1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include <linux/blk-cgroup.h> 14 #include "blk.h" 15 #include "blk-cgroup-rwstat.h" 16 17 /* Max dispatch from a group in 1 round */ 18 #define THROTL_GRP_QUANTUM 8 19 20 /* Total max dispatch from all groups in one round */ 21 #define THROTL_QUANTUM 32 22 23 /* Throttling is performed over a slice and after that slice is renewed */ 24 #define DFL_THROTL_SLICE_HD (HZ / 10) 25 #define DFL_THROTL_SLICE_SSD (HZ / 50) 26 #define MAX_THROTL_SLICE (HZ) 27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 28 #define MIN_THROTL_BPS (320 * 1024) 29 #define MIN_THROTL_IOPS (10) 30 #define DFL_LATENCY_TARGET (-1L) 31 #define DFL_IDLE_THRESHOLD (0) 32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 33 #define LATENCY_FILTERED_SSD (0) 34 /* 35 * For HD, very small latency comes from sequential IO. Such IO is helpless to 36 * help determine if its IO is impacted by others, hence we ignore the IO 37 */ 38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 39 40 static struct blkcg_policy blkcg_policy_throtl; 41 42 /* A workqueue to queue throttle related work */ 43 static struct workqueue_struct *kthrotld_workqueue; 44 45 /* 46 * To implement hierarchical throttling, throtl_grps form a tree and bios 47 * are dispatched upwards level by level until they reach the top and get 48 * issued. When dispatching bios from the children and local group at each 49 * level, if the bios are dispatched into a single bio_list, there's a risk 50 * of a local or child group which can queue many bios at once filling up 51 * the list starving others. 52 * 53 * To avoid such starvation, dispatched bios are queued separately 54 * according to where they came from. When they are again dispatched to 55 * the parent, they're popped in round-robin order so that no single source 56 * hogs the dispatch window. 57 * 58 * throtl_qnode is used to keep the queued bios separated by their sources. 59 * Bios are queued to throtl_qnode which in turn is queued to 60 * throtl_service_queue and then dispatched in round-robin order. 61 * 62 * It's also used to track the reference counts on blkg's. A qnode always 63 * belongs to a throtl_grp and gets queued on itself or the parent, so 64 * incrementing the reference of the associated throtl_grp when a qnode is 65 * queued and decrementing when dequeued is enough to keep the whole blkg 66 * tree pinned while bios are in flight. 67 */ 68 struct throtl_qnode { 69 struct list_head node; /* service_queue->queued[] */ 70 struct bio_list bios; /* queued bios */ 71 struct throtl_grp *tg; /* tg this qnode belongs to */ 72 }; 73 74 struct throtl_service_queue { 75 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 76 77 /* 78 * Bios queued directly to this service_queue or dispatched from 79 * children throtl_grp's. 80 */ 81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 82 unsigned int nr_queued[2]; /* number of queued bios */ 83 84 /* 85 * RB tree of active children throtl_grp's, which are sorted by 86 * their ->disptime. 87 */ 88 struct rb_root_cached pending_tree; /* RB tree of active tgs */ 89 unsigned int nr_pending; /* # queued in the tree */ 90 unsigned long first_pending_disptime; /* disptime of the first tg */ 91 struct timer_list pending_timer; /* fires on first_pending_disptime */ 92 }; 93 94 enum tg_state_flags { 95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 97 }; 98 99 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 100 101 enum { 102 LIMIT_LOW, 103 LIMIT_MAX, 104 LIMIT_CNT, 105 }; 106 107 struct throtl_grp { 108 /* must be the first member */ 109 struct blkg_policy_data pd; 110 111 /* active throtl group service_queue member */ 112 struct rb_node rb_node; 113 114 /* throtl_data this group belongs to */ 115 struct throtl_data *td; 116 117 /* this group's service queue */ 118 struct throtl_service_queue service_queue; 119 120 /* 121 * qnode_on_self is used when bios are directly queued to this 122 * throtl_grp so that local bios compete fairly with bios 123 * dispatched from children. qnode_on_parent is used when bios are 124 * dispatched from this throtl_grp into its parent and will compete 125 * with the sibling qnode_on_parents and the parent's 126 * qnode_on_self. 127 */ 128 struct throtl_qnode qnode_on_self[2]; 129 struct throtl_qnode qnode_on_parent[2]; 130 131 /* 132 * Dispatch time in jiffies. This is the estimated time when group 133 * will unthrottle and is ready to dispatch more bio. It is used as 134 * key to sort active groups in service tree. 135 */ 136 unsigned long disptime; 137 138 unsigned int flags; 139 140 /* are there any throtl rules between this group and td? */ 141 bool has_rules[2]; 142 143 /* internally used bytes per second rate limits */ 144 uint64_t bps[2][LIMIT_CNT]; 145 /* user configured bps limits */ 146 uint64_t bps_conf[2][LIMIT_CNT]; 147 148 /* internally used IOPS limits */ 149 unsigned int iops[2][LIMIT_CNT]; 150 /* user configured IOPS limits */ 151 unsigned int iops_conf[2][LIMIT_CNT]; 152 153 /* Number of bytes dispatched in current slice */ 154 uint64_t bytes_disp[2]; 155 /* Number of bio's dispatched in current slice */ 156 unsigned int io_disp[2]; 157 158 unsigned long last_low_overflow_time[2]; 159 160 uint64_t last_bytes_disp[2]; 161 unsigned int last_io_disp[2]; 162 163 unsigned long last_check_time; 164 165 unsigned long latency_target; /* us */ 166 unsigned long latency_target_conf; /* us */ 167 /* When did we start a new slice */ 168 unsigned long slice_start[2]; 169 unsigned long slice_end[2]; 170 171 unsigned long last_finish_time; /* ns / 1024 */ 172 unsigned long checked_last_finish_time; /* ns / 1024 */ 173 unsigned long avg_idletime; /* ns / 1024 */ 174 unsigned long idletime_threshold; /* us */ 175 unsigned long idletime_threshold_conf; /* us */ 176 177 unsigned int bio_cnt; /* total bios */ 178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ 179 unsigned long bio_cnt_reset_time; 180 181 atomic_t io_split_cnt[2]; 182 atomic_t last_io_split_cnt[2]; 183 184 struct blkg_rwstat stat_bytes; 185 struct blkg_rwstat stat_ios; 186 }; 187 188 /* We measure latency for request size from <= 4k to >= 1M */ 189 #define LATENCY_BUCKET_SIZE 9 190 191 struct latency_bucket { 192 unsigned long total_latency; /* ns / 1024 */ 193 int samples; 194 }; 195 196 struct avg_latency_bucket { 197 unsigned long latency; /* ns / 1024 */ 198 bool valid; 199 }; 200 201 struct throtl_data 202 { 203 /* service tree for active throtl groups */ 204 struct throtl_service_queue service_queue; 205 206 struct request_queue *queue; 207 208 /* Total Number of queued bios on READ and WRITE lists */ 209 unsigned int nr_queued[2]; 210 211 unsigned int throtl_slice; 212 213 /* Work for dispatching throttled bios */ 214 struct work_struct dispatch_work; 215 unsigned int limit_index; 216 bool limit_valid[LIMIT_CNT]; 217 218 unsigned long low_upgrade_time; 219 unsigned long low_downgrade_time; 220 221 unsigned int scale; 222 223 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 224 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 225 struct latency_bucket __percpu *latency_buckets[2]; 226 unsigned long last_calculate_time; 227 unsigned long filtered_latency; 228 229 bool track_bio_latency; 230 }; 231 232 static void throtl_pending_timer_fn(struct timer_list *t); 233 234 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 235 { 236 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 237 } 238 239 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 240 { 241 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 242 } 243 244 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 245 { 246 return pd_to_blkg(&tg->pd); 247 } 248 249 /** 250 * sq_to_tg - return the throl_grp the specified service queue belongs to 251 * @sq: the throtl_service_queue of interest 252 * 253 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 254 * embedded in throtl_data, %NULL is returned. 255 */ 256 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 257 { 258 if (sq && sq->parent_sq) 259 return container_of(sq, struct throtl_grp, service_queue); 260 else 261 return NULL; 262 } 263 264 /** 265 * sq_to_td - return throtl_data the specified service queue belongs to 266 * @sq: the throtl_service_queue of interest 267 * 268 * A service_queue can be embedded in either a throtl_grp or throtl_data. 269 * Determine the associated throtl_data accordingly and return it. 270 */ 271 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 272 { 273 struct throtl_grp *tg = sq_to_tg(sq); 274 275 if (tg) 276 return tg->td; 277 else 278 return container_of(sq, struct throtl_data, service_queue); 279 } 280 281 /* 282 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 283 * make the IO dispatch more smooth. 