1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include "blk.h" 14 #include "blk-cgroup-rwstat.h" 15 #include "blk-stat.h" 16 #include "blk-throttle.h" 17 18 /* Max dispatch from a group in 1 round */ 19 #define THROTL_GRP_QUANTUM 8 20 21 /* Total max dispatch from all groups in one round */ 22 #define THROTL_QUANTUM 32 23 24 /* Throttling is performed over a slice and after that slice is renewed */ 25 #define DFL_THROTL_SLICE_HD (HZ / 10) 26 #define DFL_THROTL_SLICE_SSD (HZ / 50) 27 #define MAX_THROTL_SLICE (HZ) 28 29 /* A workqueue to queue throttle related work */ 30 static struct workqueue_struct *kthrotld_workqueue; 31 32 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 33 34 struct throtl_data 35 { 36 /* service tree for active throtl groups */ 37 struct throtl_service_queue service_queue; 38 39 struct request_queue *queue; 40 41 /* Total Number of queued bios on READ and WRITE lists */ 42 unsigned int nr_queued[2]; 43 44 unsigned int throtl_slice; 45 46 /* Work for dispatching throttled bios */ 47 struct work_struct dispatch_work; 48 49 bool track_bio_latency; 50 }; 51 52 static void throtl_pending_timer_fn(struct timer_list *t); 53 54 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 55 { 56 return pd_to_blkg(&tg->pd); 57 } 58 59 /** 60 * sq_to_tg - return the throl_grp the specified service queue belongs to 61 * @sq: the throtl_service_queue of interest 62 * 63 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 64 * embedded in throtl_data, %NULL is returned. 65 */ 66 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 67 { 68 if (sq && sq->parent_sq) 69 return container_of(sq, struct throtl_grp, service_queue); 70 else 71 return NULL; 72 } 73 74 /** 75 * sq_to_td - return throtl_data the specified service queue belongs to 76 * @sq: the throtl_service_queue of interest 77 * 78 * A service_queue can be embedded in either a throtl_grp or throtl_data. 79 * Determine the associated throtl_data accordingly and return it. 80 */ 81 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 82 { 83 struct throtl_grp *tg = sq_to_tg(sq); 84 85 if (tg) 86 return tg->td; 87 else 88 return container_of(sq, struct throtl_data, service_queue); 89 } 90 91 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 92 { 93 struct blkcg_gq *blkg = tg_to_blkg(tg); 94 95 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 96 return U64_MAX; 97 98 return tg->bps[rw]; 99 } 100 101 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 102 { 103 struct blkcg_gq *blkg = tg_to_blkg(tg); 104 105 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 106 return UINT_MAX; 107 108 return tg->iops[rw]; 109 } 110 111 /** 112 * throtl_log - log debug message via blktrace 113 * @sq: the service_queue being reported 114 * @fmt: printf format string 115 * @args: printf args 116 * 117 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 118 * throtl_grp; otherwise, just "throtl". 119 */ 120 #define throtl_log(sq, fmt, args...) do { \ 121 struct throtl_grp *__tg = sq_to_tg((sq)); \ 122 struct throtl_data *__td = sq_to_td((sq)); \ 123 \ 124 (void)__td; \ 125 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 126 break; \ 127 if ((__tg)) { \ 128 blk_add_cgroup_trace_msg(__td->queue, \ 129 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\ 130 } else { \ 131 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 132 } \ 133 } while (0) 134 135 static inline unsigned int throtl_bio_data_size(struct bio *bio) 136 { 137 /* assume it's one sector */ 138 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 139 return 512; 140 return bio->bi_iter.bi_size; 141 } 142 143 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 144 { 145 INIT_LIST_HEAD(&qn->node); 146 bio_list_init(&qn->bios); 147 qn->tg = tg; 148 } 149 150 /** 151 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 152 * @bio: bio being added 153 * @qn: qnode to add bio to 154 * @queued: the service_queue->queued[] list @qn belongs to 155 * 156 * Add @bio to @qn and put @qn on @queued if it's not already on. 157 * @qn->tg's reference count is bumped when @qn is activated. See the 158 * comment on top of throtl_qnode definition for details. 159 */ 160 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 161 struct list_head *queued) 162 { 163 bio_list_add(&qn->bios, bio); 164 if (list_empty(&qn->node)) { 165 list_add_tail(&qn->node, queued); 166 blkg_get(tg_to_blkg(qn->tg)); 167 } 168 } 169 170 /** 171 * throtl_peek_queued - peek the first bio on a qnode list 172 * @queued: the qnode list to peek 173 */ 174 static struct bio *throtl_peek_queued(struct list_head *queued) 175 { 176 struct throtl_qnode *qn; 177 struct bio *bio; 178 179 if (list_empty(queued)) 180 return NULL; 181 182 qn = list_first_entry(queued, struct throtl_qnode, node); 183 bio = bio_list_peek(&qn->bios); 184 WARN_ON_ONCE(!bio); 185 return bio; 186 } 187 188 /** 189 * throtl_pop_queued - pop the first bio form a qnode list 190 * @queued: the qnode list to pop a bio from 191 * @tg_to_put: optional out argument for throtl_grp to put 192 * 193 * Pop the first bio from the qnode list @queued. After popping, the first 194 * qnode is removed from @queued if empty or moved to the end of @queued so 195 * that the popping order is round-robin. 