xref: /linux/block/blk-throttle.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 
14 /* Max dispatch from a group in 1 round */
15 static int throtl_grp_quantum = 8;
16 
17 /* Total max dispatch from all groups in one round */
18 static int throtl_quantum = 32;
19 
20 /* Throttling is performed over 100ms slice and after that slice is renewed */
21 static unsigned long throtl_slice = HZ/10;	/* 100 ms */
22 
23 struct throtl_rb_root {
24 	struct rb_root rb;
25 	struct rb_node *left;
26 	unsigned int count;
27 	unsigned long min_disptime;
28 };
29 
30 #define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
31 			.count = 0, .min_disptime = 0}
32 
33 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
34 
35 struct throtl_grp {
36 	/* List of throtl groups on the request queue*/
37 	struct hlist_node tg_node;
38 
39 	/* active throtl group service_tree member */
40 	struct rb_node rb_node;
41 
42 	/*
43 	 * Dispatch time in jiffies. This is the estimated time when group
44 	 * will unthrottle and is ready to dispatch more bio. It is used as
45 	 * key to sort active groups in service tree.
46 	 */
47 	unsigned long disptime;
48 
49 	struct blkio_group blkg;
50 	atomic_t ref;
51 	unsigned int flags;
52 
53 	/* Two lists for READ and WRITE */
54 	struct bio_list bio_lists[2];
55 
56 	/* Number of queued bios on READ and WRITE lists */
57 	unsigned int nr_queued[2];
58 
59 	/* bytes per second rate limits */
60 	uint64_t bps[2];
61 
62 	/* IOPS limits */
63 	unsigned int iops[2];
64 
65 	/* Number of bytes disptached in current slice */
66 	uint64_t bytes_disp[2];
67 	/* Number of bio's dispatched in current slice */
68 	unsigned int io_disp[2];
69 
70 	/* When did we start a new slice */
71 	unsigned long slice_start[2];
72 	unsigned long slice_end[2];
73 
74 	/* Some throttle limits got updated for the group */
75 	bool limits_changed;
76 };
77 
78 struct throtl_data
79 {
80 	/* List of throtl groups */
81 	struct hlist_head tg_list;
82 
83 	/* service tree for active throtl groups */
84 	struct throtl_rb_root tg_service_tree;
85 
86 	struct throtl_grp root_tg;
87 	struct request_queue *queue;
88 
89 	/* Total Number of queued bios on READ and WRITE lists */
90 	unsigned int nr_queued[2];
91 
92 	/*
93 	 * number of total undestroyed groups
94 	 */
95 	unsigned int nr_undestroyed_grps;
96 
97 	/* Work for dispatching throttled bios */
98 	struct delayed_work throtl_work;
99 
100 	atomic_t limits_changed;
101 };
102 
103 enum tg_state_flags {
104 	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
105 };
106 
107 #define THROTL_TG_FNS(name)						\
108 static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
109 {									\
110 	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
111 }									\
112 static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
113 {									\
114 	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
115 }									\
116 static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
117 {									\
118 	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
119 }
120 
121 THROTL_TG_FNS(on_rr);
122 
123 #define throtl_log_tg(td, tg, fmt, args...)				\
124 	blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\
125 				blkg_path(&(tg)->blkg), ##args);      	\
126 
127 #define throtl_log(td, fmt, args...)	\
128 	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
129 
130 static inline struct throtl_grp *tg_of_blkg(struct blkio_group *blkg)
131 {
132 	if (blkg)
133 		return container_of(blkg, struct throtl_grp, blkg);
134 
135 	return NULL;
136 }
137 
138 static inline int total_nr_queued(struct throtl_data *td)
139 {
140 	return (td->nr_queued[0] + td->nr_queued[1]);
141 }
142 
143 static inline struct throtl_grp *throtl_ref_get_tg(struct throtl_grp *tg)
144 {
145 	atomic_inc(&tg->ref);
146 	return tg;
147 }
148 
149 static void throtl_put_tg(struct throtl_grp *tg)
150 {
151 	BUG_ON(atomic_read(&tg->ref) <= 0);
152 	if (!atomic_dec_and_test(&tg->ref))
153 		return;
154 	kfree(tg);
155 }
156 
157 static struct throtl_grp * throtl_find_alloc_tg(struct throtl_data *td,
158 			struct cgroup *cgroup)
159 {
160 	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
161 	struct throtl_grp *tg = NULL;
162 	void *key = td;
163 	struct backing_dev_info *bdi = &td->queue->backing_dev_info;
164 	unsigned int major, minor;
165 
166 	/*
167 	 * TODO: Speed up blkiocg_lookup_group() by maintaining a radix
168 	 * tree of blkg (instead of traversing through hash list all
169 	 * the time.