284 * Scale up: linearly scale up according to lapsed time since upgrade. For 285 * every throtl_slice, the limit scales up 1/2 .low limit till the 286 * limit hits .max limit 287 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 288 */ 289 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 290 { 291 /* arbitrary value to avoid too big scale */ 292 if (td->scale < 4096 && time_after_eq(jiffies, 293 td->low_upgrade_time + td->scale * td->throtl_slice)) 294 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 295 296 return low + (low >> 1) * td->scale; 297 } 298 299 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 300 { 301 struct blkcg_gq *blkg = tg_to_blkg(tg); 302 struct throtl_data *td; 303 uint64_t ret; 304 305 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 306 return U64_MAX; 307 308 td = tg->td; 309 ret = tg->bps[rw][td->limit_index]; 310 if (ret == 0 && td->limit_index == LIMIT_LOW) { 311 /* intermediate node or iops isn't 0 */ 312 if (!list_empty(&blkg->blkcg->css.children) || 313 tg->iops[rw][td->limit_index]) 314 return U64_MAX; 315 else 316 return MIN_THROTL_BPS; 317 } 318 319 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 320 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 321 uint64_t adjusted; 322 323 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 324 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 325 } 326 return ret; 327 } 328 329 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 330 { 331 struct blkcg_gq *blkg = tg_to_blkg(tg); 332 struct throtl_data *td; 333 unsigned int ret; 334 335 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 336 return UINT_MAX; 337 338 td = tg->td; 339 ret = tg->iops[rw][td->limit_index]; 340 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 341 /* intermediate node or bps isn't 0 */ 342 if (!list_empty(&blkg->blkcg->css.children) || 343 tg->bps[rw][td->limit_index]) 344 return UINT_MAX; 345 else 346 return MIN_THROTL_IOPS; 347 } 348 349 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 350 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 351 uint64_t adjusted; 352 353 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 354 if (adjusted > UINT_MAX) 355 adjusted = UINT_MAX; 356 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 357 } 358 return ret; 359 } 360 361 #define request_bucket_index(sectors) \ 362 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 363 364 /** 365 * throtl_log - log debug message via blktrace 366 * @sq: the service_queue being reported 367 * @fmt: printf format string 368 * @args: printf args 369 * 370 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 371 * throtl_grp; otherwise, just "throtl". 372 */ 373 #define throtl_log(sq, fmt, args...) do { \ 374 struct throtl_grp *__tg = sq_to_tg((sq)); \ 375 struct throtl_data *__td = sq_to_td((sq)); \ 376 \ 377 (void)__td; \ 378 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 379 break; \ 380 if ((__tg)) { \ 381 blk_add_cgroup_trace_msg(__td->queue, \ 382 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ 383 } else { \ 384 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 385 } \ 386 } while (0) 387 388 static inline unsigned int throtl_bio_data_size(struct bio *bio) 389 { 390 /* assume it's one sector */ 391 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 392 return 512; 393 return bio->bi_iter.bi_size; 394 } 395 396 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 397 { 398 INIT_LIST_HEAD(&qn->node); 399 bio_list_init(&qn->bios); 400 qn->tg = tg; 401 } 402 403 /** 404 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 405 * @bio: bio being added 406 * @qn: qnode to add bio to 407 * @queued: the service_queue->queued[] list @qn belongs to 408 * 409 * Add @bio to @qn and put @qn on @queued if it's not already on. 410 * @qn->tg's reference count is bumped when @qn is activated. See the 411 * comment on top of throtl_qnode definition for details. 