xref: /linux/block/blk-throttle.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
14 
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17 
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20 
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10;	/* 100 ms */
23 
24 static struct blkcg_policy blkcg_policy_throtl;
25 
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 static void throtl_schedule_delayed_work(struct throtl_data *td,
29 				unsigned long delay);
30 
31 struct throtl_rb_root {
32 	struct rb_root rb;
33 	struct rb_node *left;
34 	unsigned int count;
35 	unsigned long min_disptime;
36 };
37 
38 #define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
39 			.count = 0, .min_disptime = 0}
40 
41 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
42 
43 /* Per-cpu group stats */
44 struct tg_stats_cpu {
45 	/* total bytes transferred */
46 	struct blkg_rwstat		service_bytes;
47 	/* total IOs serviced, post merge */
48 	struct blkg_rwstat		serviced;
49 };
50 
51 struct throtl_grp {
52 	/* must be the first member */
53 	struct blkg_policy_data pd;
54 
55 	/* active throtl group service_tree member */
56 	struct rb_node rb_node;
57 
58 	/*
59 	 * Dispatch time in jiffies. This is the estimated time when group
60 	 * will unthrottle and is ready to dispatch more bio. It is used as
61 	 * key to sort active groups in service tree.
62 	 */
63 	unsigned long disptime;
64 
65 	unsigned int flags;
66 
67 	/* Two lists for READ and WRITE */
68 	struct bio_list bio_lists[2];
69 
70 	/* Number of queued bios on READ and WRITE lists */
71 	unsigned int nr_queued[2];
72 
73 	/* bytes per second rate limits */
74 	uint64_t bps[2];
75 
76 	/* IOPS limits */
77 	unsigned int iops[2];
78 
79 	/* Number of bytes disptached in current slice */
80 	uint64_t bytes_disp[2];
81 	/* Number of bio's dispatched in current slice */
82 	unsigned int io_disp[2];
83 
84 	/* When did we start a new slice */
85 	unsigned long slice_start[2];
86 	unsigned long slice_end[2];
87 
88 	/* Some throttle limits got updated for the group */
89 	int limits_changed;
90 
91 	/* Per cpu stats pointer */
92 	struct tg_stats_cpu __percpu *stats_cpu;
93 
94 	/* List of tgs waiting for per cpu stats memory to be allocated */
95 	struct list_head stats_alloc_node;
96 };
97 
98 struct throtl_data
99 {
100 	/* service tree for active throtl groups */
101 	struct throtl_rb_root tg_service_tree;
102 
103 	struct request_queue *queue;
104 
105 	/* Total Number of queued bios on READ and WRITE lists */
106 	unsigned int nr_queued[2];
107 
108 	/*
109 	 * number of total undestroyed groups
110 	 */
111 	unsigned int nr_undestroyed_grps;
112 
113 	/* Work for dispatching throttled bios */
114 	struct delayed_work throtl_work;
115 
116 	int limits_changed;
117 };
118 
119 /* list and work item to allocate percpu group stats */
120 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
121 static LIST_HEAD(tg_stats_alloc_list);
122 
123 static void tg_stats_alloc_fn(struct work_struct *);
124 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
125 
126 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
127 {
128 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
129 }
130 
131 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
132 {
133 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
134 }
135 
136 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
137 {
138 	return pd_to_blkg(&tg->pd);
139 }
140 
141 static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
142 {
143 	return blkg_to_tg(td->queue->root_blkg);
144 }
145 
146 enum tg_state_flags {
147 	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
148 };
149 
150 #define THROTL_TG_FNS(name)						\
151 static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
152 {									\
153 	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
154 }									\
155 static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
156 {									\
157 	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
158 }									\
159 static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
160 {									\
161 	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
162 }
163 
164 THROTL_TG_FNS(on_rr);
165 
166 #define throtl_log_tg(td, tg, fmt, args...)	do {			\
167 	char __pbuf[128];						\
168 									\
169 	blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf));		\
170 	blk_add_trace_msg((td)->queue, "throtl %s " fmt, __pbuf, ##args); \
171 } while (0)
172 
173 #define throtl_log(td, fmt, args...)	\
174 	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
175 
176 static inline unsigned int total_nr_queued(struct throtl_data *td)
177 {
178 	return td->nr_queued[0] + td->nr_queued[1];
179 }
180 
181 /*
182  * Worker for allocating per cpu stat for tgs. This is scheduled on the
183  * system_nrt_wq once there are some groups on the alloc_list waiting for
184  * allocation.