170 	 */
171 	tg = tg_of_blkg(blkiocg_lookup_group(blkcg, key));
172 
173 	/* Fill in device details for root group */
174 	if (tg && !tg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
175 		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
176 		tg->blkg.dev = MKDEV(major, minor);
177 		goto done;
178 	}
179 
180 	if (tg)
181 		goto done;
182 
183 	tg = kzalloc_node(sizeof(*tg), GFP_ATOMIC, td->queue->node);
184 	if (!tg)
185 		goto done;
186 
187 	INIT_HLIST_NODE(&tg->tg_node);
188 	RB_CLEAR_NODE(&tg->rb_node);
189 	bio_list_init(&tg->bio_lists[0]);
190 	bio_list_init(&tg->bio_lists[1]);
191 
192 	/*
193 	 * Take the initial reference that will be released on destroy
194 	 * This can be thought of a joint reference by cgroup and
195 	 * request queue which will be dropped by either request queue
196 	 * exit or cgroup deletion path depending on who is exiting first.
197 	 */
198 	atomic_set(&tg->ref, 1);
199 
200 	/* Add group onto cgroup list */
201 	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
202 	blkiocg_add_blkio_group(blkcg, &tg->blkg, (void *)td,
203 				MKDEV(major, minor), BLKIO_POLICY_THROTL);
204 
205 	tg->bps[READ] = blkcg_get_read_bps(blkcg, tg->blkg.dev);
206 	tg->bps[WRITE] = blkcg_get_write_bps(blkcg, tg->blkg.dev);
207 	tg->iops[READ] = blkcg_get_read_iops(blkcg, tg->blkg.dev);
208 	tg->iops[WRITE] = blkcg_get_write_iops(blkcg, tg->blkg.dev);
209 
210 	hlist_add_head(&tg->tg_node, &td->tg_list);
211 	td->nr_undestroyed_grps++;
212 done:
213 	return tg;
214 }
215 
216 static struct throtl_grp * throtl_get_tg(struct throtl_data *td)
217 {
218 	struct cgroup *cgroup;
219 	struct throtl_grp *tg = NULL;
220 
221 	rcu_read_lock();
222 	cgroup = task_cgroup(current, blkio_subsys_id);
223 	tg = throtl_find_alloc_tg(td, cgroup);
224 	if (!tg)
225 		tg = &td->root_tg;
226 	rcu_read_unlock();
227 	return tg;
228 }
229 
230 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
231 {
232 	/* Service tree is empty */
233 	if (!root->count)
234 		return NULL;
235 
236 	if (!root->left)
237 		root->left = rb_first(&root->rb);
238 
239 	if (root->left)
240 		return rb_entry_tg(root->left);
241 
242 	return NULL;
243 }
244 
245 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
246 {
247 	rb_erase(n, root);
248 	RB_CLEAR_NODE(n);
249 }
250 
251 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
252 {
253 	if (root->left == n)
254 		root->left = NULL;
255 	rb_erase_init(n, &root->rb);
256 	--root->count;
257 }
258 
259 static void update_min_dispatch_time(struct throtl_rb_root *st)
260 {
261 	struct throtl_grp *tg;
262 
263 	tg = throtl_rb_first(st);
264 	if (!tg)
265 		return;
266 
267 	st->min_disptime = tg->disptime;
268 }
269 
270 static void
271 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
272 {
273 	struct rb_node **node = &st->rb.rb_node;
274 	struct rb_node *parent = NULL;
275 	struct throtl_grp *__tg;
276 	unsigned long key = tg->disptime;
277 	int left = 1;
278 
279 	while (*node != NULL) {
280 		parent = *node;
281 		__tg = rb_entry_tg(parent);
282 
283 		if (time_before(key, __tg->disptime))
284 			node = &parent->rb_left;
285 		else {
286 			node = &parent->rb_right;
287 			left = 0;
288 		}
289 	}
290 
291 	if (left)
292 		st->left = &tg->rb_node;
293 
294 	rb_link_node(&tg->rb_node, parent, node);
295 	rb_insert_color(&tg->rb_node, &st->rb);
296 }
297 
298 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
299 {
300 	struct throtl_rb_root *st = &td->tg_service_tree;
301 
302 	tg_service_tree_add(st, tg);
303 	throtl_mark_tg_on_rr(tg);
304 	st->count++;
305 }
306 
307 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
308 {
309 	if (!throtl_tg_on_rr(tg))
310 		__throtl_enqueue_tg(td, tg);
311 }
312 
313 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
314 {
315 	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
316 	throtl_clear_tg_on_rr(tg);
317 }
318 
319 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
320 {
321 	if (throtl_tg_on_rr(tg))
322 		__throtl_dequeue_tg(td, tg);
323 }
324 
325 static void throtl_schedule_next_dispatch(struct throtl_data *td)
326 {
327 	struct throtl_rb_root *st = &td->tg_service_tree;
328 
329 	/*
330 	 * If there are more bios pending, schedule more work.
