->first_pending_disptime is not 612 * in the future and thus shouldn't be used in hot paths. 613 */ 614 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 615 bool force) 616 { 617 /* any pending children left? */ 618 if (!sq->nr_pending) 619 return true; 620 621 update_min_dispatch_time(sq); 622 623 /* is the next dispatch time in the future? */ 624 if (force || time_after(sq->first_pending_disptime, jiffies)) { 625 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 626 return true; 627 } 628 629 /* tell the caller to continue dispatching */ 630 return false; 631 } 632 633 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 634 bool rw, unsigned long start) 635 { 636 tg->bytes_disp[rw] = 0; 637 tg->io_disp[rw] = 0; 638 tg->carryover_bytes[rw] = 0; 639 tg->carryover_ios[rw] = 0; 640 641 /* 642 * Previous slice has expired. We must have trimmed it after last 643 * bio dispatch. That means since start of last slice, we never used 644 * that bandwidth. Do try to make use of that bandwidth while giving 645 * credit. 646 */ 647 if (time_after_eq(start, tg->slice_start[rw])) 648 tg->slice_start[rw] = start; 649 650 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 651 throtl_log(&tg->service_queue, 652 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 653 rw == READ ? 'R' : 'W', tg->slice_start[rw], 654 tg->slice_end[rw], jiffies); 655 } 656 657 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw, 658 bool clear_carryover) 659 { 660 tg->bytes_disp[rw] = 0; 661 tg->io_disp[rw] = 0; 662 tg->slice_start[rw] = jiffies; 663 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 664 if (clear_carryover) { 665 tg->carryover_bytes[rw] = 0; 666 tg->carryover_ios[rw] = 0; 667 } 668 669 throtl_log(&tg->service_queue, 670 "[%c] new slice start=%lu end=%lu jiffies=%lu", 671 rw == READ ? 'R' : 'W', tg->slice_start[rw], 672 tg->slice_end[rw], jiffies); 673 } 674 675 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 676 unsigned long jiffy_end) 677 { 678 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 679 } 680 681 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 682 unsigned long jiffy_end) 683 { 684 throtl_set_slice_end(tg, rw, jiffy_end); 685 throtl_log(&tg->service_queue, 686 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 687 rw == READ ? 'R' : 'W', tg->slice_start[rw], 688 tg->slice_end[rw], jiffies); 689 } 690 691 /* Determine if previously allocated or extended slice is complete or not */ 692 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 693 { 694 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 695 return false; 696 697 return true; 698 } 699 700 /* Trim the used slices and adjust slice start accordingly */ 701 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 702 { 703 unsigned long nr_slices, time_elapsed, io_trim; 704 u64 bytes_trim, tmp; 705 706 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 707 708 /* 709 * If bps are unlimited (-1), then time slice don't get 710 * renewed. Don't try to trim the slice if slice is used. A new 711 * slice will start when appropriate. 712 */ 713 if (throtl_slice_used(tg, rw)) 714 return; 715 716 /* 717 * A bio has been dispatched. Also adjust slice_end. It might happen 718 * that initially cgroup limit was very low resulting in high 719 * slice_end, but later limit was bumped up and bio was dispatched 720 * sooner, then we need to reduce slice_end. A high bogus slice_end 721 * is bad because it does not allow new slice to start. 722 */ 723 724 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 725 726 time_elapsed = jiffies - tg->slice_start[rw]; 727 728 nr_slices = time_elapsed / tg->td->throtl_slice; 729 730 if (!nr_slices) 731 return; 732 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 733 do_div(tmp, HZ); 734 bytes_trim = tmp; 735 736 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 737 HZ; 738 739 if (!bytes_trim && !io_trim) 740 return; 741 742 if (tg->bytes_disp[rw] >= bytes_trim) 743 tg->bytes_disp[rw] -= bytes_trim; 744 else 745 tg->bytes_disp[rw] = 0; 746 747 if (tg->io_disp[rw] >= io_trim) 748 tg->io_disp[rw] -= io_trim; 749 else 750 tg->io_disp[rw] = 0; 751 752 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 753 754 throtl_log(&tg->service_queue, 755 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 756 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 757 tg->slice_start[rw], tg->slice_end[rw], jiffies); 758 } 759 760 static unsigned int calculate_io_allowed(u32 iops_limit, 761 unsigned long jiffy_elapsed) 762 { 763 unsigned int io_allowed; 764 u64 tmp; 765 766 /* 767 * jiffy_elapsed should not be a big value as minimum iops can be 768 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 769 * will allow dispatch after 1 second and after that slice should 770 * have been trimmed. 771 */ 772 773 tmp = (u64)iops_limit * jiffy_elapsed; 774 do_div(tmp, HZ); 775 776 if (tmp > UINT_MAX) 777 io_allowed = UINT_MAX; 778 else 779 io_allowed = tmp; 780 781 return io_allowed; 782 } 783 784 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed) 785 { 786 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ); 787 } 788 789 static void __tg_update_carryover(struct throtl_grp *tg, bool rw) 790 { 791 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw]; 792 u64 bps_limit = tg_bps_limit(tg, rw); 793 u32 iops_limit = tg_iops_limit(tg, rw); 794 795 /* 796 * If config is updated while bios are still throttled, calculate and 797 * accumulate how many bytes/ios are waited across changes. And 798 * carryover_bytes/ios will be used to calculate new wait time under new 799 * configuration. 800 */ 801 if (bps_limit != U64_MAX) 802 tg->carryover_bytes[rw] += 803 calculate_bytes_allowed(bps_limit, jiffy_elapsed) - 804 tg->bytes_disp[rw]; 805 if (iops_limit != UINT_MAX) 806 tg->carryover_ios[rw] += 807 calculate_io_allowed(iops_limit, jiffy_elapsed) - 808 tg->io_disp[rw]; 809 } 810 811 static void tg_update_carryover(struct throtl_grp *tg) 812 { 813 if (tg->service_queue.nr_queued[READ]) 814 __tg_update_carryover(tg, READ); 815 if (tg->service_queue.nr_queued[WRITE]) 816 __tg_update_carryover(tg, WRITE); 817 818 /* see comments in struct throtl_grp for meaning of these fields. */ 819 throtl_log(&tg->service_queue, "%s: %llu %llu %u %u\n", __func__, 820 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE], 821 tg->carryover_ios[READ], tg->carryover_ios[WRITE]); 822 } 823 824 static bool tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio, 825 u32 iops_limit, unsigned long *wait) 826 { 827 bool rw = bio_data_dir(bio); 828 unsigned int io_allowed; 829 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 830 831 if (iops_limit == UINT_MAX) { 832 if (wait) 833 *wait = 0; 834 return true; 835 } 836 837 jiffy_elapsed = jiffies - tg->slice_start[rw]; 838 839 /* Round up to the next throttle slice, wait time must be nonzero */ 840 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); 841 