412 */ 413 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 414 struct list_head *queued) 415 { 416 bio_list_add(&qn->bios, bio); 417 if (list_empty(&qn->node)) { 418 list_add_tail(&qn->node, queued); 419 blkg_get(tg_to_blkg(qn->tg)); 420 } 421 } 422 423 /** 424 * throtl_peek_queued - peek the first bio on a qnode list 425 * @queued: the qnode list to peek 426 */ 427 static struct bio *throtl_peek_queued(struct list_head *queued) 428 { 429 struct throtl_qnode *qn; 430 struct bio *bio; 431 432 if (list_empty(queued)) 433 return NULL; 434 435 qn = list_first_entry(queued, struct throtl_qnode, node); 436 bio = bio_list_peek(&qn->bios); 437 WARN_ON_ONCE(!bio); 438 return bio; 439 } 440 441 /** 442 * throtl_pop_queued - pop the first bio form a qnode list 443 * @queued: the qnode list to pop a bio from 444 * @tg_to_put: optional out argument for throtl_grp to put 445 * 446 * Pop the first bio from the qnode list @queued. After popping, the first 447 * qnode is removed from @queued if empty or moved to the end of @queued so 448 * that the popping order is round-robin. 449 * 450 * When the first qnode is removed, its associated throtl_grp should be put 451 * too. If @tg_to_put is NULL, this function automatically puts it; 452 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 453 * responsible for putting it. 454 */ 455 static struct bio *throtl_pop_queued(struct list_head *queued, 456 struct throtl_grp **tg_to_put) 457 { 458 struct throtl_qnode *qn; 459 struct bio *bio; 460 461 if (list_empty(queued)) 462 return NULL; 463 464 qn = list_first_entry(queued, struct throtl_qnode, node); 465 bio = bio_list_pop(&qn->bios); 466 WARN_ON_ONCE(!bio); 467 468 if (bio_list_empty(&qn->bios)) { 469 list_del_init(&qn->node); 470 if (tg_to_put) 471 *tg_to_put = qn->tg; 472 else 473 blkg_put(tg_to_blkg(qn->tg)); 474 } else { 475 list_move_tail(&qn->node, queued); 476 } 477 478 return bio; 479 } 480 481 /* init a service_queue, assumes the caller zeroed it */ 482 static void throtl_service_queue_init(struct throtl_service_queue *sq) 483 { 484 INIT_LIST_HEAD(&sq->queued[0]); 485 INIT_LIST_HEAD(&sq->queued[1]); 486 sq->pending_tree = RB_ROOT_CACHED; 487 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 488 } 489 490 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, 491 struct request_queue *q, 492 struct blkcg *blkcg) 493 { 494 struct throtl_grp *tg; 495 int rw; 496 497 tg = kzalloc_node(sizeof(*tg), gfp, q->node); 498 if (!tg) 499 return NULL; 500 501 if (blkg_rwstat_init(&tg->stat_bytes, gfp)) 502 goto err_free_tg; 503 504 if (blkg_rwstat_init(&tg->stat_ios, gfp)) 505 goto err_exit_stat_bytes; 506 507 throtl_service_queue_init(&tg->service_queue); 508 509 for (rw = READ; rw <= WRITE; rw++) { 510 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 511 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 512 } 513 514 RB_CLEAR_NODE(&tg->rb_node); 515 tg->bps[READ][LIMIT_MAX] = U64_MAX; 516 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 517 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 518 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 519 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 520 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 521 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 522 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 523 /* LIMIT_LOW will have default value 0 */ 524 525 tg->latency_target = DFL_LATENCY_TARGET; 526 tg->latency_target_conf = DFL_LATENCY_TARGET; 527 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 528 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 529 530 return &tg->pd; 531 532 err_exit_stat_bytes: 533 blkg_rwstat_exit(&tg->stat_bytes); 534 err_free_tg: 535 kfree(tg); 536 return NULL; 537 } 538 539 static void throtl_pd_init(struct blkg_policy_data *pd) 540 { 541 struct throtl_grp *tg = pd_to_tg(pd); 542 struct blkcg_gq *blkg = tg_to_blkg(tg); 543 struct throtl_data *td = blkg->q->td; 544 struct throtl_service_queue *sq = &tg->service_queue; 545 546 /* 547 * If on the default hierarchy, we switch to properly hierarchical 548 * behavior where limits on a given throtl_grp are applied to the 549 * whole subtree rather than just the group itself. e.g. If 16M 550 * read_bps limit is set on the root group, the whole system can't 551 * exceed 16M for the device. 