xref: /linux/block/blk-throttle.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum = 8;
18 
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum = 32;
21 
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
33 /*
34  * For HD, very small latency comes from sequential IO. Such IO is helpless to
35  * help determine if its IO is impacted by others, hence we ignore the IO
36  */
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
38 
39 static struct blkcg_policy blkcg_policy_throtl;
40 
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43 
44 /*
45  * To implement hierarchical throttling, throtl_grps form a tree and bios
46  * are dispatched upwards level by level until they reach the top and get
47  * issued.  When dispatching bios from the children and local group at each
48  * level, if the bios are dispatched into a single bio_list, there's a risk
49  * of a local or child group which can queue many bios at once filling up
50  * the list starving others.
51  *
52  * To avoid such starvation, dispatched bios are queued separately
53  * according to where they came from.  When they are again dispatched to
54  * the parent, they're popped in round-robin order so that no single source
55  * hogs the dispatch window.
56  *
57  * throtl_qnode is used to keep the queued bios separated by their sources.
58  * Bios are queued to throtl_qnode which in turn is queued to
59  * throtl_service_queue and then dispatched in round-robin order.
60  *
61  * It's also used to track the reference counts on blkg's.  A qnode always
62  * belongs to a throtl_grp and gets queued on itself or the parent, so
63  * incrementing the reference of the associated throtl_grp when a qnode is
64  * queued and decrementing when dequeued is enough to keep the whole blkg
65  * tree pinned while bios are in flight.
66  */
67 struct throtl_qnode {
68 	struct list_head	node;		/* service_queue->queued[] */
69 	struct bio_list		bios;		/* queued bios */
70 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
71 };
72 
73 struct throtl_service_queue {
74 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
75 
76 	/*
77 	 * Bios queued directly to this service_queue or dispatched from
78 	 * children throtl_grp's.
79 	 */
80 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
81 	unsigned int		nr_queued[2];	/* number of queued bios */
82 
83 	/*
84 	 * RB tree of active children throtl_grp's, which are sorted by
85 	 * their ->disptime.
86 	 */
87 	struct rb_root		pending_tree;	/* RB tree of active tgs */
88 	struct rb_node		*first_pending;	/* first node in the tree */
89 	unsigned int		nr_pending;	/* # queued in the tree */
90 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 };
93 
94 enum tg_state_flags {
95 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 };
98 
99 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
100 
101 enum {
102 	LIMIT_LOW,
103 	LIMIT_MAX,
104 	LIMIT_CNT,
105 };
106 
107 struct throtl_grp {
108 	/* must be the first member */
109 	struct blkg_policy_data pd;
110 
111 	/* active throtl group service_queue member */
112 	struct rb_node rb_node;
113 
114 	/* throtl_data this group belongs to */
115 	struct throtl_data *td;
116 
117 	/* this group's service queue */
118 	struct throtl_service_queue service_queue;
119 
120 	/*
121 	 * qnode_on_self is used when bios are directly queued to this
122 	 * throtl_grp so that local bios compete fairly with bios
123 	 * dispatched from children.  qnode_on_parent is used when bios are
124 	 * dispatched from this throtl_grp into its parent and will compete
125 	 * with the sibling qnode_on_parents and the parent's
126 	 * qnode_on_self.
127 	 */
128 	struct throtl_qnode qnode_on_self[2];
129 	struct throtl_qnode qnode_on_parent[2];
130 
131 	/*
132 	 * Dispatch time in jiffies. This is the estimated time when group
133 	 * will unthrottle and is ready to dispatch more bio. It is used as
134 	 * key to sort active groups in service tree.
135 	 */
136 	unsigned long disptime;
137 
138 	unsigned int flags;
139 
140 	/* are there any throtl rules between this group and td? */
141 	bool has_rules[2];
142 
143 	/* internally used bytes per second rate limits */
144 	uint64_t bps[2][LIMIT_CNT];
145 	/* user configured bps limits */
146 	uint64_t bps_conf[2][LIMIT_CNT];
147 
148 	/* internally used IOPS limits */
149 	unsigned int iops[2][LIMIT_CNT];
150 	/* user configured IOPS limits */
151 	unsigned int iops_conf[2][LIMIT_CNT];
152 
153 	/* Number of bytes disptached in current slice */
154 	uint64_t bytes_disp[2];
155 	/* Number of bio's dispatched in current slice */
156 	unsigned int io_disp[2];
157 
158 	unsigned long last_low_overflow_time[2];
159 
160 	uint64_t last_bytes_disp[2];
161 	unsigned int last_io_disp[2];
162 
163 	unsigned long last_check_time;
164 
165 	unsigned long latency_target; /* us */
166 	unsigned long latency_target_conf; /* us */
167 	/* When did we start a new slice */
168 	unsigned long slice_start[2];
169 	unsigned long slice_end[2];
170 
171 	unsigned long last_finish_time; /* ns / 1024 */
172 	unsigned long checked_last_finish_time; /* ns / 1024 */
173 	unsigned long avg_idletime; /* ns / 1024 */
174 	unsigned long idletime_threshold; /* us */
175 	unsigned long idletime_threshold_conf; /* us */
176 
177 	unsigned int bio_cnt; /* total bios */
178 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 	unsigned long bio_cnt_reset_time;
180 };
181 
182 /* We measure latency for request size from <= 4k to >= 1M */
183 #define LATENCY_BUCKET_SIZE 9
184 
185 struct latency_bucket {
186 	unsigned long total_latency; /* ns / 1024 */
187 	int samples;
188 };
189 
190 struct avg_latency_bucket {
191 	unsigned long latency; /* ns / 1024 */
192 	bool valid;
193 };
194 
195 struct throtl_data
196 {
197 	/* service tree for active throtl groups */
198 	struct throtl_service_queue service_queue;
199 
200 	struct request_queue *queue;
201 
202 	/* Total Number of queued bios on READ and WRITE lists */
203 	unsigned int nr_queued[2];
204 
205 	unsigned int throtl_slice;
206 
207 	/* Work for dispatching throttled bios */
208 	struct work_struct dispatch_work;
209 	unsigned int limit_index;
210 	bool limit_valid[LIMIT_CNT];
211 
212 	unsigned long low_upgrade_time;
213 	unsigned long low_downgrade_time;
214 
215 	unsigned int scale;
216 
217 	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
218 	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
219 	struct latency_bucket __percpu *latency_buckets[2];
220 	unsigned long last_calculate_time;
221 	unsigned long filtered_latency;
222 
223 	bool track_bio_latency;
224 };
225 
226 static void throtl_pending_timer_fn(struct timer_list *t);
227 
228 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
229 {
230 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
231 }
232 
233 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
234 {
235 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
236 }
237 
238 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
239 {
240 	return pd_to_blkg(&tg->pd);
241 }
242 
243 /**
244  * sq_to_tg - return the throl_grp the specified service queue belongs to
245  * @sq: the throtl_service_queue of interest
246  *
247  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
248  * embedded in throtl_data, %NULL is returned.
249  */
250 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
251 {
252 	if (sq && sq->parent_sq)
253 		return container_of(sq, struct throtl_grp, service_queue);
254 	else
255 		return NULL;
256 }
257 
258 /**
259  * sq_to_td - return throtl_data the specified service queue belongs to
260  * @sq: the throtl_service_queue of interest
261  *
262  * A service_queue can be embedded in either a throtl_grp or throtl_data.
263  * Determine the associated throtl_data accordingly and return it.
264  */
265 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
266 {
267 	struct throtl_grp *tg = sq_to_tg(sq);
268 
269 	if (tg)
270 		return tg->td;
271 	else
272 		return container_of(sq, struct throtl_data, service_queue);
273 }
274 
275 /*
276  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
277  * make the IO dispatch more smooth.
278  * Scale up: linearly scale up according to lapsed time since upgrade. For
279  *           every throtl_slice, the limit scales up 1/2 .low limit till the
280  *           limit hits .max limit
281  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
282  */
283 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
284 {
285 	/* arbitrary value to avoid too big scale */
286 	if (td->scale < 4096 && time_after_eq(jiffies,
287 	    td->low_upgrade_time + td->scale * td->throtl_slice))
288 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
289 
290 	return low + (low >> 1) * td->scale;
291 }
292 
293 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
294 {
295 	struct blkcg_gq *blkg = tg_to_blkg(tg);
296 	struct throtl_data *td;
297 	uint64_t ret;
298 
299 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
300 		return U64_MAX;
301 
302 	td = tg->td;
303 	ret = tg->bps[rw][td->limit_index];
304 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
305 		/* intermediate node or iops isn't 0 */
306 		if (!list_empty(&blkg->blkcg->css.children) ||
307 		    tg->iops[rw][td->limit_index])
308 			return U64_MAX;
309 		else
310 			return MIN_THROTL_BPS;
311 	}
312 
313 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
314 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
315 		uint64_t adjusted;
316 
317 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
318 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
319 	}
320 	return ret;
321 }
322 
323 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
324 {
325 	struct blkcg_gq *blkg = tg_to_blkg(tg);
326 	struct throtl_data *td;
327 	unsigned int ret;
328 
329 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
330 		return UINT_MAX;
331 
332 	td = tg->td;
333 	ret = tg->iops[rw][td->limit_index];
334 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
335 		/* intermediate node or bps isn't 0 */
336 		if (!list_empty(&blkg->blkcg->css.children) ||
337 		    tg->bps[rw][td->limit_index])
338 			return UINT_MAX;
339 		else
340 			return MIN_THROTL_IOPS;
341 	}
342 
343 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
344 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
345 		uint64_t adjusted;
346 
347 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
348 		if (adjusted > UINT_MAX)
349 			adjusted = UINT_MAX;
350 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
351 	}
352 	return ret;
353 }
354 
355 #define request_bucket_index(sectors) \
356 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
357 
358 /**
359  * throtl_log - log debug message via blktrace
360  * @sq: the service_queue being reported
361  * @fmt: printf format string
362  * @args: printf args
363  *
364  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
365  * throtl_grp; otherwise, just "throtl".
