1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include <linux/blk-cgroup.h> 14 #include "blk.h" 15 16 /* Max dispatch from a group in 1 round */ 17 static int throtl_grp_quantum = 8; 18 19 /* Total max dispatch from all groups in one round */ 20 static int throtl_quantum = 32; 21 22 /* Throttling is performed over a slice and after that slice is renewed */ 23 #define DFL_THROTL_SLICE_HD (HZ / 10) 24 #define DFL_THROTL_SLICE_SSD (HZ / 50) 25 #define MAX_THROTL_SLICE (HZ) 26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 27 #define MIN_THROTL_BPS (320 * 1024) 28 #define MIN_THROTL_IOPS (10) 29 #define DFL_LATENCY_TARGET (-1L) 30 #define DFL_IDLE_THRESHOLD (0) 31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 32 #define LATENCY_FILTERED_SSD (0) 33 /* 34 * For HD, very small latency comes from sequential IO. Such IO is helpless to 35 * help determine if its IO is impacted by others, hence we ignore the IO 36 */ 37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 38 39 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT) 40 41 static struct blkcg_policy blkcg_policy_throtl; 42 43 /* A workqueue to queue throttle related work */ 44 static struct workqueue_struct *kthrotld_workqueue; 45 46 /* 47 * To implement hierarchical throttling, throtl_grps form a tree and bios 48 * are dispatched upwards level by level until they reach the top and get 49 * issued. When dispatching bios from the children and local group at each 50 * level, if the bios are dispatched into a single bio_list, there's a risk 51 * of a local or child group which can queue many bios at once filling up 52 * the list starving others. 53 * 54 * To avoid such starvation, dispatched bios are queued separately 55 * according to where they came from. When they are again dispatched to 56 * the parent, they're popped in round-robin order so that no single source 57 * hogs the dispatch window. 58 * 59 * throtl_qnode is used to keep the queued bios separated by their sources. 60 * Bios are queued to throtl_qnode which in turn is queued to 61 * throtl_service_queue and then dispatched in round-robin order. 62 * 63 * It's also used to track the reference counts on blkg's. A qnode always 64 * belongs to a throtl_grp and gets queued on itself or the parent, so 65 * incrementing the reference of the associated throtl_grp when a qnode is 66 * queued and decrementing when dequeued is enough to keep the whole blkg 67 * tree pinned while bios are in flight. 68 */ 69 struct throtl_qnode { 70 struct list_head node; /* service_queue->queued[] */ 71 struct bio_list bios; /* queued bios */ 72 struct throtl_grp *tg; /* tg this qnode belongs to */ 73 }; 74 75 struct throtl_service_queue { 76 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 77 78 /* 79 * Bios queued directly to this service_queue or dispatched from 80 * children throtl_grp's. 81 */ 82 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 83 unsigned int nr_queued[2]; /* number of queued bios */ 84 85 /* 86 * RB tree of active children throtl_grp's, which are sorted by 87 * their ->disptime. 88 */ 89 struct rb_root pending_tree; /* RB tree of active tgs */ 90 struct rb_node *first_pending; /* first node in the tree */ 91 unsigned int nr_pending; /* # queued in the tree */ 92 unsigned long first_pending_disptime; /* disptime of the first tg */ 93 struct timer_list pending_timer; /* fires on first_pending_disptime */ 94 }; 95 96 enum tg_state_flags { 97 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 98 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 99 }; 100 101 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 102 103 enum { 104 LIMIT_LOW, 105 LIMIT_MAX, 106 LIMIT_CNT, 107 }; 108 109 struct throtl_grp { 110 /* must be the first member */ 111 struct blkg_policy_data pd; 112 113 /* active throtl group service_queue member */ 114 struct rb_node rb_node; 115 116 /* throtl_data this group belongs to */ 117 struct throtl_data *td; 118 119 /* this group's service queue */ 120 struct throtl_service_queue service_queue; 121 122 /* 123 * qnode_on_self is used when bios are directly queued to this 124 * throtl_grp so that local bios compete fairly with bios 125 * dispatched from children. qnode_on_parent is used when bios are 126 * dispatched from this throtl_grp into its parent and will compete 127 * with the sibling qnode_on_parents and the parent's 128 * qnode_on_self. 129 */ 130 struct throtl_qnode qnode_on_self[2]; 131 struct throtl_qnode qnode_on_parent[2]; 132 133 /* 134 * Dispatch time in jiffies. This is the estimated time when group 135 * will unthrottle and is ready to dispatch more bio. It is used as 136 * key to sort active groups in service tree. 137 */ 138 unsigned long disptime; 139 140 unsigned int flags; 141 142 /* are there any throtl rules between this group and td? */ 143 bool has_rules[2]; 144 145 /* internally used bytes per second rate limits */ 146 uint64_t bps[2][LIMIT_CNT]; 147 /* user configured bps limits */ 148 uint64_t bps_conf[2][LIMIT_CNT]; 149 150 /* internally used IOPS limits */ 151 unsigned int iops[2][LIMIT_CNT]; 152 /* user configured IOPS limits */ 153 unsigned int iops_conf[2][LIMIT_CNT]; 154 155 /* Number of bytes disptached in current slice */ 156 uint64_t bytes_disp[2]; 157 /* Number of bio's dispatched in current slice */ 158 unsigned int io_disp[2]; 159 160 unsigned long last_low_overflow_time[2]; 161 162 uint64_t last_bytes_disp[2]; 163 unsigned int last_io_disp[2]; 164 165 unsigned long last_check_time; 166 167 unsigned long latency_target; /* us */ 168 unsigned long latency_target_conf; /* us */ 169 /* When did we start a new slice */ 170 unsigned long slice_start[2]; 171 unsigned long slice_end[2]; 172 173 unsigned long last_finish_time; /* ns / 1024 */ 174 unsigned long checked_last_finish_time; /* ns / 1024 */ 175 unsigned long avg_idletime; /* ns / 1024 */ 176 unsigned long idletime_threshold; /* us */ 177 unsigned long idletime_threshold_conf; /* us */ 178 179 unsigned int bio_cnt; /* total bios */ 180 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ 181 unsigned long bio_cnt_reset_time; 182 }; 183 184 /* We measure latency for request size from <= 4k to >= 1M */ 185 #define LATENCY_BUCKET_SIZE 9 186 187 struct latency_bucket { 188 unsigned long total_latency; /* ns / 1024 */ 189 int samples; 190 }; 191 192 struct avg_latency_bucket { 193 unsigned long latency; /* ns / 1024 */ 194 bool valid; 195 }; 196 197 struct throtl_data 198 { 199 /* service tree for active throtl groups */ 200 struct throtl_service_queue service_queue; 201 202 struct request_queue *queue; 203 204 /* Total Number of queued bios on READ and WRITE lists */ 205 unsigned int nr_queued[2]; 206 207 unsigned int throtl_slice; 208 209 /* Work for dispatching throttled bios */ 210 struct work_struct dispatch_work; 211 unsigned int limit_index; 212 bool limit_valid[LIMIT_CNT]; 213 214 unsigned long low_upgrade_time; 215 unsigned long low_downgrade_time; 216 217 unsigned int scale; 218 219 struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE]; 220 struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE]; 221 struct latency_bucket __percpu *latency_buckets; 222 unsigned long last_calculate_time; 223 unsigned long filtered_latency; 224 225 bool track_bio_latency; 226 }; 227 228 static void throtl_pending_timer_fn(unsigned long arg); 229 230 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 231 { 232 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 233 } 234 235 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 236 { 237 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 238 } 239 240 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 241 { 242 return pd_to_blkg(&tg->pd); 243 } 244 245 /** 246 * sq_to_tg - return the throl_grp the specified service queue belongs to 247 * @sq: the throtl_service_queue of interest 248 * 249 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 250 * embedded in throtl_data, %NULL is returned. 251 */ 252 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 253 { 254 if (sq && sq->parent_sq) 255 return container_of(sq, struct throtl_grp, service_queue); 256 else 257 return NULL; 258 } 259 260 /** 261 * sq_to_td - return throtl_data the specified service queue belongs to 262 * @sq: the throtl_service_queue of interest 263 * 264 * A service_queue can be embedded in either a throtl_grp or throtl_data. 265 * Determine the associated throtl_data accordingly and return it. 266 */ 267 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 268 { 269 struct throtl_grp *tg = sq_to_tg(sq); 270 271 if (tg) 272 return tg->td; 273 else 274 return container_of(sq, struct throtl_data, service_queue); 275 } 276 277 /* 278 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 279 * make the IO dispatch more smooth. 