196 * 197 * When the first qnode is removed, its associated throtl_grp should be put 198 * too. If @tg_to_put is NULL, this function automatically puts it; 199 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 200 * responsible for putting it. 201 */ 202 static struct bio *throtl_pop_queued(struct list_head *queued, 203 struct throtl_grp **tg_to_put) 204 { 205 struct throtl_qnode *qn; 206 struct bio *bio; 207 208 if (list_empty(queued)) 209 return NULL; 210 211 qn = list_first_entry(queued, struct throtl_qnode, node); 212 bio = bio_list_pop(&qn->bios); 213 WARN_ON_ONCE(!bio); 214 215 if (bio_list_empty(&qn->bios)) { 216 list_del_init(&qn->node); 217 if (tg_to_put) 218 *tg_to_put = qn->tg; 219 else 220 blkg_put(tg_to_blkg(qn->tg)); 221 } else { 222 list_move_tail(&qn->node, queued); 223 } 224 225 return bio; 226 } 227 228 /* init a service_queue, assumes the caller zeroed it */ 229 static void throtl_service_queue_init(struct throtl_service_queue *sq) 230 { 231 INIT_LIST_HEAD(&sq->queued[READ]); 232 INIT_LIST_HEAD(&sq->queued[WRITE]); 233 sq->pending_tree = RB_ROOT_CACHED; 234 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 235 } 236 237 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk, 238 struct blkcg *blkcg, gfp_t gfp) 239 { 240 struct throtl_grp *tg; 241 int rw; 242 243 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id); 244 if (!tg) 245 return NULL; 246 247 if (blkg_rwstat_init(&tg->stat_bytes, gfp)) 248 goto err_free_tg; 249 250 if (blkg_rwstat_init(&tg->stat_ios, gfp)) 251 goto err_exit_stat_bytes; 252 253 throtl_service_queue_init(&tg->service_queue); 254 255 for (rw = READ; rw <= WRITE; rw++) { 256 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 257 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 258 } 259 260 RB_CLEAR_NODE(&tg->rb_node); 261 tg->bps[READ] = U64_MAX; 262 tg->bps[WRITE] = U64_MAX; 263 tg->iops[READ] = UINT_MAX; 264 tg->iops[WRITE] = UINT_MAX; 265 266 return &tg->pd; 267 268 err_exit_stat_bytes: 269 blkg_rwstat_exit(&tg->stat_bytes); 270 err_free_tg: 271 kfree(tg); 272 return NULL; 273 } 274 275 static void throtl_pd_init(struct blkg_policy_data *pd) 276 { 277 struct throtl_grp *tg = pd_to_tg(pd); 278 struct blkcg_gq *blkg = tg_to_blkg(tg); 279 struct throtl_data *td = blkg->q->td; 280 struct throtl_service_queue *sq = &tg->service_queue; 281 282 /* 283 * If on the default hierarchy, we switch to properly hierarchical 284 * behavior where limits on a given throtl_grp are applied to the 285 * whole subtree rather than just the group itself. e.g. If 16M 286 * read_bps limit is set on a parent group, summary bps of 287 * parent group and its subtree groups can't exceed 16M for the 288 * device. 289 * 290 * If not on the default hierarchy, the broken flat hierarchy 291 * behavior is retained where all throtl_grps are treated as if 292 * they're all separate root groups right below throtl_data. 293 * Limits of a group don't interact with limits of other groups 294 * regardless of the position of the group in the hierarchy. 295 */ 296 sq->parent_sq = &td->service_queue; 297 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 298 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 299 tg->td = td; 300 } 301 302 /* 303 * Set has_rules[] if @tg or any of its parents have limits configured. 304 * This doesn't require walking up to the top of the hierarchy as the 305 * parent's has_rules[] is guaranteed to be correct. 306 */ 307 static void tg_update_has_rules(struct throtl_grp *tg) 308 { 309 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 310 int rw; 311 312 for (rw = READ; rw <= WRITE; rw++) { 313 tg->has_rules_iops[rw] = 314 (parent_tg && parent_tg->has_rules_iops[rw]) || 315 tg_iops_limit(tg, rw) != UINT_MAX; 316 tg->has_rules_bps[rw] = 317 (parent_tg && parent_tg->has_rules_bps[rw]) || 318 tg_bps_limit(tg, rw) != U64_MAX; 319 } 320 } 321 322 static void throtl_pd_online(struct blkg_policy_data *pd) 323 { 324 struct throtl_grp *tg = pd_to_tg(pd); 325 /* 326 * We don't want new groups to escape the limits of its ancestors. 327 * Update has_rules[] after a new group is brought online. 328 */ 329 tg_update_has_rules(tg); 330 } 331 332 static void throtl_pd_free(struct blkg_policy_data *pd) 333 { 334 struct throtl_grp *tg = pd_to_tg(pd); 335 336 del_timer_sync(&tg->service_queue.pending_timer); 337 blkg_rwstat_exit(&tg->stat_bytes); 338 blkg_rwstat_exit(&tg->stat_ios); 339 kfree(tg); 340 } 341 342 static struct throtl_grp * 343 throtl_rb_first(struct throtl_service_queue *parent_sq) 344 { 345 struct rb_node *n; 346 347 n = rb_first_cached(&parent_sq->pending_tree); 348 WARN_ON_ONCE(!n); 349 if (!n) 350 return NULL; 351 return rb_entry_tg(n); 352 } 353 354 static void throtl_rb_erase(struct rb_node *n, 355 struct throtl_service_queue *parent_sq) 356 { 357 rb_erase_cached(n, &parent_sq->pending_tree); 358 RB_CLEAR_NODE(n); 359 } 360 361 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 362 { 363 struct throtl_grp *tg; 364 365 tg = throtl_rb_first(parent_sq); 366 if (!tg) 367 return; 368 369 parent_sq->first_pending_disptime = tg->disptime; 370 } 371 372 static void tg_service_queue_add(struct throtl_grp *tg) 373 { 374 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 375 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 376 struct rb_node *parent = NULL; 377 struct throtl_grp *__tg; 378 unsigned long key = tg->disptime; 379 bool leftmost = true; 380 381 while (*node != NULL) { 382 parent = *node; 383 __tg = rb_entry_tg(parent); 384 385 if (time_before(key, __tg->disptime)) 386 node = &parent->rb_left; 387 else { 388 node = &parent->rb_right; 389 leftmost = false; 390 } 391 } 392 393 rb_link_node(&tg->rb_node, parent, node); 394 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 395 leftmost); 396 } 397 398 static void throtl_enqueue_tg(struct throtl_grp *tg) 399 { 400 if (!(tg->flags & THROTL_TG_PENDING)) { 401 tg_service_queue_add(tg); 402 tg->flags |= THROTL_TG_PENDING; 403 tg->service_queue.parent_sq->nr_pending++; 404 } 405 } 406 407 static void throtl_dequeue_tg(struct throtl_grp *tg) 408 { 409 if (tg->flags & THROTL_TG_PENDING) { 410 struct throtl_service_queue *parent_sq = 411 tg->service_queue.parent_sq; 412 413 throtl_rb_erase(&tg->rb_node, parent_sq); 414 --parent_sq->nr_pending; 415 tg->flags &= ~THROTL_TG_PENDING; 416 } 417 } 418 419 /* Call with queue lock held */ 420 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 421 unsigned long expires) 422 { 423 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 424 425 /* 426 * Since we are adjusting the throttle limit dynamically, the sleep 427 * time calculated according to previous limit might be invalid. It's 428 * possible the cgroup sleep time is very long and no other cgroups 429 * have IO running so notify the limit changes. Make sure the cgroup 430 * doesn't sleep too long to avoid the missed notification. 