331 	 */
332 	if (!total_nr_queued(td))
333 		return;
334 
335 	BUG_ON(!st->count);
336 
337 	update_min_dispatch_time(st);
338 
339 	if (time_before_eq(st->min_disptime, jiffies))
340 		throtl_schedule_delayed_work(td->queue, 0);
341 	else
342 		throtl_schedule_delayed_work(td->queue,
343 				(st->min_disptime - jiffies));
344 }
345 
346 static inline void
347 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
348 {
349 	tg->bytes_disp[rw] = 0;
350 	tg->io_disp[rw] = 0;
351 	tg->slice_start[rw] = jiffies;
352 	tg->slice_end[rw] = jiffies + throtl_slice;
353 	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
354 			rw == READ ? 'R' : 'W', tg->slice_start[rw],
355 			tg->slice_end[rw], jiffies);
356 }
357 
358 static inline void throtl_extend_slice(struct throtl_data *td,
359 		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
360 {
361 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
362 	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
363 			rw == READ ? 'R' : 'W', tg->slice_start[rw],
364 			tg->slice_end[rw], jiffies);
365 }
366 
367 /* Determine if previously allocated or extended slice is complete or not */
368 static bool
369 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
370 {
371 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
372 		return 0;
373 
374 	return 1;
375 }
376 
377 /* Trim the used slices and adjust slice start accordingly */
378 static inline void
379 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
380 {
381 	unsigned long nr_slices, time_elapsed, io_trim;
382 	u64 bytes_trim, tmp;
383 
384 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
385 
386 	/*
387 	 * If bps are unlimited (-1), then time slice don't get
388 	 * renewed. Don't try to trim the slice if slice is used. A new
389 	 * slice will start when appropriate.
390 	 */
391 	if (throtl_slice_used(td, tg, rw))
392 		return;
393 
394 	time_elapsed = jiffies - tg->slice_start[rw];
395 
396 	nr_slices = time_elapsed / throtl_slice;
397 
398 	if (!nr_slices)
399 		return;
400 	tmp = tg->bps[rw] * throtl_slice * nr_slices;
401 	do_div(tmp, HZ);
402 	bytes_trim = tmp;
403 
404 	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
405 
406 	if (!bytes_trim && !io_trim)
407 		return;
408 
409 	if (tg->bytes_disp[rw] >= bytes_trim)
410 		tg->bytes_disp[rw] -= bytes_trim;
411 	else
412 		tg->bytes_disp[rw] = 0;
413 
414 	if (tg->io_disp[rw] >= io_trim)
415 		tg->io_disp[rw] -= io_trim;
416 	else
417 		tg->io_disp[rw] = 0;
418 
419 	tg->slice_start[rw] += nr_slices * throtl_slice;
420 
421 	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
422 			" start=%lu end=%lu jiffies=%lu",
423 			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
424 			tg->slice_start[rw], tg->slice_end[rw], jiffies);
425 }
426 
427 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
428 		struct bio *bio, unsigned long *wait)
429 {
430 	bool rw = bio_data_dir(bio);
431 	unsigned int io_allowed;
432 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
433 	u64 tmp;
434 
435 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
436 
437 	/* Slice has just started. Consider one slice interval */
438 	if (!jiffy_elapsed)
439 		jiffy_elapsed_rnd = throtl_slice;
440 
441 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
442 
443 	/*
444 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
445 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
446 	 * will allow dispatch after 1 second and after that slice should
447 	 * have been trimmed.