280 * Scale up: linearly scale up according to lapsed time since upgrade. For 281 * every throtl_slice, the limit scales up 1/2 .low limit till the 282 * limit hits .max limit 283 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 284 */ 285 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 286 { 287 /* arbitrary value to avoid too big scale */ 288 if (td->scale < 4096 && time_after_eq(jiffies, 289 td->low_upgrade_time + td->scale * td->throtl_slice)) 290 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 291 292 return low + (low >> 1) * td->scale; 293 } 294 295 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 296 { 297 struct blkcg_gq *blkg = tg_to_blkg(tg); 298 struct throtl_data *td; 299 uint64_t ret; 300 301 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 302 return U64_MAX; 303 304 td = tg->td; 305 ret = tg->bps[rw][td->limit_index]; 306 if (ret == 0 && td->limit_index == LIMIT_LOW) { 307 /* intermediate node or iops isn't 0 */ 308 if (!list_empty(&blkg->blkcg->css.children) || 309 tg->iops[rw][td->limit_index]) 310 return U64_MAX; 311 else 312 return MIN_THROTL_BPS; 313 } 314 315 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 316 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 317 uint64_t adjusted; 318 319 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 320 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 321 } 322 return ret; 323 } 324 325 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 326 { 327 struct blkcg_gq *blkg = tg_to_blkg(tg); 328 struct throtl_data *td; 329 unsigned int ret; 330 331 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 332 return UINT_MAX; 333 334 td = tg->td; 335 ret = tg->iops[rw][td->limit_index]; 336 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 337 /* intermediate node or bps isn't 0 */ 338 if (!list_empty(&blkg->blkcg->css.children) || 339 tg->bps[rw][td->limit_index]) 340 return UINT_MAX; 341 else 342 return MIN_THROTL_IOPS; 343 } 344 345 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 346 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 347 uint64_t adjusted; 348 349 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 350 if (adjusted > UINT_MAX) 351 adjusted = UINT_MAX; 352 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 353 } 354 return ret; 355 } 356 357 #define request_bucket_index(sectors) \ 358 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 359 360 /** 361 * throtl_log - log debug message via blktrace 362 * @sq: the service_queue being reported 363 * @fmt: printf format string 364 * @args: printf args 365 * 366 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 367 * throtl_grp; otherwise, just "throtl". 368 */ 369 #define throtl_log(sq, fmt, args...) do { \ 370 struct throtl_grp *__tg = sq_to_tg((sq)); \ 371 struct throtl_data *__td = sq_to_td((sq)); \ 372 \ 373 (void)__td; \ 374 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 375 break; \ 376 if ((__tg)) { \ 377 blk_add_cgroup_trace_msg(__td->queue, \ 378 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ 379 } else { \ 380 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 381 } \ 382 } while (0) 383 384 static inline unsigned int throtl_bio_data_size(struct bio *bio) 385 { 386 /* assume it's one sector */ 387 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 388 return 512; 389 return bio->bi_iter.bi_size; 390 } 391 392 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 393 { 394 INIT_LIST_HEAD(&qn->node); 395 bio_list_init(&qn->bios); 396 qn->tg = tg; 397 } 398 399 /** 400 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 401 * @bio: bio being added 402 * @qn: qnode to add bio to 403 * @queued: the service_queue->queued[] list @qn belongs to 404 * 405 * Add @bio to @qn and put @qn on @queued if it's not already on. 406 * @qn->tg's reference count is bumped when @qn is activated. See the 407 * comment on top of throtl_qnode definition for details. 408 */ 409 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 410 struct list_head *queued) 411 { 412 bio_list_add(&qn->bios, bio); 413 if (list_empty(&qn->node)) { 414 list_add_tail(&qn->node, queued); 415 blkg_get(tg_to_blkg(qn->tg)); 416 } 417 } 418 419 /** 420 * throtl_peek_queued - peek the first bio on a qnode list 421 * @queued: the qnode list to peek 422 */ 423 static struct bio *throtl_peek_queued(struct list_head *queued) 424 { 425 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 426 struct bio *bio; 427 428 if (list_empty(queued)) 429 return NULL; 430 431 bio = bio_list_peek(&qn->bios); 432 WARN_ON_ONCE(!bio); 433 return bio; 434 } 435 436 /** 437 * throtl_pop_queued - pop the first bio form a qnode list 438 * @queued: the qnode list to pop a bio from 439 * @tg_to_put: optional out argument for throtl_grp to put 440 * 441 * Pop the first bio from the qnode list @queued. After popping, the first 442 * qnode is removed from @queued if empty or moved to the end of @queued so 443 * that the popping order is round-robin. 444 * 445 * When the first qnode is removed, its associated throtl_grp should be put 446 * too. If @tg_to_put is NULL, this function automatically puts it; 447 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 448 * responsible for putting it. 449 */ 450 static struct bio *throtl_pop_queued(struct list_head *queued, 451 struct throtl_grp **tg_to_put) 452 { 453 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 454 struct bio *bio; 455 456 if (list_empty(queued)) 457 return NULL; 458 459 bio = bio_list_pop(&qn->bios); 460 WARN_ON_ONCE(!bio); 461 462 if (bio_list_empty(&qn->bios)) { 463 list_del_init(&qn->node); 464 if (tg_to_put) 465 *tg_to_put = qn->tg; 466 else 467 blkg_put(tg_to_blkg(qn->tg)); 468 } else { 469 list_move_tail(&qn->node, queued); 470 } 471 472 return bio; 473 } 474 475 /* init a service_queue, assumes the caller zeroed it */ 476 static void throtl_service_queue_init(struct throtl_service_queue *sq) 477 { 478 INIT_LIST_HEAD(&sq->queued[0]); 479 INIT_LIST_HEAD(&sq->queued[1]); 480 sq->pending_tree = RB_ROOT; 481 setup_timer(&sq->pending_timer, throtl_pending_timer_fn, 482 (unsigned long)sq); 483 } 484 485 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node) 486 { 487 struct throtl_grp *tg; 488 int rw; 489 490 tg = kzalloc_node(sizeof(*tg), gfp, node); 491 if (!tg) 492 return NULL; 493 494 throtl_service_queue_init(&tg->service_queue); 495 496 for (rw = READ; rw <= WRITE; rw++) { 497 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 498 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 499 } 500 501 RB_CLEAR_NODE(&tg->rb_node); 502 tg->bps[READ][LIMIT_MAX] = U64_MAX; 503 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 504 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 505 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 506 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 507 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 508 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 509 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 510 /* LIMIT_LOW will have default value 0 */ 511 512 tg->latency_target = DFL_LATENCY_TARGET; 513 tg->latency_target_conf = DFL_LATENCY_TARGET; 514 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 515 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 516 517 return &tg->pd; 518 } 519 520 static void throtl_pd_init(struct blkg_policy_data *pd) 521 { 522 struct throtl_grp *tg = pd_to_tg(pd); 523 struct blkcg_gq *blkg = tg_to_blkg(tg); 524 struct throtl_data *td = blkg->q->td; 525 struct throtl_service_queue *sq = &tg->service_queue; 526 527 /* 528 * If on the default hierarchy, we switch to properly hierarchical 529 * behavior where limits on a given throtl_grp are applied to the 530 * whole subtree rather than just the group itself. e.g. If 16M 531 * read_bps limit is set on the root group, the whole system can't 532 * exceed 16M for the device. 533 * 534 * If not on the default hierarchy, the broken flat hierarchy 535 * behavior is retained where all throtl_grps are treated as if 536 * they're all separate root groups right below throtl_data. 537 * Limits of a group don't interact with limits of other groups 538 * regardless of the position of the group in the hierarchy. 539 */ 540 sq->parent_sq = &td->service_queue; 541 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 542 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 543 tg->td = td; 544 } 545 546 /* 547 * Set has_rules[] if @tg or any of its parents have limits configured. 548 * This doesn't require walking up to the top of the hierarchy as the 549 * parent's has_rules[] is guaranteed to be correct. 550 */ 551 static void tg_update_has_rules(struct throtl_grp *tg) 552 { 553 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 554 struct throtl_data *td = tg->td; 555 int rw; 556 557 for (rw = READ; rw <= WRITE; rw++) 558 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 559 (td->limit_valid[td->limit_index] && 560 (tg_bps_limit(tg, rw) != U64_MAX || 561 tg_iops_limit(tg, rw) != UINT_MAX)); 562 } 563 564 static void throtl_pd_online(struct blkg_policy_data *pd) 565 { 566 struct throtl_grp *tg = pd_to_tg(pd); 567 /* 568 * We don't want new groups to escape the limits of its ancestors. 569 * Update has_rules[] after a new group is brought online. 