185  */
186 static void tg_stats_alloc_fn(struct work_struct *work)
187 {
188 	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
189 	struct delayed_work *dwork = to_delayed_work(work);
190 	bool empty = false;
191 
192 alloc_stats:
193 	if (!stats_cpu) {
194 		stats_cpu = alloc_percpu(struct tg_stats_cpu);
195 		if (!stats_cpu) {
196 			/* allocation failed, try again after some time */
197 			queue_delayed_work(system_nrt_wq, dwork,
198 					   msecs_to_jiffies(10));
199 			return;
200 		}
201 	}
202 
203 	spin_lock_irq(&tg_stats_alloc_lock);
204 
205 	if (!list_empty(&tg_stats_alloc_list)) {
206 		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
207 							 struct throtl_grp,
208 							 stats_alloc_node);
209 		swap(tg->stats_cpu, stats_cpu);
210 		list_del_init(&tg->stats_alloc_node);
211 	}
212 
213 	empty = list_empty(&tg_stats_alloc_list);
214 	spin_unlock_irq(&tg_stats_alloc_lock);
215 	if (!empty)
216 		goto alloc_stats;
217 }
218 
219 static void throtl_pd_init(struct blkcg_gq *blkg)
220 {
221 	struct throtl_grp *tg = blkg_to_tg(blkg);
222 	unsigned long flags;
223 
224 	RB_CLEAR_NODE(&tg->rb_node);
225 	bio_list_init(&tg->bio_lists[0]);
226 	bio_list_init(&tg->bio_lists[1]);
227 	tg->limits_changed = false;
228 
229 	tg->bps[READ] = -1;
230 	tg->bps[WRITE] = -1;
231 	tg->iops[READ] = -1;
232 	tg->iops[WRITE] = -1;
233 
234 	/*
235 	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
236 	 * but percpu allocator can't be called from IO path.  Queue tg on
237 	 * tg_stats_alloc_list and allocate from work item.
238 	 */
239 	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
240 	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
241 	queue_delayed_work(system_nrt_wq, &tg_stats_alloc_work, 0);
242 	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
243 }
244 
245 static void throtl_pd_exit(struct blkcg_gq *blkg)
246 {
247 	struct throtl_grp *tg = blkg_to_tg(blkg);
248 	unsigned long flags;
249 
250 	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
251 	list_del_init(&tg->stats_alloc_node);
252 	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
253 
254 	free_percpu(tg->stats_cpu);
255 }
256 
257 static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
258 {
259 	struct throtl_grp *tg = blkg_to_tg(blkg);
260 	int cpu;
261 
262 	if (tg->stats_cpu == NULL)
263 		return;
264 
265 	for_each_possible_cpu(cpu) {
266 		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
267 
268 		blkg_rwstat_reset(&sc->service_bytes);
269 		blkg_rwstat_reset(&sc->serviced);
270 	}
271 }
272 
273 static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
274 					   struct blkcg *blkcg)
275 {
276 	/*
277 	 * This is the common case when there are no blkcgs.  Avoid lookup
278 	 * in this case
279 	 */
280 	if (blkcg == &blkcg_root)
281 		return td_root_tg(td);
282 
283 	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
284 }
285 
286 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
287 						  struct blkcg *blkcg)
288 {
289 	struct request_queue *q = td->queue;
290 	struct throtl_grp *tg = NULL;
291 
292 	/*
293 	 * This is the common case when there are no blkcgs.  Avoid lookup
294 	 * in this case
295 	 */
296 	if (blkcg == &blkcg_root) {
297 		tg = td_root_tg(td);
298 	} else {
299 		struct blkcg_gq *blkg;
300 
301 		blkg = blkg_lookup_create(blkcg, q);
302 
303 		/* if %NULL and @q is alive, fall back to root_tg */
304 		if (!IS_ERR(blkg))
305 			tg = blkg_to_tg(blkg);
306 		else if (!blk_queue_dead(q))
307 			tg = td_root_tg(td);
308 	}
309 
310 	return tg;
311 }
312 
313 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
314 {
315 	/* Service tree is empty */
316 	if (!root->count)
317 		return NULL;
318 
319 	if (!root->left)
320 		root->left = rb_first(&root->rb);
321 
322 	if (root->left)
323 		return rb_entry_tg(root->left);
324 
325 	return NULL;
326 }
327 
328 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
329 {
330 	rb_erase(n, root);
331 	RB_CLEAR_NODE(n);
332 }
333 
334 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
335 {
336 	if (root->left == n)
337 		root->left = NULL;
338 	rb_erase_init(n, &root->rb);
339 	--root->count;