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) + 842 tg->carryover_ios[rw]; 843 if (tg->io_disp[rw] + 1 <= io_allowed) { 844 if (wait) 845 *wait = 0; 846 return true; 847 } 848 849 /* Calc approx time to dispatch */ 850 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 851 852 if (wait) 853 *wait = jiffy_wait; 854 return false; 855 } 856 857 static bool tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio, 858 u64 bps_limit, unsigned long *wait) 859 { 860 bool rw = bio_data_dir(bio); 861 u64 bytes_allowed, extra_bytes; 862 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 863 unsigned int bio_size = throtl_bio_data_size(bio); 864 865 /* no need to throttle if this bio's bytes have been accounted */ 866 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) { 867 if (wait) 868 *wait = 0; 869 return true; 870 } 871 872 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 873 874 /* Slice has just started. Consider one slice interval */ 875 if (!jiffy_elapsed) 876 jiffy_elapsed_rnd = tg->td->throtl_slice; 877 878 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 879 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) + 880 tg->carryover_bytes[rw]; 881 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 882 if (wait) 883 *wait = 0; 884 return true; 885 } 886 887 /* Calc approx time to dispatch */ 888 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 889 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); 890 891 if (!jiffy_wait) 892 jiffy_wait = 1; 893 894 /* 895 * This wait time is without taking into consideration the rounding 896 * up we did. Add that time also. 897 */ 898 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 899 if (wait) 900 *wait = jiffy_wait; 901 return false; 902 } 903 904 /* 905 * Returns whether one can dispatch a bio or not. Also returns approx number 906 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 907 */ 908 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 909 unsigned long *wait) 910 { 911 bool rw = bio_data_dir(bio); 912 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 913 u64 bps_limit = tg_bps_limit(tg, rw); 914 u32 iops_limit = tg_iops_limit(tg, rw); 915 916 /* 917 * Currently whole state machine of group depends on first bio 918 * queued in the group bio list. So one should not be calling 919 * this function with a different bio if there are other bios 920 * queued. 921 */ 922 BUG_ON(tg->service_queue.nr_queued[rw] && 923 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 924 925 /* If tg->bps = -1, then BW is unlimited */ 926 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) || 927 tg->flags & THROTL_TG_CANCELING) { 928 if (wait) 929 *wait = 0; 930 return true; 931 } 932 933 /* 934 * If previous slice expired, start a new one otherwise renew/extend 935 * existing slice to make sure it is at least throtl_slice interval 936 * long since now. New slice is started only for empty throttle group. 937 * If there is queued bio, that means there should be an active 938 * slice and it should be extended instead. 939 */ 940 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 941 throtl_start_new_slice(tg, rw, true); 942 else { 943 if (time_before(tg->slice_end[rw], 944 jiffies + tg->td->throtl_slice)) 945 throtl_extend_slice(tg, rw, 946 jiffies + tg->td->throtl_slice); 947 } 948 949 if (tg_within_bps_limit(tg, bio, bps_limit, &bps_wait) && 950 tg_within_iops_limit(tg, bio, iops_limit, &iops_wait)) { 951 if (wait) 952 *wait = 0; 953 return true; 954 } 955 956 max_wait = max(bps_wait, iops_wait); 957 958 if (wait) 959 *wait = max_wait; 960 961 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 962 throtl_extend_slice(tg, rw, jiffies + max_wait); 963 964 return false; 965 } 966 967 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 968 { 969 bool rw = bio_data_dir(bio); 970 unsigned int bio_size = throtl_bio_data_size(bio); 971 972 /* Charge the bio to the group */ 973 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) { 974 tg->bytes_disp[rw] += bio_size; 975 tg->last_bytes_disp[rw] += bio_size; 976 } 977 978 tg->io_disp[rw]++; 979 tg->last_io_disp[rw]++; 980 } 981 982 /** 983 * throtl_add_bio_tg - add a bio to the specified throtl_grp 984 * @bio: bio to add 985 * @qn: qnode to use 986 * @tg: the target throtl_grp 987 * 988 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 989 * tg->qnode_on_self[] is used. 990 */ 991 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 992 struct throtl_grp *tg) 993 { 994 struct throtl_service_queue *sq = &tg->service_queue; 995 bool rw = bio_data_dir(bio); 996 997 if (!qn) 998 qn = &tg->qnode_on_self[rw]; 999 1000 /* 1001 * If @tg doesn't currently have any bios queued in the same 1002 * direction, queueing @bio can change when @tg should be 1003 * dispatched. Mark that @tg was empty. This is automatically 1004 * cleared on the next tg_update_disptime(). 1005 */ 1006 if (!sq->nr_queued[rw]) 1007 tg->flags |= THROTL_TG_WAS_EMPTY; 1008 1009 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1010 1011 sq->nr_queued[rw]++; 1012 throtl_enqueue_tg(tg); 1013 } 1014 1015 static void tg_update_disptime(struct throtl_grp *tg) 1016 { 1017 struct throtl_service_queue *sq = &tg->service_queue; 1018 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1019 struct bio *bio; 1020 1021 bio = throtl_peek_queued(&sq->queued[READ]); 1022 if (bio) 1023 tg_may_dispatch(tg, bio, &read_wait); 1024 1025 bio = throtl_peek_queued(&sq->queued[WRITE]); 1026 if (bio) 1027 tg_may_dispatch(tg, bio, &write_wait); 1028 1029 min_wait = min(read_wait, write_wait); 1030 disptime = jiffies + min_wait; 1031 1032 /* Update dispatch time */ 1033 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 1034 tg->disptime = disptime; 1035 tg_service_queue_add(tg); 1036 1037 /* see throtl_add_bio_tg() */ 1038 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1039 } 1040 1041 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1042 struct throtl_grp *parent_tg, bool rw) 1043 { 1044 if (throtl_slice_used(parent_tg, rw)) { 1045 throtl_start_new_slice_with_credit(parent_tg, rw, 1046 child_tg->slice_start[rw]); 1047 } 1048 1049 } 1050 1051 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1052 { 1053 struct throtl_service_queue *sq = &tg->service_queue; 1054 struct throtl_service_queue *parent_sq = sq->parent_sq; 1055 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1056 struct throtl_grp *tg_to_put = NULL; 1057 struct bio *bio; 1058 1059 /* 1060 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1061 * from @tg may put its reference and @parent_sq might end up 1062 * getting released prematurely. Remember the tg to put and put it 1063 * after @bio is transferred to @parent_sq. 1064 */ 1065 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1066 sq->nr_queued[rw]--; 1067 1068 throtl_charge_bio(tg, bio); 1069 bio_set_flag(bio, BIO_BPS_THROTTLED); 1070 1071 /* 1072 * If our parent is another tg, we just need to transfer @bio to 1073 * the