448 	 */
449 
450 	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
451 	do_div(tmp, HZ);
452 
453 	if (tmp > UINT_MAX)
454 		io_allowed = UINT_MAX;
455 	else
456 		io_allowed = tmp;
457 
458 	if (tg->io_disp[rw] + 1 <= io_allowed) {
459 		if (wait)
460 			*wait = 0;
461 		return 1;
462 	}
463 
464 	/* Calc approx time to dispatch */
465 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
466 
467 	if (jiffy_wait > jiffy_elapsed)
468 		jiffy_wait = jiffy_wait - jiffy_elapsed;
469 	else
470 		jiffy_wait = 1;
471 
472 	if (wait)
473 		*wait = jiffy_wait;
474 	return 0;
475 }
476 
477 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
478 		struct bio *bio, unsigned long *wait)
479 {
480 	bool rw = bio_data_dir(bio);
481 	u64 bytes_allowed, extra_bytes, tmp;
482 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
483 
484 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
485 
486 	/* Slice has just started. Consider one slice interval */
487 	if (!jiffy_elapsed)
488 		jiffy_elapsed_rnd = throtl_slice;
489 
490 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
491 
492 	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
493 	do_div(tmp, HZ);
494 	bytes_allowed = tmp;
495 
496 	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
497 		if (wait)
498 			*wait = 0;
499 		return 1;
500 	}
501 
502 	/* Calc approx time to dispatch */
503 	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
504 	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
505 
506 	if (!jiffy_wait)
507 		jiffy_wait = 1;
508 
509 	/*
510 	 * This wait time is without taking into consideration the rounding
511 	 * up we did. Add that time also.
512 	 */
513 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
514 	if (wait)
515 		*wait = jiffy_wait;
516 	return 0;
517 }
518 
519 /*
520  * Returns whether one can dispatch a bio or not. Also returns approx number
521  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
522  */
523 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
524 				struct bio *bio, unsigned long *wait)
525 {
526 	bool rw = bio_data_dir(bio);
527 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
528 
529 	/*
530  	 * Currently whole state machine of group depends on first bio
531 	 * queued in the group bio list. So one should not be calling
532 	 * this function with a different bio if there are other bios
533 	 * queued.
534 	 */
535 	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
536 
537 	/* If tg->bps = -1, then BW is unlimited */
538 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
539 		if (wait)
540 			*wait = 0;
541 		return 1;
542 	}
543 
544 	/*
545 	 * If previous slice expired, start a new one otherwise renew/extend
546 	 * existing slice to make sure it is at least throtl_slice interval
547 	 * long since now.
548 	 */
549 	if (throtl_slice_used(td, tg, rw))
550 		throtl_start_new_slice(td, tg, rw);
551 	else {
552 		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
553 			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
554 	}
555 
556 	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
557 	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
558 		if (wait)
559 			*wait = 0;
560 		return 1;
561 	}
562 
563 	max_wait = max(bps_wait, iops_wait);
564 
565 	if (wait)
566 		*wait = max_wait;
567 
568 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
569 		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
570 
571 	return 0;
572 }
573 
574 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
575 {
576 	bool rw = bio_data_dir(bio);
577 	bool sync = bio->bi_rw & REQ_SYNC;
578 
579 	/* Charge the bio to the group */
580 	tg->bytes_disp[rw] += bio->bi_size;
581 	tg->io_disp[rw]++;
582 
583 	/*
584 	 * TODO: This will take blkg->stats_lock. Figure out a way
585 	 * to avoid this cost.