431 */ 432 if (time_after(expires, max_expire)) 433 expires = max_expire; 434 mod_timer(&sq->pending_timer, expires); 435 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 436 expires - jiffies, jiffies); 437 } 438 439 /** 440 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 441 * @sq: the service_queue to schedule dispatch for 442 * @force: force scheduling 443 * 444 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 445 * dispatch time of the first pending child. Returns %true if either timer 446 * is armed or there's no pending child left. %false if the current 447 * dispatch window is still open and the caller should continue 448 * dispatching. 449 * 450 * If @force is %true, the dispatch timer is always scheduled and this 451 * function is guaranteed to return %true. This is to be used when the 452 * caller can't dispatch itself and needs to invoke pending_timer 453 * unconditionally. Note that forced scheduling is likely to induce short 454 * delay before dispatch starts even if @sq->first_pending_disptime is not 455 * in the future and thus shouldn't be used in hot paths. 456 */ 457 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 458 bool force) 459 { 460 /* any pending children left? */ 461 if (!sq->nr_pending) 462 return true; 463 464 update_min_dispatch_time(sq); 465 466 /* is the next dispatch time in the future? */ 467 if (force || time_after(sq->first_pending_disptime, jiffies)) { 468 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 469 return true; 470 } 471 472 /* tell the caller to continue dispatching */ 473 return false; 474 } 475 476 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 477 bool rw, unsigned long start) 478 { 479 tg->bytes_disp[rw] = 0; 480 tg->io_disp[rw] = 0; 481 tg->carryover_bytes[rw] = 0; 482 tg->carryover_ios[rw] = 0; 483 484 /* 485 * Previous slice has expired. We must have trimmed it after last 486 * bio dispatch. That means since start of last slice, we never used 487 * that bandwidth. Do try to make use of that bandwidth while giving 488 * credit. 489 */ 490 if (time_after(start, tg->slice_start[rw])) 491 tg->slice_start[rw] = start; 492 493 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 494 throtl_log(&tg->service_queue, 495 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 496 rw == READ ? 'R' : 'W', tg->slice_start[rw], 497 tg->slice_end[rw], jiffies); 498 } 499 500 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw, 501 bool clear_carryover) 502 { 503 tg->bytes_disp[rw] = 0; 504 tg->io_disp[rw] = 0; 505 tg->slice_start[rw] = jiffies; 506 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 507 if (clear_carryover) { 508 tg->carryover_bytes[rw] = 0; 509 tg->carryover_ios[rw] = 0; 510 } 511 512 throtl_log(&tg->service_queue, 513 "[%c] new slice start=%lu end=%lu jiffies=%lu", 514 rw == READ ? 'R' : 'W', tg->slice_start[rw], 515 tg->slice_end[rw], jiffies); 516 } 517 518 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 519 unsigned long jiffy_end) 520 { 521 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 522 } 523 524 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 525 unsigned long jiffy_end) 526 { 527 throtl_set_slice_end(tg, rw, jiffy_end); 528 throtl_log(&tg->service_queue, 529 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 530 rw == READ ? 'R' : 'W', tg->slice_start[rw], 531 tg->slice_end[rw], jiffies); 532 } 533 534 /* Determine if previously allocated or extended slice is complete or not */ 535 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 536 { 537 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 538 return false; 539 540 return true; 541 } 542 543 static unsigned int calculate_io_allowed(u32 iops_limit, 544 unsigned long jiffy_elapsed) 545 { 546 unsigned int io_allowed; 547 u64 tmp; 548 549 /* 550 * jiffy_elapsed should not be a big value as minimum iops can be 551 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 552 * will allow dispatch after 1 second and after that slice should 553 * have been trimmed. 554 */ 555 556 tmp = (u64)iops_limit * jiffy_elapsed; 557 do_div(tmp, HZ); 558 559 if (tmp > UINT_MAX) 560 io_allowed = UINT_MAX; 561 else 562 io_allowed = tmp; 563 564 return io_allowed; 565 } 566 567 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed) 568 { 569 /* 570 * Can result be wider than 64 bits? 571 * We check against 62, not 64, due to ilog2 truncation. 572 */ 573 if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62) 574 return U64_MAX; 575 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ); 576 } 577 578 /* Trim the used slices and adjust slice start accordingly */ 579 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 580 { 581 unsigned long time_elapsed; 582 long long bytes_trim; 583 int io_trim; 584 585 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 586 587 /* 588 * If bps are unlimited (-1), then time slice don't get 589 * renewed. Don't try to trim the slice if slice is used. A new 590 * slice will start when appropriate. 591 */ 592 if (throtl_slice_used(tg, rw)) 593 return; 594 595 /* 596 * A bio has been dispatched. Also adjust slice_end. It might happen 597 * that initially cgroup limit was very low resulting in high 598 * slice_end, but later limit was bumped up and bio was dispatched 599 * sooner, then we need to reduce slice_end. A high bogus slice_end 600 * is bad because it does not allow new slice to start. 601 */ 602 603 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 604 605 time_elapsed = rounddown(jiffies - tg->slice_start[rw], 606 tg->td->throtl_slice); 607 if (!time_elapsed) 608 return; 609 610 bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw), 611 time_elapsed) + 612 tg->carryover_bytes[rw]; 613 io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) + 614 tg->carryover_ios[rw]; 615 if (bytes_trim <= 0 && io_trim <= 0) 616 return; 617 618 tg->carryover_bytes[rw] = 0; 619 if ((long long)tg->bytes_disp[rw] >= bytes_trim) 620 tg->bytes_disp[rw] -= bytes_trim; 621 else 622 tg->bytes_disp[rw] = 0; 623 624 tg->carryover_ios[rw] = 0; 625 if ((int)tg->io_disp[rw] >= io_trim) 626 tg->io_disp[rw] -= io_trim; 627 else 628 tg->io_disp[rw] = 0; 629 630 tg->slice_start[rw] += time_elapsed; 631 632 throtl_log(&tg->service_queue, 633 "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu", 634 rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice, 635 bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw], 636 jiffies); 637 } 638 639 static void __tg_update_carryover(struct throtl_grp *tg, bool rw) 640 { 641 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw]; 642 u64 bps_limit = tg_bps_limit(tg, rw); 643 u32 iops_limit = tg_iops_limit(tg, rw); 644 645 /* 646 * If config is updated while bios are still throttled, calculate and 647 * accumulate how many bytes/ios are waited across changes. And 648 * carryover_bytes/ios will be used to calculate new wait time under new 649 * configuration. 