340 }
341 
342 static void update_min_dispatch_time(struct throtl_rb_root *st)
343 {
344 	struct throtl_grp *tg;
345 
346 	tg = throtl_rb_first(st);
347 	if (!tg)
348 		return;
349 
350 	st->min_disptime = tg->disptime;
351 }
352 
353 static void
354 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
355 {
356 	struct rb_node **node = &st->rb.rb_node;
357 	struct rb_node *parent = NULL;
358 	struct throtl_grp *__tg;
359 	unsigned long key = tg->disptime;
360 	int left = 1;
361 
362 	while (*node != NULL) {
363 		parent = *node;
364 		__tg = rb_entry_tg(parent);
365 
366 		if (time_before(key, __tg->disptime))
367 			node = &parent->rb_left;
368 		else {
369 			node = &parent->rb_right;
370 			left = 0;
371 		}
372 	}
373 
374 	if (left)
375 		st->left = &tg->rb_node;
376 
377 	rb_link_node(&tg->rb_node, parent, node);
378 	rb_insert_color(&tg->rb_node, &st->rb);
379 }
380 
381 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
382 {
383 	struct throtl_rb_root *st = &td->tg_service_tree;
384 
385 	tg_service_tree_add(st, tg);
386 	throtl_mark_tg_on_rr(tg);
387 	st->count++;
388 }
389 
390 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
391 {
392 	if (!throtl_tg_on_rr(tg))
393 		__throtl_enqueue_tg(td, tg);
394 }
395 
396 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
397 {
398 	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
399 	throtl_clear_tg_on_rr(tg);
400 }
401 
402 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
403 {
404 	if (throtl_tg_on_rr(tg))
405 		__throtl_dequeue_tg(td, tg);
406 }
407 
408 static void throtl_schedule_next_dispatch(struct throtl_data *td)
409 {
410 	struct throtl_rb_root *st = &td->tg_service_tree;
411 
412 	/*
413 	 * If there are more bios pending, schedule more work.
414 	 */
415 	if (!total_nr_queued(td))
416 		return;
417 
418 	BUG_ON(!st->count);
419 
420 	update_min_dispatch_time(st);
421 
422 	if (time_before_eq(st->min_disptime, jiffies))
423 		throtl_schedule_delayed_work(td, 0);
424 	else
425 		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
426 }
427 
428 static inline void
429 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
430 {
431 	tg->bytes_disp[rw] = 0;
432 	tg->io_disp[rw] = 0;
433 	tg->slice_start[rw] = jiffies;
434 	tg->slice_end[rw] = jiffies + throtl_slice;
435 	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
436 			rw == READ ? 'R' : 'W', tg->slice_start[rw],
437 			tg->slice_end[rw], jiffies);
438 }
439 
440 static inline void throtl_set_slice_end(struct throtl_data *td,
441 		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
442 {
443 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
444 }
445 
446 static inline void throtl_extend_slice(struct throtl_data *td,
447 		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
448 {
449 	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
450 	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
451 			rw == READ ? 'R' : 'W', tg->slice_start[rw],
452 			tg->slice_end[rw], jiffies);
453 }
454 
455 /* Determine if previously allocated or extended slice is complete or not */
456 static bool
457 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
458 {
459 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
460 		return 0;
461 
462 	return 1;
463 }
464 
465 /* Trim the used slices and adjust slice start accordingly */
466 static inline void
467 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
468 {
469 	unsigned long nr_slices, time_elapsed, io_trim;
470 	u64 bytes_trim, tmp;
471 
472 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
473 
474 	/*
475 	 * If bps are unlimited (-1), then time slice don't get
476 	 * renewed. Don't try to trim the slice if slice is used. A new
477 	 * slice will start when appropriate.
478 	 */
479 	if (throtl_slice_used(td, tg, rw))
480 		return;
481 
482 	/*
483 	 * A bio has been dispatched. Also adjust slice_end. It might happen
484 	 * that initially cgroup limit was very low resulting in high
485 	 * slice_end, but later limit was bumped up and bio was dispached
486 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
487 	 * is bad because it does not allow new slice to start.
