1 /* 2 * Interface for controlling IO bandwidth on a request queue 3 * 4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 5 */ 6 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/blkdev.h> 10 #include <linux/bio.h> 11 #include <linux/blktrace_api.h> 12 #include "blk-cgroup.h" 13 #include "blk.h" 14 15 /* Max dispatch from a group in 1 round */ 16 static int throtl_grp_quantum = 8; 17 18 /* Total max dispatch from all groups in one round */ 19 static int throtl_quantum = 32; 20 21 /* Throttling is performed over 100ms slice and after that slice is renewed */ 22 static unsigned long throtl_slice = HZ/10; /* 100 ms */ 23 24 static struct blkcg_policy blkcg_policy_throtl; 25 26 /* A workqueue to queue throttle related work */ 27 static struct workqueue_struct *kthrotld_workqueue; 28 static void throtl_schedule_delayed_work(struct throtl_data *td, 29 unsigned long delay); 30 31 struct throtl_rb_root { 32 struct rb_root rb; 33 struct rb_node *left; 34 unsigned int count; 35 unsigned long min_disptime; 36 }; 37 38 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \ 39 .count = 0, .min_disptime = 0} 40 41 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 42 43 /* Per-cpu group stats */ 44 struct tg_stats_cpu { 45 /* total bytes transferred */ 46 struct blkg_rwstat service_bytes; 47 /* total IOs serviced, post merge */ 48 struct blkg_rwstat serviced; 49 }; 50 51 struct throtl_grp { 52 /* must be the first member */ 53 struct blkg_policy_data pd; 54 55 /* active throtl group service_tree member */ 56 struct rb_node rb_node; 57 58 /* 59 * Dispatch time in jiffies. This is the estimated time when group 60 * will unthrottle and is ready to dispatch more bio. It is used as 61 * key to sort active groups in service tree. 62 */ 63 unsigned long disptime; 64 65 unsigned int flags; 66 67 /* Two lists for READ and WRITE */ 68 struct bio_list bio_lists[2]; 69 70 /* Number of queued bios on READ and WRITE lists */ 71 unsigned int nr_queued[2]; 72 73 /* bytes per second rate limits */ 74 uint64_t bps[2]; 75 76 /* IOPS limits */ 77 unsigned int iops[2]; 78 79 /* Number of bytes disptached in current slice */ 80 uint64_t bytes_disp[2]; 81 /* Number of bio's dispatched in current slice */ 82 unsigned int io_disp[2]; 83 84 /* When did we start a new slice */ 85 unsigned long slice_start[2]; 86 unsigned long slice_end[2]; 87 88 /* Some throttle limits got updated for the group */ 89 int limits_changed; 90 91 /* Per cpu stats pointer */ 92 struct tg_stats_cpu __percpu *stats_cpu; 93 94 /* List of tgs waiting for per cpu stats memory to be allocated */ 95 struct list_head stats_alloc_node; 96 }; 97 98 struct throtl_data 99 { 100 /* service tree for active throtl groups */ 101 struct throtl_rb_root tg_service_tree; 102 103 struct request_queue *queue; 104 105 /* Total Number of queued bios on READ and WRITE lists */ 106 unsigned int nr_queued[2]; 107 108 /* 109 * number of total undestroyed groups 110 */ 111 unsigned int nr_undestroyed_grps; 112 113 /* Work for dispatching throttled bios */ 114 struct delayed_work throtl_work; 115 116 int limits_changed; 117 }; 118 119 /* list and work item to allocate percpu group stats */ 120 static DEFINE_SPINLOCK(tg_stats_alloc_lock); 121 static LIST_HEAD(tg_stats_alloc_list); 122 123 static void tg_stats_alloc_fn(struct work_struct *); 124 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn); 125 126 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 127 { 128 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 129 } 130 131 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 132 { 133 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 134 } 135 136 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 137 { 138 return pd_to_blkg(&tg->pd); 139 } 140 141 static inline struct throtl_grp *td_root_tg(struct throtl_data *td) 142 { 143 return blkg_to_tg(td->queue->root_blkg); 144 } 145 146 enum tg_state_flags { 147 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */ 148 }; 149 150 #define THROTL_TG_FNS(name) \ 151 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \ 152 { \ 153 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \ 154 } \ 155 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \ 156 { \ 157 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \ 158 } \ 159 static inline int