586 	 */
587 	blkiocg_update_dispatch_stats(&tg->blkg, bio->bi_size, rw, sync);
588 }
589 
590 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
591 			struct bio *bio)
592 {
593 	bool rw = bio_data_dir(bio);
594 
595 	bio_list_add(&tg->bio_lists[rw], bio);
596 	/* Take a bio reference on tg */
597 	throtl_ref_get_tg(tg);
598 	tg->nr_queued[rw]++;
599 	td->nr_queued[rw]++;
600 	throtl_enqueue_tg(td, tg);
601 }
602 
603 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
604 {
605 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
606 	struct bio *bio;
607 
608 	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
609 		tg_may_dispatch(td, tg, bio, &read_wait);
610 
611 	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
612 		tg_may_dispatch(td, tg, bio, &write_wait);
613 
614 	min_wait = min(read_wait, write_wait);
615 	disptime = jiffies + min_wait;
616 
617 	/* Update dispatch time */
618 	throtl_dequeue_tg(td, tg);
619 	tg->disptime = disptime;
620 	throtl_enqueue_tg(td, tg);
621 }
622 
623 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
624 				bool rw, struct bio_list *bl)
625 {
626 	struct bio *bio;
627 
628 	bio = bio_list_pop(&tg->bio_lists[rw]);
629 	tg->nr_queued[rw]--;
630 	/* Drop bio reference on tg */
631 	throtl_put_tg(tg);
632 
633 	BUG_ON(td->nr_queued[rw] <= 0);
634 	td->nr_queued[rw]--;
635 
636 	throtl_charge_bio(tg, bio);
637 	bio_list_add(bl, bio);
638 	bio->bi_rw |= REQ_THROTTLED;
639 
640 	throtl_trim_slice(td, tg, rw);
641 }
642 
643 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
644 				struct bio_list *bl)
645 {
646 	unsigned int nr_reads = 0, nr_writes = 0;
647 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
648 	unsigned int max_nr_writes = throtl_grp_quantum - nr_reads;
649 	struct bio *bio;
650 
651 	/* Try to dispatch 75% READS and 25% WRITES */
652 
653 	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
654 		&& tg_may_dispatch(td, tg, bio, NULL)) {
655 
656 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
657 		nr_reads++;
658 
659 		if (nr_reads >= max_nr_reads)
660 			break;
661 	}
662 
663 	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
664 		&& tg_may_dispatch(td, tg, bio, NULL)) {
665 
666 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
667 		nr_writes++;
668 
669 		if (nr_writes >= max_nr_writes)
670 			break;
671 	}
672 
673 	return nr_reads + nr_writes;
674 }
675 
676 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
677 {
678 	unsigned int nr_disp = 0;
679 	struct throtl_grp *tg;
680 	struct throtl_rb_root *st = &td->tg_service_tree;
681 
682 	while (1) {
683 		tg = throtl_rb_first(st);
684 
685 		if (!tg)
686 			break;
687 
688 		if (time_before(jiffies, tg->disptime))
689 			break;
690 
691 		throtl_dequeue_tg(td, tg);
692 
693 		nr_disp += throtl_dispatch_tg(td, tg, bl);
694 
695 		if (tg->nr_queued[0] || tg->nr_queued[1]) {
696 			tg_update_disptime(td, tg);
697 			throtl_enqueue_tg(td, tg);
698 		}
699 
700 		if (nr_disp >= throtl_quantum)
701 			break;
702 	}
703 
704 	return nr_disp;
705 }
706 
707 static void throtl_process_limit_change(struct throtl_data *td)
708 {
709 	struct throtl_grp *tg;
710 	struct hlist_node *pos, *n;
711 
712 	/*
713 	 * Make sure atomic_inc() effects from
714 	 * throtl_update_blkio_group_read_bps(), group of functions are
715 	 * visible.
716 	 * Is this required or smp_mb__after_atomic_inc() was suffcient
717 	 * after the atomic_inc().
718 	 */
719 	smp_rmb();
720 	if (!atomic_read(&td->limits_changed))
721 		return;
722 
723 	throtl_log(td, "limit changed =%d", atomic_read(&td->limits_changed));
724 
725 	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
726 		/*
727 		 * Do I need an smp_rmb() here to make sure tg->limits_changed
728 		 * update is visible. I am relying on smp_rmb() at the
729 		 * beginning of function and not putting a new one here.
730 		 */
731 
732 		if (throtl_tg_on_rr(tg) && tg->limits_changed) {
733 			throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
734 				" riops=%u wiops=%u", tg->bps[READ],
735 				tg->bps[WRITE], tg->iops[READ],
736 				tg->iops[WRITE]);
737 			tg_update_disptime(td, tg);
738 			tg->limits_changed = false;
739 		}
740 	}
741 
742 	smp_mb__before_atomic_dec();
743 	atomic_dec(&td->limits_changed);
744 	smp_mb__after_atomic_dec();
745 }
746 
747 /* Dispatch throttled bios. Should be called without queue lock held. */
748 static int throtl_dispatch(struct request_queue *q)
749 {
750 	struct throtl_data *td = q->td;
751 	unsigned int nr_disp = 0;
752 	struct bio_list bio_list_on_stack;
753 	struct bio *bio;
754 
755 	spin_lock_irq(q->queue_lock);
756 
757 	throtl_process_limit_change(td);
758 
759 	if (!total_nr_queued(td))
760 		goto out;
761 
762 	bio_list_init(&bio_list_on_stack);
763 
764 	throtl_log(td, "dispatch nr_queued=%lu read=%u write=%u",
765 			total_nr_queued(td), td->nr_queued[READ],
766 			td->nr_queued[WRITE]);
767 
768 	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
769 
770 	if (nr_disp)
771 		throtl_log(td, "bios disp=%u", nr_disp);
772 
773 	throtl_schedule_next_dispatch(td);
774 out:
775 	spin_unlock_irq(q->queue_lock);
776 
777 	/*
778 	 * If we dispatched some requests, unplug the queue to make sure
779 	 * immediate dispatch
780 	 */
781 	if (nr_disp) {
782 		while((bio = bio_list_pop(&bio_list_on_stack)))
783 			generic_make_request(bio);
784 		blk_unplug(q);
785 	}
786 	return nr_disp;
787 }
788 
789 void blk_throtl_work(struct work_struct *work)
790 {
791 	struct throtl_data *td = container_of(work, struct throtl_data,
792 					throtl_work.work);
793 	struct request_queue *q = td->queue;
794 
795 	throtl_dispatch(q);
796 }
797 
798 /* Call with queue lock held */
799 void throtl_schedule_delayed_work(struct request_queue *q, unsigned long delay)
800 {
801 
802 	struct throtl_data *td = q->td;
803 	struct delayed_work *dwork = &td->throtl_work;
804 
805 	if (total_nr_queued(td) > 0) {
806 		/*
807 		 * We might have a work scheduled to be executed in future.