488 	 */
489 
490 	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
491 
492 	time_elapsed = jiffies - tg->slice_start[rw];
493 
494 	nr_slices = time_elapsed / throtl_slice;
495 
496 	if (!nr_slices)
497 		return;
498 	tmp = tg->bps[rw] * throtl_slice * nr_slices;
499 	do_div(tmp, HZ);
500 	bytes_trim = tmp;
501 
502 	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
503 
504 	if (!bytes_trim && !io_trim)
505 		return;
506 
507 	if (tg->bytes_disp[rw] >= bytes_trim)
508 		tg->bytes_disp[rw] -= bytes_trim;
509 	else
510 		tg->bytes_disp[rw] = 0;
511 
512 	if (tg->io_disp[rw] >= io_trim)
513 		tg->io_disp[rw] -= io_trim;
514 	else
515 		tg->io_disp[rw] = 0;
516 
517 	tg->slice_start[rw] += nr_slices * throtl_slice;
518 
519 	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
520 			" start=%lu end=%lu jiffies=%lu",
521 			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
522 			tg->slice_start[rw], tg->slice_end[rw], jiffies);
523 }
524 
525 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
526 		struct bio *bio, unsigned long *wait)
527 {
528 	bool rw = bio_data_dir(bio);
529 	unsigned int io_allowed;
530 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
531 	u64 tmp;
532 
533 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
534 
535 	/* Slice has just started. Consider one slice interval */
536 	if (!jiffy_elapsed)
537 		jiffy_elapsed_rnd = throtl_slice;
538 
539 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
540 
541 	/*
542 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
543 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
544 	 * will allow dispatch after 1 second and after that slice should
545 	 * have been trimmed.
546 	 */
547 
548 	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
549 	do_div(tmp, HZ);
550 
551 	if (tmp > UINT_MAX)
552 		io_allowed = UINT_MAX;
553 	else
554 		io_allowed = tmp;
555 
556 	if (tg->io_disp[rw] + 1 <= io_allowed) {
557 		if (wait)
558 			*wait = 0;
559 		return 1;
560 	}
561 
562 	/* Calc approx time to dispatch */
563 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
564 
565 	if (jiffy_wait > jiffy_elapsed)
566 		jiffy_wait = jiffy_wait - jiffy_elapsed;
567 	else
568 		jiffy_wait = 1;
569 
570 	if (wait)
571 		*wait = jiffy_wait;
572 	return 0;
573 }
574 
575 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
576 		struct bio *bio, unsigned long *wait)
577 {
578 	bool rw = bio_data_dir(bio);
579 	u64 bytes_allowed, extra_bytes, tmp;
580 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
581 
582 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
583 
584 	/* Slice has just started. Consider one slice interval */
585 	if (!jiffy_elapsed)
586 		jiffy_elapsed_rnd = throtl_slice;
587 
588 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
589 
590 	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
591 	do_div(tmp, HZ);
592 	bytes_allowed = tmp;
593 
594 	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
595 		if (wait)
596 			*wait = 0;
597 		return 1;
598 	}
599 
600 	/* Calc approx time to dispatch */
601 	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
602 	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
603 
604 	if (!jiffy_wait)
605 		jiffy_wait = 1;
606 
607 	/*
608 	 * This wait time is without taking into consideration the rounding
609 	 * up we did. Add that time also.
610 	 */
611 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
612 	if (wait)
613 		*wait = jiffy_wait;
614 	return 0;
615 }
616 
617 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
618 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
619 		return 1;
620 	return 0;
621 }
622 
623 /*
624  * Returns whether one can dispatch a bio or not. Also returns approx number
625  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
626  */
627 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
628 				struct bio *bio, unsigned long *wait)
629 {
630 	bool rw = bio_data_dir(bio);
631 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
632 
633 	/*
634  	 * Currently whole state machine of group depends on first bio
635 	 * queued in the group bio list. So one should not be calling
636 	 * this function with a different bio if there are other bios
637 	 * queued.
638 	 */
639 	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
640 
641 	/* If tg->bps = -1, then BW is unlimited */
642 	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
643 		if (wait)
644 			*wait = 0;
645 		return 1;
646 	}
647 
648 	/*
649 	 * If previous slice expired, start a new one otherwise renew/extend
650 	 * existing slice to make sure it is at least throtl_slice interval
651 	 * long since now.
652 	 */
653 	if (throtl_slice_used(td, tg, rw))
654 		throtl_start_new_slice(td, tg, rw);
655 	else {
656 		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
657 			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
658 	}
659 
660 	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
661 	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
662 		if (wait)
663 			*wait = 0;
664 		return 1;
665 	}
666 
667 	max_wait = max(bps_wait, iops_wait);
668 
669 	if (wait)
670 		*wait = max_wait;
671 
672 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
673 		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
674 
675 	return 0;
676 }
677 
678 static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
679 					 int rw)
680 {
681 	struct throtl_grp *tg = blkg_to_tg(blkg);
682 	struct tg_stats_cpu *stats_cpu;
683 	unsigned long flags;
684 
685 	/* If per cpu stats are not allocated yet, don't do any accounting. */
686 	if (tg->stats_cpu == NULL)
687 		return;
688 
689 	/*
690 	 * Disabling interrupts to provide mutual exclusion between two
691 	 * writes on same cpu. It probably is not needed for 64bit. Not
692 	 * optimizing that case yet.