366  */
367 #define throtl_log(sq, fmt, args...)	do {				\
368 	struct throtl_grp *__tg = sq_to_tg((sq));			\
369 	struct throtl_data *__td = sq_to_td((sq));			\
370 									\
371 	(void)__td;							\
372 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
373 		break;							\
374 	if ((__tg)) {							\
375 		blk_add_cgroup_trace_msg(__td->queue,			\
376 			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
377 	} else {							\
378 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
379 	}								\
380 } while (0)
381 
382 static inline unsigned int throtl_bio_data_size(struct bio *bio)
383 {
384 	/* assume it's one sector */
385 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
386 		return 512;
387 	return bio->bi_iter.bi_size;
388 }
389 
390 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
391 {
392 	INIT_LIST_HEAD(&qn->node);
393 	bio_list_init(&qn->bios);
394 	qn->tg = tg;
395 }
396 
397 /**
398  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
399  * @bio: bio being added
400  * @qn: qnode to add bio to
401  * @queued: the service_queue->queued[] list @qn belongs to
402  *
403  * Add @bio to @qn and put @qn on @queued if it's not already on.
404  * @qn->tg's reference count is bumped when @qn is activated.  See the
405  * comment on top of throtl_qnode definition for details.
406  */
407 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
408 				 struct list_head *queued)
409 {
410 	bio_list_add(&qn->bios, bio);
411 	if (list_empty(&qn->node)) {
412 		list_add_tail(&qn->node, queued);
413 		blkg_get(tg_to_blkg(qn->tg));
414 	}
415 }
416 
417 /**
418  * throtl_peek_queued - peek the first bio on a qnode list
419  * @queued: the qnode list to peek
420  */
421 static struct bio *throtl_peek_queued(struct list_head *queued)
422 {
423 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
424 	struct bio *bio;
425 
426 	if (list_empty(queued))
427 		return NULL;
428 
429 	bio = bio_list_peek(&qn->bios);
430 	WARN_ON_ONCE(!bio);
431 	return bio;
432 }
433 
434 /**
435  * throtl_pop_queued - pop the first bio form a qnode list
436  * @queued: the qnode list to pop a bio from
437  * @tg_to_put: optional out argument for throtl_grp to put
438  *
439  * Pop the first bio from the qnode list @queued.  After popping, the first
440  * qnode is removed from @queued if empty or moved to the end of @queued so
441  * that the popping order is round-robin.
442  *
443  * When the first qnode is removed, its associated throtl_grp should be put
444  * too.  If @tg_to_put is NULL, this function automatically puts it;
445  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
446  * responsible for putting it.
447  */
448 static struct bio *throtl_pop_queued(struct list_head *queued,
449 				     struct throtl_grp **tg_to_put)
450 {
451 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
452 	struct bio *bio;
453 
454 	if (list_empty(queued))
455 		return NULL;
456 
457 	bio = bio_list_pop(&qn->bios);
458 	WARN_ON_ONCE(!bio);
459 
460 	if (bio_list_empty(&qn->bios)) {
461 		list_del_init(&qn->node);
462 		if (tg_to_put)
463 			*tg_to_put = qn->tg;
464 		else
465 			blkg_put(tg_to_blkg(qn->tg));
466 	} else {
467 		list_move_tail(&qn->node, queued);
468 	}
469 
470 	return bio;
471 }
472 
473 /* init a service_queue, assumes the caller zeroed it */
474 static void throtl_service_queue_init(struct throtl_service_queue *sq)
475 {
476 	INIT_LIST_HEAD(&sq->queued[0]);
477 	INIT_LIST_HEAD(&sq->queued[1]);
478 	sq->pending_tree = RB_ROOT;
479 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
480 }
481 
482 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
483 {
484 	struct throtl_grp *tg;
485 	int rw;
486 
487 	tg = kzalloc_node(sizeof(*tg), gfp, node);
488 	if (!tg)
489 		return NULL;
490 
491 	throtl_service_queue_init(&tg->service_queue);
492 
493 	for (rw = READ; rw <= WRITE; rw++) {
494 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
495 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
496 	}
497 
498 	RB_CLEAR_NODE(&tg->rb_node);
499 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
500 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
501 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
502 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
503 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
504 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
505 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
506 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
507 	/* LIMIT_LOW will have default value 0 */
508 
509 	tg->latency_target = DFL_LATENCY_TARGET;
510 	tg->latency_target_conf = DFL_LATENCY_TARGET;
511 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
512 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
513 
514 	return &tg->pd;
515 }
516 
517 static void throtl_pd_init(struct blkg_policy_data *pd)
518 {
519 	struct throtl_grp *tg = pd_to_tg(pd);
520 	struct blkcg_gq *blkg = tg_to_blkg(tg);
521 	struct throtl_data *td = blkg->q->td;
522 	struct throtl_service_queue *sq = &tg->service_queue;
523 
524 	/*
525 	 * If on the default hierarchy, we switch to properly hierarchical
526 	 * behavior where limits on a given throtl_grp are applied to the
527 	 * whole subtree rather than just the group itself.  e.g. If 16M
528 	 * read_bps limit is set on the root group, the whole system can't
529 	 * exceed 16M for the device.
530 	 *
531 	 * If not on the default hierarchy, the broken flat hierarchy
532 	 * behavior is retained where all throtl_grps are treated as if
533 	 * they're all separate root groups right below throtl_data.
534 	 * Limits of a group don't interact with limits of other groups
535 	 * regardless of the position of the group in the hierarchy.
536 	 */
537 	sq->parent_sq = &td->service_queue;
538 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
539 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
540 	tg->td = td;
541 }
542 
543 /*
544  * Set has_rules[] if @tg or any of its parents have limits configured.
545  * This doesn't require walking up to the top of the hierarchy as the
546  * parent's has_rules[] is guaranteed to be correct.
547  */
548 static void tg_update_has_rules(struct throtl_grp *tg)
549 {
550 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
551 	struct throtl_data *td = tg->td;
552 	int rw;
553 
554 	for (rw = READ; rw <= WRITE; rw++)
555 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
556 			(td->limit_valid[td->limit_index] &&
557 			 (tg_bps_limit(tg, rw) != U64_MAX ||
558 			  tg_iops_limit(tg, rw) != UINT_MAX));
559 }
560 
561 static void throtl_pd_online(struct blkg_policy_data *pd)
562 {
563 	struct throtl_grp *tg = pd_to_tg(pd);
564 	/*
565 	 * We don't want new groups to escape the limits of its ancestors.
566 	 * Update has_rules[] after a new group is brought online.
567 	 */
568 	tg_update_has_rules(tg);
569 }
570 
571 static void blk_throtl_update_limit_valid(struct throtl_data *td)
572 {
573 	struct cgroup_subsys_state *pos_css;
574 	struct blkcg_gq *blkg;
575 	bool low_valid = false;
576 
577 	rcu_read_lock();
578 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
579 		struct throtl_grp *tg = blkg_to_tg(blkg);
580 
581 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
582 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
583 			low_valid = true;
584 	}
585 	rcu_read_unlock();
586 
587 	td->limit_valid[LIMIT_LOW] = low_valid;
588 }
589 
590 static void throtl_upgrade_state(struct throtl_data *td);
591 static void throtl_pd_offline(struct blkg_policy_data *pd)
592 {
593 	struct throtl_grp *tg = pd_to_tg(pd);
594 
595 	tg->bps[READ][LIMIT_LOW] = 0;
596 	tg->bps[WRITE][LIMIT_LOW] = 0;
597 	tg->iops[READ][LIMIT_LOW] = 0;
598 	tg->iops[WRITE][LIMIT_LOW] = 0;
599 
600 	blk_throtl_update_limit_valid(tg->td);
601 
602 	if (!tg->td->limit_valid[tg->td->limit_index])
603 		throtl_upgrade_state(tg->td);
604 }
605 
606 static void throtl_pd_free(struct blkg_policy_data *pd)
607 {
608 	struct throtl_grp *tg = pd_to_tg(pd);
609 
610 	del_timer_sync(&tg->service_queue.pending_timer);
611 	kfree(tg);
612 }
613 
614 static struct throtl_grp *
615 throtl_rb_first(struct throtl_service_queue *parent_sq)
616 {
617 	/* Service tree is empty */
618 	if (!parent_sq->nr_pending)
619 		return NULL;
620 
621 	if (!parent_sq->first_pending)
622 		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
623 
624 	if (parent_sq->first_pending)
625 		return rb_entry_tg(parent_sq->first_pending);
626 
627 	return NULL;
628 }
629 
630 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
631 {
632 	rb_erase(n, root);
633 	RB_CLEAR_NODE(n);
634 }
635 
636 static void throtl_rb_erase(struct rb_node *n,
637 			    struct throtl_service_queue *parent_sq)
638 {
639 	if (parent_sq->first_pending == n)
640 		parent_sq->first_pending = NULL;
641 	rb_erase_init(n, &parent_sq->pending_tree);
642 	--parent_sq->nr_pending;
643 }
644 
645 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
646 {
647 	struct throtl_grp *tg;
648 
649 	tg = throtl_rb_first(parent_sq);
650 	if (!tg)
651 		return;
652 
653 	parent_sq->first_pending_disptime = tg->disptime;
654 }
655 
656 static void tg_service_queue_add(struct throtl_grp *tg)
657 {
658 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
659 	struct rb_node **node = &parent_sq->pending_tree.rb_node;
660 	struct rb_node *parent = NULL;
661 	struct throtl_grp *__tg;
662 	unsigned long key = tg->disptime;
663 	int left = 1;
664 
665 	while (*node != NULL) {
666 		parent = *node;
667 		__tg = rb_entry_tg(parent);
668 
669 		if (time_before(key, __tg->disptime))
670 			node = &parent->rb_left;
671 		else {
672 			node = &parent->rb_right;
673 			left = 0;
674 		}
675 	}
676 
677 	if (left)
678 		parent_sq->first_pending = &tg->rb_node;
679 
680 	rb_link_node(&tg->rb_node, parent, node);
681 	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
682 }
683 
684 static void __throtl_enqueue_tg(struct throtl_grp *tg)
685 {
686 	tg_service_queue_add(tg);
687 	tg->flags |= THROTL_TG_PENDING;
688 	tg->service_queue.parent_sq->nr_pending++;
689 }
690 
691 static void throtl_enqueue_tg(struct throtl_grp *tg)
692 {
693 	if (!(tg->flags & THROTL_TG_PENDING))
694 		__throtl_enqueue_tg(tg);
695 }
696 
697 static void __throtl_dequeue_tg(struct throtl_grp *tg)
698 {
699 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
700 	tg->flags &= ~THROTL_TG_PENDING;
701 }
702 
703 static void throtl_dequeue_tg(struct throtl_grp *tg)
704 {
705 	if (tg->flags & THROTL_TG_PENDING)
706 		__throtl_dequeue_tg(tg);
707 }
708 
709 /* Call with queue lock held */
710 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
711 					  unsigned long expires)
712 {
713 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
714 
715 	/*
716 	 * Since we are adjusting the throttle limit dynamically, the sleep
717 	 * time calculated according to previous limit might be invalid. It's
718 	 * possible the cgroup sleep time is very long and no other cgroups
719 	 * have IO running so notify the limit changes. Make sure the cgroup
720 	 * doesn't sleep too long to avoid the missed notification.