808 		 * Cancel that and schedule a new one.
809 		 */
810 		__cancel_delayed_work(dwork);
811 		kblockd_schedule_delayed_work(q, dwork, delay);
812 		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
813 				delay, jiffies);
814 	}
815 }
816 EXPORT_SYMBOL(throtl_schedule_delayed_work);
817 
818 static void
819 throtl_destroy_tg(struct throtl_data *td, struct throtl_grp *tg)
820 {
821 	/* Something wrong if we are trying to remove same group twice */
822 	BUG_ON(hlist_unhashed(&tg->tg_node));
823 
824 	hlist_del_init(&tg->tg_node);
825 
826 	/*
827 	 * Put the reference taken at the time of creation so that when all
828 	 * queues are gone, group can be destroyed.
829 	 */
830 	throtl_put_tg(tg);
831 	td->nr_undestroyed_grps--;
832 }
833 
834 static void throtl_release_tgs(struct throtl_data *td)
835 {
836 	struct hlist_node *pos, *n;
837 	struct throtl_grp *tg;
838 
839 	hlist_for_each_entry_safe(tg, pos, n, &td->tg_list, tg_node) {
840 		/*
841 		 * If cgroup removal path got to blk_group first and removed
842 		 * it from cgroup list, then it will take care of destroying
843 		 * cfqg also.
844 		 */
845 		if (!blkiocg_del_blkio_group(&tg->blkg))
846 			throtl_destroy_tg(td, tg);
847 	}
848 }
849 
850 static void throtl_td_free(struct throtl_data *td)
851 {
852 	kfree(td);
853 }
854 
855 /*
856  * Blk cgroup controller notification saying that blkio_group object is being
857  * delinked as associated cgroup object is going away. That also means that
858  * no new IO will come in this group. So get rid of this group as soon as
859  * any pending IO in the group is finished.
860  *
861  * This function is called under rcu_read_lock(). key is the rcu protected
862  * pointer. That means "key" is a valid throtl_data pointer as long as we are
863  * rcu read lock.
864  *
865  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
866  * it should not be NULL as even if queue was going away, cgroup deltion
867  * path got to it first.
868  */
869 void throtl_unlink_blkio_group(void *key, struct blkio_group *blkg)
870 {
871 	unsigned long flags;
872 	struct throtl_data *td = key;
873 
874 	spin_lock_irqsave(td->queue->queue_lock, flags);
875 	throtl_destroy_tg(td, tg_of_blkg(blkg));
876 	spin_unlock_irqrestore(td->queue->queue_lock, flags);
877 }
878 
879 /*
880  * For all update functions, key should be a valid pointer because these
881  * update functions are called under blkcg_lock, that means, blkg is
882  * valid and in turn key is valid. queue exit path can not race becuase
883  * of blkcg_lock
884  *
885  * Can not take queue lock in update functions as queue lock under blkcg_lock
886  * is not allowed. Under other paths we take blkcg_lock under queue_lock.