650 */ 651 if (bps_limit != U64_MAX) 652 tg->carryover_bytes[rw] += 653 calculate_bytes_allowed(bps_limit, jiffy_elapsed) - 654 tg->bytes_disp[rw]; 655 if (iops_limit != UINT_MAX) 656 tg->carryover_ios[rw] += 657 calculate_io_allowed(iops_limit, jiffy_elapsed) - 658 tg->io_disp[rw]; 659 } 660 661 static void tg_update_carryover(struct throtl_grp *tg) 662 { 663 if (tg->service_queue.nr_queued[READ]) 664 __tg_update_carryover(tg, READ); 665 if (tg->service_queue.nr_queued[WRITE]) 666 __tg_update_carryover(tg, WRITE); 667 668 /* see comments in struct throtl_grp for meaning of these fields. */ 669 throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__, 670 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE], 671 tg->carryover_ios[READ], tg->carryover_ios[WRITE]); 672 } 673 674 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio, 675 u32 iops_limit) 676 { 677 bool rw = bio_data_dir(bio); 678 int io_allowed; 679 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 680 681 if (iops_limit == UINT_MAX) { 682 return 0; 683 } 684 685 jiffy_elapsed = jiffies - tg->slice_start[rw]; 686 687 /* Round up to the next throttle slice, wait time must be nonzero */ 688 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); 689 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) + 690 tg->carryover_ios[rw]; 691 if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed) 692 return 0; 693 694 /* Calc approx time to dispatch */ 695 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 696 697 /* make sure at least one io can be dispatched after waiting */ 698 jiffy_wait = max(jiffy_wait, HZ / iops_limit + 1); 699 return jiffy_wait; 700 } 701 702 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio, 703 u64 bps_limit) 704 { 705 bool rw = bio_data_dir(bio); 706 long long bytes_allowed; 707 u64 extra_bytes; 708 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 709 unsigned int bio_size = throtl_bio_data_size(bio); 710 711 /* no need to throttle if this bio's bytes have been accounted */ 712 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) { 713 return 0; 714 } 715 716 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 717 718 /* Slice has just started. Consider one slice interval */ 719 if (!jiffy_elapsed) 720 jiffy_elapsed_rnd = tg->td->throtl_slice; 721 722 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 723 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) + 724 tg->carryover_bytes[rw]; 725 if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed) 726 return 0; 727 728 /* Calc approx time to dispatch */ 729 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 730 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); 731 732 if (!jiffy_wait) 733 jiffy_wait = 1; 734 735 /* 736 * This wait time is without taking into consideration the rounding 737 * up we did. Add that time also. 738 */ 739 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 740 return jiffy_wait; 741 } 742 743 /* 744 * Returns whether one can dispatch a bio or not. Also returns approx number 745 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 746 */ 747 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 748 unsigned long *wait) 749 { 750 bool rw = bio_data_dir(bio); 751 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 752 u64 bps_limit = tg_bps_limit(tg, rw); 753 u32 iops_limit = tg_iops_limit(tg, rw); 754 755 /* 756 * Currently whole state machine of group depends on first bio 757 * queued in the group bio list. So one should not be calling 758 * this function with a different bio if there are other bios 759 * queued. 760 */ 761 BUG_ON(tg->service_queue.nr_queued[rw] && 762 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 763 764 /* If tg->bps = -1, then BW is unlimited */ 765 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) || 766 tg->flags & THROTL_TG_CANCELING) { 767 if (wait) 768 *wait = 0; 769 return true; 770 } 771 772 /* 773 * If previous slice expired, start a new one otherwise renew/extend 774 * existing slice to make sure it is at least throtl_slice interval 775 * long since now. New slice is started only for empty throttle group. 776 * If there is queued bio, that means there should be an active 777 * slice and it should be extended instead. 778 */ 779 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 780 throtl_start_new_slice(tg, rw, true); 781 else { 782 if (time_before(tg->slice_end[rw], 783 jiffies + tg->td->throtl_slice)) 784 throtl_extend_slice(tg, rw, 785 jiffies + tg->td->throtl_slice); 786 } 787 788 bps_wait = tg_within_bps_limit(tg, bio, bps_limit); 789 iops_wait = tg_within_iops_limit(tg, bio, iops_limit); 790 if (bps_wait + iops_wait == 0) { 791 if (wait) 792 *wait = 0; 793 return true; 794 } 795 796 max_wait = max(bps_wait, iops_wait); 797 798 if (wait) 799 *wait = max_wait; 800 801 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 802 throtl_extend_slice(tg, rw, jiffies + max_wait); 803 804 return false; 805 } 806 807 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 808 { 809 bool rw = bio_data_dir(bio); 810 unsigned int bio_size = throtl_bio_data_size(bio); 811 812 /* Charge the bio to the group */ 813 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) { 814 tg->bytes_disp[rw] += bio_size; 815 tg->last_bytes_disp[rw] += bio_size; 816 } 817 818 tg->io_disp[rw]++; 819 tg->last_io_disp[rw]++; 820 } 821 822 /** 823 * throtl_add_bio_tg - add a bio to the specified throtl_grp 824 * @bio: bio to add 825 * @qn: qnode to use 826 * @tg: the target throtl_grp 827 * 828 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 829 * tg->qnode_on_self[] is used. 830 */ 831 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 832 struct throtl_grp *tg) 833 { 834 struct throtl_service_queue *sq = &tg->service_queue; 835 bool rw = bio_data_dir(bio); 836 837 if (!qn) 838 qn = &tg->qnode_on_self[rw]; 839 840 /* 841 * If @tg doesn't currently have any bios queued in the same 842 * direction, queueing @bio can change when @tg should be 843 * dispatched. Mark that @tg was empty. This is automatically 844 * cleared on the next tg_update_disptime(). 