721 	 */
722 	if (time_after(expires, max_expire))
723 		expires = max_expire;
724 	mod_timer(&sq->pending_timer, expires);
725 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
726 		   expires - jiffies, jiffies);
727 }
728 
729 /**
730  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
731  * @sq: the service_queue to schedule dispatch for
732  * @force: force scheduling
733  *
734  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
735  * dispatch time of the first pending child.  Returns %true if either timer
736  * is armed or there's no pending child left.  %false if the current
737  * dispatch window is still open and the caller should continue
738  * dispatching.
739  *
740  * If @force is %true, the dispatch timer is always scheduled and this
741  * function is guaranteed to return %true.  This is to be used when the
742  * caller can't dispatch itself and needs to invoke pending_timer
743  * unconditionally.  Note that forced scheduling is likely to induce short
744  * delay before dispatch starts even if @sq->first_pending_disptime is not
745  * in the future and thus shouldn't be used in hot paths.
746  */
747 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
748 					  bool force)
749 {
750 	/* any pending children left? */
751 	if (!sq->nr_pending)
752 		return true;
753 
754 	update_min_dispatch_time(sq);
755 
756 	/* is the next dispatch time in the future? */
757 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
758 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
759 		return true;
760 	}
761 
762 	/* tell the caller to continue dispatching */
763 	return false;
764 }
765 
766 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
767 		bool rw, unsigned long start)
768 {
769 	tg->bytes_disp[rw] = 0;
770 	tg->io_disp[rw] = 0;
771 
772 	/*
773 	 * Previous slice has expired. We must have trimmed it after last
774 	 * bio dispatch. That means since start of last slice, we never used
775 	 * that bandwidth. Do try to make use of that bandwidth while giving
776 	 * credit.
777 	 */
778 	if (time_after_eq(start, tg->slice_start[rw]))
779 		tg->slice_start[rw] = start;
780 
781 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
782 	throtl_log(&tg->service_queue,
783 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
784 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
785 		   tg->slice_end[rw], jiffies);
786 }
787 
788 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
789 {
790 	tg->bytes_disp[rw] = 0;
791 	tg->io_disp[rw] = 0;
792 	tg->slice_start[rw] = jiffies;
793 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
794 	throtl_log(&tg->service_queue,
795 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
796 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
797 		   tg->slice_end[rw], jiffies);
798 }
799 
800 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
801 					unsigned long jiffy_end)
802 {
803 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
804 }
805 
806 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
807 				       unsigned long jiffy_end)
808 {
809 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
810 	throtl_log(&tg->service_queue,
811 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
812 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
813 		   tg->slice_end[rw], jiffies);
814 }
815 
816 /* Determine if previously allocated or extended slice is complete or not */
817 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
818 {
819 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
820 		return false;
821 
822 	return true;
823 }
824 
825 /* Trim the used slices and adjust slice start accordingly */
826 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
827 {
828 	unsigned long nr_slices, time_elapsed, io_trim;
829 	u64 bytes_trim, tmp;
830 
831 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
832 
833 	/*
834 	 * If bps are unlimited (-1), then time slice don't get
835 	 * renewed. Don't try to trim the slice if slice is used. A new
836 	 * slice will start when appropriate.
837 	 */
838 	if (throtl_slice_used(tg, rw))
839 		return;
840 
841 	/*
842 	 * A bio has been dispatched. Also adjust slice_end. It might happen
843 	 * that initially cgroup limit was very low resulting in high
844 	 * slice_end, but later limit was bumped up and bio was dispached
845 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
846 	 * is bad because it does not allow new slice to start.
847 	 */
848 
849 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
850 
851 	time_elapsed = jiffies - tg->slice_start[rw];
852 
853 	nr_slices = time_elapsed / tg->td->throtl_slice;
854 
855 	if (!nr_slices)
856 		return;
857 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
858 	do_div(tmp, HZ);
859 	bytes_trim = tmp;
860 
861 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
862 		HZ;
863 
864 	if (!bytes_trim && !io_trim)
865 		return;
866 
867 	if (tg->bytes_disp[rw] >= bytes_trim)
868 		tg->bytes_disp[rw] -= bytes_trim;
869 	else
870 		tg->bytes_disp[rw] = 0;
871 
872 	if (tg->io_disp[rw] >= io_trim)
873 		tg->io_disp[rw] -= io_trim;
874 	else
875 		tg->io_disp[rw] = 0;
876 
877 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
878 
879 	throtl_log(&tg->service_queue,
880 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
881 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
882 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
883 }
884 
885 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
886 				  unsigned long *wait)
887 {
888 	bool rw = bio_data_dir(bio);
889 	unsigned int io_allowed;
890 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
891 	u64 tmp;
892 
893 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
894 
895 	/* Slice has just started. Consider one slice interval */
896 	if (!jiffy_elapsed)
897 		jiffy_elapsed_rnd = tg->td->throtl_slice;
898 
899 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
900 
901 	/*
902 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
903 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
904 	 * will allow dispatch after 1 second and after that slice should
905 	 * have been trimmed.
906 	 */
907 
908 	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
909 	do_div(tmp, HZ);
910 
911 	if (tmp > UINT_MAX)
912 		io_allowed = UINT_MAX;
913 	else
914 		io_allowed = tmp;
915 
916 	if (tg->io_disp[rw] + 1 <= io_allowed) {
917 		if (wait)
918 			*wait = 0;
919 		return true;
920 	}
921 
922 	/* Calc approx time to dispatch */
923 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
924 
925 	if (jiffy_wait > jiffy_elapsed)
926 		jiffy_wait = jiffy_wait - jiffy_elapsed;
927 	else
928 		jiffy_wait = 1;
929 
930 	if (wait)
931 		*wait = jiffy_wait;
932 	return false;
933 }
934 
935 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
936 				 unsigned long *wait)
937 {
938 	bool rw = bio_data_dir(bio);
939 	u64 bytes_allowed, extra_bytes, tmp;
940 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
941 	unsigned int bio_size = throtl_bio_data_size(bio);
942 
943 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
944 
945 	/* Slice has just started. Consider one slice interval */
946 	if (!jiffy_elapsed)
947 		jiffy_elapsed_rnd = tg->td->throtl_slice;
948 
949 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
950 
951 	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
952 	do_div(tmp, HZ);
953 	bytes_allowed = tmp;
954 
955 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
956 		if (wait)
957 			*wait = 0;
958 		return true;
959 	}
960 
961 	/* Calc approx time to dispatch */
962 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
963 	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
964 
965 	if (!jiffy_wait)
966 		jiffy_wait = 1;
967 
968 	/*
969 	 * This wait time is without taking into consideration the rounding
970 	 * up we did. Add that time also.
971 	 */
972 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
973 	if (wait)
974 		*wait = jiffy_wait;
975 	return false;
976 }
977 
978 /*
979  * Returns whether one can dispatch a bio or not. Also returns approx number
980  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
981  */
982 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
983 			    unsigned long *wait)
984 {
985 	bool rw = bio_data_dir(bio);
986 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
987 
988 	/*
989  	 * Currently whole state machine of group depends on first bio
990 	 * queued in the group bio list. So one should not be calling
991 	 * this function with a different bio if there are other bios
992 	 * queued.
993 	 */
994 	BUG_ON(tg->service_queue.nr_queued[rw] &&
995 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
996 
997 	/* If tg->bps = -1, then BW is unlimited */
998 	if (tg_bps_limit(tg, rw) == U64_MAX &&
999 	    tg_iops_limit(tg, rw) == UINT_MAX) {
1000 		if (wait)
1001 			*wait = 0;
1002 		return true;
1003 	}
1004 
1005 	/*
1006 	 * If previous slice expired, start a new one otherwise renew/extend
1007 	 * existing slice to make sure it is at least throtl_slice interval
1008 	 * long since now. New slice is started only for empty throttle group.
1009 	 * If there is queued bio, that means there should be an active
1010 	 * slice and it should be extended instead.