parent using throtl_add_bio_tg(). If our parent is 1074 * @td->service_queue, @bio is ready to be issued. Put it on its 1075 * bio_lists[] and decrease total number queued. The caller is 1076 * responsible for issuing these bios. 1077 */ 1078 if (parent_tg) { 1079 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1080 start_parent_slice_with_credit(tg, parent_tg, rw); 1081 } else { 1082 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1083 &parent_sq->queued[rw]); 1084 BUG_ON(tg->td->nr_queued[rw] <= 0); 1085 tg->td->nr_queued[rw]--; 1086 } 1087 1088 throtl_trim_slice(tg, rw); 1089 1090 if (tg_to_put) 1091 blkg_put(tg_to_blkg(tg_to_put)); 1092 } 1093 1094 static int throtl_dispatch_tg(struct throtl_grp *tg) 1095 { 1096 struct throtl_service_queue *sq = &tg->service_queue; 1097 unsigned int nr_reads = 0, nr_writes = 0; 1098 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; 1099 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; 1100 struct bio *bio; 1101 1102 /* Try to dispatch 75% READS and 25% WRITES */ 1103 1104 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1105 tg_may_dispatch(tg, bio, NULL)) { 1106 1107 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1108 nr_reads++; 1109 1110 if (nr_reads >= max_nr_reads) 1111 break; 1112 } 1113 1114 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1115 tg_may_dispatch(tg, bio, NULL)) { 1116 1117 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1118 nr_writes++; 1119 1120 if (nr_writes >= max_nr_writes) 1121 break; 1122 } 1123 1124 return nr_reads + nr_writes; 1125 } 1126 1127 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1128 { 1129 unsigned int nr_disp = 0; 1130 1131 while (1) { 1132 struct throtl_grp *tg; 1133 struct throtl_service_queue *sq; 1134 1135 if (!parent_sq->nr_pending) 1136 break; 1137 1138 tg = throtl_rb_first(parent_sq); 1139 if (!tg) 1140 break; 1141 1142 if (time_before(jiffies, tg->disptime)) 1143 break; 1144 1145 nr_disp += throtl_dispatch_tg(tg); 1146 1147 sq = &tg->service_queue; 1148 if (sq->nr_queued[READ] || sq->nr_queued[WRITE]) 1149 tg_update_disptime(tg); 1150 else 1151 throtl_dequeue_tg(tg); 1152 1153 if (nr_disp >= THROTL_QUANTUM) 1154 break; 1155 } 1156 1157 return nr_disp; 1158 } 1159 1160 static bool throtl_can_upgrade(struct throtl_data *td, 1161 struct throtl_grp *this_tg); 1162 /** 1163 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1164 * @t: the pending_timer member of the throtl_service_queue being serviced 1165 * 1166 * This timer is armed when a child throtl_grp with active bio's become 1167 * pending and queued on the service_queue's pending_tree and expires when 1168 * the first child throtl_grp should be dispatched. This function 1169 * dispatches bio's from the children throtl_grps to the parent 1170 * service_queue. 1171 * 1172 * If the parent's parent is another throtl_grp, dispatching is propagated 1173 * by either arming its pending_timer or repeating dispatch directly. If 1174 * the top-level service_tree is reached, throtl_data->dispatch_work is 1175 * kicked so that the ready bio's are issued. 1176 */ 1177 static void throtl_pending_timer_fn(struct timer_list *t) 1178 { 1179 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1180 struct throtl_grp *tg = sq_to_tg(sq); 1181 struct throtl_data *td = sq_to_td(sq); 1182 struct throtl_service_queue *parent_sq; 1183 struct request_queue *q; 1184 bool dispatched; 1185 int ret; 1186 1187 /* throtl_data may be gone, so figure out request queue by blkg */ 1188 if (tg) 1189 q = tg->pd.blkg->q; 1190 else 1191 q = td->queue; 1192 1193 spin_lock_irq(&q->queue_lock); 1194 1195 if (!q->root_blkg) 1196 goto out_unlock; 1197 1198 if (throtl_can_upgrade(td, NULL)) 1199 throtl_upgrade_state(td); 1200 1201 again: 1202 parent_sq = sq->parent_sq; 1203 dispatched = false; 1204 1205 while (true) { 1206 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1207 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1208 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1209 1210 ret = throtl_select_dispatch(sq); 1211 if (ret) { 1212 throtl_log(sq, "bios disp=%u", ret); 1213 dispatched = true; 1214 } 1215 1216 if (throtl_schedule_next_dispatch(sq, false)) 1217 break; 1218 1219 /* this dispatch windows is still open, relax and repeat */ 1220 spin_unlock_irq(&q->queue_lock); 1221 cpu_relax(); 1222 spin_lock_irq(&q->queue_lock); 1223 } 1224 1225 if (!dispatched) 1226 goto out_unlock; 1227 1228 if (parent_sq) { 1229 /* @parent_sq is another throl_grp, propagate dispatch */ 1230 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1231 tg_update_disptime(tg); 1232 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1233 /* window is already open, repeat dispatching */ 1234 sq = parent_sq; 1235 tg = sq_to_tg(sq); 1236 goto again; 1237 } 1238 } 1239 } else { 1240 /* reached the top-level, queue issuing */ 1241 queue_work(kthrotld_workqueue, &td->dispatch_work); 1242 } 1243 out_unlock: 1244 spin_unlock_irq(&q->queue_lock); 1245 } 1246 1247 /** 1248 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1249 * @work: work item being executed 1250 * 1251 * This function is queued for execution when bios reach the bio_lists[] 1252 * of throtl_data->service_queue. Those bios are ready and issued by this 1253 * function. 1254 */ 1255 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1256 { 1257 struct throtl_data *td = container_of(work, struct throtl_data, 1258 dispatch_work); 1259 struct throtl_service_queue *td_sq = &td->service_queue; 1260 struct request_queue *q = td->queue; 1261 struct bio_list bio_list_on_stack; 1262 struct bio *bio; 1263 struct blk_plug plug; 1264 int rw; 1265 1266 bio_list_init(&bio_list_on_stack); 1267 1268 spin_lock_irq(&q->queue_lock); 1269 for (rw = READ; rw <= WRITE; rw++) 1270 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1271 bio_list_add(&bio_list_on_stack, bio); 1272 spin_unlock_irq(&q->queue_lock); 1273 1274 if (!bio_list_empty(&bio_list_on_stack)) { 1275 blk_start_plug(&plug); 1276 while ((bio = bio_list_pop(&bio_list_on_stack))) 1277 submit_bio_noacct_nocheck(bio); 1278 blk_finish_plug(&plug); 1279 } 1280 } 1281 1282 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1283 int off) 1284 { 1285 struct throtl_grp *tg = pd_to_tg(pd); 1286 u64 v = *(u64 *)((void *)tg + off); 1287 1288 if (v == U64_MAX) 1289 return 0; 1290 return __blkg_prfill_u64(sf, pd, v); 1291 } 1292 1293 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1294 int off) 1295 { 1296 struct throtl_grp *tg = pd_to_tg(pd); 1297 unsigned int v = *(unsigned int *)((void *)tg + off); 1298 1299 if (v == UINT_MAX) 1300 return 0; 1301 return __blkg_prfill_u64(sf, pd, v); 1302 } 1303 1304 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1305 { 1306 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1307 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1308 return 0; 1309 } 1310 1311 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1312 { 1313 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1314 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1315 return 0; 1316 } 1317 1318 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1319 { 1320 struct throtl_service_queue *sq = &tg->service_queue; 1321 struct cgroup_subsys_state *pos_css; 1322 struct blkcg_gq *blkg; 1323 1324 throtl_log(&tg->service_queue, 1325 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1326 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1327 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1328 1329 /* 1330 * Update has_rules[] flags for the updated tg's subtree. A tg is 1331 * considered to have rules if either the tg itself or any of its 1332 * ancestors has rules. This identifies groups without any 1333 * restrictions in the whole hierarchy and allows them to bypass 1334 * blk-throttle. 