845 */ 846 if (!sq->nr_queued[rw]) 847 tg->flags |= THROTL_TG_WAS_EMPTY; 848 849 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 850 851 sq->nr_queued[rw]++; 852 throtl_enqueue_tg(tg); 853 } 854 855 static void tg_update_disptime(struct throtl_grp *tg) 856 { 857 struct throtl_service_queue *sq = &tg->service_queue; 858 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 859 struct bio *bio; 860 861 bio = throtl_peek_queued(&sq->queued[READ]); 862 if (bio) 863 tg_may_dispatch(tg, bio, &read_wait); 864 865 bio = throtl_peek_queued(&sq->queued[WRITE]); 866 if (bio) 867 tg_may_dispatch(tg, bio, &write_wait); 868 869 min_wait = min(read_wait, write_wait); 870 disptime = jiffies + min_wait; 871 872 /* Update dispatch time */ 873 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 874 tg->disptime = disptime; 875 tg_service_queue_add(tg); 876 877 /* see throtl_add_bio_tg() */ 878 tg->flags &= ~THROTL_TG_WAS_EMPTY; 879 } 880 881 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 882 struct throtl_grp *parent_tg, bool rw) 883 { 884 if (throtl_slice_used(parent_tg, rw)) { 885 throtl_start_new_slice_with_credit(parent_tg, rw, 886 child_tg->slice_start[rw]); 887 } 888 889 } 890 891 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 892 { 893 struct throtl_service_queue *sq = &tg->service_queue; 894 struct throtl_service_queue *parent_sq = sq->parent_sq; 895 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 896 struct throtl_grp *tg_to_put = NULL; 897 struct bio *bio; 898 899 /* 900 * @bio is being transferred from @tg to @parent_sq. Popping a bio 901 * from @tg may put its reference and @parent_sq might end up 902 * getting released prematurely. Remember the tg to put and put it 903 * after @bio is transferred to @parent_sq. 904 */ 905 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 906 sq->nr_queued[rw]--; 907 908 throtl_charge_bio(tg, bio); 909 910 /* 911 * If our parent is another tg, we just need to transfer @bio to 912 * the parent using throtl_add_bio_tg(). If our parent is 913 * @td->service_queue, @bio is ready to be issued. Put it on its 914 * bio_lists[] and decrease total number queued. The caller is 915 * responsible for issuing these bios. 916 */ 917 if (parent_tg) { 918 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 919 start_parent_slice_with_credit(tg, parent_tg, rw); 920 } else { 921 bio_set_flag(bio, BIO_BPS_THROTTLED); 922 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 923 &parent_sq->queued[rw]); 924 BUG_ON(tg->td->nr_queued[rw] <= 0); 925 tg->td->nr_queued[rw]--; 926 } 927 928 throtl_trim_slice(tg, rw); 929 930 if (tg_to_put) 931 blkg_put(tg_to_blkg(tg_to_put)); 932 } 933 934 static int throtl_dispatch_tg(struct throtl_grp *tg) 935 { 936 struct throtl_service_queue *sq = &tg->service_queue; 937 unsigned int nr_reads = 0, nr_writes = 0; 938 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; 939 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; 940 struct bio *bio; 941 942 /* Try to dispatch 75% READS and 25% WRITES */ 943 944 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 945 tg_may_dispatch(tg, bio, NULL)) { 946 947 tg_dispatch_one_bio(tg, READ); 948 nr_reads++; 949 950 if (nr_reads >= max_nr_reads) 951 break; 952 } 953 954 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 955 tg_may_dispatch(tg, bio, NULL)) { 956 957 tg_dispatch_one_bio(tg, WRITE); 958 nr_writes++; 959 960 if (nr_writes >= max_nr_writes) 961 break; 962 } 963 964 return nr_reads + nr_writes; 965 } 966 967 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 968 { 969 unsigned int nr_disp = 0; 970 971 while (1) { 972 struct throtl_grp *tg; 973 struct throtl_service_queue *sq; 974 975 if (!parent_sq->nr_pending) 976 break; 977 978 tg = throtl_rb_first(parent_sq); 979 if (!tg) 980 break; 981 982 if (time_before(jiffies, tg->disptime)) 983 break; 984 985 nr_disp += throtl_dispatch_tg(tg); 986 987 sq = &tg->service_queue; 988 if (sq->nr_queued[READ] || sq->nr_queued[WRITE]) 989 tg_update_disptime(tg); 990 else 991 throtl_dequeue_tg(tg); 992 993 if (nr_disp >= THROTL_QUANTUM) 994 break; 995 } 996 997 return nr_disp; 998 } 999 1000 /** 1001 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1002 * @t: the pending_timer member of the throtl_service_queue being serviced 1003 * 1004 * This timer is armed when a child throtl_grp with active bio's become 1005 * pending and queued on the service_queue's pending_tree and expires when 1006 * the first child throtl_grp should be dispatched. This function 1007 * dispatches bio's from the children throtl_grps to the parent 1008 * service_queue. 1009 * 1010 * If the parent's parent is another throtl_grp, dispatching is propagated 1011 * by either arming its pending_timer or repeating dispatch directly. If 1012 * the top-level service_tree is reached, throtl_data->dispatch_work is 1013 * kicked so that the ready bio's are issued. 