887  */
888 static void throtl_update_blkio_group_read_bps(void *key,
889 				struct blkio_group *blkg, u64 read_bps)
890 {
891 	struct throtl_data *td = key;
892 
893 	tg_of_blkg(blkg)->bps[READ] = read_bps;
894 	/* Make sure read_bps is updated before setting limits_changed */
895 	smp_wmb();
896 	tg_of_blkg(blkg)->limits_changed = true;
897 
898 	/* Make sure tg->limits_changed is updated before td->limits_changed */
899 	smp_mb__before_atomic_inc();
900 	atomic_inc(&td->limits_changed);
901 	smp_mb__after_atomic_inc();
902 
903 	/* Schedule a work now to process the limit change */
904 	throtl_schedule_delayed_work(td->queue, 0);
905 }
906 
907 static void throtl_update_blkio_group_write_bps(void *key,
908 				struct blkio_group *blkg, u64 write_bps)
909 {
910 	struct throtl_data *td = key;
911 
912 	tg_of_blkg(blkg)->bps[WRITE] = write_bps;
913 	smp_wmb();
914 	tg_of_blkg(blkg)->limits_changed = true;
915 	smp_mb__before_atomic_inc();
916 	atomic_inc(&td->limits_changed);
917 	smp_mb__after_atomic_inc();
918 	throtl_schedule_delayed_work(td->queue, 0);
919 }
920 
921 static void throtl_update_blkio_group_read_iops(void *key,
922 			struct blkio_group *blkg, unsigned int read_iops)
923 {
924 	struct throtl_data *td = key;
925 
926 	tg_of_blkg(blkg)->iops[READ] = read_iops;
927 	smp_wmb();
928 	tg_of_blkg(blkg)->limits_changed = true;
929 	smp_mb__before_atomic_inc();
930 	atomic_inc(&td->limits_changed);
931 	smp_mb__after_atomic_inc();
932 	throtl_schedule_delayed_work(td->queue, 0);
933 }
934 
935 static void throtl_update_blkio_group_write_iops(void *key,
936 			struct blkio_group *blkg, unsigned int write_iops)
937 {
938 	struct throtl_data *td = key;
939 
940 	tg_of_blkg(blkg)->iops[WRITE] = write_iops;
941 	smp_wmb();
942 	tg_of_blkg(blkg)->limits_changed = true;
943 	smp_mb__before_atomic_inc();
944 	atomic_inc(&td->limits_changed);
945 	smp_mb__after_atomic_inc();
946 	throtl_schedule_delayed_work(td->queue, 0);
947 }
948 
949 void throtl_shutdown_timer_wq(struct request_queue *q)
950 {
951 	struct throtl_data *td = q->td;
952 
953 	cancel_delayed_work_sync(&td->throtl_work);
954 }
955 
956 static struct blkio_policy_type blkio_policy_throtl = {
957 	.ops = {
958 		.blkio_unlink_group_fn = throtl_unlink_blkio_group,
959 		.blkio_update_group_read_bps_fn =
960 					throtl_update_blkio_group_read_bps,
961 		.blkio_update_group_write_bps_fn =
962 					throtl_update_blkio_group_write_bps,
963 		.blkio_update_group_read_iops_fn =
964 					throtl_update_blkio_group_read_iops,
965 		.blkio_update_group_write_iops_fn =
966 					throtl_update_blkio_group_write_iops,
967 	},
968 	.plid = BLKIO_POLICY_THROTL,
969 };
970 
971 int blk_throtl_bio(struct request_queue *q, struct bio **biop)
972 {
973 	struct throtl_data *td = q->td;
974 	struct throtl_grp *tg;
975 	struct bio *bio = *biop;
976 	bool rw = bio_data_dir(bio), update_disptime = true;
977 
978 	if (bio->bi_rw & REQ_THROTTLED) {
979 		bio->bi_rw &= ~REQ_THROTTLED;
980 		return 0;
981 	}
982 
983 	spin_lock_irq(q->queue_lock);
984 	tg = throtl_get_tg(td);
985 
986 	if (tg->nr_queued[rw]) {
987 		/*
988 		 * There is already another bio queued in same dir. No
989 		 * need to update dispatch time.
990 		 * Still update the disptime if rate limits on this group
991 		 * were changed.