throtl_tg_##name(const struct throtl_grp *tg) \ 160 { \ 161 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \ 162 } 163 164 THROTL_TG_FNS(on_rr); 165 166 #define throtl_log_tg(td, tg, fmt, args...) do { \ 167 char __pbuf[128]; \ 168 \ 169 blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf)); \ 170 blk_add_trace_msg((td)->queue, "throtl %s " fmt, __pbuf, ##args); \ 171 } while (0) 172 173 #define throtl_log(td, fmt, args...) \ 174 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args) 175 176 static inline unsigned int total_nr_queued(struct throtl_data *td) 177 { 178 return td->nr_queued[0] + td->nr_queued[1]; 179 } 180 181 /* 182 * Worker for allocating per cpu stat for tgs. This is scheduled on the 183 * system_nrt_wq once there are some groups on the alloc_list waiting for 184 * allocation. 185 */ 186 static void tg_stats_alloc_fn(struct work_struct *work) 187 { 188 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */ 189 struct delayed_work *dwork = to_delayed_work(work); 190 bool empty = false; 191 192 alloc_stats: 193 if (!stats_cpu) { 194 stats_cpu = alloc_percpu(struct tg_stats_cpu); 195 if (!stats_cpu) { 196 /* allocation failed, try again after some time */ 197 queue_delayed_work(system_nrt_wq, dwork, 198 msecs_to_jiffies(10)); 199 return; 200 } 201 } 202 203 spin_lock_irq(&tg_stats_alloc_lock); 204 205 if (!list_empty(&tg_stats_alloc_list)) { 206 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list, 207 struct throtl_grp, 208 stats_alloc_node); 209 swap(tg->stats_cpu, stats_cpu); 210 list_del_init(&tg->stats_alloc_node); 211 } 212 213 empty = list_empty(&tg_stats_alloc_list); 214 spin_unlock_irq(&tg_stats_alloc_lock); 215 if (!empty) 216 goto alloc_stats; 217 } 218 219 static void throtl_pd_init(struct blkcg_gq *blkg) 220 { 221 struct throtl_grp *tg = blkg_to_tg(blkg); 222 unsigned long flags; 223 224 RB_CLEAR_NODE(&tg->rb_node); 225 bio_list_init(&tg->bio_lists[0]); 226 bio_list_init(&tg->bio_lists[1]); 227 tg->limits_changed = false; 228 229 tg->bps[READ] = -1; 230 tg->bps[WRITE] = -1; 231 tg->iops[READ] = -1; 232 tg->iops[WRITE] = -1; 233 234 /* 235 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu 236 * but percpu allocator can't be called from IO path. Queue tg on 237 * tg_stats_alloc_list and allocate from work item. 238 */ 239 spin_lock_irqsave(&tg_stats_alloc_lock, flags); 240 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list); 241 queue_delayed_work(system_nrt_wq, &tg_stats_alloc_work, 0); 242 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags); 243 } 244 245 static void throtl_pd_exit(struct blkcg_gq *blkg) 246 { 247 struct throtl_grp *tg = blkg_to_tg(blkg); 248 unsigned long flags; 249 250 spin_lock_irqsave(&tg_stats_alloc_lock, flags); 251 list_del_init(&tg->stats_alloc_node); 252 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags); 253 254 free_percpu(tg->stats_cpu); 255 } 256 257 static void throtl_pd_reset_stats(struct blkcg_gq *blkg) 258 { 259 struct throtl_grp *tg = blkg_to_tg(blkg); 260 int cpu; 261 262 if (tg->stats_cpu == NULL) 263 return; 264 265 for_each_possible_cpu(cpu) { 266 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu); 267 268 blkg_rwstat_reset(&sc->service_bytes); 269 blkg_rwstat_reset(&sc->serviced); 270 } 271 } 272 273 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td, 274 struct blkcg *blkcg) 275 { 276 /* 277 * This is the common case when there are no blkcgs. Avoid lookup 278 * in this case 279 */ 280 if (blkcg == &blkcg_root) 281 return td_root_tg(td); 282 283 return blkg_to_tg(blkg_lookup(blkcg, td->queue)); 284 } 285 286 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td, 287 struct blkcg *blkcg) 288 { 289 struct request_queue *q = td->queue; 290 struct throtl_grp *tg = NULL; 291 292 /* 293 * This is the common case when there are no blkcgs. Avoid lookup 294 * in this case 295 */ 296 if (blkcg == &blkcg_root) { 297 tg = td_root_tg(td); 298 } else { 299 struct blkcg_gq *blkg; 300 301 blkg = blkg_lookup_create(blkcg, q); 302 303 /* if %NULL and @q is alive, fall back to root_tg */ 304 if (!IS_ERR(blkg)) 305 tg = blkg_to_tg(blkg); 306 else if (!blk_queue_dead(q)) 307 tg = td_root_tg(td); 308 } 309 310 return tg; 311 } 312 313 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root) 314 { 315 /* Service tree is empty */ 316 