552 * 553 * If not on the default hierarchy, the broken flat hierarchy 554 * behavior is retained where all throtl_grps are treated as if 555 * they're all separate root groups right below throtl_data. 556 * Limits of a group don't interact with limits of other groups 557 * regardless of the position of the group in the hierarchy. 558 */ 559 sq->parent_sq = &td->service_queue; 560 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 561 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 562 tg->td = td; 563 } 564 565 /* 566 * Set has_rules[] if @tg or any of its parents have limits configured. 567 * This doesn't require walking up to the top of the hierarchy as the 568 * parent's has_rules[] is guaranteed to be correct. 569 */ 570 static void tg_update_has_rules(struct throtl_grp *tg) 571 { 572 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 573 struct throtl_data *td = tg->td; 574 int rw; 575 576 for (rw = READ; rw <= WRITE; rw++) 577 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 578 (td->limit_valid[td->limit_index] && 579 (tg_bps_limit(tg, rw) != U64_MAX || 580 tg_iops_limit(tg, rw) != UINT_MAX)); 581 } 582 583 static void throtl_pd_online(struct blkg_policy_data *pd) 584 { 585 struct throtl_grp *tg = pd_to_tg(pd); 586 /* 587 * We don't want new groups to escape the limits of its ancestors. 588 * Update has_rules[] after a new group is brought online. 589 */ 590 tg_update_has_rules(tg); 591 } 592 593 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 594 static void blk_throtl_update_limit_valid(struct throtl_data *td) 595 { 596 struct cgroup_subsys_state *pos_css; 597 struct blkcg_gq *blkg; 598 bool low_valid = false; 599 600 rcu_read_lock(); 601 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 602 struct throtl_grp *tg = blkg_to_tg(blkg); 603 604 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 605 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { 606 low_valid = true; 607 break; 608 } 609 } 610 rcu_read_unlock(); 611 612 td->limit_valid[LIMIT_LOW] = low_valid; 613 } 614 #else 615 static inline void blk_throtl_update_limit_valid(struct throtl_data *td) 616 { 617 } 618 #endif 619 620 static void throtl_upgrade_state(struct throtl_data *td); 621 static void throtl_pd_offline(struct blkg_policy_data *pd) 622 { 623 struct throtl_grp *tg = pd_to_tg(pd); 624 625 tg->bps[READ][LIMIT_LOW] = 0; 626 tg->bps[WRITE][LIMIT_LOW] = 0; 627 tg->iops[READ][LIMIT_LOW] = 0; 628 tg->iops[WRITE][LIMIT_LOW] = 0; 629 630 blk_throtl_update_limit_valid(tg->td); 631 632 if (!tg->td->limit_valid[tg->td->limit_index]) 633 throtl_upgrade_state(tg->td); 634 } 635 636 static void throtl_pd_free(struct blkg_policy_data *pd) 637 { 638 struct throtl_grp *tg = pd_to_tg(pd); 639 640 del_timer_sync(&tg->service_queue.pending_timer); 641 blkg_rwstat_exit(&tg->stat_bytes); 642 blkg_rwstat_exit(&tg->stat_ios); 643 kfree(tg); 644 } 645 646 static struct throtl_grp * 647 throtl_rb_first(struct throtl_service_queue *parent_sq) 648 { 649 struct rb_node *n; 650 651 n = rb_first_cached(&parent_sq->pending_tree); 652 WARN_ON_ONCE(!n); 653 if (!n) 654 return NULL; 655 return rb_entry_tg(n); 656 } 657 658 static void throtl_rb_erase(struct rb_node *n, 659 struct throtl_service_queue *parent_sq) 660 { 661 rb_erase_cached(n, &parent_sq->pending_tree); 662 RB_CLEAR_NODE(n); 663 --parent_sq->nr_pending; 664 } 665 666 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 667 { 668 struct throtl_grp *tg; 669 670 tg = throtl_rb_first(parent_sq); 671 if (!tg) 672 return; 673 674 parent_sq->first_pending_disptime = tg->disptime; 675 } 676 677 static void tg_service_queue_add(struct throtl_grp *tg) 678 { 679 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 680 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 681 struct rb_node *parent = NULL; 682 struct throtl_grp *__tg; 683 unsigned long key = tg->disptime; 684 bool leftmost = true; 685 686 while (*node != NULL) { 687 parent = *node; 688 __tg = rb_entry_tg(parent); 689 690 if (time_before(key, __tg->disptime)) 691 node = &parent->rb_left; 692 else { 693 node = &parent->rb_right; 694 leftmost = false; 695 } 696 } 697 698 rb_link_node(&tg->rb_node, parent, node); 699 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 700 leftmost); 701 } 702 703 static void throtl_enqueue_tg(struct throtl_grp *tg) 704 { 705 if (!