1335 */ 1336 blkg_for_each_descendant_pre(blkg, pos_css, 1337 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1338 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1339 struct throtl_grp *parent_tg; 1340 1341 tg_update_has_rules(this_tg); 1342 /* ignore root/second level */ 1343 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1344 !blkg->parent->parent) 1345 continue; 1346 parent_tg = blkg_to_tg(blkg->parent); 1347 /* 1348 * make sure all children has lower idle time threshold and 1349 * higher latency target 1350 */ 1351 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1352 parent_tg->idletime_threshold); 1353 this_tg->latency_target = max(this_tg->latency_target, 1354 parent_tg->latency_target); 1355 } 1356 1357 /* 1358 * We're already holding queue_lock and know @tg is valid. Let's 1359 * apply the new config directly. 1360 * 1361 * Restart the slices for both READ and WRITES. It might happen 1362 * that a group's limit are dropped suddenly and we don't want to 1363 * account recently dispatched IO with new low rate. 1364 */ 1365 throtl_start_new_slice(tg, READ, false); 1366 throtl_start_new_slice(tg, WRITE, false); 1367 1368 if (tg->flags & THROTL_TG_PENDING) { 1369 tg_update_disptime(tg); 1370 throtl_schedule_next_dispatch(sq->parent_sq, true); 1371 } 1372 } 1373 1374 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1375 char *buf, size_t nbytes, loff_t off, bool is_u64) 1376 { 1377 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1378 struct blkg_conf_ctx ctx; 1379 struct throtl_grp *tg; 1380 int ret; 1381 u64 v; 1382 1383 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1384 if (ret) 1385 return ret; 1386 1387 ret = -EINVAL; 1388 if (sscanf(ctx.body, "%llu", &v) != 1) 1389 goto out_finish; 1390 if (!v) 1391 v = U64_MAX; 1392 1393 tg = blkg_to_tg(ctx.blkg); 1394 tg_update_carryover(tg); 1395 1396 if (is_u64) 1397 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1398 else 1399 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1400 1401 tg_conf_updated(tg, false); 1402 ret = 0; 1403 out_finish: 1404 blkg_conf_finish(&ctx); 1405 return ret ?: nbytes; 1406 } 1407 1408 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1409 char *buf, size_t nbytes, loff_t off) 1410 { 1411 return tg_set_conf(of, buf, nbytes, off, true); 1412 } 1413 1414 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1415 char *buf, size_t nbytes, loff_t off) 1416 { 1417 return tg_set_conf(of, buf, nbytes, off, false); 1418 } 1419 1420 static int tg_print_rwstat(struct seq_file *sf, void *v) 1421 { 1422 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1423 blkg_prfill_rwstat, &blkcg_policy_throtl, 1424 seq_cft(sf)->private, true); 1425 return 0; 1426 } 1427 1428 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, 1429 struct blkg_policy_data *pd, int off) 1430 { 1431 struct blkg_rwstat_sample sum; 1432 1433 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, 1434 &sum); 1435 return __blkg_prfill_rwstat(sf, pd, &sum); 1436 } 1437 1438 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) 1439 { 1440 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1441 tg_prfill_rwstat_recursive, &blkcg_policy_throtl, 1442 seq_cft(sf)->private, true); 1443 return 0; 1444 } 1445 1446 static struct cftype throtl_legacy_files[] = { 1447 { 1448 .name = "throttle.read_bps_device", 1449 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1450 .seq_show = tg_print_conf_u64, 1451 .write = tg_set_conf_u64, 1452 }, 1453 { 1454 .name = "throttle.write_bps_device", 1455 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1456 .seq_show = tg_print_conf_u64, 1457 .write = tg_set_conf_u64, 1458 }, 1459 { 1460 .name = "throttle.read_iops_device", 1461 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1462 .seq_show = tg_print_conf_uint, 1463 .write = tg_set_conf_uint, 1464 }, 1465 { 1466 .name = "throttle.write_iops_device", 1467 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1468 .seq_show = tg_print_conf_uint, 1469 .write = tg_set_conf_uint, 1470 }, 1471 { 1472 .name = "throttle.io_service_bytes", 1473 .private = offsetof(struct throtl_grp, stat_bytes), 1474 .seq_show = tg_print_rwstat, 1475 }, 1476 { 1477 .name = "throttle.io_service_bytes_recursive", 1478 .private = offsetof(struct throtl_grp, stat_bytes), 1479 .seq_show = tg_print_rwstat_recursive, 1480 }, 1481 { 1482 .name = "throttle.io_serviced", 1483 .private = offsetof(struct throtl_grp, stat_ios), 1484 .seq_show = tg_print_rwstat, 1485 }, 1486 { 1487 .name = "throttle.io_serviced_recursive", 1488 .private = offsetof(struct throtl_grp, stat_ios), 1489 .seq_show = tg_print_rwstat_recursive, 1490 }, 1491 { } /* terminate */ 1492 }; 1493 1494 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1495 int off) 1496 { 1497 struct throtl_grp *tg = pd_to_tg(pd); 1498 const char *dname = blkg_dev_name(pd->blkg); 1499 char bufs[4][21] = { "max", "max", "max", "max" }; 1500 u64 bps_dft; 1501 unsigned int iops_dft; 1502 char idle_time[26] = ""; 1503 char latency_time[26] = ""; 1504 1505 if (!dname) 1506 return 0; 1507 1508 if (off == LIMIT_LOW) { 1509 bps_dft = 0; 1510 iops_dft = 0; 1511 } else { 1512 bps_dft = U64_MAX; 1513 iops_dft = UINT_MAX; 1514 } 1515 1516 if (tg->bps_conf[READ][off] == bps_dft && 1517 tg->bps_conf[WRITE][off] == bps_dft && 1518 tg->iops_conf[READ][off] == iops_dft && 1519 tg->iops_conf[WRITE][off] == iops_dft && 1520 (off != LIMIT_LOW || 1521 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1522 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1523 return 0; 1524 1525 if (tg->bps_conf[READ][off] != U64_MAX) 1526 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1527 tg->bps_conf[READ][off]); 1528 if (tg->bps_conf[WRITE][off] != U64_MAX) 1529 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1530 tg->bps_conf[WRITE][off]); 1531 if (tg->iops_conf[READ][off] != UINT_MAX) 1532 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1533 tg->iops_conf[READ][off]); 1534 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1535 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1536 tg->iops_conf[WRITE][off]); 