1011 	 */
1012 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1013 		throtl_start_new_slice(tg, rw);
1014 	else {
1015 		if (time_before(tg->slice_end[rw],
1016 		    jiffies + tg->td->throtl_slice))
1017 			throtl_extend_slice(tg, rw,
1018 				jiffies + tg->td->throtl_slice);
1019 	}
1020 
1021 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1022 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1023 		if (wait)
1024 			*wait = 0;
1025 		return true;
1026 	}
1027 
1028 	max_wait = max(bps_wait, iops_wait);
1029 
1030 	if (wait)
1031 		*wait = max_wait;
1032 
1033 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1034 		throtl_extend_slice(tg, rw, jiffies + max_wait);
1035 
1036 	return false;
1037 }
1038 
1039 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1040 {
1041 	bool rw = bio_data_dir(bio);
1042 	unsigned int bio_size = throtl_bio_data_size(bio);
1043 
1044 	/* Charge the bio to the group */
1045 	tg->bytes_disp[rw] += bio_size;
1046 	tg->io_disp[rw]++;
1047 	tg->last_bytes_disp[rw] += bio_size;
1048 	tg->last_io_disp[rw]++;
1049 
1050 	/*
1051 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1052 	 * more than once as a throttled bio will go through blk-throtl the
1053 	 * second time when it eventually gets issued.  Set it when a bio
1054 	 * is being charged to a tg.
1055 	 */
1056 	if (!bio_flagged(bio, BIO_THROTTLED))
1057 		bio_set_flag(bio, BIO_THROTTLED);
1058 }
1059 
1060 /**
1061  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1062  * @bio: bio to add
1063  * @qn: qnode to use
1064  * @tg: the target throtl_grp
1065  *
1066  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1067  * tg->qnode_on_self[] is used.
1068  */
1069 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1070 			      struct throtl_grp *tg)
1071 {
1072 	struct throtl_service_queue *sq = &tg->service_queue;
1073 	bool rw = bio_data_dir(bio);
1074 
1075 	if (!qn)
1076 		qn = &tg->qnode_on_self[rw];
1077 
1078 	/*
1079 	 * If @tg doesn't currently have any bios queued in the same
1080 	 * direction, queueing @bio can change when @tg should be
1081 	 * dispatched.  Mark that @tg was empty.  This is automatically
1082 	 * cleaered on the next tg_update_disptime().
1083 	 */
1084 	if (!sq->nr_queued[rw])
1085 		tg->flags |= THROTL_TG_WAS_EMPTY;
1086 
1087 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1088 
1089 	sq->nr_queued[rw]++;
1090 	throtl_enqueue_tg(tg);
1091 }
1092 
1093 static void tg_update_disptime(struct throtl_grp *tg)
1094 {
1095 	struct throtl_service_queue *sq = &tg->service_queue;
1096 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1097 	struct bio *bio;
1098 
1099 	bio = throtl_peek_queued(&sq->queued[READ]);
1100 	if (bio)
1101 		tg_may_dispatch(tg, bio, &read_wait);
1102 
1103 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1104 	if (bio)
1105 		tg_may_dispatch(tg, bio, &write_wait);
1106 
1107 	min_wait = min(read_wait, write_wait);
1108 	disptime = jiffies + min_wait;
1109 
1110 	/* Update dispatch time */
1111 	throtl_dequeue_tg(tg);
1112 	tg->disptime = disptime;
1113 	throtl_enqueue_tg(tg);
1114 
1115 	/* see throtl_add_bio_tg() */
1116 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1117 }
1118 
1119 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1120 					struct throtl_grp *parent_tg, bool rw)
1121 {
1122 	if (throtl_slice_used(parent_tg, rw)) {
1123 		throtl_start_new_slice_with_credit(parent_tg, rw,
1124 				child_tg->slice_start[rw]);
1125 	}
1126 
1127 }
1128 
1129 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1130 {
1131 	struct throtl_service_queue *sq = &tg->service_queue;
1132 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1133 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1134 	struct throtl_grp *tg_to_put = NULL;
1135 	struct bio *bio;
1136 
1137 	/*
1138 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1139 	 * from @tg may put its reference and @parent_sq might end up
1140 	 * getting released prematurely.  Remember the tg to put and put it
1141 	 * after @bio is transferred to @parent_sq.
1142 	 */
1143 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1144 	sq->nr_queued[rw]--;
1145 
1146 	throtl_charge_bio(tg, bio);
1147 
1148 	/*
1149 	 * If our parent is another tg, we just need to transfer @bio to
1150 	 * the parent using throtl_add_bio_tg().  If our parent is
1151 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1152 	 * bio_lists[] and decrease total number queued.  The caller is
1153 	 * responsible for issuing these bios.
1154 	 */
1155 	if (parent_tg) {
1156 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1157 		start_parent_slice_with_credit(tg, parent_tg, rw);
1158 	} else {
1159 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1160 				     &parent_sq->queued[rw]);
1161 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1162 		tg->td->nr_queued[rw]--;
1163 	}
1164 
1165 	throtl_trim_slice(tg, rw);
1166 
1167 	if (tg_to_put)
1168 		blkg_put(tg_to_blkg(tg_to_put));
1169 }
1170 
1171 static int throtl_dispatch_tg(struct throtl_grp *tg)
1172 {
1173 	struct throtl_service_queue *sq = &tg->service_queue;
1174 	unsigned int nr_reads = 0, nr_writes = 0;
1175 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1176 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1177 	struct bio *bio;
1178 
1179 	/* Try to dispatch 75% READS and 25% WRITES */
1180 
1181 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1182 	       tg_may_dispatch(tg, bio, NULL)) {
1183 
1184 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1185 		nr_reads++;
1186 
1187 		if (nr_reads >= max_nr_reads)
1188 			break;
1189 	}
1190 
1191 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1192 	       tg_may_dispatch(tg, bio, NULL)) {
1193 
1194 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1195 		nr_writes++;
1196 
1197 		if (nr_writes >= max_nr_writes)
1198 			break;
1199 	}
1200 
1201 	return nr_reads + nr_writes;
1202 }
1203 
1204 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1205 {
1206 	unsigned int nr_disp = 0;
1207 
1208 	while (1) {
1209 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1210 		struct throtl_service_queue *sq;
1211 
1212 		if (!tg)
1213 			break;
1214 
1215 		if (time_before(jiffies, tg->disptime))
1216 			break;
1217 
1218 		throtl_dequeue_tg(tg);
1219 
1220 		nr_disp += throtl_dispatch_tg(tg);
1221 
1222 		sq = &tg->service_queue;
1223 		if (sq->nr_queued[0] || sq->nr_queued[1])
1224 			tg_update_disptime(tg);
1225 
1226 		if (nr_disp >= throtl_quantum)
1227 			break;
1228 	}
1229 
1230 	return nr_disp;
1231 }
1232 
1233 static bool throtl_can_upgrade(struct throtl_data *td,
1234 	struct throtl_grp *this_tg);
1235 /**
1236  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1237  * @arg: the throtl_service_queue being serviced
1238  *
1239  * This timer is armed when a child throtl_grp with active bio's become
1240  * pending and queued on the service_queue's pending_tree and expires when
1241  * the first child throtl_grp should be dispatched.  This function
1242  * dispatches bio's from the children throtl_grps to the parent
1243  * service_queue.
1244  *
1245  * If the parent's parent is another throtl_grp, dispatching is propagated
1246  * by either arming its pending_timer or repeating dispatch directly.  If
1247  * the top-level service_tree is reached, throtl_data->dispatch_work is
1248  * kicked so that the ready bio's are issued.
1249  */
1250 static void throtl_pending_timer_fn(struct timer_list *t)
1251 {
1252 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1253 	struct throtl_grp *tg = sq_to_tg(sq);
1254 	struct throtl_data *td = sq_to_td(sq);
1255 	struct request_queue *q = td->queue;
1256 	struct throtl_service_queue *parent_sq;
1257 	bool dispatched;
1258 	int ret;
1259 
1260 	spin_lock_irq(q->queue_lock);
1261 	if (throtl_can_upgrade(td, NULL))
1262 		throtl_upgrade_state(td);
1263 
1264 again:
1265 	parent_sq = sq->parent_sq;
1266 	dispatched = false;
1267 
1268 	while (true) {
1269 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1270 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1271 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1272 
1273 		ret = throtl_select_dispatch(sq);
1274 		if (ret) {
1275 			throtl_log(sq, "bios disp=%u", ret);
1276 			dispatched = true;
1277 		}
1278 
1279 		if (throtl_schedule_next_dispatch(sq, false))
1280 			break;
1281 
1282 		/* this dispatch windows is still open, relax and repeat */
1283 		spin_unlock_irq(q->queue_lock);
1284 		cpu_relax();
1285 		spin_lock_irq(q->queue_lock);
1286 	}
1287 
1288 	if (!dispatched)
1289 		goto out_unlock;
1290 
1291 	if (parent_sq) {
1292 		/* @parent_sq is another throl_grp, propagate dispatch */
1293 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1294 			tg_update_disptime(tg);
1295 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1296 				/* window is already open, repeat dispatching */
1297 				sq = parent_sq;
1298 				tg = sq_to_tg(sq);
1299 				goto again;
1300 			}
1301 		}
1302 	} else {
1303 		/* reached the top-level, queue issueing */
1304 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1305 	}
1306 out_unlock:
1307 	spin_unlock_irq(q->queue_lock);
1308 }
1309 
1310 /**
1311  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1312  * @work: work item being executed
1313  *
1314  * This function is queued for execution when bio's reach the bio_lists[]
1315  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1316  * function.