if (!root->count) 317 return NULL; 318 319 if (!root->left) 320 root->left = rb_first(&root->rb); 321 322 if (root->left) 323 return rb_entry_tg(root->left); 324 325 return NULL; 326 } 327 328 static void rb_erase_init(struct rb_node *n, struct rb_root *root) 329 { 330 rb_erase(n, root); 331 RB_CLEAR_NODE(n); 332 } 333 334 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root) 335 { 336 if (root->left == n) 337 root->left = NULL; 338 rb_erase_init(n, &root->rb); 339 --root->count; 340 } 341 342 static void update_min_dispatch_time(struct throtl_rb_root *st) 343 { 344 struct throtl_grp *tg; 345 346 tg = throtl_rb_first(st); 347 if (!tg) 348 return; 349 350 st->min_disptime = tg->disptime; 351 } 352 353 static void 354 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg) 355 { 356 struct rb_node **node = &st->rb.rb_node; 357 struct rb_node *parent = NULL; 358 struct throtl_grp *__tg; 359 unsigned long key = tg->disptime; 360 int left = 1; 361 362 while (*node != NULL) { 363 parent = *node; 364 __tg = rb_entry_tg(parent); 365 366 if (time_before(key, __tg->disptime)) 367 node = &parent->rb_left; 368 else { 369 node = &parent->rb_right; 370 left = 0; 371 } 372 } 373 374 if (left) 375 st->left = &tg->rb_node; 376 377 rb_link_node(&tg->rb_node, parent, node); 378 rb_insert_color(&tg->rb_node, &st->rb); 379 } 380 381 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) 382 { 383 struct throtl_rb_root *st = &td->tg_service_tree; 384 385 tg_service_tree_add(st, tg); 386 throtl_mark_tg_on_rr(tg); 387 st->count++; 388 } 389 390 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg) 391 { 392 if (!throtl_tg_on_rr(tg)) 393 __throtl_enqueue_tg(td, tg); 394 } 395 396 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) 397 { 398 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree); 399 throtl_clear_tg_on_rr(tg); 400 } 401 402 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg) 403 { 404 if (throtl_tg_on_rr(tg)) 405 __throtl_dequeue_tg(td, tg); 406 } 407 408 static void throtl_schedule_next_dispatch(struct throtl_data *td) 409 { 410 struct throtl_rb_root *st = &td->tg_service_tree; 411 412 /* 413 * If there are more bios pending, schedule more work. 414 */ 415 if (!total_nr_queued(td)) 416 return; 417 418 BUG_ON(!st->count); 419 420 update_min_dispatch_time(st); 421 422 if (time_before_eq(st->min_disptime, jiffies)) 423 throtl_schedule_delayed_work(td, 0); 424 else 425 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies)); 426 } 427 428 static inline void 429 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) 430 { 431 tg->bytes_disp[rw] = 0; 432 tg->io_disp[rw] = 0; 433 tg->slice_start[rw] = jiffies; 434 tg->slice_end[rw] = jiffies + throtl_slice; 435 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu", 436 rw == READ ? 'R' : 'W', tg->slice_start[rw], 437 tg->slice_end[rw], jiffies); 438 } 439 440 static inline void throtl_set_slice_end(struct throtl_data *td, 441 struct throtl_grp *tg, bool rw, unsigned long jiffy_end) 442 { 443 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 444 } 445 446 static inline void throtl_extend_slice(struct throtl_data *td, 447 struct throtl_grp *tg, bool rw, unsigned long jiffy_end) 448 { 449 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice); 450 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu", 451 rw == READ ? 'R' : 'W', tg->slice_start[rw], 452 tg->slice_end[rw], jiffies); 453 } 454 455 /* Determine if previously allocated or extended slice is complete or not */ 456 static bool 457 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw) 458 { 459 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 460 return 0; 461 462 return 1; 463 } 464 465 /* Trim the used slices and adjust slice start accordingly */ 466 static inline void 467 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw) 468 { 469 unsigned long nr_slices, time_elapsed, io_trim; 470 u64 bytes_trim, tmp; 471 472 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 473 474 /* 475 * If bps are unlimited (-1), then time slice don't get 476 * renewed. Don't try to trim the slice if slice is used. A new 477 * slice will start when appropriate. 