1537 if (off == LIMIT_LOW) { 1538 if (tg->idletime_threshold_conf == ULONG_MAX) 1539 strcpy(idle_time, " idle=max"); 1540 else 1541 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1542 tg->idletime_threshold_conf); 1543 1544 if (tg->latency_target_conf == ULONG_MAX) 1545 strcpy(latency_time, " latency=max"); 1546 else 1547 snprintf(latency_time, sizeof(latency_time), 1548 " latency=%lu", tg->latency_target_conf); 1549 } 1550 1551 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1552 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1553 latency_time); 1554 return 0; 1555 } 1556 1557 static int tg_print_limit(struct seq_file *sf, void *v) 1558 { 1559 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1560 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1561 return 0; 1562 } 1563 1564 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1565 char *buf, size_t nbytes, loff_t off) 1566 { 1567 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1568 struct blkg_conf_ctx ctx; 1569 struct throtl_grp *tg; 1570 u64 v[4]; 1571 unsigned long idle_time; 1572 unsigned long latency_time; 1573 int ret; 1574 int index = of_cft(of)->private; 1575 1576 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1577 if (ret) 1578 return ret; 1579 1580 tg = blkg_to_tg(ctx.blkg); 1581 tg_update_carryover(tg); 1582 1583 v[0] = tg->bps_conf[READ][index]; 1584 v[1] = tg->bps_conf[WRITE][index]; 1585 v[2] = tg->iops_conf[READ][index]; 1586 v[3] = tg->iops_conf[WRITE][index]; 1587 1588 idle_time = tg->idletime_threshold_conf; 1589 latency_time = tg->latency_target_conf; 1590 while (true) { 1591 char tok[27]; /* wiops=18446744073709551616 */ 1592 char *p; 1593 u64 val = U64_MAX; 1594 int len; 1595 1596 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1597 break; 1598 if (tok[0] == '\0') 1599 break; 1600 ctx.body += len; 1601 1602 ret = -EINVAL; 1603 p = tok; 1604 strsep(&p, "="); 1605 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1606 goto out_finish; 1607 1608 ret = -ERANGE; 1609 if (!val) 1610 goto out_finish; 1611 1612 ret = -EINVAL; 1613 if (!strcmp(tok, "rbps") && val > 1) 1614 v[0] = val; 1615 else if (!strcmp(tok, "wbps") && val > 1) 1616 v[1] = val; 1617 else if (!strcmp(tok, "riops") && val > 1) 1618 v[2] = min_t(u64, val, UINT_MAX); 1619 else if (!strcmp(tok, "wiops") && val > 1) 1620 v[3] = min_t(u64, val, UINT_MAX); 1621 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1622 idle_time = val; 1623 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1624 latency_time = val; 1625 else 1626 goto out_finish; 1627 } 1628 1629 tg->bps_conf[READ][index] = v[0]; 1630 tg->bps_conf[WRITE][index] = v[1]; 1631 tg->iops_conf[READ][index] = v[2]; 1632 tg->iops_conf[WRITE][index] = v[3]; 1633 1634 if (index == LIMIT_MAX) { 1635 tg->bps[READ][index] = v[0]; 1636 tg->bps[WRITE][index] = v[1]; 1637 tg->iops[READ][index] = v[2]; 1638 tg->iops[WRITE][index] = v[3]; 1639 } 1640 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1641 tg->bps_conf[READ][LIMIT_MAX]); 1642 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1643 tg->bps_conf[WRITE][LIMIT_MAX]); 1644 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1645 tg->iops_conf[READ][LIMIT_MAX]); 1646 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1647 tg->iops_conf[WRITE][LIMIT_MAX]); 1648 tg->idletime_threshold_conf = idle_time; 1649 tg->latency_target_conf = latency_time; 1650 1651 /* force user to configure all settings for low limit */ 1652 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1653 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1654 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1655 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1656 tg->bps[READ][LIMIT_LOW] = 0; 1657 tg->bps[WRITE][LIMIT_LOW] = 0; 1658 tg->iops[READ][LIMIT_LOW] = 0; 1659 tg->iops[WRITE][LIMIT_LOW] = 0; 1660 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1661 tg->latency_target = DFL_LATENCY_TARGET; 1662 } else if (index == LIMIT_LOW) { 1663 tg->idletime_threshold = tg->idletime_threshold_conf; 1664 tg->latency_target = tg->latency_target_conf; 1665 } 1666 1667 blk_throtl_update_limit_valid(tg->td); 1668 if (tg->td->limit_valid[LIMIT_LOW]) { 1669 if (index == LIMIT_LOW) 1670 tg->td->limit_index = LIMIT_LOW; 1671 } else 1672 tg->td->limit_index = LIMIT_MAX; 1673 tg_conf_updated(tg, index == LIMIT_LOW && 1674 tg->td->limit_valid[LIMIT_LOW]); 1675 ret = 0; 1676 out_finish: 1677 blkg_conf_finish(&ctx); 1678 return ret ?: nbytes; 1679 } 1680 1681 static struct cftype throtl_files[] = { 1682 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1683 { 1684 .name = "low", 1685 .flags = CFTYPE_NOT_ON_ROOT, 1686 .seq_show = tg_print_limit, 1687 .write = tg_set_limit, 1688 .private = LIMIT_LOW, 1689 }, 1690 #endif 1691 { 1692 .name = "max", 1693 .flags = CFTYPE_NOT_ON_ROOT, 1694 .seq_show = tg_print_limit, 1695 .write = tg_set_limit, 1696 .private = LIMIT_MAX, 1697 }, 1698 { } /* terminate */ 1699 }; 1700 1701 static void throtl_shutdown_wq(struct request_queue *q) 1702 { 1703 struct throtl_data *td = q->td; 1704 1705 cancel_work_sync(&td->dispatch_work); 1706 } 1707 1708 struct blkcg_policy blkcg_policy_throtl = { 1709 .dfl_cftypes = throtl_files, 1710 .legacy_cftypes = throtl_legacy_files, 1711 1712 .pd_alloc_fn = throtl_pd_alloc, 1713 .pd_init_fn = throtl_pd_init, 1714 .pd_online_fn = throtl_pd_online, 1715 .pd_offline_fn = throtl_pd_offline, 1716 .pd_free_fn = throtl_pd_free, 1717 }; 1718 1719 void blk_throtl_cancel_bios(struct gendisk *disk) 1720 { 1721 struct request_queue *q = disk->queue; 1722 struct cgroup_subsys_state *pos_css; 1723 struct blkcg_gq *blkg; 1724 1725 spin_lock_irq(&q->queue_lock); 1726 /* 1727 * queue_lock is held, rcu lock is not needed here technically. 1728 * However, rcu lock is still held to emphasize that following 1729 * path need RCU protection and to prevent warning from lockdep. 1730 */ 1731 rcu_read_lock(); 1732 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) { 1733 struct throtl_grp *tg = blkg_to_tg(blkg); 1734 struct throtl_service_queue *sq = &tg->service_queue; 1735 1736 /* 1737 * Set the flag to make sure throtl_pending_timer_fn() won't 1738 * stop until all throttled bios are dispatched. 1739 */ 1740 blkg_to_tg(blkg)->flags |= THROTL_TG_CANCELING; 1741 /* 1742 * Update disptime after setting the above flag to make sure 1743 * throtl_select_dispatch() won't exit without dispatching. 