1317  */
1318 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1319 {
1320 	struct throtl_data *td = container_of(work, struct throtl_data,
1321 					      dispatch_work);
1322 	struct throtl_service_queue *td_sq = &td->service_queue;
1323 	struct request_queue *q = td->queue;
1324 	struct bio_list bio_list_on_stack;
1325 	struct bio *bio;
1326 	struct blk_plug plug;
1327 	int rw;
1328 
1329 	bio_list_init(&bio_list_on_stack);
1330 
1331 	spin_lock_irq(q->queue_lock);
1332 	for (rw = READ; rw <= WRITE; rw++)
1333 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1334 			bio_list_add(&bio_list_on_stack, bio);
1335 	spin_unlock_irq(q->queue_lock);
1336 
1337 	if (!bio_list_empty(&bio_list_on_stack)) {
1338 		blk_start_plug(&plug);
1339 		while((bio = bio_list_pop(&bio_list_on_stack)))
1340 			generic_make_request(bio);
1341 		blk_finish_plug(&plug);
1342 	}
1343 }
1344 
1345 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1346 			      int off)
1347 {
1348 	struct throtl_grp *tg = pd_to_tg(pd);
1349 	u64 v = *(u64 *)((void *)tg + off);
1350 
1351 	if (v == U64_MAX)
1352 		return 0;
1353 	return __blkg_prfill_u64(sf, pd, v);
1354 }
1355 
1356 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1357 			       int off)
1358 {
1359 	struct throtl_grp *tg = pd_to_tg(pd);
1360 	unsigned int v = *(unsigned int *)((void *)tg + off);
1361 
1362 	if (v == UINT_MAX)
1363 		return 0;
1364 	return __blkg_prfill_u64(sf, pd, v);
1365 }
1366 
1367 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1368 {
1369 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1370 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1371 	return 0;
1372 }
1373 
1374 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1375 {
1376 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1377 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1378 	return 0;
1379 }
1380 
1381 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1382 {
1383 	struct throtl_service_queue *sq = &tg->service_queue;
1384 	struct cgroup_subsys_state *pos_css;
1385 	struct blkcg_gq *blkg;
1386 
1387 	throtl_log(&tg->service_queue,
1388 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1389 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1390 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1391 
1392 	/*
1393 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1394 	 * considered to have rules if either the tg itself or any of its
1395 	 * ancestors has rules.  This identifies groups without any
1396 	 * restrictions in the whole hierarchy and allows them to bypass
1397 	 * blk-throttle.
1398 	 */
1399 	blkg_for_each_descendant_pre(blkg, pos_css,
1400 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1401 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1402 		struct throtl_grp *parent_tg;
1403 
1404 		tg_update_has_rules(this_tg);
1405 		/* ignore root/second level */
1406 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1407 		    !blkg->parent->parent)
1408 			continue;
1409 		parent_tg = blkg_to_tg(blkg->parent);
1410 		/*
1411 		 * make sure all children has lower idle time threshold and
1412 		 * higher latency target
1413 		 */
1414 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1415 				parent_tg->idletime_threshold);
1416 		this_tg->latency_target = max(this_tg->latency_target,
1417 				parent_tg->latency_target);
1418 	}
1419 
1420 	/*
1421 	 * We're already holding queue_lock and know @tg is valid.  Let's
1422 	 * apply the new config directly.
1423 	 *
1424 	 * Restart the slices for both READ and WRITES. It might happen
1425 	 * that a group's limit are dropped suddenly and we don't want to
1426 	 * account recently dispatched IO with new low rate.
1427 	 */
1428 	throtl_start_new_slice(tg, 0);
1429 	throtl_start_new_slice(tg, 1);
1430 
1431 	if (tg->flags & THROTL_TG_PENDING) {
1432 		tg_update_disptime(tg);
1433 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1434 	}
1435 }
1436 
1437 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1438 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1439 {
1440 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1441 	struct blkg_conf_ctx ctx;
1442 	struct throtl_grp *tg;
1443 	int ret;
1444 	u64 v;
1445 
1446 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1447 	if (ret)
1448 		return ret;
1449 
1450 	ret = -EINVAL;
1451 	if (sscanf(ctx.body, "%llu", &v) != 1)
1452 		goto out_finish;
1453 	if (!v)
1454 		v = U64_MAX;
1455 
1456 	tg = blkg_to_tg(ctx.blkg);
1457 
1458 	if (is_u64)
1459 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1460 	else
1461 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1462 
1463 	tg_conf_updated(tg, false);
1464 	ret = 0;
1465 out_finish:
1466 	blkg_conf_finish(&ctx);
1467 	return ret ?: nbytes;
1468 }
1469 
1470 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1471 			       char *buf, size_t nbytes, loff_t off)
1472 {
1473 	return tg_set_conf(of, buf, nbytes, off, true);
1474 }
1475 
1476 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1477 				char *buf, size_t nbytes, loff_t off)
1478 {
1479 	return tg_set_conf(of, buf, nbytes, off, false);
1480 }
1481 
1482 static struct cftype throtl_legacy_files[] = {
1483 	{
1484 		.name = "throttle.read_bps_device",
1485 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1486 		.seq_show = tg_print_conf_u64,
1487 		.write = tg_set_conf_u64,
1488 	},
1489 	{
1490 		.name = "throttle.write_bps_device",
1491 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1492 		.seq_show = tg_print_conf_u64,
1493 		.write = tg_set_conf_u64,
1494 	},
1495 	{
1496 		.name = "throttle.read_iops_device",
1497 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1498 		.seq_show = tg_print_conf_uint,
1499 		.write = tg_set_conf_uint,
1500 	},
1501 	{
1502 		.name = "throttle.write_iops_device",
1503 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1504 		.seq_show = tg_print_conf_uint,
1505 		.write = tg_set_conf_uint,
1506 	},
1507 	{
1508 		.name = "throttle.io_service_bytes",
1509 		.private = (unsigned long)&blkcg_policy_throtl,
1510 		.seq_show = blkg_print_stat_bytes,
1511 	},
1512 	{
1513 		.name = "throttle.io_service_bytes_recursive",
1514 		.private = (unsigned long)&blkcg_policy_throtl,
1515 		.seq_show = blkg_print_stat_bytes_recursive,
1516 	},
1517 	{
1518 		.name = "throttle.io_serviced",
1519 		.private = (unsigned long)&blkcg_policy_throtl,
1520 		.seq_show = blkg_print_stat_ios,
1521 	},
1522 	{
1523 		.name = "throttle.io_serviced_recursive",
1524 		.private = (unsigned long)&blkcg_policy_throtl,
1525 		.seq_show = blkg_print_stat_ios_recursive,
1526 	},
1527 	{ }	/* terminate */
1528 };
1529 
1530 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1531 			 int off)
1532 {
1533 	struct throtl_grp *tg = pd_to_tg(pd);
1534 	const char *dname = blkg_dev_name(pd->blkg);
1535 	char bufs[4][21] = { "max", "max", "max", "max" };
1536 	u64 bps_dft;
1537 	unsigned int iops_dft;
1538 	char idle_time[26] = "";
1539 	char latency_time[26] = "";
1540 
1541 	if (!dname)
1542 		return 0;
1543 
1544 	if (off == LIMIT_LOW) {
1545 		bps_dft = 0;
1546 		iops_dft = 0;
1547 	} else {
1548 		bps_dft = U64_MAX;
1549 		iops_dft = UINT_MAX;
1550 	}
1551 
1552 	if (tg->bps_conf[READ][off] == bps_dft &&
1553 	    tg->bps_conf[WRITE][off] == bps_dft &&
1554 	    tg->iops_conf[READ][off] == iops_dft &&
1555 	    tg->iops_conf[WRITE][off] == iops_dft &&
1556 	    (off != LIMIT_LOW ||
1557 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1558 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1559 		return 0;
1560 
1561 	if (tg->bps_conf[READ][off] != U64_MAX)
1562 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1563 			tg->bps_conf[READ][off]);
1564 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1565 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1566 			tg->bps_conf[WRITE][off]);
1567 	if (tg->iops_conf[READ][off] != UINT_MAX)
1568 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1569 			tg->iops_conf[READ][off]);
1570 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1571 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1572 			tg->iops_conf[WRITE][off]);
1573 	if (off == LIMIT_LOW) {
1574 		if (tg->idletime_threshold_conf == ULONG_MAX)
1575 			strcpy(idle_time, " idle=max");
1576 		else
1577 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1578 				tg->idletime_threshold_conf);
1579 
1580 		if (tg->latency_target_conf == ULONG_MAX)
1581 			strcpy(latency_time, " latency=max");
1582 		else
1583 			snprintf(latency_time, sizeof(latency_time),
1584 				" latency=%lu", tg->latency_target_conf);
1585 	}
1586 
1587 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1588 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1589 		   latency_time);
1590 	return 0;
1591 }
1592 
1593 static int tg_print_limit(struct seq_file *sf, void *v)
1594 {
1595 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1596 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1597 	return 0;
1598 }
1599 
1600 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1601 			  char *buf, size_t nbytes, loff_t off)
1602 {
1603 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1604 	struct blkg_conf_ctx ctx;
1605 	struct throtl_grp *tg;
1606 	u64 v[4];
1607 	unsigned long idle_time;
1608 	unsigned long latency_time;