478 */ 479 if (throtl_slice_used(td, tg, rw)) 480 return; 481 482 /* 483 * A bio has been dispatched. Also adjust slice_end. It might happen 484 * that initially cgroup limit was very low resulting in high 485 * slice_end, but later limit was bumped up and bio was dispached 486 * sooner, then we need to reduce slice_end. A high bogus slice_end 487 * is bad because it does not allow new slice to start. 488 */ 489 490 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice); 491 492 time_elapsed = jiffies - tg->slice_start[rw]; 493 494 nr_slices = time_elapsed / throtl_slice; 495 496 if (!nr_slices) 497 return; 498 tmp = tg->bps[rw] * throtl_slice * nr_slices; 499 do_div(tmp, HZ); 500 bytes_trim = tmp; 501 502 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ; 503 504 if (!bytes_trim && !io_trim) 505 return; 506 507 if (tg->bytes_disp[rw] >= bytes_trim) 508 tg->bytes_disp[rw] -= bytes_trim; 509 else 510 tg->bytes_disp[rw] = 0; 511 512 if (tg->io_disp[rw] >= io_trim) 513 tg->io_disp[rw] -= io_trim; 514 else 515 tg->io_disp[rw] = 0; 516 517 tg->slice_start[rw] += nr_slices * throtl_slice; 518 519 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu" 520 " start=%lu end=%lu jiffies=%lu", 521 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 522 tg->slice_start[rw], tg->slice_end[rw], jiffies); 523 } 524 525 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg, 526 struct bio *bio, unsigned long *wait) 527 { 528 bool rw = bio_data_dir(bio); 529 unsigned int io_allowed; 530 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 531 u64 tmp; 532 533 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 534 535 /* Slice has just started. Consider one slice interval */ 536 if (!jiffy_elapsed) 537 jiffy_elapsed_rnd = throtl_slice; 538 539 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 540 541 /* 542 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 543 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 544 * will allow dispatch after 1 second and after that slice should 545 * have been trimmed. 546 */ 547 548 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd; 549 do_div(tmp, HZ); 550 551 if (tmp > UINT_MAX) 552 io_allowed = UINT_MAX; 553 else 554 io_allowed = tmp; 555 556 if (tg->io_disp[rw] + 1 <= io_allowed) { 557 if (wait) 558 *wait = 0; 559 return 1; 560 } 561 562 /* Calc approx time to dispatch */ 563 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1; 564 565 if (jiffy_wait > jiffy_elapsed) 566 jiffy_wait = jiffy_wait - jiffy_elapsed; 567 else 568 jiffy_wait = 1; 569 570 if (wait) 571 *wait = jiffy_wait; 572 return 0; 573 } 574 575 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg, 576 struct bio *bio, unsigned long *wait) 577 { 578 bool rw = bio_data_dir(bio); 579 u64 bytes_allowed, extra_bytes, tmp; 580 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 581 582 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 583 584 /* Slice has just started. Consider one slice interval */ 585 if (!jiffy_elapsed) 586 jiffy_elapsed_rnd = throtl_slice; 587 588 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice); 589 590 tmp = tg->bps[rw] * jiffy_elapsed_rnd; 591 do_div(tmp, HZ); 592 bytes_allowed = tmp; 593 594 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) { 595 if (wait) 596 *wait = 0; 597 return 1; 598 } 599 600 /* Calc approx time to dispatch */ 601 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed; 602 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]); 603 604 if (!jiffy_wait) 605 jiffy_wait = 1; 606 607 /* 608 * This wait time is without taking into consideration the rounding 609 * up we did. Add that time also. 610 */ 611 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 612 if (wait) 613 *wait = jiffy_wait; 614 return 0; 615 } 616 617 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) { 618 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) 619 return 1; 620 return 0; 621 } 622 623 /* 624 * Returns whether one can dispatch a bio or not. Also returns approx number 625 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 626 */ 627 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg, 628 struct bio *bio, unsigned long *wait) 629 { 630 bool rw = bio_data_dir(bio); 631 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 632 633 /* 634 * Currently whole state machine of group depends on first bio 635 * queued in the group bio list. So one should not be calling 636 * this function with a different bio if there are other bios 637 * queued. 