693 	 */
694 	local_irq_save(flags);
695 
696 	stats_cpu = this_cpu_ptr(tg->stats_cpu);
697 
698 	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
699 	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
700 
701 	local_irq_restore(flags);
702 }
703 
704 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
705 {
706 	bool rw = bio_data_dir(bio);
707 
708 	/* Charge the bio to the group */
709 	tg->bytes_disp[rw] += bio->bi_size;
710 	tg->io_disp[rw]++;
711 
712 	throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
713 }
714 
715 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
716 			struct bio *bio)
717 {
718 	bool rw = bio_data_dir(bio);
719 
720 	bio_list_add(&tg->bio_lists[rw], bio);
721 	/* Take a bio reference on tg */
722 	blkg_get(tg_to_blkg(tg));
723 	tg->nr_queued[rw]++;
724 	td->nr_queued[rw]++;
725 	throtl_enqueue_tg(td, tg);
726 }
727 
728 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
729 {
730 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
731 	struct bio *bio;
732 
733 	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
734 		tg_may_dispatch(td, tg, bio, &read_wait);
735 
736 	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
737 		tg_may_dispatch(td, tg, bio, &write_wait);
738 
739 	min_wait = min(read_wait, write_wait);
740 	disptime = jiffies + min_wait;
741 
742 	/* Update dispatch time */
743 	throtl_dequeue_tg(td, tg);
744 	tg->disptime = disptime;
745 	throtl_enqueue_tg(td, tg);
746 }
747 
748 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
749 				bool rw, struct bio_list *bl)
750 {
751 	struct bio *bio;
752 
753 	bio = bio_list_pop(&tg->bio_lists[rw]);
754 	tg->nr_queued[rw]--;
755 	/* Drop bio reference on blkg */
756 	blkg_put(tg_to_blkg(tg));
757 
758 	BUG_ON(td->nr_queued[rw] <= 0);
759 	td->nr_queued[rw]--;
760 
761 	throtl_charge_bio(tg, bio);
762 	bio_list_add(bl, bio);
763 	bio->bi_rw |= REQ_THROTTLED;
764 
765 	throtl_trim_slice(td, tg, rw);
766 }
767 
768 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
769 				struct bio_list *bl)
770 {
771 	unsigned int nr_reads = 0, nr_writes = 0;
772 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
773 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
774 	struct bio *bio;
775 
776 	/* Try to dispatch 75% READS and 25% WRITES */
777 
778 	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
779 		&& tg_may_dispatch(td, tg, bio, NULL)) {
780 
781 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
782 		nr_reads++;
783 
784 		if (nr_reads >= max_nr_reads)
785 			break;
786 	}
787 
788 	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
789 		&& tg_may_dispatch(td, tg, bio, NULL)) {
790 
791 		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
792 		nr_writes++;
793 
794 		if (nr_writes >= max_nr_writes)
795 			break;
796 	}
797 
798 	return nr_reads + nr_writes;
799 }
800 
801 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
802 {
803 	unsigned int nr_disp = 0;
804 	struct throtl_grp *tg;
805 	struct throtl_rb_root *st = &td->tg_service_tree;
806 
807 	while (1) {
808 		tg = throtl_rb_first(st);
809 
810 		if (!tg)
811 			break;
812 
813 		if (time_before(jiffies, tg->disptime))
814 			break;
815 
816 		throtl_dequeue_tg(td, tg);
817 
818 		nr_disp += throtl_dispatch_tg(td, tg, bl);
819 
820 		if (tg->nr_queued[0] || tg->nr_queued[1]) {
821 			tg_update_disptime(td, tg);
822 			throtl_enqueue_tg(td, tg);
823 		}
824 
825 		if (nr_disp >= throtl_quantum)
826 			break;
827 	}
828 
829 	return nr_disp;
830 }
831 
832 static void throtl_process_limit_change(struct throtl_data *td)
833 {
834 	struct request_queue *q = td->queue;
835 	struct blkcg_gq *blkg, *n;
836 
837 	if (!td->limits_changed)
838 		return;
839 
840 	xchg(&td->limits_changed, false);
841 
842 	throtl_log(td, "limits changed");
843 
844 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
845 		struct throtl_grp *tg = blkg_to_tg(blkg);
846 
847 		if (!tg->limits_changed)
848 			continue;
849 
850 		if (!xchg(&tg->limits_changed, false))
851 			continue;