1609 	int ret;
1610 	int index = of_cft(of)->private;
1611 
1612 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1613 	if (ret)
1614 		return ret;
1615 
1616 	tg = blkg_to_tg(ctx.blkg);
1617 
1618 	v[0] = tg->bps_conf[READ][index];
1619 	v[1] = tg->bps_conf[WRITE][index];
1620 	v[2] = tg->iops_conf[READ][index];
1621 	v[3] = tg->iops_conf[WRITE][index];
1622 
1623 	idle_time = tg->idletime_threshold_conf;
1624 	latency_time = tg->latency_target_conf;
1625 	while (true) {
1626 		char tok[27];	/* wiops=18446744073709551616 */
1627 		char *p;
1628 		u64 val = U64_MAX;
1629 		int len;
1630 
1631 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1632 			break;
1633 		if (tok[0] == '\0')
1634 			break;
1635 		ctx.body += len;
1636 
1637 		ret = -EINVAL;
1638 		p = tok;
1639 		strsep(&p, "=");
1640 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1641 			goto out_finish;
1642 
1643 		ret = -ERANGE;
1644 		if (!val)
1645 			goto out_finish;
1646 
1647 		ret = -EINVAL;
1648 		if (!strcmp(tok, "rbps"))
1649 			v[0] = val;
1650 		else if (!strcmp(tok, "wbps"))
1651 			v[1] = val;
1652 		else if (!strcmp(tok, "riops"))
1653 			v[2] = min_t(u64, val, UINT_MAX);
1654 		else if (!strcmp(tok, "wiops"))
1655 			v[3] = min_t(u64, val, UINT_MAX);
1656 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1657 			idle_time = val;
1658 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1659 			latency_time = val;
1660 		else
1661 			goto out_finish;
1662 	}
1663 
1664 	tg->bps_conf[READ][index] = v[0];
1665 	tg->bps_conf[WRITE][index] = v[1];
1666 	tg->iops_conf[READ][index] = v[2];
1667 	tg->iops_conf[WRITE][index] = v[3];
1668 
1669 	if (index == LIMIT_MAX) {
1670 		tg->bps[READ][index] = v[0];
1671 		tg->bps[WRITE][index] = v[1];
1672 		tg->iops[READ][index] = v[2];
1673 		tg->iops[WRITE][index] = v[3];
1674 	}
1675 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1676 		tg->bps_conf[READ][LIMIT_MAX]);
1677 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1678 		tg->bps_conf[WRITE][LIMIT_MAX]);
1679 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1680 		tg->iops_conf[READ][LIMIT_MAX]);
1681 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1682 		tg->iops_conf[WRITE][LIMIT_MAX]);
1683 	tg->idletime_threshold_conf = idle_time;
1684 	tg->latency_target_conf = latency_time;
1685 
1686 	/* force user to configure all settings for low limit  */
1687 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1688 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1689 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1690 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1691 		tg->bps[READ][LIMIT_LOW] = 0;
1692 		tg->bps[WRITE][LIMIT_LOW] = 0;
1693 		tg->iops[READ][LIMIT_LOW] = 0;
1694 		tg->iops[WRITE][LIMIT_LOW] = 0;
1695 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1696 		tg->latency_target = DFL_LATENCY_TARGET;
1697 	} else if (index == LIMIT_LOW) {
1698 		tg->idletime_threshold = tg->idletime_threshold_conf;
1699 		tg->latency_target = tg->latency_target_conf;
1700 	}
1701 
1702 	blk_throtl_update_limit_valid(tg->td);
1703 	if (tg->td->limit_valid[LIMIT_LOW]) {
1704 		if (index == LIMIT_LOW)
1705 			tg->td->limit_index = LIMIT_LOW;
1706 	} else
1707 		tg->td->limit_index = LIMIT_MAX;
1708 	tg_conf_updated(tg, index == LIMIT_LOW &&
1709 		tg->td->limit_valid[LIMIT_LOW]);
1710 	ret = 0;
1711 out_finish:
1712 	blkg_conf_finish(&ctx);
1713 	return ret ?: nbytes;
1714 }
1715 
1716 static struct cftype throtl_files[] = {
1717 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1718 	{
1719 		.name = "low",
1720 		.flags = CFTYPE_NOT_ON_ROOT,
1721 		.seq_show = tg_print_limit,
1722 		.write = tg_set_limit,
1723 		.private = LIMIT_LOW,
1724 	},
1725 #endif
1726 	{
1727 		.name = "max",
1728 		.flags = CFTYPE_NOT_ON_ROOT,
1729 		.seq_show = tg_print_limit,
1730 		.write = tg_set_limit,
1731 		.private = LIMIT_MAX,
1732 	},
1733 	{ }	/* terminate */
1734 };
1735 
1736 static void throtl_shutdown_wq(struct request_queue *q)
1737 {
1738 	struct throtl_data *td = q->td;
1739 
1740 	cancel_work_sync(&td->dispatch_work);
1741 }
1742 
1743 static struct blkcg_policy blkcg_policy_throtl = {
1744 	.dfl_cftypes		= throtl_files,
1745 	.legacy_cftypes		= throtl_legacy_files,
1746 
1747 	.pd_alloc_fn		= throtl_pd_alloc,
1748 	.pd_init_fn		= throtl_pd_init,
1749 	.pd_online_fn		= throtl_pd_online,
1750 	.pd_offline_fn		= throtl_pd_offline,
1751 	.pd_free_fn		= throtl_pd_free,
1752 };
1753 
1754 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1755 {
1756 	unsigned long rtime = jiffies, wtime = jiffies;
1757 
1758 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1759 		rtime = tg->last_low_overflow_time[READ];
1760 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1761 		wtime = tg->last_low_overflow_time[WRITE];
1762 	return min(rtime, wtime);
1763 }
1764 
1765 /* tg should not be an intermediate node */
1766 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1767 {
1768 	struct throtl_service_queue *parent_sq;
1769 	struct throtl_grp *parent = tg;
1770 	unsigned long ret = __tg_last_low_overflow_time(tg);
1771 
1772 	while (true) {
1773 		parent_sq = parent->service_queue.parent_sq;
1774 		parent = sq_to_tg(parent_sq);
1775 		if (!parent)
1776 			break;
1777 
1778 		/*
1779 		 * The parent doesn't have low limit, it always reaches low
1780 		 * limit. Its overflow time is useless for children
1781 		 */
1782 		if (!parent->bps[READ][LIMIT_LOW] &&
1783 		    !parent->iops[READ][LIMIT_LOW] &&
1784 		    !parent->bps[WRITE][LIMIT_LOW] &&
1785 		    !parent->iops[WRITE][LIMIT_LOW])
1786 			continue;
1787 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1788 			ret = __tg_last_low_overflow_time(parent);
1789 	}
1790 	return ret;
1791 }
1792 
1793 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1794 {
1795 	/*
1796 	 * cgroup is idle if:
1797 	 * - single idle is too long, longer than a fixed value (in case user
1798 	 *   configure a too big threshold) or 4 times of idletime threshold
1799 	 * - average think time is more than threshold
1800 	 * - IO latency is largely below threshold
1801 	 */
1802 	unsigned long time;
1803 	bool ret;
1804 
1805 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1806 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1807 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1808 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1809 	      tg->avg_idletime > tg->idletime_threshold ||
1810 	      (tg->latency_target && tg->bio_cnt &&
1811 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1812 	throtl_log(&tg->service_queue,
1813 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1814 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1815 		tg->bio_cnt, ret, tg->td->scale);
1816 	return ret;
1817 }
1818 
1819 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1820 {
1821 	struct throtl_service_queue *sq = &tg->service_queue;
1822 	bool read_limit, write_limit;
1823 
1824 	/*
1825 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1826 	 * reaches), it's ok to upgrade to next limit
1827 	 */
1828 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1829 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1830 	if (!read_limit && !write_limit)
1831 		return true;
1832 	if (read_limit && sq->nr_queued[READ] &&
1833 	    (!write_limit || sq->nr_queued[WRITE]))
1834 		return true;
1835 	if (write_limit && sq->nr_queued[WRITE] &&
1836 	    (!read_limit || sq->nr_queued[READ]))
1837 		return true;
1838 
1839 	if (time_after_eq(jiffies,
1840 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1841 	    throtl_tg_is_idle(tg))
1842 		return true;
1843 	return false;
1844 }
1845 
1846 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1847 {
1848 	while (true) {
1849 		if (throtl_tg_can_upgrade(tg))
1850 			return true;
1851 		tg = sq_to_tg(tg->service_queue.parent_sq);
1852 		if (!tg || !tg_to_blkg(tg)->parent)
1853 			return false;
1854 	}
1855 	return false;
1856 }
1857 
1858 static bool throtl_can_upgrade(struct throtl_data *td,
1859 	struct throtl_grp *this_tg)
1860 {
1861 	struct cgroup_subsys_state *pos_css;
1862 	struct blkcg_gq *blkg;
1863 
1864 	if (td->limit_index != LIMIT_LOW)
1865 		return false;
1866 
1867 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1868 		return false;
1869 
1870 	rcu_read_lock();
1871 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1872 		struct throtl_grp *tg = blkg_to_tg(blkg);
1873 
1874 		if (tg == this_tg)
1875 			continue;
1876 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1877 			continue;
1878 		if (!throtl_hierarchy_can_upgrade(tg)) {
1879 			rcu_read_unlock();
1880 			return false;
1881 		}
1882 	}
1883 	rcu_read_unlock();
1884 	return true;
1885 }
1886 
1887 static void throtl_upgrade_check(struct throtl_grp *tg)
1888 {
1889 	unsigned long now = jiffies;
1890 
1891 	if (tg->td->limit_index != LIMIT_LOW)
1892 		return;
1893 
1894 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1895 		return;
1896 
1897 	tg->last_check_time = now;
1898 
1899 	if (!time_after_eq(now,
1900 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1901 		return;
1902 
1903 	if (throtl_can_upgrade(tg->td, NULL))
1904 		throtl_upgrade_state(tg->td);
1905 }
1906 
1907 static void throtl_upgrade_state(struct throtl_data *td)