1014 */ 1015 static void throtl_pending_timer_fn(struct timer_list *t) 1016 { 1017 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1018 struct throtl_grp *tg = sq_to_tg(sq); 1019 struct throtl_data *td = sq_to_td(sq); 1020 struct throtl_service_queue *parent_sq; 1021 struct request_queue *q; 1022 bool dispatched; 1023 int ret; 1024 1025 /* throtl_data may be gone, so figure out request queue by blkg */ 1026 if (tg) 1027 q = tg->pd.blkg->q; 1028 else 1029 q = td->queue; 1030 1031 spin_lock_irq(&q->queue_lock); 1032 1033 if (!q->root_blkg) 1034 goto out_unlock; 1035 1036 again: 1037 parent_sq = sq->parent_sq; 1038 dispatched = false; 1039 1040 while (true) { 1041 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1042 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1043 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1044 1045 ret = throtl_select_dispatch(sq); 1046 if (ret) { 1047 throtl_log(sq, "bios disp=%u", ret); 1048 dispatched = true; 1049 } 1050 1051 if (throtl_schedule_next_dispatch(sq, false)) 1052 break; 1053 1054 /* this dispatch windows is still open, relax and repeat */ 1055 spin_unlock_irq(&q->queue_lock); 1056 cpu_relax(); 1057 spin_lock_irq(&q->queue_lock); 1058 } 1059 1060 if (!dispatched) 1061 goto out_unlock; 1062 1063 if (parent_sq) { 1064 /* @parent_sq is another throl_grp, propagate dispatch */ 1065 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1066 tg_update_disptime(tg); 1067 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1068 /* window is already open, repeat dispatching */ 1069 sq = parent_sq; 1070 tg = sq_to_tg(sq); 1071 goto again; 1072 } 1073 } 1074 } else { 1075 /* reached the top-level, queue issuing */ 1076 queue_work(kthrotld_workqueue, &td->dispatch_work); 1077 } 1078 out_unlock: 1079 spin_unlock_irq(&q->queue_lock); 1080 } 1081 1082 /** 1083 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1084 * @work: work item being executed 1085 * 1086 * This function is queued for execution when bios reach the bio_lists[] 1087 * of throtl_data->service_queue. Those bios are ready and issued by this 1088 * function. 1089 */ 1090 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1091 { 1092 struct throtl_data *td = container_of(work, struct throtl_data, 1093 dispatch_work); 1094 struct throtl_service_queue *td_sq = &td->service_queue; 1095 struct request_queue *q = td->queue; 1096 struct bio_list bio_list_on_stack; 1097 struct bio *bio; 1098 struct blk_plug plug; 1099 int rw; 1100 1101 bio_list_init(&bio_list_on_stack); 1102 1103 spin_lock_irq(&q->queue_lock); 1104 for (rw = READ; rw <= WRITE; rw++) 1105 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1106 bio_list_add(&bio_list_on_stack, bio); 1107 spin_unlock_irq(&q->queue_lock); 1108 1109 if (!bio_list_empty(&bio_list_on_stack)) { 1110 blk_start_plug(&plug); 1111 while ((bio = bio_list_pop(&bio_list_on_stack))) 1112 submit_bio_noacct_nocheck(bio); 1113 blk_finish_plug(&plug); 1114 } 1115 } 1116 1117 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1118 int off) 1119 { 1120 struct throtl_grp *tg = pd_to_tg(pd); 1121 u64 v = *(u64 *)((void *)tg + off); 1122 1123 if (v == U64_MAX) 1124 return 0; 1125 return __blkg_prfill_u64(sf, pd, v); 1126 } 1127 1128 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1129 int off) 1130 { 1131 struct throtl_grp *tg = pd_to_tg(pd); 1132 unsigned int v = *(unsigned int *)((void *)tg + off); 1133 1134 if (v == UINT_MAX) 1135 return 0; 1136 return __blkg_prfill_u64(sf, pd, v); 1137 } 1138 1139 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1140 { 1141 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1142 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1143 return 0; 1144 } 1145 1146 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1147 { 1148 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1149 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1150 return 0; 1151 } 1152 1153 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1154 { 1155 struct throtl_service_queue *sq = &tg->service_queue; 1156 struct cgroup_subsys_state *pos_css; 1157 struct blkcg_gq *blkg; 1158 1159 throtl_log(&tg->service_queue, 1160 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1161 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1162 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1163 1164 rcu_read_lock(); 1165 /* 1166 * Update has_rules[] flags for the updated tg's subtree. A tg is 1167 * considered to have rules if either the tg itself or any of its 1168 * ancestors has rules. This identifies groups without any 1169 * restrictions in the whole hierarchy and allows them to bypass 1170 * blk-throttle. 1171 */ 1172 blkg_for_each_descendant_pre(blkg, pos_css, 1173 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1174 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1175 1176 tg_update_has_rules(this_tg); 1177 /* ignore root/second level */ 1178 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1179 !blkg->parent->parent) 1180 continue; 1181 } 1182 rcu_read_unlock(); 1183 1184 /* 1185 * We're already holding queue_lock and know @tg is valid. Let's 1186 * apply the new config directly. 1187 * 1188 * Restart the slices for both READ and WRITES. It might happen 1189 * that a group's limit are dropped suddenly and we don't want to 1190 * account recently dispatched IO with new low rate. 1191 */ 1192 throtl_start_new_slice(tg, READ, false); 1193 throtl_start_new_slice(tg, WRITE, false); 1194 1195 if (tg->flags & THROTL_TG_PENDING) { 1196 tg_update_disptime(tg); 1197 throtl_schedule_next_dispatch(sq->parent_sq, true); 1198 } 1199 } 1200 1201 static int blk_throtl_init(struct gendisk *disk) 1202 { 1203 struct request_queue *q = disk->queue; 1204 struct throtl_data *td; 1205 int ret; 1206 1207 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 1208 if (!td) 1209 return -ENOMEM; 1210 1211 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 1212 throtl_service_queue_init(&td->service_queue); 1213 1214 /* 1215 * Freeze queue before activating policy, to synchronize with IO path, 1216 * which is protected by 'q_usage_counter'. 