638 */ 639 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw])); 640 641 /* If tg->bps = -1, then BW is unlimited */ 642 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { 643 if (wait) 644 *wait = 0; 645 return 1; 646 } 647 648 /* 649 * If previous slice expired, start a new one otherwise renew/extend 650 * existing slice to make sure it is at least throtl_slice interval 651 * long since now. 652 */ 653 if (throtl_slice_used(td, tg, rw)) 654 throtl_start_new_slice(td, tg, rw); 655 else { 656 if (time_before(tg->slice_end[rw], jiffies + throtl_slice)) 657 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice); 658 } 659 660 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait) 661 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) { 662 if (wait) 663 *wait = 0; 664 return 1; 665 } 666 667 max_wait = max(bps_wait, iops_wait); 668 669 if (wait) 670 *wait = max_wait; 671 672 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 673 throtl_extend_slice(td, tg, rw, jiffies + max_wait); 674 675 return 0; 676 } 677 678 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes, 679 int rw) 680 { 681 struct throtl_grp *tg = blkg_to_tg(blkg); 682 struct tg_stats_cpu *stats_cpu; 683 unsigned long flags; 684 685 /* If per cpu stats are not allocated yet, don't do any accounting. */ 686 if (tg->stats_cpu == NULL) 687 return; 688 689 /* 690 * Disabling interrupts to provide mutual exclusion between two 691 * writes on same cpu. It probably is not needed for 64bit. Not 692 * optimizing that case yet. 693 */ 694 local_irq_save(flags); 695 696 stats_cpu = this_cpu_ptr(tg->stats_cpu); 697 698 blkg_rwstat_add(&stats_cpu->serviced, rw, 1); 699 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes); 700 701 local_irq_restore(flags); 702 } 703 704 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 705 { 706 bool rw = bio_data_dir(bio); 707 708 /* Charge the bio to the group */ 709 tg->bytes_disp[rw] += bio->bi_size; 710 tg->io_disp[rw]++; 711 712 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw); 713 } 714 715 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg, 716 struct bio *bio) 717 { 718 bool rw = bio_data_dir(bio); 719 720 bio_list_add(&tg->bio_lists[rw], bio); 721 /* Take a bio reference on tg */ 722 blkg_get(tg_to_blkg(tg)); 723 tg->nr_queued[rw]++; 724 td->nr_queued[rw]++; 725 throtl_enqueue_tg(td, tg); 726 } 727 728 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg) 729 { 730 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 731 struct bio *bio; 732 733 if ((bio = bio_list_peek(&tg->bio_lists[READ]))) 734 tg_may_dispatch(td, tg, bio, &read_wait); 735 736 if ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) 737 tg_may_dispatch(td, tg, bio, &write_wait); 738 739 min_wait = min(read_wait, write_wait); 740 disptime = jiffies + min_wait; 741 742 /* Update dispatch time */ 743 throtl_dequeue_tg(td, tg); 744 tg->disptime = disptime; 745 throtl_enqueue_tg(td, tg); 746 } 747 748 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg, 749 bool rw, struct bio_list *bl) 750 { 751 struct bio *bio; 752 753 bio = bio_list_pop(&tg->bio_lists[rw]); 754 tg->nr_queued[rw]--; 755 /* Drop bio reference on blkg */ 756 blkg_put(tg_to_blkg(tg)); 757 758 BUG_ON(td->nr_queued[rw] <= 0); 759 td->nr_queued[rw]--; 760 761 throtl_charge_bio(tg, bio); 762 bio_list_add(bl, bio); 763 bio->bi_rw |= REQ_THROTTLED; 764 765 throtl_trim_slice(td, tg, rw); 766 } 767 768 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg, 769 struct bio_list *bl) 770 { 771 unsigned int nr_reads = 0, nr_writes = 0; 772 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 773 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 774 struct bio *bio; 775 776 /* Try to dispatch 75% READS and 25% WRITES */ 777 778 while ((bio = bio_list_peek(&tg->bio_lists[READ])) 779 && tg_may_dispatch(td, tg, bio, NULL)) { 780 781 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); 782 nr_reads++; 783 784 if (nr_reads >= max_nr_reads) 785 break; 786 } 787 788 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])) 789 && tg_may_dispatch(td, tg, bio, NULL)) { 790 791 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl); 792 nr_writes++; 793 794 if (nr_writes >= max_nr_writes) 795 break; 796 } 797 798 return nr_reads + nr_writes; 799 } 800 