1908 {
1909 	struct cgroup_subsys_state *pos_css;
1910 	struct blkcg_gq *blkg;
1911 
1912 	throtl_log(&td->service_queue, "upgrade to max");
1913 	td->limit_index = LIMIT_MAX;
1914 	td->low_upgrade_time = jiffies;
1915 	td->scale = 0;
1916 	rcu_read_lock();
1917 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1918 		struct throtl_grp *tg = blkg_to_tg(blkg);
1919 		struct throtl_service_queue *sq = &tg->service_queue;
1920 
1921 		tg->disptime = jiffies - 1;
1922 		throtl_select_dispatch(sq);
1923 		throtl_schedule_next_dispatch(sq, true);
1924 	}
1925 	rcu_read_unlock();
1926 	throtl_select_dispatch(&td->service_queue);
1927 	throtl_schedule_next_dispatch(&td->service_queue, true);
1928 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1929 }
1930 
1931 static void throtl_downgrade_state(struct throtl_data *td, int new)
1932 {
1933 	td->scale /= 2;
1934 
1935 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1936 	if (td->scale) {
1937 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1938 		return;
1939 	}
1940 
1941 	td->limit_index = new;
1942 	td->low_downgrade_time = jiffies;
1943 }
1944 
1945 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1946 {
1947 	struct throtl_data *td = tg->td;
1948 	unsigned long now = jiffies;
1949 
1950 	/*
1951 	 * If cgroup is below low limit, consider downgrade and throttle other
1952 	 * cgroups
1953 	 */
1954 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1955 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1956 					td->throtl_slice) &&
1957 	    (!throtl_tg_is_idle(tg) ||
1958 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1959 		return true;
1960 	return false;
1961 }
1962 
1963 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1964 {
1965 	while (true) {
1966 		if (!throtl_tg_can_downgrade(tg))
1967 			return false;
1968 		tg = sq_to_tg(tg->service_queue.parent_sq);
1969 		if (!tg || !tg_to_blkg(tg)->parent)
1970 			break;
1971 	}
1972 	return true;
1973 }
1974 
1975 static void throtl_downgrade_check(struct throtl_grp *tg)
1976 {
1977 	uint64_t bps;
1978 	unsigned int iops;
1979 	unsigned long elapsed_time;
1980 	unsigned long now = jiffies;
1981 
1982 	if (tg->td->limit_index != LIMIT_MAX ||
1983 	    !tg->td->limit_valid[LIMIT_LOW])
1984 		return;
1985 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1986 		return;
1987 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1988 		return;
1989 
1990 	elapsed_time = now - tg->last_check_time;
1991 	tg->last_check_time = now;
1992 
1993 	if (time_before(now, tg_last_low_overflow_time(tg) +
1994 			tg->td->throtl_slice))
1995 		return;
1996 
1997 	if (tg->bps[READ][LIMIT_LOW]) {
1998 		bps = tg->last_bytes_disp[READ] * HZ;
1999 		do_div(bps, elapsed_time);
2000 		if (bps >= tg->bps[READ][LIMIT_LOW])
2001 			tg->last_low_overflow_time[READ] = now;
2002 	}
2003 
2004 	if (tg->bps[WRITE][LIMIT_LOW]) {
2005 		bps = tg->last_bytes_disp[WRITE] * HZ;
2006 		do_div(bps, elapsed_time);
2007 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2008 			tg->last_low_overflow_time[WRITE] = now;
2009 	}
2010 
2011 	if (tg->iops[READ][LIMIT_LOW]) {
2012 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2013 		if (iops >= tg->iops[READ][LIMIT_LOW])
2014 			tg->last_low_overflow_time[READ] = now;
2015 	}
2016 
2017 	if (tg->iops[WRITE][LIMIT_LOW]) {
2018 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2019 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2020 			tg->last_low_overflow_time[WRITE] = now;
2021 	}
2022 
2023 	/*
2024 	 * If cgroup is below low limit, consider downgrade and throttle other
2025 	 * cgroups
2026 	 */
2027 	if (throtl_hierarchy_can_downgrade(tg))
2028 		throtl_downgrade_state(tg->td, LIMIT_LOW);
2029 
2030 	tg->last_bytes_disp[READ] = 0;
2031 	tg->last_bytes_disp[WRITE] = 0;
2032 	tg->last_io_disp[READ] = 0;
2033 	tg->last_io_disp[WRITE] = 0;
2034 }
2035 
2036 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2037 {
2038 	unsigned long now = ktime_get_ns() >> 10;
2039 	unsigned long last_finish_time = tg->last_finish_time;
2040 
2041 	if (now <= last_finish_time || last_finish_time == 0 ||
2042 	    last_finish_time == tg->checked_last_finish_time)
2043 		return;
2044 
2045 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2046 	tg->checked_last_finish_time = last_finish_time;
2047 }
2048 
2049 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2050 static void throtl_update_latency_buckets(struct throtl_data *td)
2051 {
2052 	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2053 	int i, cpu, rw;
2054 	unsigned long last_latency[2] = { 0 };
2055 	unsigned long latency[2];
2056 
2057 	if (!blk_queue_nonrot(td->queue))
2058 		return;
2059 	if (time_before(jiffies, td->last_calculate_time + HZ))
2060 		return;
2061 	td->last_calculate_time = jiffies;
2062 
2063 	memset(avg_latency, 0, sizeof(avg_latency));
2064 	for (rw = READ; rw <= WRITE; rw++) {
2065 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2066 			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2067 
2068 			for_each_possible_cpu(cpu) {
2069 				struct latency_bucket *bucket;
2070 
2071 				/* this isn't race free, but ok in practice */
2072 				bucket = per_cpu_ptr(td->latency_buckets[rw],
2073 					cpu);
2074 				tmp->total_latency += bucket[i].total_latency;
2075 				tmp->samples += bucket[i].samples;
2076 				bucket[i].total_latency = 0;
2077 				bucket[i].samples = 0;
2078 			}
2079 
2080 			if (tmp->samples >= 32) {
2081 				int samples = tmp->samples;
2082 
2083 				latency[rw] = tmp->total_latency;
2084 
2085 				tmp->total_latency = 0;
2086 				tmp->samples = 0;
2087 				latency[rw] /= samples;
2088 				if (latency[rw] == 0)
2089 					continue;
2090 				avg_latency[rw][i].latency = latency[rw];
2091 			}
2092 		}
2093 	}
2094 
2095 	for (rw = READ; rw <= WRITE; rw++) {
2096 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2097 			if (!avg_latency[rw][i].latency) {
2098 				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2099 					td->avg_buckets[rw][i].latency =
2100 						last_latency[rw];
2101 				continue;
2102 			}
2103 
2104 			if (!td->avg_buckets[rw][i].valid)
2105 				latency[rw] = avg_latency[rw][i].latency;
2106 			else
2107 				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2108 					avg_latency[rw][i].latency) >> 3;
2109 
2110 			td->avg_buckets[rw][i].latency = max(latency[rw],
2111 				last_latency[rw]);
2112 			td->avg_buckets[rw][i].valid = true;
2113 			last_latency[rw] = td->avg_buckets[rw][i].latency;
2114 		}
2115 	}
2116 
2117 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2118 		throtl_log(&td->service_queue,
2119 			"Latency bucket %d: read latency=%ld, read valid=%d, "
2120 			"write latency=%ld, write valid=%d", i,
2121 			td->avg_buckets[READ][i].latency,
2122 			td->avg_buckets[READ][i].valid,
2123 			td->avg_buckets[WRITE][i].latency,
2124 			td->avg_buckets[WRITE][i].valid);
2125 }
2126 #else
2127 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2128 {
2129 }
2130 #endif
2131 
2132 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2133 {
2134 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2135 	if (bio->bi_css) {
2136 		if (bio->bi_cg_private)
2137 			blkg_put(tg_to_blkg(bio->bi_cg_private));
2138 		bio->bi_cg_private = tg;
2139 		blkg_get(tg_to_blkg(tg));
2140 	}
2141 	bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2142 #endif
2143 }
2144 
2145 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2146 		    struct bio *bio)
2147 {
2148 	struct throtl_qnode *qn = NULL;
2149 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2150 	struct throtl_service_queue *sq;
2151 	bool rw = bio_data_dir(bio);
2152 	bool throttled = false;
2153 	struct throtl_data *td = tg->td;
2154 
2155 	WARN_ON_ONCE(!rcu_read_lock_held());
2156 
2157 	/* see throtl_charge_bio() */
2158 	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2159 		goto out;
2160 
2161 	spin_lock_irq(q->queue_lock);
2162 
2163 	throtl_update_latency_buckets(td);
2164 
2165 	if (unlikely(blk_queue_bypass(q)))
2166 		goto out_unlock;
2167 
2168 	blk_throtl_assoc_bio(tg, bio);
2169 	blk_throtl_update_idletime(tg);
2170 
2171 	sq = &tg->service_queue;
2172 
2173 again:
2174 	while (true) {
2175 		if (tg->last_low_overflow_time[rw] == 0)
2176 			tg->last_low_overflow_time[rw] = jiffies;
2177 		throtl_downgrade_check(tg);
2178 		throtl_upgrade_check(tg);
2179 		/* throtl is FIFO - if bios are already queued, should queue */
2180 		if (sq->nr_queued[rw])
2181 			break;
2182 
2183 		/* if above limits, break to queue */
2184 		if (!tg_may_dispatch(tg, bio, NULL)) {
2185 			tg->last_low_overflow_time[rw] = jiffies;
2186 			if (throtl_can_upgrade(td, tg)) {
2187 				throtl_upgrade_state(td);
2188 				goto again;
2189 			}
2190 			break;
2191 		}
2192 
2193 		/* within limits, let's charge and dispatch directly */
2194 		throtl_charge_bio(tg, bio);
2195 
2196 		/*
2197 		 * We need to trim slice even when bios are not being queued
2198 		 * otherwise it might happen that a bio is not queued for
2199 		 * a long time and slice keeps on extending and trim is not
2200 		 * called for a long time. Now if limits are reduced suddenly
2201 		 * we take into account all the IO dispatched so far at new
2202 		 * low rate and * newly queued IO gets a really long dispatch
2203 		 * time.