852 
853 		throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
854 			" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
855 			tg->iops[READ], tg->iops[WRITE]);
856 
857 		/*
858 		 * Restart the slices for both READ and WRITES. It
859 		 * might happen that a group's limit are dropped
860 		 * suddenly and we don't want to account recently
861 		 * dispatched IO with new low rate
862 		 */
863 		throtl_start_new_slice(td, tg, 0);
864 		throtl_start_new_slice(td, tg, 1);
865 
866 		if (throtl_tg_on_rr(tg))
867 			tg_update_disptime(td, tg);
868 	}
869 }
870 
871 /* Dispatch throttled bios. Should be called without queue lock held. */
872 static int throtl_dispatch(struct request_queue *q)
873 {
874 	struct throtl_data *td = q->td;
875 	unsigned int nr_disp = 0;
876 	struct bio_list bio_list_on_stack;
877 	struct bio *bio;
878 	struct blk_plug plug;
879 
880 	spin_lock_irq(q->queue_lock);
881 
882 	throtl_process_limit_change(td);
883 
884 	if (!total_nr_queued(td))
885 		goto out;
886 
887 	bio_list_init(&bio_list_on_stack);
888 
889 	throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
890 			total_nr_queued(td), td->nr_queued[READ],
891 			td->nr_queued[WRITE]);
892 
893 	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
894 
895 	if (nr_disp)
896 		throtl_log(td, "bios disp=%u", nr_disp);
897 
898 	throtl_schedule_next_dispatch(td);
899 out:
900 	spin_unlock_irq(q->queue_lock);
901 
902 	/*
903 	 * If we dispatched some requests, unplug the queue to make sure
904 	 * immediate dispatch
905 	 */
906 	if (nr_disp) {
907 		blk_start_plug(&plug);
908 		while((bio = bio_list_pop(&bio_list_on_stack)))
909 			generic_make_request(bio);
910 		blk_finish_plug(&plug);
911 	}
912 	return nr_disp;
913 }
914 
915 void blk_throtl_work(struct work_struct *work)
916 {
917 	struct throtl_data *td = container_of(work, struct throtl_data,
918 					throtl_work.work);
919 	struct request_queue *q = td->queue;
920 
921 	throtl_dispatch(q);
922 }
923 
924 /* Call with queue lock held */
925 static void
926 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
927 {
928 
929 	struct delayed_work *dwork = &td->throtl_work;
930 
931 	/* schedule work if limits changed even if no bio is queued */
932 	if (total_nr_queued(td) || td->limits_changed) {
933 		/*
934 		 * We might have a work scheduled to be executed in future.
935 		 * Cancel that and schedule a new one.
936 		 */
937 		__cancel_delayed_work(dwork);
938 		queue_delayed_work(kthrotld_workqueue, dwork, delay);
939 		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
940 				delay, jiffies);
941 	}
942 }
943 
944 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
945 				struct blkg_policy_data *pd, int off)
946 {
947 	struct throtl_grp *tg = pd_to_tg(pd);
948 	struct blkg_rwstat rwstat = { }, tmp;
949 	int i, cpu;
950 
951 	for_each_possible_cpu(cpu) {
952 		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
953 
954 		tmp = blkg_rwstat_read((void *)sc + off);
955 		for (i = 0; i < BLKG_RWSTAT_NR; i++)
956 			rwstat.cnt[i] += tmp.cnt[i];
957 	}
958 
959 	return __blkg_prfill_rwstat(sf, pd, &rwstat);
960 }
961 
962 static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
963 			       struct seq_file *sf)
964 {
965 	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
966 
967 	blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
968 			  cft->private, true);
969 	return 0;
970 }
971 
972 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
973 			      int off)
974 {
975 	struct throtl_grp *tg = pd_to_tg(pd);
976 	u64 v = *(u64 *)((void *)tg + off);
977 
978 	if (v == -1)
979 		return 0;
980 	return __blkg_prfill_u64(sf, pd, v);
981 }
982 
983 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
984 			       int off)
985 {
986 	struct throtl_grp *tg = pd_to_tg(pd);
987 	unsigned int v = *(unsigned int *)((void *)tg + off);
988 
989 	if (v == -1)
990 		return 0;
991 	return __blkg_prfill_u64(sf, pd, v);
992 }
993 
994 static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