(tg->flags & THROTL_TG_PENDING)) { 706 tg_service_queue_add(tg); 707 tg->flags |= THROTL_TG_PENDING; 708 tg->service_queue.parent_sq->nr_pending++; 709 } 710 } 711 712 static void throtl_dequeue_tg(struct throtl_grp *tg) 713 { 714 if (tg->flags & THROTL_TG_PENDING) { 715 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 716 tg->flags &= ~THROTL_TG_PENDING; 717 } 718 } 719 720 /* Call with queue lock held */ 721 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 722 unsigned long expires) 723 { 724 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 725 726 /* 727 * Since we are adjusting the throttle limit dynamically, the sleep 728 * time calculated according to previous limit might be invalid. It's 729 * possible the cgroup sleep time is very long and no other cgroups 730 * have IO running so notify the limit changes. Make sure the cgroup 731 * doesn't sleep too long to avoid the missed notification. 732 */ 733 if (time_after(expires, max_expire)) 734 expires = max_expire; 735 mod_timer(&sq->pending_timer, expires); 736 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 737 expires - jiffies, jiffies); 738 } 739 740 /** 741 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 742 * @sq: the service_queue to schedule dispatch for 743 * @force: force scheduling 744 * 745 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 746 * dispatch time of the first pending child. Returns %true if either timer 747 * is armed or there's no pending child left. %false if the current 748 * dispatch window is still open and the caller should continue 749 * dispatching. 750 * 751 * If @force is %true, the dispatch timer is always scheduled and this 752 * function is guaranteed to return %true. This is to be used when the 753 * caller can't dispatch itself and needs to invoke pending_timer 754 * unconditionally. Note that forced scheduling is likely to induce short 755 * delay before dispatch starts even if @sq->first_pending_disptime is not 756 * in the future and thus shouldn't be used in hot paths. 757 */ 758 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 759 bool force) 760 { 761 /* any pending children left? */ 762 if (!sq->nr_pending) 763 return true; 764 765 update_min_dispatch_time(sq); 766 767 /* is the next dispatch time in the future? */ 768 if (force || time_after(sq->first_pending_disptime, jiffies)) { 769 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 770 return true; 771 } 772 773 /* tell the caller to continue dispatching */ 774 return false; 775 } 776 777 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 778 bool rw, unsigned long start) 779 { 780 tg->bytes_disp[rw] = 0; 781 tg->io_disp[rw] = 0; 782 783 atomic_set(&tg->io_split_cnt[rw], 0); 784 785 /* 786 * Previous slice has expired. We must have trimmed it after last 787 * bio dispatch. That means since start of last slice, we never used 788 * that bandwidth. Do try to make use of that bandwidth while giving 789 * credit. 790 */ 791 if (time_after_eq(start, tg->slice_start[rw])) 792 tg->slice_start[rw] = start; 793 794 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 795 throtl_log(&tg->service_queue, 796 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 797 rw == READ ? 'R' : 'W', tg->slice_start[rw], 798 tg->slice_end[rw], jiffies); 799 } 800 801 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 802 { 803 tg->bytes_disp[rw] = 0; 804 tg->io_disp[rw] = 0; 805 tg->slice_start[rw] = jiffies; 806 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 807 808 atomic_set(&tg->io_split_cnt[rw], 0); 809 810 throtl_log(&tg->service_queue, 811 "[%c] new slice start=%lu end=%lu jiffies=%lu", 812 rw == READ ? 'R' : 'W', tg->slice_start[rw], 813 tg->slice_end[rw], jiffies); 814 } 815 816 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 817 unsigned long jiffy_end) 818 { 819 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 820 } 821 822 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 823 unsigned long jiffy_end) 824 { 825 throtl_set_slice_end(tg, rw, jiffy_end); 826 throtl_log(&tg->service_queue, 827 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 828 rw == READ ? 