570 */ 571 tg_update_has_rules(tg); 572 } 573 574 static void blk_throtl_update_limit_valid(struct throtl_data *td) 575 { 576 struct cgroup_subsys_state *pos_css; 577 struct blkcg_gq *blkg; 578 bool low_valid = false; 579 580 rcu_read_lock(); 581 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 582 struct throtl_grp *tg = blkg_to_tg(blkg); 583 584 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 585 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 586 low_valid = true; 587 } 588 rcu_read_unlock(); 589 590 td->limit_valid[LIMIT_LOW] = low_valid; 591 } 592 593 static void throtl_upgrade_state(struct throtl_data *td); 594 static void throtl_pd_offline(struct blkg_policy_data *pd) 595 { 596 struct throtl_grp *tg = pd_to_tg(pd); 597 598 tg->bps[READ][LIMIT_LOW] = 0; 599 tg->bps[WRITE][LIMIT_LOW] = 0; 600 tg->iops[READ][LIMIT_LOW] = 0; 601 tg->iops[WRITE][LIMIT_LOW] = 0; 602 603 blk_throtl_update_limit_valid(tg->td); 604 605 if (!tg->td->limit_valid[tg->td->limit_index]) 606 throtl_upgrade_state(tg->td); 607 } 608 609 static void throtl_pd_free(struct blkg_policy_data *pd) 610 { 611 struct throtl_grp *tg = pd_to_tg(pd); 612 613 del_timer_sync(&tg->service_queue.pending_timer); 614 kfree(tg); 615 } 616 617 static struct throtl_grp * 618 throtl_rb_first(struct throtl_service_queue *parent_sq) 619 { 620 /* Service tree is empty */ 621 if (!parent_sq->nr_pending) 622 return NULL; 623 624 if (!parent_sq->first_pending) 625 parent_sq->first_pending = rb_first(&parent_sq->pending_tree); 626 627 if (parent_sq->first_pending) 628 return rb_entry_tg(parent_sq->first_pending); 629 630 return NULL; 631 } 632 633 static void rb_erase_init(struct rb_node *n, struct rb_root *root) 634 { 635 rb_erase(n, root); 636 RB_CLEAR_NODE(n); 637 } 638 639 static void throtl_rb_erase(struct rb_node *n, 640 struct throtl_service_queue *parent_sq) 641 { 642 if (parent_sq->first_pending == n) 643 parent_sq->first_pending = NULL; 644 rb_erase_init(n, &parent_sq->pending_tree); 645 --parent_sq->nr_pending; 646 } 647 648 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 649 { 650 struct throtl_grp *tg; 651 652 tg = throtl_rb_first(parent_sq); 653 if (!tg) 654 return; 655 656 parent_sq->first_pending_disptime = tg->disptime; 657 } 658 659 static void tg_service_queue_add(struct throtl_grp *tg) 660 { 661 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 662 struct rb_node **node = &parent_sq->pending_tree.rb_node; 663 struct rb_node *parent = NULL; 664 struct throtl_grp *__tg; 665 unsigned long key = tg->disptime; 666 int left = 1; 667 668 while (*node != NULL) { 669 parent = *node; 670 __tg = rb_entry_tg(parent); 671 672 if (time_before(key, __tg->disptime)) 673 node = &parent->rb_left; 674 else { 675 node = &parent->rb_right; 676 left = 0; 677 } 678 } 679 680 if (left) 681 parent_sq->first_pending = &tg->rb_node; 682 683 rb_link_node(&tg->rb_node, parent, node); 684 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree); 685 } 686 687 static void __throtl_enqueue_tg(struct throtl_grp *tg) 688 { 689 tg_service_queue_add(tg); 690 tg->flags |= THROTL_TG_PENDING; 691 tg->service_queue.parent_sq->nr_pending++; 692 } 693 694 static void throtl_enqueue_tg(struct throtl_grp *tg) 695 { 696 if (!(tg->flags & THROTL_TG_PENDING)) 697 __throtl_enqueue_tg(tg); 698 } 699 700 static void __throtl_dequeue_tg(struct throtl_grp *tg) 701 { 702 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 703 tg->flags &= ~THROTL_TG_PENDING; 704 } 705 706 static void throtl_dequeue_tg(struct throtl_grp *tg) 707 { 708 if (tg->flags & THROTL_TG_PENDING) 709 __throtl_dequeue_tg(tg); 710 } 711 712 /* Call with queue lock held */ 713 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 714 unsigned long expires) 715 { 716 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 717 718 /* 719 * Since we are adjusting the throttle limit dynamically, the sleep 720 * time calculated according to previous limit might be invalid. It's 721 * possible the cgroup sleep time is very long and no other cgroups 722 * have IO running so notify the limit changes. Make sure the cgroup 723 * doesn't sleep too long to avoid the missed notification. 724 */ 725 if (time_after(expires, max_expire)) 726 expires = max_expire; 727 mod_timer(&sq->pending_timer, expires); 728 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 729 expires - jiffies, jiffies); 730 } 731 732 /** 733 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 734 * @sq: the service_queue to schedule dispatch for 735 * @force: force scheduling 736 * 737 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 738 * dispatch time of the first pending child. Returns %true if either timer 739 * is armed or there's no pending child left. %false if the current 740 * dispatch window is still open and the caller should continue 741 * dispatching. 742 * 743 * If @force is %true, the dispatch timer is always scheduled and this 744 * function is guaranteed to return %true. This is to be used when the 745 * caller can't dispatch itself and needs to invoke pending_timer 746 * unconditionally. Note that forced scheduling is likely to induce short 747 * delay before dispatch starts even if @sq->first_pending_disptime is not 748 * in the future and thus shouldn't be used in hot paths. 749 */ 750 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 751 bool force) 752 { 753 /* any pending children left? */ 754 if (!sq->nr_pending) 755 return true; 756 757 update_min_dispatch_time(sq); 758 759 /* is the next dispatch time in the future? */ 760 if (force || time_after(sq->first_pending_disptime, jiffies)) { 761 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 762 return true; 763 } 764 765 /* tell the caller to continue dispatching */ 766 return false; 767 } 768 769 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 770 bool rw, unsigned long start) 771 { 772 tg->bytes_disp[rw] = 0; 773 tg->io_disp[rw] = 0; 774 775 /* 776 * Previous slice has expired. We must have trimmed it after last 777 * bio dispatch. That means since start of last slice, we never used 778 * that bandwidth. Do try to make use of that bandwidth while giving 779 * credit. 780 */ 781 if (time_after_eq(start, tg->slice_start[rw])) 782 tg->slice_start[rw] = start; 783 784 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 785 throtl_log(&tg->service_queue, 786 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 787 rw == READ ? 'R' : 'W', tg->slice_start[rw], 788 tg->slice_end[rw], jiffies); 789 } 790 791 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 792 { 793 tg->bytes_disp[rw] = 0; 794 tg->io_disp[rw] = 0; 795 tg->slice_start[rw] = jiffies; 796 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 797 throtl_log(&tg->service_queue, 798 "[%c] new slice start=%lu end=%lu jiffies=%lu", 799 rw == READ ? 'R' : 'W', tg->slice_start[rw], 800 tg->slice_end[rw], jiffies); 801 } 802 803 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 804 unsigned long jiffy_end) 805 { 806 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 807 } 808 809 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 810 unsigned long jiffy_end) 811 { 812 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 813 throtl_log(&tg->service_queue, 814 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 815 rw == READ ? 'R' : 'W', tg->slice_start[rw], 816 tg->slice_end[rw], jiffies); 817 } 818 819 /* Determine if previously allocated or extended slice is complete or not */ 820 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 821 { 822 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 823 return false; 824 825 return 1; 826 } 827 828 /* Trim the used slices and adjust slice start accordingly */ 829 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 830 { 831 unsigned long nr_slices, time_elapsed, io_trim; 832 u64 bytes_trim, tmp; 833 834 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 835 836 /* 837 * If bps are unlimited (-1), then time slice don't get 838 * renewed. Don't try to trim the slice if slice is used. A new 839 * slice will start when appropriate. 840 */ 841 if (throtl_slice_used(tg, rw)) 842 return; 843 844 /* 845 * A bio has been dispatched. Also adjust slice_end. It might happen 846 * that initially cgroup limit was very low resulting in high 847 * slice_end, but later limit was bumped up and bio was dispached 848 * sooner, then we need to reduce slice_end. A high bogus slice_end 849 * is bad because it does not allow new slice to start. 850 */ 851 852 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 853 854 time_elapsed = jiffies - tg->slice_start[rw]; 855 856 nr_slices = time_elapsed / tg->td->throtl_slice; 857 858 if (!nr_slices) 859 return; 860 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 861 do_div(tmp, HZ); 862 bytes_trim = tmp; 863 864 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 865 HZ; 866 867 if (!bytes_trim && !io_trim) 868 return; 869 870 if (tg->bytes_disp[rw] >= bytes_trim) 871 tg->bytes_disp[rw] -= bytes_trim; 872 else 873 tg->bytes_disp[rw] = 0; 874 875 if (tg->io_disp[rw] >= io_trim) 876 tg->io_disp[rw] -= io_trim; 877 else 878 tg->io_disp[rw] = 0; 879 880 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 881 882 throtl_log(&tg->service_queue, 883 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 884 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 885 tg->slice_start[rw], tg->slice_end[rw], jiffies); 886 } 887 888 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 889 unsigned long *wait) 890 { 891 bool rw = bio_data_dir(bio); 892 unsigned int io_allowed; 893 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 894 u64 tmp; 895 896 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 897 898 /* Slice has just started. Consider one slice interval */ 899 if (!jiffy_elapsed) 900 jiffy_elapsed_rnd = tg->td->throtl_slice; 901 902 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 903 904 /* 905 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 906 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 907 * will allow dispatch after 1 second and after that slice should 908 * have been trimmed. 