995 			     struct seq_file *sf)
996 {
997 	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
998 			  &blkcg_policy_throtl, cft->private, false);
999 	return 0;
1000 }
1001 
1002 static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1003 			      struct seq_file *sf)
1004 {
1005 	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
1006 			  &blkcg_policy_throtl, cft->private, false);
1007 	return 0;
1008 }
1009 
1010 static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
1011 		       bool is_u64)
1012 {
1013 	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1014 	struct blkg_conf_ctx ctx;
1015 	struct throtl_grp *tg;
1016 	struct throtl_data *td;
1017 	int ret;
1018 
1019 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1020 	if (ret)
1021 		return ret;
1022 
1023 	tg = blkg_to_tg(ctx.blkg);
1024 	td = ctx.blkg->q->td;
1025 
1026 	if (!ctx.v)
1027 		ctx.v = -1;
1028 
1029 	if (is_u64)
1030 		*(u64 *)((void *)tg + cft->private) = ctx.v;
1031 	else
1032 		*(unsigned int *)((void *)tg + cft->private) = ctx.v;
1033 
1034 	/* XXX: we don't need the following deferred processing */
1035 	xchg(&tg->limits_changed, true);
1036 	xchg(&td->limits_changed, true);
1037 	throtl_schedule_delayed_work(td, 0);
1038 
1039 	blkg_conf_finish(&ctx);
1040 	return 0;
1041 }
1042 
1043 static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1044 			   const char *buf)
1045 {
1046 	return tg_set_conf(cgrp, cft, buf, true);
1047 }
1048 
1049 static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1050 			    const char *buf)
1051 {
1052 	return tg_set_conf(cgrp, cft, buf, false);
1053 }
1054 
1055 static struct cftype throtl_files[] = {
1056 	{
1057 		.name = "throttle.read_bps_device",
1058 		.private = offsetof(struct throtl_grp, bps[READ]),
1059 		.read_seq_string = tg_print_conf_u64,
1060 		.write_string = tg_set_conf_u64,
1061 		.max_write_len = 256,
1062 	},
1063 	{
1064 		.name = "throttle.write_bps_device",
1065 		.private = offsetof(struct throtl_grp, bps[WRITE]),
1066 		.read_seq_string = tg_print_conf_u64,
1067 		.write_string = tg_set_conf_u64,
1068 		.max_write_len = 256,
1069 	},
1070 	{
1071 		.name = "throttle.read_iops_device",
1072 		.private = offsetof(struct throtl_grp, iops[READ]),
1073 		.read_seq_string = tg_print_conf_uint,
1074 		.write_string = tg_set_conf_uint,
1075 		.max_write_len = 256,
1076 	},
1077 	{
1078 		.name = "throttle.write_iops_device",
1079 		.private = offsetof(struct throtl_grp, iops[WRITE]),
1080 		.read_seq_string = tg_print_conf_uint,
1081 		.write_string = tg_set_conf_uint,
1082 		.max_write_len = 256,
1083 	},
1084 	{
1085 		.name = "throttle.io_service_bytes",
1086 		.private = offsetof(struct tg_stats_cpu, service_bytes),
1087 		.read_seq_string = tg_print_cpu_rwstat,
1088 	},
1089 	{
1090 		.name = "throttle.io_serviced",
1091 		.private = offsetof(struct tg_stats_cpu, serviced),
1092 		.read_seq_string = tg_print_cpu_rwstat,
1093 	},
1094 	{ }	/* terminate */
1095 };
1096 
1097 static void throtl_shutdown_wq(struct request_queue *q)
1098 {
1099 	struct throtl_data *td = q->td;
1100 
1101 	cancel_delayed_work_sync(&td->throtl_work);
1102 }
1103 
1104 static struct blkcg_policy blkcg_policy_throtl = {
1105 	.pd_size		= sizeof(struct throtl_grp),
1106 	.cftypes		= throtl_files,
1107 
1108 	.pd_init_fn		= throtl_pd_init,
1109 	.pd_exit_fn		= throtl_pd_exit,
1110 	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1111 };
1112 
1113 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1114 {
1115 	struct throtl_data *td = q->td;
1116 	struct throtl_grp *tg;
1117 	bool rw = bio_data_dir(bio), update_disptime = true;
1118 	struct blkcg *blkcg;
1119 	bool throttled = false;
1120 
1121 	if (bio->bi_rw & REQ_THROTTLED) {
1122 		bio->bi_rw &= ~REQ_THROTTLED;
1123 		goto out;
1124 	}
1125 
1126 	/*
1127 	 * A throtl_grp pointer retrieved under rcu can be used to access
1128 	 * basic fields like stats and io rates. If a group has no rules,
1129 	 * just update the dispatch stats in lockless manner and return.