801 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl) 802 { 803 unsigned int nr_disp = 0; 804 struct throtl_grp *tg; 805 struct throtl_rb_root *st = &td->tg_service_tree; 806 807 while (1) { 808 tg = throtl_rb_first(st); 809 810 if (!tg) 811 break; 812 813 if (time_before(jiffies, tg->disptime)) 814 break; 815 816 throtl_dequeue_tg(td, tg); 817 818 nr_disp += throtl_dispatch_tg(td, tg, bl); 819 820 if (tg->nr_queued[0] || tg->nr_queued[1]) { 821 tg_update_disptime(td, tg); 822 throtl_enqueue_tg(td, tg); 823 } 824 825 if (nr_disp >= throtl_quantum) 826 break; 827 } 828 829 return nr_disp; 830 } 831 832 static void throtl_process_limit_change(struct throtl_data *td) 833 { 834 struct request_queue *q = td->queue; 835 struct blkcg_gq *blkg, *n; 836 837 if (!td->limits_changed) 838 return; 839 840 xchg(&td->limits_changed, false); 841 842 throtl_log(td, "limits changed"); 843 844 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 845 struct throtl_grp *tg = blkg_to_tg(blkg); 846 847 if (!tg->limits_changed) 848 continue; 849 850 if (!xchg(&tg->limits_changed, false)) 851 continue; 852 853 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu" 854 " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE], 855 tg->iops[READ], tg->iops[WRITE]); 856 857 /* 858 * Restart the slices for both READ and WRITES. It 859 * might happen that a group's limit are dropped 860 * suddenly and we don't want to account recently 861 * dispatched IO with new low rate 862 */ 863 throtl_start_new_slice(td, tg, 0); 864 throtl_start_new_slice(td, tg, 1); 865 866 if (throtl_tg_on_rr(tg)) 867 tg_update_disptime(td, tg); 868 } 869 } 870 871 /* Dispatch throttled bios. Should be called without queue lock held. */ 872 static int throtl_dispatch(struct request_queue *q) 873 { 874 struct throtl_data *td = q->td; 875 unsigned int nr_disp = 0; 876 struct bio_list bio_list_on_stack; 877 struct bio *bio; 878 struct blk_plug plug; 879 880 spin_lock_irq(q->queue_lock); 881 882 throtl_process_limit_change(td); 883 884 if (!total_nr_queued(td)) 885 goto out; 886 887 bio_list_init(&bio_list_on_stack); 888 889 throtl_log(td, "dispatch nr_queued=%u read=%u write=%u", 890 total_nr_queued(td), td->nr_queued[READ], 891 td->nr_queued[WRITE]); 892 893 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack); 894 895 if (nr_disp) 896 throtl_log(td, "bios disp=%u", nr_disp); 897 898 throtl_schedule_next_dispatch(td); 899 out: 900 spin_unlock_irq(q->queue_lock); 901 902 /* 903 * If we dispatched some requests, unplug the queue to make sure 904 * immediate dispatch 905 */ 906 if (nr_disp) { 907 blk_start_plug(&plug); 908 while((bio = bio_list_pop(&bio_list_on_stack))) 909 generic_make_request(bio); 910 blk_finish_plug(&plug); 911 } 912 return nr_disp; 913 } 914 915 void blk_throtl_work(struct work_struct *work) 916 { 917 struct throtl_data *td = container_of(work, struct throtl_data, 918 throtl_work.work); 919 struct request_queue *q = td->queue; 920 921 throtl_dispatch(q); 922 } 923 924 /* Call with queue lock held */ 925 static void 926 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay) 927 { 928 929 struct delayed_work *dwork = &td->throtl_work; 930 931 /* schedule work if limits changed even if no bio is queued */ 932 if (total_nr_queued(td) || td->limits_changed) { 933 /* 934 * We might have a work scheduled to be executed in future. 935 * Cancel that and schedule a new one. 936 */ 937 __cancel_delayed_work(dwork); 938 queue_delayed_work(kthrotld_workqueue, dwork, delay); 939 throtl_log(td, "schedule work. delay=%lu jiffies=%lu", 940 delay, jiffies); 941 } 942 } 943 944 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf, 945 struct blkg_policy_data *pd, int off) 946 { 947 struct throtl_grp *tg = pd_to_tg(pd); 948 struct blkg_rwstat rwstat = { }, tmp; 949 int i, cpu; 950 951 for_each_possible_cpu(cpu) { 952 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu); 953 954 tmp = blkg_rwstat_read((void *)sc + off); 955 for (i = 0; i < BLKG_RWSTAT_NR; i++) 956 rwstat.cnt[i] += tmp.cnt[i]; 957 } 958 959 return __blkg_prfill_rwstat(sf, pd, &rwstat); 960 } 961 962 static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft, 963 struct seq_file *sf) 964 { 965 struct blkcg *blkcg = cgroup_to_blkcg(cgrp); 966 967 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl, 968 