1217 */ 1218 blk_mq_freeze_queue(disk->queue); 1219 blk_mq_quiesce_queue(disk->queue); 1220 1221 q->td = td; 1222 td->queue = q; 1223 1224 /* activate policy */ 1225 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl); 1226 if (ret) { 1227 q->td = NULL; 1228 kfree(td); 1229 goto out; 1230 } 1231 1232 if (blk_queue_nonrot(q)) 1233 td->throtl_slice = DFL_THROTL_SLICE_SSD; 1234 else 1235 td->throtl_slice = DFL_THROTL_SLICE_HD; 1236 td->track_bio_latency = !queue_is_mq(q); 1237 if (!td->track_bio_latency) 1238 blk_stat_enable_accounting(q); 1239 1240 out: 1241 blk_mq_unquiesce_queue(disk->queue); 1242 blk_mq_unfreeze_queue(disk->queue); 1243 1244 return ret; 1245 } 1246 1247 1248 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1249 char *buf, size_t nbytes, loff_t off, bool is_u64) 1250 { 1251 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1252 struct blkg_conf_ctx ctx; 1253 struct throtl_grp *tg; 1254 int ret; 1255 u64 v; 1256 1257 blkg_conf_init(&ctx, buf); 1258 1259 ret = blkg_conf_open_bdev(&ctx); 1260 if (ret) 1261 goto out_finish; 1262 1263 if (!blk_throtl_activated(ctx.bdev->bd_queue)) { 1264 ret = blk_throtl_init(ctx.bdev->bd_disk); 1265 if (ret) 1266 goto out_finish; 1267 } 1268 1269 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx); 1270 if (ret) 1271 goto out_finish; 1272 1273 ret = -EINVAL; 1274 if (sscanf(ctx.body, "%llu", &v) != 1) 1275 goto out_finish; 1276 if (!v) 1277 v = U64_MAX; 1278 1279 tg = blkg_to_tg(ctx.blkg); 1280 tg_update_carryover(tg); 1281 1282 if (is_u64) 1283 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1284 else 1285 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1286 1287 tg_conf_updated(tg, false); 1288 ret = 0; 1289 out_finish: 1290 blkg_conf_exit(&ctx); 1291 return ret ?: nbytes; 1292 } 1293 1294 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1295 char *buf, size_t nbytes, loff_t off) 1296 { 1297 return tg_set_conf(of, buf, nbytes, off, true); 1298 } 1299 1300 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1301 char *buf, size_t nbytes, loff_t off) 1302 { 1303 return tg_set_conf(of, buf, nbytes, off, false); 1304 } 1305 1306 static int tg_print_rwstat(struct seq_file *sf, void *v) 1307 { 1308 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1309 blkg_prfill_rwstat, &blkcg_policy_throtl, 1310 seq_cft(sf)->private, true); 1311 return 0; 1312 } 1313 1314 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, 1315 struct blkg_policy_data *pd, int off) 1316 { 1317 struct blkg_rwstat_sample sum; 1318 1319 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, 1320 &sum); 1321 return __blkg_prfill_rwstat(sf, pd, &sum); 1322 } 1323 1324 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) 1325 { 1326 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1327 tg_prfill_rwstat_recursive, &blkcg_policy_throtl, 1328 seq_cft(sf)->private, true); 1329 return 0; 1330 } 1331 1332 static struct cftype throtl_legacy_files[] = { 1333 { 1334 .name = "throttle.read_bps_device", 1335 .private = offsetof(struct throtl_grp, bps[READ]), 1336 .seq_show = tg_print_conf_u64, 1337 .write = tg_set_conf_u64, 1338 }, 1339 { 1340 .name = "throttle.write_bps_device", 1341 .private = offsetof(struct throtl_grp, bps[WRITE]), 1342 .seq_show = tg_print_conf_u64, 1343 .write = tg_set_conf_u64, 1344 }, 1345 { 1346 .name = "throttle.read_iops_device", 1347 .private = offsetof(struct throtl_grp, iops[READ]), 1348 .seq_show = tg_print_conf_uint, 1349 .write = tg_set_conf_uint, 1350 }, 1351 { 1352 .name = "throttle.write_iops_device", 1353 .private = offsetof(struct throtl_grp, iops[WRITE]), 1354 .seq_show = tg_print_conf_uint, 1355 .write = tg_set_conf_uint, 1356 }, 1357 { 1358 .name = "throttle.io_service_bytes", 1359 .private = offsetof(struct throtl_grp, stat_bytes), 1360 .seq_show = tg_print_rwstat, 1361 }, 1362 { 1363 .name = "throttle.io_service_bytes_recursive", 1364 .private = offsetof(struct throtl_grp, stat_bytes), 1365 .seq_show = tg_print_rwstat_recursive, 1366 }, 1367 { 1368 .name = "throttle.io_serviced", 1369 .private = offsetof(struct throtl_grp, stat_ios), 1370 .seq_show = tg_print_rwstat, 1371 }, 1372 { 1373 .name = "throttle.io_serviced_recursive", 1374 .private = offsetof(struct throtl_grp, stat_ios), 1375 .seq_show = tg_print_rwstat_recursive, 1376 }, 1377 { } /* terminate */ 1378 }; 1379 1380 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1381 int off) 1382 { 1383 struct throtl_grp *tg = pd_to_tg(pd); 1384 const char *dname = blkg_dev_name(pd->blkg); 1385 u64 bps_dft; 1386 unsigned int iops_dft; 1387 1388 if (!dname) 1389 return 0; 1390 1391 bps_dft = U64_MAX; 1392 iops_dft = UINT_MAX; 1393 1394 if (tg->bps[READ] == bps_dft && 1395 tg->bps[WRITE] == bps_dft && 1396 tg->iops[READ] == iops_dft && 1397 tg->iops[WRITE] == iops_dft) 1398 return 0; 1399 1400 seq_printf(sf, "%s", dname); 1401 if (tg->bps[READ] == U64_MAX) 1402 seq_printf(sf, " rbps=max"); 1403 else 1404 seq_printf(sf, " rbps=%llu", tg->bps[READ]); 1405 1406 if (tg->bps[WRITE] == U64_MAX) 1407 seq_printf(sf, " wbps=max"); 1408 else 1409 seq_printf(sf, " wbps=%llu", tg->bps[WRITE]); 1410 1411 if (tg->iops[READ] == UINT_MAX) 1412 seq_printf(sf, " riops=max"); 1413 else 1414 seq_printf(sf, " riops=%u", tg->iops[READ]); 1415 1416 if (tg->iops[WRITE] == UINT_MAX) 1417 seq_printf(sf, " wiops=max"); 1418 else 1419 seq_printf(sf, " wiops=%u", tg->iops[WRITE]); 1420 1421 seq_printf(sf, "\n"); 1422 return 0; 1423 } 1424 1425 static int tg_print_limit(struct seq_file *sf, void *v) 1426 { 1427 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1428 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1429 return 0; 1430 } 1431 1432 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1433 char *buf, size_t nbytes, loff_t off) 1434 { 1435 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1436 struct blkg_conf_ctx ctx; 1437 struct throtl_grp *tg; 1438 u64 v[4]; 1439 int ret; 1440 1441 blkg_conf_init(&ctx, buf); 1442 1443 ret = blkg_conf_open_bdev(&ctx); 1444 if (ret) 1445 goto out_finish; 1446 1447 if (!blk_throtl_activated(ctx.bdev->bd_queue)) { 1448 ret = blk_throtl_init(ctx.bdev->bd_disk); 1449 if (ret) 1450 goto out_finish; 1451 } 1452 1453 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx); 1454 if (ret) 1455 goto out_finish; 1456 1457 tg = blkg_to_tg(ctx.blkg); 1458 tg_update_carryover(tg); 1459 1460 v[0] = tg->bps[READ]; 1461 v[1] = tg->bps[WRITE]; 1462 v[2] = tg->iops[READ]; 1463 v[3] = tg->iops[WRITE]; 1464 1465 while (true) { 1466 char tok[27]; /* wiops=18446744073709551616 */ 1467 char *p; 1468 u64 val = U64_MAX; 1469 int len; 1470 1471 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1472 break; 1473 if (tok[0] == '\0') 1474 break; 1475 ctx.body += len; 1476 1477 ret = -EINVAL; 1478 p = tok; 1479 strsep(&p, "="); 1480 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1481 goto out_finish; 1482 1483 ret = -ERANGE; 1484 if (!val) 1485 goto out_finish; 1486 1487 ret = -EINVAL; 1488 if (!strcmp(tok, "rbps") && val > 1) 1489 v[0] = val; 1490 else if (!strcmp(tok, "wbps") && val > 1) 1491 v[1] = val; 1492 else if (!strcmp(tok, "riops") && val > 1) 1493 v[2] = min_t(u64, val, UINT_MAX); 1494 else if (!strcmp(tok, "wiops") && val > 1) 1495 v[3] = min_t(u64, val, UINT_MAX); 1496 else 1497 goto out_finish; 1498 } 1499 1500 tg->bps[READ] = v[0]; 1501 tg->bps[WRITE] = v[1]; 1502 tg->iops[READ] = v[2]; 1503 tg->iops[WRITE] = v[3]; 1504 1505 tg_conf_updated(tg, false); 1506 ret = 0; 1507 out_finish: 1508 blkg_conf_exit(&ctx); 1509 return ret ?: nbytes; 1510 } 1511 1512 static struct cftype throtl_files[] = { 1513 { 1514 .name = "max", 1515 .flags = CFTYPE_NOT_ON_ROOT, 1516 .seq_show = tg_print_limit, 1517 .write = tg_set_limit, 1518 }, 1519 { } /* terminate */ 1520 }; 1521 1522 static void throtl_shutdown_wq(struct request_queue *q) 1523 { 1524 struct throtl_data *td = q->td; 1525 1526 cancel_work_sync(&td->dispatch_work); 1527 } 1528 1529 struct blkcg_policy blkcg_policy_throtl = { 1530 .dfl_cftypes = throtl_files, 1531 .legacy_cftypes = throtl_legacy_files, 1532 1533 .pd_alloc_fn = throtl_pd_alloc, 1534 .pd_init_fn = throtl_pd_init, 1535 .pd_online_fn = throtl_pd_online, 1536 .pd_free_fn = throtl_pd_free, 1537 }; 1538 1539 void blk_throtl_cancel_bios(struct gendisk *disk) 1540 { 1541 struct request_queue *q = disk->queue; 1542 struct cgroup_subsys_state *pos_css; 1543 struct blkcg_gq *blkg; 1544 1545 if (!blk_throtl_activated(q)) 1546 return; 1547 1548 spin_lock_irq(&q->queue_lock); 1549 /* 1550 * queue_lock is held, rcu lock is not needed here technically. 1551 * However, rcu lock is still held to emphasize that following 1552 * path need RCU protection and to prevent warning from lockdep. 1553 */ 1554 rcu_read_lock(); 1555 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) { 1556 struct throtl_grp *tg = blkg_to_tg(blkg); 1557 struct throtl_service_queue *sq = &tg->service_queue; 1558 1559 /* 1560 * Set the flag to make sure throtl_pending_timer_fn() won't 1561 * stop until all throttled bios are dispatched. 1562 */ 1563 tg->flags |= THROTL_TG_CANCELING; 1564 1565 /* 1566 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup 1567 * will be inserted to service queue without THROTL_TG_PENDING 1568 * set in tg_update_disptime below. Then IO dispatched from 1569 * child in tg_dispatch_one_bio will trigger double insertion 1570 * and corrupt the tree. 1571 */ 1572 if (!(tg->flags & THROTL_TG_PENDING)) 1573 continue; 1574 1575 /* 1576 * Update disptime after setting the above flag to make sure 1577 * throtl_select_dispatch() won't exit without dispatching. 1578 */ 1579 tg_update_disptime(tg); 1580 1581 throtl_schedule_pending_timer(sq, jiffies + 1); 1582 } 1583 rcu_read_unlock(); 1584 spin_unlock_irq(&q->queue_lock); 1585 } 1586 1587 bool __blk_throtl_bio(struct bio *bio) 1588 { 1589 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1590 struct blkcg_gq *blkg = bio->bi_blkg; 1591 struct throtl_qnode *qn = NULL; 1592 struct throtl_grp *tg = blkg_to_tg(blkg); 1593 struct throtl_service_queue *sq; 1594 bool rw = bio_data_dir(bio); 1595 bool throttled = false; 1596 struct throtl_data *td = tg->td; 1597 1598 rcu_read_lock(); 1599 spin_lock_irq(&q->queue_lock); 1600 sq = &tg->service_queue; 1601 1602 while (true) { 1603 if (tg->last_low_overflow_time[rw] == 0) 1604 tg->last_low_overflow_time[rw] = jiffies; 1605 /* throtl is FIFO - if bios are already queued, should queue */ 1606 if (sq->nr_queued[rw]) 1607 break; 1608 1609 /* if above limits, break to queue */ 1610 if (!tg_may_dispatch(tg, bio, NULL)) { 1611 tg->last_low_overflow_time[rw] = jiffies; 1612 break; 1613 } 1614 1615 /* within limits, let's charge and dispatch directly */ 1616 throtl_charge_bio(tg, bio); 1617 1618 /* 1619 * We need to trim slice even when bios are not being queued 1620 * otherwise it might happen that a bio is not queued for 1621 * a long time and slice keeps on extending and trim is not 1622 * called for a long time. Now if limits are reduced suddenly 1623 * we take into account all the IO dispatched so far at new 1624 * low rate and * newly queued IO gets a really long dispatch 1625 * time. 1626 * 1627 * So keep on trimming slice even if bio is not queued. 1628 */ 1629 throtl_trim_slice(tg, rw); 1630 1631 /* 1632 * @bio passed through this layer without being throttled. 1633 * Climb up the ladder. If we're already at the top, it 1634 * can be executed directly. 1635 */ 1636 qn = &tg->qnode_on_parent[rw]; 1637 sq = sq->parent_sq; 1638 tg = sq_to_tg(sq); 1639 if (!tg) { 1640 bio_set_flag(bio, BIO_BPS_THROTTLED); 1641 goto out_unlock; 1642 } 1643 } 1644 1645 /* out-of-limit, queue to @tg */ 1646 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 1647 rw == READ ? 'R' : 'W', 1648 tg->bytes_disp[rw], bio->bi_iter.bi_size, 1649 tg_bps_limit(tg, rw), 1650 tg->io_disp[rw], tg_iops_limit(tg, rw), 1651 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1652 1653 tg->last_low_overflow_time[rw] = jiffies; 1654 1655 td->nr_queued[rw]++; 1656 throtl_add_bio_tg(bio, qn, tg); 1657 throttled = true; 1658 1659 /* 1660 * Update @tg's dispatch time and force schedule dispatch if @tg 1661 * was empty before @bio. The forced scheduling isn't likely to 1662 * cause undue delay as @bio is likely to be dispatched directly if 1663 * its @tg's disptime is not in the future. 1664 */ 1665 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1666 tg_update_disptime(tg); 1667 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 1668 } 1669 1670 out_unlock: 1671 spin_unlock_irq(&q->queue_lock); 1672 1673 rcu_read_unlock(); 1674 return throttled; 1675 } 1676 1677 void blk_throtl_exit(struct gendisk *disk) 1678 { 1679 struct request_queue *q = disk->queue; 1680 1681 if (!blk_throtl_activated(q)) 1682 return; 1683 1684 del_timer_sync(&q->td->service_queue.pending_timer); 1685 throtl_shutdown_wq(q); 1686 blkcg_deactivate_policy(disk, &blkcg_policy_throtl); 1687 kfree(q->td); 1688 } 1689 1690 static int __init throtl_init(void) 1691 { 1692 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 1693 if (!kthrotld_workqueue) 1694 panic("Failed to create kthrotld\n"); 1695 1696 return blkcg_policy_register(&blkcg_policy_throtl); 1697 } 1698 1699 module_init(throtl_init); 1700