909 */ 910 911 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd; 912 do_div(tmp, HZ); 913 914 if (tmp > UINT_MAX) 915 io_allowed = UINT_MAX; 916 else 917 io_allowed = tmp; 918 919 if (tg->io_disp[rw] + 1 <= io_allowed) { 920 if (wait) 921 *wait = 0; 922 return true; 923 } 924 925 /* Calc approx time to dispatch */ 926 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1; 927 928 if (jiffy_wait > jiffy_elapsed) 929 jiffy_wait = jiffy_wait - jiffy_elapsed; 930 else 931 jiffy_wait = 1; 932 933 if (wait) 934 *wait = jiffy_wait; 935 return 0; 936 } 937 938 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 939 unsigned long *wait) 940 { 941 bool rw = bio_data_dir(bio); 942 u64 bytes_allowed, extra_bytes, tmp; 943 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 944 unsigned int bio_size = throtl_bio_data_size(bio); 945 946 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 947 948 /* Slice has just started. Consider one slice interval */ 949 if (!jiffy_elapsed) 950 jiffy_elapsed_rnd = tg->td->throtl_slice; 951 952 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 953 954 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd; 955 do_div(tmp, HZ); 956 bytes_allowed = tmp; 957 958 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 959 if (wait) 960 *wait = 0; 961 return true; 962 } 963 964 /* Calc approx time to dispatch */ 965 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 966 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw)); 967 968 if (!jiffy_wait) 969 jiffy_wait = 1; 970 971 /* 972 * This wait time is without taking into consideration the rounding 973 * up we did. Add that time also. 974 */ 975 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 976 if (wait) 977 *wait = jiffy_wait; 978 return 0; 979 } 980 981 /* 982 * Returns whether one can dispatch a bio or not. Also returns approx number 983 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 984 */ 985 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 986 unsigned long *wait) 987 { 988 bool rw = bio_data_dir(bio); 989 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 990 991 /* 992 * Currently whole state machine of group depends on first bio 993 * queued in the group bio list. So one should not be calling 994 * this function with a different bio if there are other bios 995 * queued. 996 */ 997 BUG_ON(tg->service_queue.nr_queued[rw] && 998 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 999 1000 /* If tg->bps = -1, then BW is unlimited */ 1001 if (tg_bps_limit(tg, rw) == U64_MAX && 1002 tg_iops_limit(tg, rw) == UINT_MAX) { 1003 if (wait) 1004 *wait = 0; 1005 return true; 1006 } 1007 1008 /* 1009 * If previous slice expired, start a new one otherwise renew/extend 1010 * existing slice to make sure it is at least throtl_slice interval 1011 * long since now. New slice is started only for empty throttle group. 1012 * If there is queued bio, that means there should be an active 1013 * slice and it should be extended instead. 1014 */ 1015 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 1016 throtl_start_new_slice(tg, rw); 1017 else { 1018 if (time_before(tg->slice_end[rw], 1019 jiffies + tg->td->throtl_slice)) 1020 throtl_extend_slice(tg, rw, 1021 jiffies + tg->td->throtl_slice); 1022 } 1023 1024 if (tg_with_in_bps_limit(tg, bio, &bps_wait) && 1025 tg_with_in_iops_limit(tg, bio, &iops_wait)) { 1026 if (wait) 1027 *wait = 0; 1028 return 1; 1029 } 1030 1031 max_wait = max(bps_wait, iops_wait); 1032 1033 if (wait) 1034 *wait = max_wait; 1035 1036 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 1037 throtl_extend_slice(tg, rw, jiffies + max_wait); 1038 1039 return 0; 1040 } 1041 1042 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 1043 { 1044 bool rw = bio_data_dir(bio); 1045 unsigned int bio_size = throtl_bio_data_size(bio); 1046 1047 /* Charge the bio to the group */ 1048 tg->bytes_disp[rw] += bio_size; 1049 tg->io_disp[rw]++; 1050 tg->last_bytes_disp[rw] += bio_size; 1051 tg->last_io_disp[rw]++; 1052 1053 /* 1054 * BIO_THROTTLED is used to prevent the same bio to be throttled 1055 * more than once as a throttled bio will go through blk-throtl the 1056 * second time when it eventually gets issued. Set it when a bio 1057 * is being charged to a tg. 1058 */ 1059 if (!bio_flagged(bio, BIO_THROTTLED)) 1060 bio_set_flag(bio, BIO_THROTTLED); 1061 } 1062 1063 /** 1064 * throtl_add_bio_tg - add a bio to the specified throtl_grp 1065 * @bio: bio to add 1066 * @qn: qnode to use 1067 * @tg: the target throtl_grp 1068 * 1069 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 1070 * tg->qnode_on_self[] is used. 1071 */ 1072 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 1073 struct throtl_grp *tg) 1074 { 1075 struct throtl_service_queue *sq = &tg->service_queue; 1076 bool rw = bio_data_dir(bio); 1077 1078 if (!qn) 1079 qn = &tg->qnode_on_self[rw]; 1080 1081 /* 1082 * If @tg doesn't currently have any bios queued in the same 1083 * direction, queueing @bio can change when @tg should be 1084 * dispatched. Mark that @tg was empty. This is automatically 1085 * cleaered on the next tg_update_disptime(). 1086 */ 1087 if (!sq->nr_queued[rw]) 1088 tg->flags |= THROTL_TG_WAS_EMPTY; 1089 1090 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1091 1092 sq->nr_queued[rw]++; 1093 throtl_enqueue_tg(tg); 1094 } 1095 1096 static void tg_update_disptime(struct throtl_grp *tg) 1097 { 1098 struct throtl_service_queue *sq = &tg->service_queue; 1099 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1100 struct bio *bio; 1101 1102 bio = throtl_peek_queued(&sq->queued[READ]); 1103 if (bio) 1104 tg_may_dispatch(tg, bio, &read_wait); 1105 1106 bio = throtl_peek_queued(&sq->queued[WRITE]); 1107 if (bio) 1108 tg_may_dispatch(tg, bio, &write_wait); 1109 1110 min_wait = min(read_wait, write_wait); 1111 disptime = jiffies + min_wait; 1112 1113 /* Update dispatch time */ 1114 throtl_dequeue_tg(tg); 1115 tg->disptime = disptime; 1116 throtl_enqueue_tg(tg); 1117 1118 /* see throtl_add_bio_tg() */ 1119 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1120 } 1121 1122 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1123 struct throtl_grp *parent_tg, bool rw) 1124 { 1125 if (throtl_slice_used(parent_tg, rw)) { 1126 throtl_start_new_slice_with_credit(parent_tg, rw, 1127 child_tg->slice_start[rw]); 1128 } 1129 1130 } 1131 1132 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1133 { 1134 struct throtl_service_queue *sq = &tg->service_queue; 1135 struct throtl_service_queue *parent_sq = sq->parent_sq; 1136 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1137 struct throtl_grp *tg_to_put = NULL; 1138 struct bio *bio; 1139 1140 /* 1141 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1142 * from @tg may put its reference and @parent_sq might end up 1143 * getting released prematurely. Remember the tg to put and put it 1144 * after @bio is transferred to @parent_sq. 1145 */ 1146 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1147 sq->nr_queued[rw]--; 1148 1149 throtl_charge_bio(tg, bio); 1150 1151 /* 1152 * If our parent is another tg, we just need to transfer @bio to 1153 * the parent using throtl_add_bio_tg(). If our parent is 1154 * @td->service_queue, @bio is ready to be issued. Put it on its 1155 * bio_lists[] and decrease total number queued. The caller is 1156 * responsible for issuing these bios. 1157 */ 1158 if (parent_tg) { 1159 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1160 start_parent_slice_with_credit(tg, parent_tg, rw); 1161 } else { 1162 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1163 &parent_sq->queued[rw]); 1164 BUG_ON(tg->td->nr_queued[rw] <= 0); 1165 tg->td->nr_queued[rw]--; 1166 } 1167 1168 throtl_trim_slice(tg, rw); 1169 1170 if (tg_to_put) 1171 blkg_put(tg_to_blkg(tg_to_put)); 1172 } 1173 1174 static int throtl_dispatch_tg(struct throtl_grp *tg) 1175 { 1176 struct throtl_service_queue *sq = &tg->service_queue; 1177 unsigned int nr_reads = 0, nr_writes = 0; 1178 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 1179 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 1180 struct bio *bio; 1181 1182 /* Try to dispatch 75% READS and 25% WRITES */ 1183 1184 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1185 tg_may_dispatch(tg, bio, NULL)) { 1186 1187 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1188 nr_reads++; 1189 1190 if (nr_reads >= max_nr_reads) 1191 break; 1192 } 1193 1194 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1195 tg_may_dispatch(tg, bio, NULL)) { 1196 1197 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1198 nr_writes++; 1199 1200 if (nr_writes >= max_nr_writes) 1201 break; 1202 } 1203 1204 return nr_reads + nr_writes; 1205 } 1206 1207 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1208 { 1209 unsigned int nr_disp = 0; 1210 1211 while (1) { 1212 struct throtl_grp *tg = throtl_rb_first(parent_sq); 1213 struct throtl_service_queue *sq = &tg->service_queue; 1214 1215 if (!tg) 1216 break; 1217 1218 if (time_before(jiffies, tg->disptime)) 1219 break; 1220 1221 throtl_dequeue_tg(tg); 1222 1223 nr_disp += throtl_dispatch_tg(tg); 1224 1225 if (sq->nr_queued[0] || sq->nr_queued[1]) 1226 tg_update_disptime(tg); 1227 1228 if (nr_disp >= throtl_quantum) 1229 break; 1230 } 1231 1232 return nr_disp; 1233 } 1234 1235 static bool throtl_can_upgrade(struct throtl_data *td, 1236 struct throtl_grp *this_tg); 1237 /** 1238 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1239 * @arg: the throtl_service_queue being serviced 1240 * 1241 * This timer is armed when a child throtl_grp with active bio's become 1242 * pending and queued on the service_queue's pending_tree and expires when 1243 * the first child throtl_grp should be dispatched. This function 1244 * dispatches bio's from the children throtl_grps to the parent 1245 * service_queue. 