1744 */ 1745 tg_update_disptime(tg); 1746 1747 throtl_schedule_pending_timer(sq, jiffies + 1); 1748 } 1749 rcu_read_unlock(); 1750 spin_unlock_irq(&q->queue_lock); 1751 } 1752 1753 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1754 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1755 { 1756 unsigned long rtime = jiffies, wtime = jiffies; 1757 1758 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1759 rtime = tg->last_low_overflow_time[READ]; 1760 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1761 wtime = tg->last_low_overflow_time[WRITE]; 1762 return min(rtime, wtime); 1763 } 1764 1765 /* tg should not be an intermediate node */ 1766 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1767 { 1768 struct throtl_service_queue *parent_sq; 1769 struct throtl_grp *parent = tg; 1770 unsigned long ret = __tg_last_low_overflow_time(tg); 1771 1772 while (true) { 1773 parent_sq = parent->service_queue.parent_sq; 1774 parent = sq_to_tg(parent_sq); 1775 if (!parent) 1776 break; 1777 1778 /* 1779 * The parent doesn't have low limit, it always reaches low 1780 * limit. Its overflow time is useless for children 1781 */ 1782 if (!parent->bps[READ][LIMIT_LOW] && 1783 !parent->iops[READ][LIMIT_LOW] && 1784 !parent->bps[WRITE][LIMIT_LOW] && 1785 !parent->iops[WRITE][LIMIT_LOW]) 1786 continue; 1787 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1788 ret = __tg_last_low_overflow_time(parent); 1789 } 1790 return ret; 1791 } 1792 1793 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1794 { 1795 /* 1796 * cgroup is idle if: 1797 * - single idle is too long, longer than a fixed value (in case user 1798 * configure a too big threshold) or 4 times of idletime threshold 1799 * - average think time is more than threshold 1800 * - IO latency is largely below threshold 1801 */ 1802 unsigned long time; 1803 bool ret; 1804 1805 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1806 ret = tg->latency_target == DFL_LATENCY_TARGET || 1807 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1808 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1809 tg->avg_idletime > tg->idletime_threshold || 1810 (tg->latency_target && tg->bio_cnt && 1811 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1812 throtl_log(&tg->service_queue, 1813 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1814 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1815 tg->bio_cnt, ret, tg->td->scale); 1816 return ret; 1817 } 1818 1819 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1820 { 1821 struct throtl_service_queue *sq = &tg->service_queue; 1822 bool read_limit, write_limit; 1823 1824 /* 1825 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1826 * reaches), it's ok to upgrade to next limit 1827 */ 1828 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1829 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1830 if (!read_limit && !write_limit) 1831 return true; 1832 if (read_limit && sq->nr_queued[READ] && 1833 (!write_limit || sq->nr_queued[WRITE])) 1834 return true; 1835 if (write_limit && sq->nr_queued[WRITE] && 1836 (!read_limit || sq->nr_queued[READ])) 1837 return true; 1838 1839 if (time_after_eq(jiffies, 1840 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1841 throtl_tg_is_idle(tg)) 1842 return true; 1843 return false; 1844 } 1845 1846 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1847 { 1848 while (true) { 1849 if (throtl_tg_can_upgrade(tg)) 1850 return true; 1851 tg = sq_to_tg(tg->service_queue.parent_sq); 1852 if (!tg || !tg_to_blkg(tg)->parent) 1853 return false; 1854 } 1855 return false; 1856 } 1857 1858 static bool throtl_can_upgrade(struct throtl_data *td, 1859 struct throtl_grp *this_tg) 1860 { 1861 struct cgroup_subsys_state *pos_css; 1862 struct blkcg_gq *blkg; 1863 1864 if (td->limit_index != LIMIT_LOW) 1865 return false; 1866 1867 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1868 return false; 1869 1870 rcu_read_lock(); 1871 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1872 struct throtl_grp *tg = blkg_to_tg(blkg); 1873 1874 if (tg == this_tg) 1875 continue; 1876 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1877 continue; 1878 if (!throtl_hierarchy_can_upgrade(tg)) { 1879 rcu_read_unlock(); 1880 return false; 1881 } 1882 } 1883 rcu_read_unlock(); 1884 return true; 1885 } 1886 1887 static void throtl_upgrade_check(struct throtl_grp *tg) 1888 { 1889 unsigned long now = jiffies; 1890 1891 if (tg->td->limit_index != LIMIT_LOW) 1892 return; 1893 1894 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1895 return; 1896 1897 tg->last_check_time = now; 1898 1899 if (!time_after_eq(now, 1900 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1901 return; 1902 1903 if (throtl_can_upgrade(tg->td, NULL)) 1904 throtl_upgrade_state(tg->td); 1905 } 1906 1907 static void throtl_upgrade_state(struct throtl_data *td) 1908 { 1909 struct cgroup_subsys_state *pos_css; 1910 struct blkcg_gq *blkg; 1911 1912 throtl_log(&td->service_queue, "upgrade to max"); 1913 td->limit_index = LIMIT_MAX; 1914 td->low_upgrade_time = jiffies; 1915 td->scale = 0; 1916 rcu_read_lock(); 1917 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1918 struct throtl_grp *tg = blkg_to_tg(blkg); 1919 struct throtl_service_queue *sq = &tg->service_queue; 1920 1921 tg->disptime = jiffies - 1; 1922 throtl_select_dispatch(sq); 1923 throtl_schedule_next_dispatch(sq, true); 1924 } 1925 rcu_read_unlock(); 1926 throtl_select_dispatch(&td->service_queue); 1927 throtl_schedule_next_dispatch(&td->service_queue, true); 1928 queue_work(kthrotld_workqueue, &td->dispatch_work); 1929 } 1930 1931 static void throtl_downgrade_state(struct throtl_data *td) 1932 { 1933 td->scale /= 2; 1934 1935 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1936 if (td->scale) { 1937 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1938 return; 1939 } 1940 1941 td->limit_index = LIMIT_LOW; 1942 td->low_downgrade_time = jiffies; 1943 } 1944 1945 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1946 { 1947 struct throtl_data *td = tg->td; 1948 unsigned long now = jiffies; 1949 1950 /* 1951 * If cgroup is below low limit, consider downgrade and throttle other 1952 * cgroups 1953 */ 1954 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1955 time_after_eq(now, tg_last_low_overflow_time(tg) + 1956 td->throtl_slice) && 1957 (!throtl_tg_is_idle(tg) || 1958 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1959 return true; 1960 return false; 1961 } 1962 1963 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1964 { 1965 while (true) { 1966 if (!throtl_tg_can_downgrade(tg)) 1967 return false; 1968 tg = sq_to_tg(tg->service_queue.parent_sq); 1969 if (!tg || !tg_to_blkg(tg)->parent) 1970 break; 1971 } 1972 return true; 1973 } 1974 1975 static void throtl_downgrade_check(struct throtl_grp *tg) 1976 { 1977 uint64_t bps; 1978 unsigned int iops; 1979 unsigned long elapsed_time; 1980 unsigned long now = jiffies; 1981 1982 if (tg->td->limit_index != LIMIT_MAX || 1983 !tg->td->limit_valid[LIMIT_LOW]) 1984 return; 1985 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1986 return; 1987 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1988 return; 1989 1990 elapsed_time = now - tg->last_check_time; 1991 tg->last_check_time = now; 1992 1993 if (time_before(now, tg_last_low_overflow_time(tg) + 1994 tg->td->throtl_slice)) 1995 return; 1996 1997 if (tg->bps[READ][LIMIT_LOW]) { 1998 bps = tg->last_bytes_disp[READ] * HZ; 1999 do_div(bps, elapsed_time); 2000 