2204 		 *
2205 		 * So keep on trimming slice even if bio is not queued.
2206 		 */
2207 		throtl_trim_slice(tg, rw);
2208 
2209 		/*
2210 		 * @bio passed through this layer without being throttled.
2211 		 * Climb up the ladder.  If we''re already at the top, it
2212 		 * can be executed directly.
2213 		 */
2214 		qn = &tg->qnode_on_parent[rw];
2215 		sq = sq->parent_sq;
2216 		tg = sq_to_tg(sq);
2217 		if (!tg)
2218 			goto out_unlock;
2219 	}
2220 
2221 	/* out-of-limit, queue to @tg */
2222 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2223 		   rw == READ ? 'R' : 'W',
2224 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2225 		   tg_bps_limit(tg, rw),
2226 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2227 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2228 
2229 	tg->last_low_overflow_time[rw] = jiffies;
2230 
2231 	td->nr_queued[rw]++;
2232 	throtl_add_bio_tg(bio, qn, tg);
2233 	throttled = true;
2234 
2235 	/*
2236 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2237 	 * was empty before @bio.  The forced scheduling isn't likely to
2238 	 * cause undue delay as @bio is likely to be dispatched directly if
2239 	 * its @tg's disptime is not in the future.
2240 	 */
2241 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2242 		tg_update_disptime(tg);
2243 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2244 	}
2245 
2246 out_unlock:
2247 	spin_unlock_irq(q->queue_lock);
2248 out:
2249 	bio_set_flag(bio, BIO_THROTTLED);
2250 
2251 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2252 	if (throttled || !td->track_bio_latency)
2253 		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2254 #endif
2255 	return throttled;
2256 }
2257 
2258 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2259 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2260 	int op, unsigned long time)
2261 {
2262 	struct latency_bucket *latency;
2263 	int index;
2264 
2265 	if (!td || td->limit_index != LIMIT_LOW ||
2266 	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2267 	    !blk_queue_nonrot(td->queue))
2268 		return;
2269 
2270 	index = request_bucket_index(size);
2271 
2272 	latency = get_cpu_ptr(td->latency_buckets[op]);
2273 	latency[index].total_latency += time;
2274 	latency[index].samples++;
2275 	put_cpu_ptr(td->latency_buckets[op]);
2276 }
2277 
2278 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2279 {
2280 	struct request_queue *q = rq->q;
2281 	struct throtl_data *td = q->td;
2282 
2283 	throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2284 }
2285 
2286 void blk_throtl_bio_endio(struct bio *bio)
2287 {
2288 	struct throtl_grp *tg;
2289 	u64 finish_time_ns;
2290 	unsigned long finish_time;
2291 	unsigned long start_time;
2292 	unsigned long lat;
2293 	int rw = bio_data_dir(bio);
2294 
2295 	tg = bio->bi_cg_private;
2296 	if (!tg)
2297 		return;
2298 	bio->bi_cg_private = NULL;
2299 
2300 	finish_time_ns = ktime_get_ns();
2301 	tg->last_finish_time = finish_time_ns >> 10;
2302 
2303 	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2304 	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2305 	if (!start_time || finish_time <= start_time) {
2306 		blkg_put(tg_to_blkg(tg));
2307 		return;
2308 	}
2309 
2310 	lat = finish_time - start_time;
2311 	/* this is only for bio based driver */
2312 	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2313 		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2314 				     bio_op(bio), lat);
2315 
2316 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2317 		int bucket;
2318 		unsigned int threshold;
2319 
2320 		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2321 		threshold = tg->td->avg_buckets[rw][bucket].latency +
2322 			tg->latency_target;
2323 		if (lat > threshold)
2324 			tg->bad_bio_cnt++;
2325 		/*
2326 		 * Not race free, could get wrong count, which means cgroups
2327 		 * will be throttled
2328 		 */
2329 		tg->bio_cnt++;
2330 	}
2331 
2332 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2333 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2334 		tg->bio_cnt /= 2;
2335 		tg->bad_bio_cnt /= 2;
2336 	}
2337 
2338 	blkg_put(tg_to_blkg(tg));
2339 }
2340 #endif
2341 
2342 /*
2343  * Dispatch all bios from all children tg's queued on @parent_sq.  On
2344  * return, @parent_sq is guaranteed to not have any active children tg's
2345  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2346  */
2347 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2348 {
2349 	struct throtl_grp *tg;
2350 
2351 	while ((tg = throtl_rb_first(parent_sq))) {
2352 		struct throtl_service_queue *sq = &tg->service_queue;
2353 		struct bio *bio;
2354 
2355 		throtl_dequeue_tg(tg);
2356 
2357 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2358 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2359 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2360 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2361 	}
2362 }
2363 
2364 /**
2365  * blk_throtl_drain - drain throttled bios
2366  * @q: request_queue to drain throttled bios for
2367  *
2368  * Dispatch all currently throttled bios on @q through ->make_request_fn().
2369  */
2370 void blk_throtl_drain(struct request_queue *q)
2371 	__releases(q->queue_lock) __acquires(q->queue_lock)
2372 {
2373 	struct throtl_data *td = q->td;
2374 	struct blkcg_gq *blkg;
2375 	struct cgroup_subsys_state *pos_css;
2376 	struct bio *bio;
2377 	int rw;
2378 
2379 	queue_lockdep_assert_held(q);
2380 	rcu_read_lock();
2381 
2382 	/*
2383 	 * Drain each tg while doing post-order walk on the blkg tree, so
2384 	 * that all bios are propagated to td->service_queue.  It'd be
2385 	 * better to walk service_queue tree directly but blkg walk is
2386 	 * easier.
2387 	 */
2388 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2389 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2390 
2391 	/* finally, transfer bios from top-level tg's into the td */
2392 	tg_drain_bios(&td->service_queue);
2393 
2394 	rcu_read_unlock();
2395 	spin_unlock_irq(q->queue_lock);
2396 
2397 	/* all bios now should be in td->service_queue, issue them */
2398 	for (rw = READ; rw <= WRITE; rw++)
2399 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2400 						NULL)))
2401 			generic_make_request(bio);
2402 
2403 	spin_lock_irq(q->queue_lock);
2404 }
2405 
2406 int blk_throtl_init(struct request_queue *q)
2407 {
2408 	struct throtl_data *td;
2409 	int ret;
2410 
2411 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2412 	if (!td)
2413 		return -ENOMEM;
2414 	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2415 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2416 	if (!td->latency_buckets[READ]) {
2417 		kfree(td);
2418 		return -ENOMEM;
2419 	}
2420 	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2421 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2422 	if (!td->latency_buckets[WRITE]) {
2423 		free_percpu(td->latency_buckets[READ]);
2424 		kfree(td);
2425 		return -ENOMEM;
2426 	}
2427 
2428 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2429 	throtl_service_queue_init(&td->service_queue);
2430 
2431 	q->td = td;
2432 	td->queue = q;
2433 
2434 	td->limit_valid[LIMIT_MAX] = true;
2435 	td->limit_index = LIMIT_MAX;
2436 	td->low_upgrade_time = jiffies;
2437 	td->low_downgrade_time = jiffies;
2438 
2439 	/* activate policy */
2440 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2441 	if (ret) {
2442 		free_percpu(td->latency_buckets[READ]);
2443 		free_percpu(td->latency_buckets[WRITE]);
2444 		kfree(td);
2445 	}
2446 	return ret;
2447 }
2448 
2449 void blk_throtl_exit(struct request_queue *q)
2450 {
2451 	BUG_ON(!q->td);
2452 	throtl_shutdown_wq(q);
2453 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2454 	free_percpu(q->td->latency_buckets[READ]);
2455 	free_percpu(q->td->latency_buckets[WRITE]);
2456 	kfree(q->td);
2457 }
2458 
2459 void blk_throtl_register_queue(struct request_queue *q)
2460 {
2461 	struct throtl_data *td;
2462 	int i;
2463 
2464 	td = q->td;
2465 	BUG_ON(!td);
2466 
2467 	if (blk_queue_nonrot(q)) {
2468 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2469 		td->filtered_latency = LATENCY_FILTERED_SSD;
2470 	} else {
2471 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2472 		td->filtered_latency = LATENCY_FILTERED_HD;
2473 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2474 			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2475 			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2476 		}
2477 	}
2478 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2479 	/* if no low limit, use previous default */
2480 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2481 #endif
2482 
2483 	td->track_bio_latency = !queue_is_rq_based(q);
2484 	if (!td->track_bio_latency)
2485 		blk_stat_enable_accounting(q);
2486 }
2487 
2488 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2489 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2490 {
2491 	if (!q->td)
2492 		return -EINVAL;
2493 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2494 }
2495 
2496 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2497 	const char *page, size_t count)
2498 {
2499 	unsigned long v;
2500 	unsigned long t;
2501 
2502 	if (!q->td)
2503 		return -EINVAL;
2504 	if (kstrtoul(page, 10, &v))
2505 		return -EINVAL;
2506 	t = msecs_to_jiffies(v);
2507 	if (t == 0 || t > MAX_THROTL_SLICE)
2508 		return -EINVAL;
2509 	q->td->throtl_slice = t;
2510 	return count;
2511 }
2512 #endif
2513 
2514 static int __init throtl_init(void)
2515 {
2516 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2517 	if (!kthrotld_workqueue)
2518 		panic("Failed to create kthrotld\n");
2519 
2520 	return blkcg_policy_register(&blkcg_policy_throtl);
2521 }
2522 
2523 module_init(throtl_init);
2524