1246 * 1247 * If the parent's parent is another throtl_grp, dispatching is propagated 1248 * by either arming its pending_timer or repeating dispatch directly. If 1249 * the top-level service_tree is reached, throtl_data->dispatch_work is 1250 * kicked so that the ready bio's are issued. 1251 */ 1252 static void throtl_pending_timer_fn(unsigned long arg) 1253 { 1254 struct throtl_service_queue *sq = (void *)arg; 1255 struct throtl_grp *tg = sq_to_tg(sq); 1256 struct throtl_data *td = sq_to_td(sq); 1257 struct request_queue *q = td->queue; 1258 struct throtl_service_queue *parent_sq; 1259 bool dispatched; 1260 int ret; 1261 1262 spin_lock_irq(q->queue_lock); 1263 if (throtl_can_upgrade(td, NULL)) 1264 throtl_upgrade_state(td); 1265 1266 again: 1267 parent_sq = sq->parent_sq; 1268 dispatched = false; 1269 1270 while (true) { 1271 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1272 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1273 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1274 1275 ret = throtl_select_dispatch(sq); 1276 if (ret) { 1277 throtl_log(sq, "bios disp=%u", ret); 1278 dispatched = true; 1279 } 1280 1281 if (throtl_schedule_next_dispatch(sq, false)) 1282 break; 1283 1284 /* this dispatch windows is still open, relax and repeat */ 1285 spin_unlock_irq(q->queue_lock); 1286 cpu_relax(); 1287 spin_lock_irq(q->queue_lock); 1288 } 1289 1290 if (!dispatched) 1291 goto out_unlock; 1292 1293 if (parent_sq) { 1294 /* @parent_sq is another throl_grp, propagate dispatch */ 1295 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1296 tg_update_disptime(tg); 1297 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1298 /* window is already open, repeat dispatching */ 1299 sq = parent_sq; 1300 tg = sq_to_tg(sq); 1301 goto again; 1302 } 1303 } 1304 } else { 1305 /* reached the top-level, queue issueing */ 1306 queue_work(kthrotld_workqueue, &td->dispatch_work); 1307 } 1308 out_unlock: 1309 spin_unlock_irq(q->queue_lock); 1310 } 1311 1312 /** 1313 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1314 * @work: work item being executed 1315 * 1316 * This function is queued for execution when bio's reach the bio_lists[] 1317 * of throtl_data->service_queue. Those bio's are ready and issued by this 1318 * function. 1319 */ 1320 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1321 { 1322 struct throtl_data *td = container_of(work, struct throtl_data, 1323 dispatch_work); 1324 struct throtl_service_queue *td_sq = &td->service_queue; 1325 struct request_queue *q = td->queue; 1326 struct bio_list bio_list_on_stack; 1327 struct bio *bio; 1328 struct blk_plug plug; 1329 int rw; 1330 1331 bio_list_init(&bio_list_on_stack); 1332 1333 spin_lock_irq(q->queue_lock); 1334 for (rw = READ; rw <= WRITE; rw++) 1335 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1336 bio_list_add(&bio_list_on_stack, bio); 1337 spin_unlock_irq(q->queue_lock); 1338 1339 if (!bio_list_empty(&bio_list_on_stack)) { 1340 blk_start_plug(&plug); 1341 while((bio = bio_list_pop(&bio_list_on_stack))) 1342 generic_make_request(bio); 1343 blk_finish_plug(&plug); 1344 } 1345 } 1346 1347 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1348 int off) 1349 { 1350 struct throtl_grp *tg = pd_to_tg(pd); 1351 u64 v = *(u64 *)((void *)tg + off); 1352 1353 if (v == U64_MAX) 1354 return 0; 1355 return __blkg_prfill_u64(sf, pd, v); 1356 } 1357 1358 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1359 int off) 1360 { 1361 struct throtl_grp *tg = pd_to_tg(pd); 1362 unsigned int v = *(unsigned int *)((void *)tg + off); 1363 1364 if (v == UINT_MAX) 1365 return 0; 1366 return __blkg_prfill_u64(sf, pd, v); 1367 } 1368 1369 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1370 { 1371 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1372 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1373 return 0; 1374 } 1375 1376 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1377 { 1378 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1379 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1380 return 0; 1381 } 1382 1383 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1384 { 1385 struct throtl_service_queue *sq = &tg->service_queue; 1386 struct cgroup_subsys_state *pos_css; 1387 struct blkcg_gq *blkg; 1388 1389 throtl_log(&tg->service_queue, 1390 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1391 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1392 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1393 1394 /* 1395 * Update has_rules[] flags for the updated tg's subtree. A tg is 1396 * considered to have rules if either the tg itself or any of its 1397 * ancestors has rules. This identifies groups without any 1398 * restrictions in the whole hierarchy and allows them to bypass 1399 * blk-throttle. 1400 */ 1401 blkg_for_each_descendant_pre(blkg, pos_css, 1402 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1403 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1404 struct throtl_grp *parent_tg; 1405 1406 tg_update_has_rules(this_tg); 1407 /* ignore root/second level */ 1408 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1409 !blkg->parent->parent) 1410 continue; 1411 parent_tg = blkg_to_tg(blkg->parent); 1412 /* 1413 * make sure all children has lower idle time threshold and 1414 * higher latency target 1415 */ 1416 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1417 parent_tg->idletime_threshold); 1418 this_tg->latency_target = max(this_tg->latency_target, 1419 parent_tg->latency_target); 1420 } 1421 1422 /* 1423 * We're already holding queue_lock and know @tg is valid. Let's 1424 * apply the new config directly. 1425 * 1426 * Restart the slices for both READ and WRITES. It might happen 1427 * that a group's limit are dropped suddenly and we don't want to 1428 * account recently dispatched IO with new low rate. 1429 */ 1430 throtl_start_new_slice(tg, 0); 1431 throtl_start_new_slice(tg, 1); 1432 1433 if (tg->flags & THROTL_TG_PENDING) { 1434 tg_update_disptime(tg); 1435 throtl_schedule_next_dispatch(sq->parent_sq, true); 1436 } 1437 } 1438 1439 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1440 char *buf, size_t nbytes, loff_t off, bool is_u64) 1441 { 1442 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1443 struct blkg_conf_ctx ctx; 1444 struct throtl_grp *tg; 1445 int ret; 1446 u64 v; 1447 1448 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1449 if (ret) 1450 return ret; 1451 1452 ret = -EINVAL; 1453 if (sscanf(ctx.body, "%llu", &v) != 1) 1454 goto out_finish; 1455 if (!v) 1456 v = U64_MAX; 1457 1458 tg = blkg_to_tg(ctx.blkg); 1459 1460 if (is_u64) 1461 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1462 else 1463 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1464 1465 tg_conf_updated(tg, false); 1466 ret = 0; 1467 out_finish: 1468 blkg_conf_finish(&ctx); 1469 return ret ?: nbytes; 1470 } 1471 1472 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1473 char *buf, size_t nbytes, loff_t off) 1474 { 1475 return tg_set_conf(of, buf, nbytes, off, true); 1476 } 1477 1478 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1479 char *buf, size_t nbytes, loff_t off) 1480 { 1481 return tg_set_conf(of, buf, nbytes, off, false); 1482 } 1483 1484 static struct cftype throtl_legacy_files[] = { 1485 { 1486 .name = "throttle.read_bps_device", 1487 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1488 .seq_show = tg_print_conf_u64, 1489 .write = tg_set_conf_u64, 1490 }, 1491 { 1492 .name = "throttle.write_bps_device", 1493 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1494 .seq_show = tg_print_conf_u64, 1495 .write = tg_set_conf_u64, 1496 }, 1497 { 1498 .name = "throttle.read_iops_device", 1499 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1500 .seq_show = tg_print_conf_uint, 1501 .write = tg_set_conf_uint, 1502 }, 1503 { 1504 .name = "throttle.write_iops_device", 1505 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1506 .seq_show = tg_print_conf_uint, 1507 .write = tg_set_conf_uint, 1508 }, 1509 { 1510 .name = "throttle.io_service_bytes", 1511 .private = (unsigned long)&blkcg_policy_throtl, 1512 .seq_show = blkg_print_stat_bytes, 1513 }, 1514 { 1515 .name = "throttle.io_serviced", 1516 .private = (unsigned long)&blkcg_policy_throtl, 1517 .seq_show = blkg_print_stat_ios, 1518 }, 1519 { } /* terminate */ 1520 }; 1521 1522 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1523 int off) 1524 { 1525 struct throtl_grp *tg = pd_to_tg(pd); 1526 const char *dname = blkg_dev_name(pd->blkg); 1527 char bufs[4][21] = { "max", "max", "max", "max" }; 1528 u64 bps_dft; 1529 unsigned int iops_dft; 1530 char idle_time[26] = ""; 1531 char latency_time[26] = ""; 1532 1533 if (!dname) 1534 return 0; 1535 1536 if (off == LIMIT_LOW) { 1537 bps_dft = 0; 1538 iops_dft = 0; 1539 } else { 1540 bps_dft = U64_MAX; 1541 iops_dft = UINT_MAX; 1542 } 1543 1544 if (tg->bps_conf[READ][off] == bps_dft && 1545 tg->bps_conf[WRITE][off] == bps_dft && 1546 tg->iops_conf[READ][off] == iops_dft && 1547 tg->iops_conf[WRITE][off] == iops_dft && 1548 (off != LIMIT_LOW || 1549 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1550 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1551 return 0; 1552 1553 if (tg->bps_conf[READ][off] != U64_MAX) 1554 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1555 tg->bps_conf[READ][off]); 1556 if (tg->bps_conf[WRITE][off] != U64_MAX) 1557 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1558 tg->bps_conf[WRITE][off]); 1559 if (tg->iops_conf[READ][off] != UINT_MAX) 1560 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1561 tg->iops_conf[READ][off]); 1562 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1563 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1564 tg->iops_conf[WRITE][off]); 1565 if (off == LIMIT_LOW) { 1566 if (tg->idletime_threshold_conf == ULONG_MAX) 1567 strcpy(idle_time, " idle=max"); 1568 else 1569 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1570 tg->idletime_threshold_conf); 1571 1572 if (tg->latency_target_conf == ULONG_MAX) 1573 strcpy(latency_time, " latency=max"); 1574 else 1575 snprintf(latency_time, sizeof(latency_time), 1576 " latency=%lu", tg->latency_target_conf); 1577 } 1578 1579 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1580 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1581 latency_time); 1582 return 0; 1583 } 1584 1585 static int tg_print_limit(struct seq_file *sf, void *v) 1586 { 1587 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1588 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1589 return 0; 1590 } 1591 1592 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1593 char *buf, size_t nbytes, loff_t off) 1594 { 1595 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1596 struct blkg_conf_ctx ctx; 1597 struct throtl_grp *tg; 1598 u64 v[4]; 1599 unsigned long idle_time; 1600 unsigned long latency_time; 1601 int ret; 1602 int index = of_cft(of)->private; 1603 1604 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1605 if (ret) 1606 return ret; 1607 1608 tg = blkg_to_tg(ctx.blkg); 1609 1610 v[0] = tg->bps_conf[READ][index]; 1611 v[1] = tg->bps_conf[WRITE][index]; 1612 v[2] = tg->iops_conf[READ][index]; 1613 v[3] = tg->iops_conf[WRITE][index]; 1614 1615 idle_time = tg->idletime_threshold_conf; 1616 latency_time = tg->latency_target_conf; 1617 while (true) { 1618 char tok[27]; /* wiops=18446744073709551616 */ 1619 char *p; 1620 u64 val = U64_MAX; 1621 int len; 1622 1623 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1624 break; 1625 if (tok[0] == '\0') 1626 break; 1627 ctx.body += len; 1628 1629 ret = -EINVAL; 1630 p = tok; 1631 strsep(&p, "="); 1632 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1633 goto out_finish; 1634 1635 ret = -ERANGE; 1636 if (!val) 1637 goto out_finish; 1638 1639 ret = -EINVAL; 1640 if (!strcmp(tok, "rbps")) 1641 v[0] = val; 1642 else if (!strcmp(tok, "wbps")) 1643 v[1] = val; 1644 else if (!strcmp(tok, "riops")) 1645 v[2] = min_t(u64, val, UINT_MAX); 1646 else if (!strcmp(tok, "wiops")) 1647 v[3] = min_t(u64, val, UINT_MAX); 1648 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1649 idle_time = val; 1650 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1651 latency_time = val; 1652 else 1653 goto out_finish; 1654 } 1655 1656 tg->bps_conf[READ][index] = v[0]; 1657 tg->bps_conf[WRITE][index] = v[1]; 1658 tg->iops_conf[READ][index] = v[2]; 1659 tg->iops_conf[WRITE][index] = v[3]; 1660 1661 if (index == LIMIT_MAX) { 1662 tg->bps[READ][index] = v[0]; 1663 tg->bps[WRITE][index] = v[1]; 1664 tg->iops[READ][index] = v[2]; 1665 tg->iops[WRITE][index] = v[3]; 1666 } 1667 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1668 tg->bps_conf[READ][LIMIT_MAX]); 1669 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1670 tg->bps_conf[WRITE][LIMIT_MAX]); 1671 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1672 tg->iops_conf[READ][LIMIT_MAX]); 1673 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1674 tg->iops_conf[WRITE][LIMIT_MAX]); 1675 tg->idletime_threshold_conf = idle_time; 1676 tg->latency_target_conf = latency_time; 1677 1678 /* force user to configure all settings for low limit */ 1679 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1680 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1681 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1682 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1683 tg->bps[READ][LIMIT_LOW] = 0; 1684 tg->bps[WRITE][LIMIT_LOW] = 0; 1685 tg->iops[READ][LIMIT_LOW] = 0; 1686 tg->iops[WRITE][LIMIT_LOW] = 0; 1687 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1688 tg->latency_target = DFL_LATENCY_TARGET; 1689 } else if (index == LIMIT_LOW) { 1690 tg->idletime_threshold = tg->idletime_threshold_conf; 1691 tg->latency_target = tg->latency_target_conf; 1692 } 1693 1694 blk_throtl_update_limit_valid(tg->td); 1695 if (tg->td->limit_valid[LIMIT_LOW]) { 1696 if (index == LIMIT_LOW) 1697 tg->td->limit_index = LIMIT_LOW; 1698 } else 1699 tg->td->limit_index = LIMIT_MAX; 1700 tg_conf_updated(tg, index == LIMIT_LOW && 1701 tg->td->limit_valid[LIMIT_LOW]); 1702 ret = 0; 1703 out_finish: 1704 blkg_conf_finish(&ctx); 1705 return ret ?: nbytes; 1706 } 1707 1708 static struct cftype throtl_files[] = { 1709 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1710 { 1711 .name = "low", 1712 .flags = CFTYPE_NOT_ON_ROOT, 1713 .seq_show = tg_print_limit, 1714 .write = tg_set_limit, 1715 .private = LIMIT_LOW, 1716 }, 1717 #endif 1718 { 1719 .name = "max", 1720 .flags = CFTYPE_NOT_ON_ROOT, 1721 .seq_show = tg_print_limit, 1722 .write = tg_set_limit, 1723 .private = LIMIT_MAX, 1724 }, 1725 { } /* terminate */ 1726 }; 1727 1728 static void throtl_shutdown_wq(struct request_queue *q) 1729 { 1730 struct throtl_data *td = q->td; 1731 1732 cancel_work_sync(&td->dispatch_work); 1733 } 1734 1735 static struct blkcg_policy blkcg_policy_throtl = { 1736 .dfl_cftypes = throtl_files, 1737 .legacy_cftypes = throtl_legacy_files, 1738 1739 .pd_alloc_fn = throtl_pd_alloc, 1740 .pd_init_fn = throtl_pd_init, 1741 .pd_online_fn = throtl_pd_online, 1742 .pd_offline_fn = throtl_pd_offline, 1743 .pd_free_fn = throtl_pd_free, 1744 }; 1745 1746 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1747 { 1748 unsigned long rtime = jiffies, wtime = jiffies; 1749 1750 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1751 rtime = tg->last_low_overflow_time[READ]; 1752 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1753 wtime = tg->last_low_overflow_time[WRITE]; 1754 return min(rtime, wtime); 1755 } 1756 1757 /* tg should not be an intermediate node */ 1758 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1759 { 1760 struct throtl_service_queue *parent_sq; 1761 struct throtl_grp *parent = tg; 1762 unsigned long ret = __tg_last_low_overflow_time(tg); 1763 1764 while (true) { 1765 parent_sq = parent->service_queue.parent_sq; 1766 parent = sq_to_tg(parent_sq); 1767 if (!parent) 1768 break; 1769 1770 /* 1771 * The parent doesn't have low limit, it always reaches low 1772 * limit. Its overflow time is useless for children 1773 */ 1774 if (!parent->bps[READ][LIMIT_LOW] && 1775 !parent->iops[READ][LIMIT_LOW] && 1776 !parent->bps[WRITE][LIMIT_LOW] && 1777 !parent->iops[WRITE][LIMIT_LOW]) 1778 continue; 1779 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1780 ret = __tg_last_low_overflow_time(parent); 1781 } 1782 return ret; 1783 } 1784 1785 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1786 { 1787 /* 1788 * cgroup is idle if: 1789 * - single idle is too long, longer than a fixed value (in case user 1790 * configure a too big threshold) or 4 times of idletime threshold 1791 * - average think time is more than threshold 1792 * - IO latency is largely below threshold 1793 */ 1794 unsigned long time; 1795 bool ret; 1796 1797 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1798 ret = tg->latency_target == DFL_LATENCY_TARGET || 1799 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1800 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1801 tg->avg_idletime > tg->idletime_threshold || 1802 (tg->latency_target && tg->bio_cnt && 1803 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1804 throtl_log(&tg->service_queue, 1805 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1806 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1807 tg->bio_cnt, ret, tg->td->scale); 1808 return ret; 1809 } 1810 1811 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1812 { 1813 struct throtl_service_queue *sq = &tg->service_queue; 1814 bool read_limit, write_limit; 1815 1816 /* 1817 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1818 * reaches), it's ok to upgrade to next limit 1819 */ 1820 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1821 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1822 if (!read_limit && !write_limit) 1823 return true; 1824 if (read_limit && sq->nr_queued[READ] && 1825 (!write_limit || sq->nr_queued[WRITE])) 1826 return true; 1827 if (write_limit && sq->nr_queued[WRITE] && 1828 (!read_limit || sq->nr_queued[READ])) 1829 return true; 1830 1831 if (time_after_eq(jiffies, 1832 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1833 throtl_tg_is_idle(tg)) 1834 return true; 1835 return false; 1836 } 1837 1838 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1839 { 1840 while (true) { 1841 if (throtl_tg_can_upgrade(tg)) 1842 return true; 1843 tg = sq_to_tg(tg->service_queue.parent_sq); 1844 if (!tg || !tg_to_blkg(tg)->parent) 1845 return false; 1846 } 1847 return false; 1848 } 1849 1850 static bool throtl_can_upgrade(struct throtl_data *td, 1851 struct throtl_grp *this_tg) 1852 { 1853 struct cgroup_subsys_state *pos_css; 1854 struct blkcg_gq *blkg; 1855 1856 if (td->limit_index != LIMIT_LOW) 1857 return false; 1858 1859 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1860 return false; 1861 1862 rcu_read_lock(); 1863 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1864 struct throtl_grp *tg = blkg_to_tg(blkg); 1865 1866 if (tg == this_tg) 1867 continue; 1868 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1869 continue; 1870 if (!throtl_hierarchy_can_upgrade(tg)) { 1871 rcu_read_unlock(); 1872 return false; 1873 } 1874 } 1875 rcu_read_unlock(); 1876 return true; 1877 } 1878 1879 static void throtl_upgrade_check(struct throtl_grp *tg) 1880 { 1881 unsigned long now = jiffies; 1882 1883 if (tg->td->limit_index != LIMIT_LOW) 1884 return; 1885 1886 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1887 return; 1888 1889 tg->last_check_time = now; 1890 1891 if (!time_after_eq(now, 1892 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1893 return; 1894 1895 if (throtl_can_upgrade(tg->td, NULL)) 1896 throtl_upgrade_state(tg->td); 1897 } 1898 1899 static void throtl_upgrade_state(struct throtl_data *td) 1900 { 1901 struct cgroup_subsys_state *pos_css; 1902 struct blkcg_gq *blkg; 1903 1904 throtl_log(&td->service_queue, "upgrade to max"); 1905 td->limit_index = LIMIT_MAX; 1906 td->low_upgrade_time = jiffies; 1907 td->scale = 0; 1908 rcu_read_lock(); 1909 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1910 struct throtl_grp *tg = blkg_to_tg(blkg); 1911 struct throtl_service_queue *sq = &tg->service_queue; 1912 1913 tg->disptime = jiffies - 1; 1914 throtl_select_dispatch(sq); 1915 throtl_schedule_next_dispatch(sq, true); 1916 } 1917 rcu_read_unlock(); 1918 throtl_select_dispatch(&td->service_queue); 1919 throtl_schedule_next_dispatch(&td->service_queue, true); 1920 queue_work(kthrotld_workqueue, &td->dispatch_work); 1921 } 1922 1923 static void throtl_downgrade_state(struct throtl_data *td, int new) 1924 { 1925 td->scale /= 2; 1926 1927 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1928 if (td->scale) { 1929 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1930 return; 1931 } 1932 1933 td->limit_index = new; 1934 td->low_downgrade_time = jiffies; 1935 } 1936 1937 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1938 { 1939 struct throtl_data *td = tg->td; 1940 unsigned long now = jiffies; 1941 1942 /* 1943 * If cgroup is below low limit, consider downgrade and throttle other 1944 * cgroups 1945 */ 1946 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1947 time_after_eq(now, tg_last_low_overflow_time(tg) + 1948 td->throtl_slice) && 1949 (!throtl_tg_is_idle(tg) || 1950 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1951 return true; 1952 return false; 1953 } 1954 1955 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1956 { 1957 while (true) { 1958 if (!throtl_tg_can_downgrade(tg)) 1959 return false; 1960 tg = sq_to_tg(tg->service_queue.parent_sq); 1961 if (!tg || !tg_to_blkg(tg)->parent) 1962 break; 1963 } 1964 return true; 1965 } 1966 1967 static void throtl_downgrade_check(struct throtl_grp *tg) 1968 { 1969 uint64_t bps; 1970 unsigned int iops; 1971 unsigned long elapsed_time; 1972 unsigned long now = jiffies; 1973 1974 if (tg->td->limit_index != LIMIT_MAX || 1975 !tg->td->limit_valid[LIMIT_LOW]) 1976 return; 1977 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1978 return; 1979 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1980 return; 1981 1982 elapsed_time = now - tg->last_check_time; 1983 tg->last_check_time = now; 1984 1985 if (time_before(now, tg_last_low_overflow_time(tg) + 1986 tg->td->throtl_slice)) 1987 return; 1988 1989 if (tg->bps[READ][LIMIT_LOW]) { 1990 bps = tg->last_bytes_disp[READ] * HZ; 1991 do_div(bps, elapsed_time); 1992 if (bps >= tg->bps[READ][LIMIT_LOW]) 1993 tg->last_low_overflow_time[READ] = now; 1994 } 1995 1996 if (tg->bps[WRITE][LIMIT_LOW]) { 1997 bps = tg->last_bytes_disp[WRITE] * HZ; 1998 do_div(bps, elapsed_time); 1999 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 2000 tg->last_low_overflow_time[WRITE] = now; 2001 } 2002 2003 if (tg->iops[READ][LIMIT_LOW]) { 2004 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 2005 if (iops >= tg->iops[READ][LIMIT_LOW]) 2006 tg->last_low_overflow_time[READ] = now; 2007 } 2008 2009 if (tg->iops[WRITE][LIMIT_LOW]) { 2010 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 2011 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 2012 tg->last_low_overflow_time[WRITE] = now; 2013 } 2014 2015 /* 2016 * If cgroup is below low limit, consider downgrade and throttle other 2017 * cgroups 2018 */ 2019 if (throtl_hierarchy_can_downgrade(tg)) 2020 throtl_downgrade_state(tg->td, LIMIT_LOW); 2021 2022 tg->last_bytes_disp[READ] = 0; 2023 tg->last_bytes_disp[WRITE] = 0; 2024 tg->last_io_disp[READ] = 0; 2025 tg->last_io_disp[WRITE] = 0; 2026 } 2027 2028 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2029 { 2030 unsigned long now = ktime_get_ns() >> 10; 2031 unsigned long last_finish_time = tg->last_finish_time; 2032 2033 if (now <= last_finish_time || last_finish_time == 0 || 2034 last_finish_time == tg->checked_last_finish_time) 2035 return; 2036 2037 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2038 tg->checked_last_finish_time = last_finish_time; 2039 } 2040 2041 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2042 static void throtl_update_latency_buckets(struct throtl_data *td) 2043 { 2044 struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE]; 2045 int i, cpu; 2046 unsigned long last_latency = 0; 2047 unsigned long latency; 2048 2049 if (!blk_queue_nonrot(td->queue)) 2050 return; 2051 if (time_before(jiffies, td->last_calculate_time + HZ)) 2052 return; 2053 td->last_calculate_time = jiffies; 2054 2055 memset(avg_latency, 0, sizeof(avg_latency)); 2056 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2057 struct latency_bucket *tmp = &td->tmp_buckets[i]; 2058 2059 for_each_possible_cpu(cpu) { 2060 struct latency_bucket *bucket; 2061 2062 /* this isn't race free, but ok in practice */ 2063 bucket = per_cpu_ptr(td->latency_buckets, cpu); 2064 tmp->total_latency += bucket[i].total_latency; 2065 tmp->samples += bucket[i].samples; 2066 bucket[i].total_latency = 0; 2067 bucket[i].samples = 0; 2068 } 2069 2070 if (tmp->samples >= 32) { 2071 int samples = tmp->samples; 2072 2073 latency = tmp->total_latency; 2074 2075 tmp->total_latency = 0; 2076 tmp->samples = 0; 2077 latency /= samples; 2078 if (latency == 0) 2079 continue; 2080 avg_latency[i].latency = latency; 2081 } 2082 } 2083 2084 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2085 if (!avg_latency[i].latency) { 2086 if (td->avg_buckets[i].latency < last_latency) 2087 td->avg_buckets[i].latency = last_latency; 2088 continue; 2089 } 2090 2091 if (!td->avg_buckets[i].valid) 2092 latency = avg_latency[i].latency; 2093 else 2094 latency = (td->avg_buckets[i].latency * 7 + 2095 avg_latency[i].latency) >> 3; 2096 2097 td->avg_buckets[i].latency = max(latency, last_latency); 2098 td->avg_buckets[i].valid = true; 2099 last_latency = td->avg_buckets[i].latency; 2100 } 2101 2102 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2103 throtl_log(&td->service_queue, 2104 "Latency bucket %d: latency=%ld, valid=%d", i, 2105 td->avg_buckets[i].latency, td->avg_buckets[i].valid); 2106 } 2107 #else 2108 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2109 { 2110 } 2111 #endif 2112 2113 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio) 2114 { 2115 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2116 if (bio->bi_css) 2117 bio->bi_cg_private = tg; 2118 blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio)); 2119 #endif 2120 } 2121 2122 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg, 2123 struct bio *bio) 2124 { 2125 struct throtl_qnode *qn = NULL; 2126 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg); 2127 struct throtl_service_queue *sq; 2128 bool rw = bio_data_dir(bio); 2129 bool throttled = false; 2130 struct throtl_data *td = tg->td; 2131 2132 WARN_ON_ONCE(!rcu_read_lock_held()); 2133 2134 /* see throtl_charge_bio() */ 2135 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw]) 2136 goto out; 2137 2138 spin_lock_irq(q->queue_lock); 2139 2140 throtl_update_latency_buckets(td); 2141 2142 if (unlikely(blk_queue_bypass(q))) 2143 goto out_unlock; 2144 2145 blk_throtl_assoc_bio(tg, bio); 2146 blk_throtl_update_idletime(tg); 2147 2148 sq = &tg->service_queue; 2149 2150 again: 2151 while (true) { 2152 if (tg->last_low_overflow_time[rw] == 0) 2153 tg->last_low_overflow_time[rw] = jiffies; 2154 throtl_downgrade_check(tg); 2155 throtl_upgrade_check(tg); 2156 /* throtl is FIFO - if bios are already queued, should queue */ 2157 if (sq->nr_queued[rw]) 2158 break; 2159 2160 /* if above limits, break to queue */ 2161 if (!tg_may_dispatch(tg, bio, NULL)) { 2162 tg->last_low_overflow_time[rw] = jiffies; 2163 if (throtl_can_upgrade(td, tg)) { 2164 throtl_upgrade_state(td); 2165 goto again; 2166 } 2167 break; 2168 } 2169 2170 /* within limits, let's charge and dispatch directly */ 2171 throtl_charge_bio(tg, bio); 2172 2173 /* 2174 * We need to trim slice even when bios are not being queued 2175 * otherwise it might happen that a bio is not queued for 2176 * a long time and slice keeps on extending and trim is not 2177 * called for a long time. Now if limits are reduced suddenly 2178 * we take into account all the IO dispatched so far at new 2179 * low rate and * newly queued IO gets a really long dispatch 2180 * time. 2181 * 2182 * So keep on trimming slice even if bio is not queued. 