if (bps >= tg->bps[READ][LIMIT_LOW]) 2001 tg->last_low_overflow_time[READ] = now; 2002 } 2003 2004 if (tg->bps[WRITE][LIMIT_LOW]) { 2005 bps = tg->last_bytes_disp[WRITE] * HZ; 2006 do_div(bps, elapsed_time); 2007 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 2008 tg->last_low_overflow_time[WRITE] = now; 2009 } 2010 2011 if (tg->iops[READ][LIMIT_LOW]) { 2012 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 2013 if (iops >= tg->iops[READ][LIMIT_LOW]) 2014 tg->last_low_overflow_time[READ] = now; 2015 } 2016 2017 if (tg->iops[WRITE][LIMIT_LOW]) { 2018 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 2019 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 2020 tg->last_low_overflow_time[WRITE] = now; 2021 } 2022 2023 /* 2024 * If cgroup is below low limit, consider downgrade and throttle other 2025 * cgroups 2026 */ 2027 if (throtl_hierarchy_can_downgrade(tg)) 2028 throtl_downgrade_state(tg->td); 2029 2030 tg->last_bytes_disp[READ] = 0; 2031 tg->last_bytes_disp[WRITE] = 0; 2032 tg->last_io_disp[READ] = 0; 2033 tg->last_io_disp[WRITE] = 0; 2034 } 2035 2036 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2037 { 2038 unsigned long now; 2039 unsigned long last_finish_time = tg->last_finish_time; 2040 2041 if (last_finish_time == 0) 2042 return; 2043 2044 now = ktime_get_ns() >> 10; 2045 if (now <= last_finish_time || 2046 last_finish_time == tg->checked_last_finish_time) 2047 return; 2048 2049 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2050 tg->checked_last_finish_time = last_finish_time; 2051 } 2052 2053 static void throtl_update_latency_buckets(struct throtl_data *td) 2054 { 2055 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 2056 int i, cpu, rw; 2057 unsigned long last_latency[2] = { 0 }; 2058 unsigned long latency[2]; 2059 2060 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW]) 2061 return; 2062 if (time_before(jiffies, td->last_calculate_time + HZ)) 2063 return; 2064 td->last_calculate_time = jiffies; 2065 2066 memset(avg_latency, 0, sizeof(avg_latency)); 2067 for (rw = READ; rw <= WRITE; rw++) { 2068 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2069 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 2070 2071 for_each_possible_cpu(cpu) { 2072 struct latency_bucket *bucket; 2073 2074 /* this isn't race free, but ok in practice */ 2075 bucket = per_cpu_ptr(td->latency_buckets[rw], 2076 cpu); 2077 tmp->total_latency += bucket[i].total_latency; 2078 tmp->samples += bucket[i].samples; 2079 bucket[i].total_latency = 0; 2080 bucket[i].samples = 0; 2081 } 2082 2083 if (tmp->samples >= 32) { 2084 int samples = tmp->samples; 2085 2086 latency[rw] = tmp->total_latency; 2087 2088 tmp->total_latency = 0; 2089 tmp->samples = 0; 2090 latency[rw] /= samples; 2091 if (latency[rw] == 0) 2092 continue; 2093 avg_latency[rw][i].latency = latency[rw]; 2094 } 2095 } 2096 } 2097 2098 for (rw = READ; rw <= WRITE; rw++) { 2099 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2100 if (!avg_latency[rw][i].latency) { 2101 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2102 td->avg_buckets[rw][i].latency = 2103 last_latency[rw]; 2104 continue; 2105 } 2106 2107 if (!td->avg_buckets[rw][i].valid) 2108 latency[rw] = avg_latency[rw][i].latency; 2109 else 2110 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2111 avg_latency[rw][i].latency) >> 3; 2112 2113 td->avg_buckets[rw][i].latency = max(latency[rw], 2114 last_latency[rw]); 2115 td->avg_buckets[rw][i].valid = true; 2116 last_latency[rw] = td->avg_buckets[rw][i].latency; 2117 } 2118 } 2119 2120 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2121 throtl_log(&td->service_queue, 2122 "Latency bucket %d: read latency=%ld, read valid=%d, " 2123 "write latency=%ld, write valid=%d", i, 2124 td->avg_buckets[READ][i].latency, 2125 td->avg_buckets[READ][i].valid, 2126 td->avg_buckets[WRITE][i].latency, 2127 td->avg_buckets[WRITE][i].valid); 2128 } 2129 #else 2130 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2131 { 2132 } 2133 2134 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2135 { 2136 } 2137 2138 static void throtl_downgrade_check(struct throtl_grp *tg) 2139 { 2140 } 2141 2142 static void throtl_upgrade_check(struct throtl_grp *tg) 2143 { 2144 } 2145 2146 static bool throtl_can_upgrade(struct throtl_data *td, 2147 struct throtl_grp *this_tg) 2148 { 2149 return false; 2150 } 2151 2152 static void throtl_upgrade_state(struct throtl_data *td) 2153 { 2154 } 2155 #endif 2156 2157 bool __blk_throtl_bio(struct bio *bio) 2158 { 2159 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2160 struct blkcg_gq *blkg = bio->bi_blkg; 2161 struct throtl_qnode *qn = NULL; 2162 struct throtl_grp *tg = blkg_to_tg(blkg); 2163 struct throtl_service_queue *sq; 2164 bool rw = bio_data_dir(bio); 2165 bool throttled = false; 2166 struct throtl_data *td = tg->td; 2167 2168 rcu_read_lock(); 2169 2170 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) { 2171 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf, 2172 bio->bi_iter.bi_size); 2173 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1); 2174 } 2175 2176 spin_lock_irq(&q->queue_lock); 2177 2178 throtl_update_latency_buckets(td); 2179 2180 blk_throtl_update_idletime(tg); 2181 2182 sq = &tg->service_queue; 2183 2184 again: 2185 while (true) { 2186 if (tg->last_low_overflow_time[rw] == 0) 2187 tg->last_low_overflow_time[rw] = jiffies; 2188 throtl_downgrade_check(tg); 2189 throtl_upgrade_check(tg); 2190 /* throtl is FIFO - if bios are already queued, should queue */ 2191 if (sq->nr_queued[rw]) 2192 break; 2193 2194 /* if above limits, break to queue */ 2195 if (!tg_may_dispatch(tg, bio, NULL)) { 2196 tg->last_low_overflow_time[rw] = jiffies; 2197 if (throtl_can_upgrade(td, tg)) { 2198 throtl_upgrade_state(td); 2199 goto again; 2200 } 2201 break; 2202 } 2203 2204 /* within limits, let's charge and dispatch directly */ 2205 throtl_charge_bio(tg, bio); 2206 2207 /* 2208 * We need to trim slice even when bios are not being queued 2209 * otherwise it might happen that a bio is not queued for 2210 * a long time and slice keeps on extending and trim is not 2211 * called for a long time. Now if limits are reduced suddenly 2212 * we take into account all the IO dispatched so far at new 2213 * low rate and * newly queued IO gets a really long dispatch 2214 * time. 2215 * 2216 * So keep on trimming slice even if bio is not queued. 2217 */ 2218 throtl_trim_slice(tg, rw); 2219 2220 /* 2221 * @bio passed through this layer without being throttled. 2222 * Climb up the ladder. If we're already at the top, it 2223 * can be executed directly. 2224 */ 2225 qn = &tg->qnode_on_parent[rw]; 2226 sq = sq->parent_sq; 2227 tg = sq_to_tg(sq); 2228 if (!tg) { 2229 bio_set_flag(bio, BIO_BPS_THROTTLED); 2230 goto out_unlock; 2231 } 2232 } 2233 2234 /* out-of-limit, queue to @tg */ 2235 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2236 rw == READ ? 