cft->private, true); 969 return 0; 970 } 971 972 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 973 int off) 974 { 975 struct throtl_grp *tg = pd_to_tg(pd); 976 u64 v = *(u64 *)((void *)tg + off); 977 978 if (v == -1) 979 return 0; 980 return __blkg_prfill_u64(sf, pd, v); 981 } 982 983 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 984 int off) 985 { 986 struct throtl_grp *tg = pd_to_tg(pd); 987 unsigned int v = *(unsigned int *)((void *)tg + off); 988 989 if (v == -1) 990 return 0; 991 return __blkg_prfill_u64(sf, pd, v); 992 } 993 994 static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft, 995 struct seq_file *sf) 996 { 997 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64, 998 &blkcg_policy_throtl, cft->private, false); 999 return 0; 1000 } 1001 1002 static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft, 1003 struct seq_file *sf) 1004 { 1005 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint, 1006 &blkcg_policy_throtl, cft->private, false); 1007 return 0; 1008 } 1009 1010 static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf, 1011 bool is_u64) 1012 { 1013 struct blkcg *blkcg = cgroup_to_blkcg(cgrp); 1014 struct blkg_conf_ctx ctx; 1015 struct throtl_grp *tg; 1016 struct throtl_data *td; 1017 int ret; 1018 1019 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1020 if (ret) 1021 return ret; 1022 1023 tg = blkg_to_tg(ctx.blkg); 1024 td = ctx.blkg->q->td; 1025 1026 if (!ctx.v) 1027 ctx.v = -1; 1028 1029 if (is_u64) 1030 *(u64 *)((void *)tg + cft->private) = ctx.v; 1031 else 1032 *(unsigned int *)((void *)tg + cft->private) = ctx.v; 1033 1034 /* XXX: we don't need the following deferred processing */ 1035 xchg(&tg->limits_changed, true); 1036 xchg(&td->limits_changed, true); 1037 throtl_schedule_delayed_work(td, 0); 1038 1039 blkg_conf_finish(&ctx); 1040 return 0; 1041 } 1042 1043 static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft, 1044 const char *buf) 1045 { 1046 return tg_set_conf(cgrp, cft, buf, true); 1047 } 1048 1049 static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft, 1050 const char *buf) 1051 { 1052 return tg_set_conf(cgrp, cft, buf, false); 1053 } 1054 1055 static struct cftype throtl_files[] = { 1056 { 1057 .name = "throttle.read_bps_device", 1058 .private = offsetof(struct throtl_grp, bps[READ]), 1059 .read_seq_string = tg_print_conf_u64, 1060 .write_string = tg_set_conf_u64, 1061 .max_write_len = 256, 1062 }, 1063 { 1064 .name = "throttle.write_bps_device", 1065 .private = offsetof(struct throtl_grp, bps[WRITE]), 1066 .read_seq_string = tg_print_conf_u64, 1067 .write_string = tg_set_conf_u64, 1068 .max_write_len = 256, 1069 }, 1070 { 1071 .name = "throttle.read_iops_device", 1072 .private = offsetof(struct throtl_grp, iops[READ]), 1073 .read_seq_string = tg_print_conf_uint, 1074 .write_string = tg_set_conf_uint, 1075 .max_write_len = 256, 1076 }, 1077 { 1078 .name = "throttle.write_iops_device", 1079 .private = offsetof(struct throtl_grp, iops[WRITE]), 1080 .read_seq_string = tg_print_conf_uint, 1081 .write_string = tg_set_conf_uint, 1082 .max_write_len = 256, 1083 }, 1084 { 1085 .name = "throttle.io_service_bytes", 1086 .private = offsetof(struct tg_stats_cpu, service_bytes), 1087 .read_seq_string = tg_print_cpu_rwstat, 1088 }, 1089 { 1090 .name = "throttle.io_serviced", 1091 .private = offsetof(struct tg_stats_cpu, serviced), 1092 .read_seq_string = tg_print_cpu_rwstat, 1093 }, 1094 { } /* terminate */ 1095 }; 1096 1097 static void throtl_shutdown_wq(struct request_queue *q) 1098 { 1099 struct throtl_data *td = q->td; 1100 1101 cancel_delayed_work_sync(&td->throtl_work); 1102 } 1103 1104 static struct blkcg_policy blkcg_policy_throtl = { 1105 .pd_size = sizeof(struct throtl_grp), 1106 .cftypes = throtl_files, 1107 1108 .pd_init_fn = throtl_pd_init, 1109 .pd_exit_fn = throtl_pd_exit, 1110 .pd_reset_stats_fn = throtl_pd_reset_stats, 1111 }; 1112 1113 bool blk_throtl_bio(struct request_queue *q, struct bio *bio) 1114 { 1115 struct throtl_data *td = q->td; 1116 struct throtl_grp *tg; 1117 bool rw = bio_data_dir(bio), update_disptime = true; 1118 struct blkcg *blkcg; 1119 bool throttled = false; 1120 1121 if (bio->bi_rw & REQ_THROTTLED) { 1122 bio->bi_rw &= ~REQ_THROTTLED; 1123 goto out; 1124 } 1125 1126 /* 1127 * A throtl_grp pointer retrieved under rcu can be used to access 1128 * basic fields like stats and io rates. If a group has no rules, 1129 * just update the dispatch stats in lockless manner and return. 