2183 */ 2184 throtl_trim_slice(tg, rw); 2185 2186 /* 2187 * @bio passed through this layer without being throttled. 2188 * Climb up the ladder. If we''re already at the top, it 2189 * can be executed directly. 2190 */ 2191 qn = &tg->qnode_on_parent[rw]; 2192 sq = sq->parent_sq; 2193 tg = sq_to_tg(sq); 2194 if (!tg) 2195 goto out_unlock; 2196 } 2197 2198 /* out-of-limit, queue to @tg */ 2199 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2200 rw == READ ? 'R' : 'W', 2201 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2202 tg_bps_limit(tg, rw), 2203 tg->io_disp[rw], tg_iops_limit(tg, rw), 2204 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2205 2206 tg->last_low_overflow_time[rw] = jiffies; 2207 2208 td->nr_queued[rw]++; 2209 throtl_add_bio_tg(bio, qn, tg); 2210 throttled = true; 2211 2212 /* 2213 * Update @tg's dispatch time and force schedule dispatch if @tg 2214 * was empty before @bio. The forced scheduling isn't likely to 2215 * cause undue delay as @bio is likely to be dispatched directly if 2216 * its @tg's disptime is not in the future. 2217 */ 2218 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2219 tg_update_disptime(tg); 2220 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2221 } 2222 2223 out_unlock: 2224 spin_unlock_irq(q->queue_lock); 2225 out: 2226 /* 2227 * As multiple blk-throtls may stack in the same issue path, we 2228 * don't want bios to leave with the flag set. Clear the flag if 2229 * being issued. 2230 */ 2231 if (!throttled) 2232 bio_clear_flag(bio, BIO_THROTTLED); 2233 2234 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2235 if (throttled || !td->track_bio_latency) 2236 bio->bi_issue_stat.stat |= SKIP_LATENCY; 2237 #endif 2238 return throttled; 2239 } 2240 2241 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2242 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2243 int op, unsigned long time) 2244 { 2245 struct latency_bucket *latency; 2246 int index; 2247 2248 if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ || 2249 !blk_queue_nonrot(td->queue)) 2250 return; 2251 2252 index = request_bucket_index(size); 2253 2254 latency = get_cpu_ptr(td->latency_buckets); 2255 latency[index].total_latency += time; 2256 latency[index].samples++; 2257 put_cpu_ptr(td->latency_buckets); 2258 } 2259 2260 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2261 { 2262 struct request_queue *q = rq->q; 2263 struct throtl_data *td = q->td; 2264 2265 throtl_track_latency(td, blk_stat_size(&rq->issue_stat), 2266 req_op(rq), time_ns >> 10); 2267 } 2268 2269 void blk_throtl_bio_endio(struct bio *bio) 2270 { 2271 struct throtl_grp *tg; 2272 u64 finish_time_ns; 2273 unsigned long finish_time; 2274 unsigned long start_time; 2275 unsigned long lat; 2276 2277 tg = bio->bi_cg_private; 2278 if (!tg) 2279 return; 2280 bio->bi_cg_private = NULL; 2281 2282 finish_time_ns = ktime_get_ns(); 2283 tg->last_finish_time = finish_time_ns >> 10; 2284 2285 start_time = blk_stat_time(&bio->bi_issue_stat) >> 10; 2286 finish_time = __blk_stat_time(finish_time_ns) >> 10; 2287 if (!start_time || finish_time <= start_time) 2288 return; 2289 2290 lat = finish_time - start_time; 2291 /* this is only for bio based driver */ 2292 if (!(bio->bi_issue_stat.stat & SKIP_LATENCY)) 2293 throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat), 2294 bio_op(bio), lat); 2295 2296 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2297 int bucket; 2298 unsigned int threshold; 2299 2300 bucket = request_bucket_index( 2301 blk_stat_size(&bio->bi_issue_stat)); 2302 threshold = tg->td->avg_buckets[bucket].latency + 2303 tg->latency_target; 2304 if (lat > threshold) 2305 tg->bad_bio_cnt++; 2306 /* 2307 * Not race free, could get wrong count, which means cgroups 2308 * will be throttled 2309 */ 2310 tg->bio_cnt++; 2311 } 2312 2313 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2314 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2315 tg->bio_cnt /= 2; 2316 tg->bad_bio_cnt /= 2; 2317 } 2318 } 2319 #endif 2320 2321 /* 2322 * Dispatch all bios from all children tg's queued on @parent_sq. On 2323 * return, @parent_sq is guaranteed to not have any active children tg's 2324 * and all bios from previously active tg's are on @parent_sq->bio_lists[]. 2325 */ 2326 static void tg_drain_bios(struct throtl_service_queue *parent_sq) 2327 { 2328 struct throtl_grp *tg; 2329 2330 while ((tg = throtl_rb_first(parent_sq))) { 2331 struct throtl_service_queue *sq = &tg->service_queue; 2332 struct bio *bio; 2333 2334 throtl_dequeue_tg(tg); 2335 2336 while ((bio = throtl_peek_queued(&sq->queued[READ]))) 2337 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2338 while ((bio = throtl_peek_queued(&sq->queued[WRITE]))) 2339 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2340 } 2341 } 2342 2343 /** 2344 * blk_throtl_drain - drain throttled bios 2345 * @q: request_queue to drain throttled bios for 2346 * 2347 * Dispatch all currently throttled bios on @q through ->make_request_fn(). 2348 */ 2349 void blk_throtl_drain(struct request_queue *q) 2350 __releases(q->queue_lock) __acquires(q->queue_lock) 2351 { 2352 struct throtl_data *td = q->td; 2353 struct blkcg_gq *blkg; 2354 struct cgroup_subsys_state *pos_css; 2355 struct bio *bio; 2356 int rw; 2357 2358 queue_lockdep_assert_held(q); 2359 rcu_read_lock(); 2360 2361 /* 2362 * Drain each tg while doing post-order walk on the blkg tree, so 2363 * that all bios are propagated to td->service_queue. It'd be 2364 * better to walk service_queue tree directly but blkg walk is 2365 * easier. 2366 */ 2367 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) 2368 tg_drain_bios(&blkg_to_tg(blkg)->service_queue); 2369 2370 /* finally, transfer bios from top-level tg's into the td */ 2371 tg_drain_bios(&td->service_queue); 2372 2373 rcu_read_unlock(); 2374 spin_unlock_irq(q->queue_lock); 2375 2376 /* all bios now should be in td->service_queue, issue them */ 2377 for (rw = READ; rw <= WRITE; rw++) 2378 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw], 2379 NULL))) 2380 generic_make_request(bio); 2381 2382 spin_lock_irq(q->queue_lock); 2383 } 2384 2385 int blk_throtl_init(struct request_queue *q) 2386 { 2387 struct throtl_data *td; 2388 int ret; 2389 2390 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2391 if (!td) 2392 return -ENOMEM; 2393 td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) * 2394 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2395 if (!td->latency_buckets) { 2396 kfree(td); 2397 return -ENOMEM; 2398 } 2399 2400 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2401 throtl_service_queue_init(&td->service_queue); 2402 2403 q->td = td; 2404 td->queue = q; 2405 2406 td->limit_valid[LIMIT_MAX] = true; 2407 td->limit_index = LIMIT_MAX; 2408 td->low_upgrade_time = jiffies; 2409 td->low_downgrade_time = jiffies; 2410 2411 /* activate policy */ 2412 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2413 if (ret) { 2414 free_percpu(td->latency_buckets); 2415 kfree(td); 2416 } 2417 return ret; 2418 } 2419 2420 void blk_throtl_exit(struct request_queue *q) 2421 { 2422 BUG_ON(!q->td); 2423 throtl_shutdown_wq(q); 2424 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2425 free_percpu(q->td->latency_buckets); 2426 kfree(q->td); 2427 } 2428 2429 void blk_throtl_register_queue(struct request_queue *q) 2430 { 2431 struct throtl_data *td; 2432 int i; 2433 2434 td = q->td; 2435 BUG_ON(!td); 2436 2437 if (blk_queue_nonrot(q)) { 2438 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2439 td->filtered_latency = LATENCY_FILTERED_SSD; 2440 } else { 2441 td->throtl_slice = DFL_THROTL_SLICE_HD; 2442 td->filtered_latency = LATENCY_FILTERED_HD; 2443 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2444 td->avg_buckets[i].latency = DFL_HD_BASELINE_LATENCY; 2445 } 2446 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2447 /* if no low limit, use previous default */ 2448 td->throtl_slice = DFL_THROTL_SLICE_HD; 2449 #endif 2450 2451 td->track_bio_latency = !q->mq_ops && !q->request_fn; 2452 if (!td->track_bio_latency) 2453 blk_stat_enable_accounting(q); 2454 } 2455 2456 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2457 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2458 { 2459 if (!q->td) 2460 return -EINVAL; 2461 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2462 } 2463 2464 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2465 const char *page, size_t count) 2466 { 2467 unsigned long v; 2468 unsigned long t; 2469 2470 if (!q->td) 2471 return -EINVAL; 2472 if (kstrtoul(page, 10, &v)) 2473 return -EINVAL; 2474 t = msecs_to_jiffies(v); 2475 if (t == 0 || t > MAX_THROTL_SLICE) 2476 return -EINVAL; 2477 q->td->throtl_slice = t; 2478 return count; 2479 } 2480 #endif 2481 2482 static int __init throtl_init(void) 2483 { 2484 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2485 if (!kthrotld_workqueue) 2486 panic("Failed to create kthrotld\n"); 2487 2488 return blkcg_policy_register(&blkcg_policy_throtl); 2489 } 2490 2491 module_init(throtl_init); 2492