'R' : 'W', 2237 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2238 tg_bps_limit(tg, rw), 2239 tg->io_disp[rw], tg_iops_limit(tg, rw), 2240 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2241 2242 tg->last_low_overflow_time[rw] = jiffies; 2243 2244 td->nr_queued[rw]++; 2245 throtl_add_bio_tg(bio, qn, tg); 2246 throttled = true; 2247 2248 /* 2249 * Update @tg's dispatch time and force schedule dispatch if @tg 2250 * was empty before @bio. The forced scheduling isn't likely to 2251 * cause undue delay as @bio is likely to be dispatched directly if 2252 * its @tg's disptime is not in the future. 2253 */ 2254 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2255 tg_update_disptime(tg); 2256 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2257 } 2258 2259 out_unlock: 2260 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2261 if (throttled || !td->track_bio_latency) 2262 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; 2263 #endif 2264 spin_unlock_irq(&q->queue_lock); 2265 2266 rcu_read_unlock(); 2267 return throttled; 2268 } 2269 2270 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2271 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2272 enum req_op op, unsigned long time) 2273 { 2274 const bool rw = op_is_write(op); 2275 struct latency_bucket *latency; 2276 int index; 2277 2278 if (!td || td->limit_index != LIMIT_LOW || 2279 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2280 !blk_queue_nonrot(td->queue)) 2281 return; 2282 2283 index = request_bucket_index(size); 2284 2285 latency = get_cpu_ptr(td->latency_buckets[rw]); 2286 latency[index].total_latency += time; 2287 latency[index].samples++; 2288 put_cpu_ptr(td->latency_buckets[rw]); 2289 } 2290 2291 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2292 { 2293 struct request_queue *q = rq->q; 2294 struct throtl_data *td = q->td; 2295 2296 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), 2297 time_ns >> 10); 2298 } 2299 2300 void blk_throtl_bio_endio(struct bio *bio) 2301 { 2302 struct blkcg_gq *blkg; 2303 struct throtl_grp *tg; 2304 u64 finish_time_ns; 2305 unsigned long finish_time; 2306 unsigned long start_time; 2307 unsigned long lat; 2308 int rw = bio_data_dir(bio); 2309 2310 blkg = bio->bi_blkg; 2311 if (!blkg) 2312 return; 2313 tg = blkg_to_tg(blkg); 2314 if (!tg->td->limit_valid[LIMIT_LOW]) 2315 return; 2316 2317 finish_time_ns = ktime_get_ns(); 2318 tg->last_finish_time = finish_time_ns >> 10; 2319 2320 start_time = bio_issue_time(&bio->bi_issue) >> 10; 2321 finish_time = __bio_issue_time(finish_time_ns) >> 10; 2322 if (!start_time || finish_time <= start_time) 2323 return; 2324 2325 lat = finish_time - start_time; 2326 /* this is only for bio based driver */ 2327 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) 2328 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), 2329 bio_op(bio), lat); 2330 2331 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2332 int bucket; 2333 unsigned int threshold; 2334 2335 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); 2336 threshold = tg->td->avg_buckets[rw][bucket].latency + 2337 tg->latency_target; 2338 if (lat > threshold) 2339 tg->bad_bio_cnt++; 2340 /* 2341 * Not race free, could get wrong count, which means cgroups 2342 * will be throttled 2343 */ 2344 tg->bio_cnt++; 2345 } 2346 2347 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2348 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2349 tg->bio_cnt /= 2; 2350 tg->bad_bio_cnt /= 2; 2351 } 2352 } 2353 #endif 2354 2355 int blk_throtl_init(struct gendisk *disk) 2356 { 2357 struct request_queue *q = disk->queue; 2358 struct throtl_data *td; 2359 int ret; 2360 2361 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2362 if (!td) 2363 return -ENOMEM; 2364 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2365 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2366 if (!td->latency_buckets[READ]) { 2367 kfree(td); 2368 return -ENOMEM; 2369 } 2370 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2371 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2372 if (!td->latency_buckets[WRITE]) { 2373 free_percpu(td->latency_buckets[READ]); 2374 kfree(td); 2375 return -ENOMEM; 2376 } 2377 2378 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2379 throtl_service_queue_init(&td->service_queue); 2380 2381 q->td = td; 2382 td->queue = q; 2383 2384 td->limit_valid[LIMIT_MAX] = true; 2385 td->limit_index = LIMIT_MAX; 2386 td->low_upgrade_time = jiffies; 2387 td->low_downgrade_time = jiffies; 2388 2389 /* activate policy */ 2390 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2391 if (ret) { 2392 free_percpu(td->latency_buckets[READ]); 2393 free_percpu(td->latency_buckets[WRITE]); 2394 kfree(td); 2395 } 2396 return ret; 2397 } 2398 2399 void blk_throtl_exit(struct gendisk *disk) 2400 { 2401 struct request_queue *q = disk->queue; 2402 2403 BUG_ON(!q->td); 2404 del_timer_sync(&q->td->service_queue.pending_timer); 2405 throtl_shutdown_wq(q); 2406 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2407 free_percpu(q->td->latency_buckets[READ]); 2408 free_percpu(q->td->latency_buckets[WRITE]); 2409 kfree(q->td); 2410 } 2411 2412 void blk_throtl_register(struct gendisk *disk) 2413 { 2414 struct request_queue *q = disk->queue; 2415 struct throtl_data *td; 2416 int i; 2417 2418 td = q->td; 2419 BUG_ON(!td); 2420 2421 if (blk_queue_nonrot(q)) { 2422 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2423 td->filtered_latency = LATENCY_FILTERED_SSD; 2424 } else { 2425 td->throtl_slice = DFL_THROTL_SLICE_HD; 2426 td->filtered_latency = LATENCY_FILTERED_HD; 2427 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2428 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2429 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2430 } 2431 } 2432 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2433 /* if no low limit, use previous default */ 2434 td->throtl_slice = DFL_THROTL_SLICE_HD; 2435 #endif 2436 2437 td->track_bio_latency = !queue_is_mq(q); 2438 if (!td->track_bio_latency) 2439 blk_stat_enable_accounting(q); 2440 } 2441 2442 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2443 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2444 { 2445 if (!q->td) 2446 return -EINVAL; 2447 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2448 } 2449 2450 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2451 const char *page, size_t count) 2452 { 2453 unsigned long v; 2454 unsigned long t; 2455 2456 if (!q->td) 2457 return -EINVAL; 2458 if (kstrtoul(page, 10, &v)) 2459 return -EINVAL; 2460 t = msecs_to_jiffies(v); 2461 if (t == 0 || t > MAX_THROTL_SLICE) 2462 return -EINVAL; 2463 q->td->throtl_slice = t; 2464 return count; 2465 } 2466 #endif 2467 2468 static int __init throtl_init(void) 2469 { 2470 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2471 if (!kthrotld_workqueue) 2472 panic("Failed to create kthrotld\n"); 2473 2474 return blkcg_policy_register(&blkcg_policy_throtl); 2475 } 2476 2477 module_init(throtl_init); 2478