1130 */ 1131 rcu_read_lock(); 1132 blkcg = bio_blkcg(bio); 1133 tg = throtl_lookup_tg(td, blkcg); 1134 if (tg) { 1135 if (tg_no_rule_group(tg, rw)) { 1136 throtl_update_dispatch_stats(tg_to_blkg(tg), 1137 bio->bi_size, bio->bi_rw); 1138 goto out_unlock_rcu; 1139 } 1140 } 1141 1142 /* 1143 * Either group has not been allocated yet or it is not an unlimited 1144 * IO group 1145 */ 1146 spin_lock_irq(q->queue_lock); 1147 tg = throtl_lookup_create_tg(td, blkcg); 1148 if (unlikely(!tg)) 1149 goto out_unlock; 1150 1151 if (tg->nr_queued[rw]) { 1152 /* 1153 * There is already another bio queued in same dir. No 1154 * need to update dispatch time. 1155 */ 1156 update_disptime = false; 1157 goto queue_bio; 1158 1159 } 1160 1161 /* Bio is with-in rate limit of group */ 1162 if (tg_may_dispatch(td, tg, bio, NULL)) { 1163 throtl_charge_bio(tg, bio); 1164 1165 /* 1166 * We need to trim slice even when bios are not being queued 1167 * otherwise it might happen that a bio is not queued for 1168 * a long time and slice keeps on extending and trim is not 1169 * called for a long time. Now if limits are reduced suddenly 1170 * we take into account all the IO dispatched so far at new 1171 * low rate and * newly queued IO gets a really long dispatch 1172 * time. 1173 * 1174 * So keep on trimming slice even if bio is not queued. 1175 */ 1176 throtl_trim_slice(td, tg, rw); 1177 goto out_unlock; 1178 } 1179 1180 queue_bio: 1181 throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu" 1182 " iodisp=%u iops=%u queued=%d/%d", 1183 rw == READ ? 'R' : 'W', 1184 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw], 1185 tg->io_disp[rw], tg->iops[rw], 1186 tg->nr_queued[READ], tg->nr_queued[WRITE]); 1187 1188 bio_associate_current(bio); 1189 throtl_add_bio_tg(q->td, tg, bio); 1190 throttled = true; 1191 1192 if (update_disptime) { 1193 tg_update_disptime(td, tg); 1194 throtl_schedule_next_dispatch(td); 1195 } 1196 1197 out_unlock: 1198 spin_unlock_irq(q->queue_lock); 1199 out_unlock_rcu: 1200 rcu_read_unlock(); 1201 out: 1202 return throttled; 1203 } 1204 1205 /** 1206 * blk_throtl_drain - drain throttled bios 1207 * @q: request_queue to drain throttled bios for 1208 * 1209 * Dispatch all currently throttled bios on @q through ->make_request_fn(). 1210 */ 1211 void blk_throtl_drain(struct request_queue *q) 1212 __releases(q->queue_lock) __acquires(q->queue_lock) 1213 { 1214 struct throtl_data *td = q->td; 1215 struct throtl_rb_root *st = &td->tg_service_tree; 1216 struct throtl_grp *tg; 1217 struct bio_list bl; 1218 struct bio *bio; 1219 1220 queue_lockdep_assert_held(q); 1221 1222 bio_list_init(&bl); 1223 1224 while ((tg = throtl_rb_first(st))) { 1225 throtl_dequeue_tg(td, tg); 1226 1227 while ((bio = bio_list_peek(&tg->bio_lists[READ]))) 1228 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl); 1229 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))) 1230 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl); 1231 } 1232 spin_unlock_irq(q->queue_lock); 1233 1234 while ((bio = bio_list_pop(&bl))) 1235 generic_make_request(bio); 1236 1237 spin_lock_irq(q->queue_lock); 1238 } 1239 1240 int blk_throtl_init(struct request_queue *q) 1241 { 1242 struct throtl_data *td; 1243 int ret; 1244 1245 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 1246 if (!td) 1247 return -ENOMEM; 1248 1249 td->tg_service_tree = THROTL_RB_ROOT; 1250 td->limits_changed = false; 1251 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work); 1252 1253 q->td = td; 1254 td->queue = q; 1255 1256 /* activate policy */ 1257 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 1258 if (ret) 1259 kfree(td); 1260 return ret; 1261 } 1262 1263 void blk_throtl_exit(struct request_queue *q) 1264 { 1265 BUG_ON(!q->td); 1266 throtl_shutdown_wq(q); 1267 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 1268 kfree(q->td); 1269 } 1270 1271 static int __init throtl_init(void) 1272 { 1273 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 1274 if (!kthrotld_workqueue) 1275 panic("Failed to create kthrotld\n"); 1276 1277 return blkcg_policy_register(&blkcg_policy_throtl); 1278 } 1279 1280 module_init(throtl_init); 1281