1130 	 */
1131 	rcu_read_lock();
1132 	blkcg = bio_blkcg(bio);
1133 	tg = throtl_lookup_tg(td, blkcg);
1134 	if (tg) {
1135 		if (tg_no_rule_group(tg, rw)) {
1136 			throtl_update_dispatch_stats(tg_to_blkg(tg),
1137 						     bio->bi_size, bio->bi_rw);
1138 			goto out_unlock_rcu;
1139 		}
1140 	}
1141 
1142 	/*
1143 	 * Either group has not been allocated yet or it is not an unlimited
1144 	 * IO group
1145 	 */
1146 	spin_lock_irq(q->queue_lock);
1147 	tg = throtl_lookup_create_tg(td, blkcg);
1148 	if (unlikely(!tg))
1149 		goto out_unlock;
1150 
1151 	if (tg->nr_queued[rw]) {
1152 		/*
1153 		 * There is already another bio queued in same dir. No
1154 		 * need to update dispatch time.
1155 		 */
1156 		update_disptime = false;
1157 		goto queue_bio;
1158 
1159 	}
1160 
1161 	/* Bio is with-in rate limit of group */
1162 	if (tg_may_dispatch(td, tg, bio, NULL)) {
1163 		throtl_charge_bio(tg, bio);
1164 
1165 		/*
1166 		 * We need to trim slice even when bios are not being queued
1167 		 * otherwise it might happen that a bio is not queued for
1168 		 * a long time and slice keeps on extending and trim is not
1169 		 * called for a long time. Now if limits are reduced suddenly
1170 		 * we take into account all the IO dispatched so far at new
1171 		 * low rate and * newly queued IO gets a really long dispatch
1172 		 * time.
1173 		 *
1174 		 * So keep on trimming slice even if bio is not queued.
1175 		 */
1176 		throtl_trim_slice(td, tg, rw);
1177 		goto out_unlock;
1178 	}
1179 
1180 queue_bio:
1181 	throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1182 			" iodisp=%u iops=%u queued=%d/%d",
1183 			rw == READ ? 'R' : 'W',
1184 			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1185 			tg->io_disp[rw], tg->iops[rw],
1186 			tg->nr_queued[READ], tg->nr_queued[WRITE]);
1187 
1188 	bio_associate_current(bio);
1189 	throtl_add_bio_tg(q->td, tg, bio);
1190 	throttled = true;
1191 
1192 	if (update_disptime) {
1193 		tg_update_disptime(td, tg);
1194 		throtl_schedule_next_dispatch(td);
1195 	}
1196 
1197 out_unlock:
1198 	spin_unlock_irq(q->queue_lock);
1199 out_unlock_rcu:
1200 	rcu_read_unlock();
1201 out:
1202 	return throttled;
1203 }
1204 
1205 /**
1206  * blk_throtl_drain - drain throttled bios
1207  * @q: request_queue to drain throttled bios for
1208  *
1209  * Dispatch all currently throttled bios on @q through ->make_request_fn().
1210  */
1211 void blk_throtl_drain(struct request_queue *q)
1212 	__releases(q->queue_lock) __acquires(q->queue_lock)
1213 {
1214 	struct throtl_data *td = q->td;
1215 	struct throtl_rb_root *st = &td->tg_service_tree;
1216 	struct throtl_grp *tg;
1217 	struct bio_list bl;
1218 	struct bio *bio;
1219 
1220 	queue_lockdep_assert_held(q);
1221 
1222 	bio_list_init(&bl);
1223 
1224 	while ((tg = throtl_rb_first(st))) {
1225 		throtl_dequeue_tg(td, tg);
1226 
1227 		while ((bio = bio_list_peek(&tg->bio_lists[READ])))
1228 			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1229 		while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
1230 			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1231 	}
1232 	spin_unlock_irq(q->queue_lock);
1233 
1234 	while ((bio = bio_list_pop(&bl)))
1235 		generic_make_request(bio);
1236 
1237 	spin_lock_irq(q->queue_lock);
1238 }
1239 
1240 int blk_throtl_init(struct request_queue *q)
1241 {
1242 	struct throtl_data *td;
1243 	int ret;
1244 
1245 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1246 	if (!td)
1247 		return -ENOMEM;
1248 
1249 	td->tg_service_tree = THROTL_RB_ROOT;
1250 	td->limits_changed = false;
1251 	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1252 
1253 	q->td = td;
1254 	td->queue = q;
1255 
1256 	/* activate policy */
1257 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1258 	if (ret)
1259 		kfree(td);
1260 	return ret;
1261 }
1262 
1263 void blk_throtl_exit(struct request_queue *q)
1264 {
1265 	BUG_ON(!q->td);
1266 	throtl_shutdown_wq(q);
1267 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1268 	kfree(q->td);
1269 }
1270 
1271 static int __init throtl_init(void)
1272 {
1273 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1274 	if (!kthrotld_workqueue)
1275 		panic("Failed to create kthrotld\n");
1276 
1277 	return blkcg_policy_register(&blkcg_policy_throtl);
1278 }
1279 
1280 module_init(throtl_init);
1281