992 		 */
993 		if (!tg->limits_changed)
994 			update_disptime = false;
995 		else
996 			tg->limits_changed = false;
997 
998 		goto queue_bio;
999 	}
1000 
1001 	/* Bio is with-in rate limit of group */
1002 	if (tg_may_dispatch(td, tg, bio, NULL)) {
1003 		throtl_charge_bio(tg, bio);
1004 		goto out;
1005 	}
1006 
1007 queue_bio:
1008 	throtl_log_tg(td, tg, "[%c] bio. bdisp=%u sz=%u bps=%llu"
1009 			" iodisp=%u iops=%u queued=%d/%d",
1010 			rw == READ ? 'R' : 'W',
1011 			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1012 			tg->io_disp[rw], tg->iops[rw],
1013 			tg->nr_queued[READ], tg->nr_queued[WRITE]);
1014 
1015 	throtl_add_bio_tg(q->td, tg, bio);
1016 	*biop = NULL;
1017 
1018 	if (update_disptime) {
1019 		tg_update_disptime(td, tg);
1020 		throtl_schedule_next_dispatch(td);
1021 	}
1022 
1023 out:
1024 	spin_unlock_irq(q->queue_lock);
1025 	return 0;
1026 }
1027 
1028 int blk_throtl_init(struct request_queue *q)
1029 {
1030 	struct throtl_data *td;
1031 	struct throtl_grp *tg;
1032 
1033 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1034 	if (!td)
1035 		return -ENOMEM;
1036 
1037 	INIT_HLIST_HEAD(&td->tg_list);
1038 	td->tg_service_tree = THROTL_RB_ROOT;
1039 	atomic_set(&td->limits_changed, 0);
1040 
1041 	/* Init root group */
1042 	tg = &td->root_tg;
1043 	INIT_HLIST_NODE(&tg->tg_node);
1044 	RB_CLEAR_NODE(&tg->rb_node);
1045 	bio_list_init(&tg->bio_lists[0]);
1046 	bio_list_init(&tg->bio_lists[1]);
1047 
1048 	/* Practically unlimited BW */
1049 	tg->bps[0] = tg->bps[1] = -1;
1050 	tg->iops[0] = tg->iops[1] = -1;
1051 
1052 	/*
1053 	 * Set root group reference to 2. One reference will be dropped when
1054 	 * all groups on tg_list are being deleted during queue exit. Other
1055 	 * reference will remain there as we don't want to delete this group
1056 	 * as it is statically allocated and gets destroyed when throtl_data
1057 	 * goes away.
1058 	 */
1059 	atomic_set(&tg->ref, 2);
1060 	hlist_add_head(&tg->tg_node, &td->tg_list);
1061 	td->nr_undestroyed_grps++;
1062 
1063 	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1064 
1065 	rcu_read_lock();
1066 	blkiocg_add_blkio_group(&blkio_root_cgroup, &tg->blkg, (void *)td,
1067 					0, BLKIO_POLICY_THROTL);
1068 	rcu_read_unlock();
1069 
1070 	/* Attach throtl data to request queue */
1071 	td->queue = q;
1072 	q->td = td;
1073 	return 0;
1074 }
1075 
1076 void blk_throtl_exit(struct request_queue *q)
1077 {
1078 	struct throtl_data *td = q->td;
1079 	bool wait = false;
1080 
1081 	BUG_ON(!td);
1082 
1083 	throtl_shutdown_timer_wq(q);
1084 
1085 	spin_lock_irq(q->queue_lock);
1086 	throtl_release_tgs(td);
1087 
1088 	/* If there are other groups */
1089 	if (td->nr_undestroyed_grps > 0)
1090 		wait = true;
1091 
1092 	spin_unlock_irq(q->queue_lock);
1093 
1094 	/*
1095 	 * Wait for tg->blkg->key accessors to exit their grace periods.
1096 	 * Do this wait only if there are other undestroyed groups out
1097 	 * there (other than root group). This can happen if cgroup deletion
1098 	 * path claimed the responsibility of cleaning up a group before
1099 	 * queue cleanup code get to the group.
1100 	 *
1101 	 * Do not call synchronize_rcu() unconditionally as there are drivers
1102 	 * which create/delete request queue hundreds of times during scan/boot
1103 	 * and synchronize_rcu() can take significant time and slow down boot.
1104 	 */
1105 	if (wait)
1106 		synchronize_rcu();
1107 
1108 	/*
1109 	 * Just being safe to make sure after previous flush if some body did
1110 	 * update limits through cgroup and another work got queued, cancel
1111 	 * it.
1112 	 */
1113 	throtl_shutdown_timer_wq(q);
1114 	throtl_td_free(td);
1115 }
1116 
1117 static int __init throtl_init(void)
1118 {
1119 	blkio_policy_register(&blkio_policy_throtl);
1120 	return 0;
1121 }
1122 
1123 module_init(throtl_init);
1124