'R' : 'W', tg->slice_start[rw], 829 tg->slice_end[rw], jiffies); 830 } 831 832 /* Determine if previously allocated or extended slice is complete or not */ 833 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 834 { 835 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 836 return false; 837 838 return true; 839 } 840 841 /* Trim the used slices and adjust slice start accordingly */ 842 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 843 { 844 unsigned long nr_slices, time_elapsed, io_trim; 845 u64 bytes_trim, tmp; 846 847 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 848 849 /* 850 * If bps are unlimited (-1), then time slice don't get 851 * renewed. Don't try to trim the slice if slice is used. A new 852 * slice will start when appropriate. 853 */ 854 if (throtl_slice_used(tg, rw)) 855 return; 856 857 /* 858 * A bio has been dispatched. Also adjust slice_end. It might happen 859 * that initially cgroup limit was very low resulting in high 860 * slice_end, but later limit was bumped up and bio was dispatched 861 * sooner, then we need to reduce slice_end. A high bogus slice_end 862 * is bad because it does not allow new slice to start. 863 */ 864 865 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 866 867 time_elapsed = jiffies - tg->slice_start[rw]; 868 869 nr_slices = time_elapsed / tg->td->throtl_slice; 870 871 if (!nr_slices) 872 return; 873 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 874 do_div(tmp, HZ); 875 bytes_trim = tmp; 876 877 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 878 HZ; 879 880 if (!bytes_trim && !io_trim) 881 return; 882 883 if (tg->bytes_disp[rw] >= bytes_trim) 884 tg->bytes_disp[rw] -= bytes_trim; 885 else 886 tg->bytes_disp[rw] = 0; 887 888 if (tg->io_disp[rw] >= io_trim) 889 tg->io_disp[rw] -= io_trim; 890 else 891 tg->io_disp[rw] = 0; 892 893 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 894 895 throtl_log(&tg->service_queue, 896 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 897 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 898 tg->slice_start[rw], tg->slice_end[rw], jiffies); 899 } 900 901 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 902 u32 iops_limit, unsigned long *wait) 903 { 904 bool rw = bio_data_dir(bio); 905 unsigned int io_allowed; 906 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 907 u64 tmp; 908 909 if (iops_limit == UINT_MAX) { 910 if (wait) 911 *wait = 0; 912 return true; 913 } 914 915 jiffy_elapsed = jiffies - tg->slice_start[rw]; 916 917 /* Round up to the next throttle slice, wait time must be nonzero */ 918 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); 919 920 /* 921 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 922 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 923 * will allow dispatch after 1 second and after that slice should 924 * have been trimmed. 925 */ 926 927 tmp = (u64)iops_limit * jiffy_elapsed_rnd; 928 do_div(tmp, HZ); 929 930 if (tmp > UINT_MAX) 931 io_allowed = UINT_MAX; 932 else 933 io_allowed = tmp; 934 935 if (tg->io_disp[rw] + 1 <= io_allowed) { 936 if (wait) 937 *wait = 0; 938 return true; 939 } 940 941 /* Calc approx time to dispatch */ 942 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 943 944 if (wait) 945 *wait = jiffy_wait; 946 return false; 947 } 948 949 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 950 u64 bps_limit, unsigned long *wait) 951 { 952 bool rw = bio_data_dir(bio); 953 u64 bytes_allowed, extra_bytes, tmp; 954 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 955 unsigned int bio_size = throtl_bio_data_size(bio); 956 957 if (bps_limit == U64_MAX) { 958 if (wait) 959 *wait = 0; 960 return true; 961 } 962 963 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 964 965 /* Slice has just started. Consider one slice interval */ 966 if (!jiffy_elapsed) 967 jiffy_elapsed_rnd = tg->td->throtl_slice; 968 969 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 970 971 tmp = bps_limit * jiffy_elapsed_rnd; 972 do_div(tmp, HZ); 973 bytes_allowed = tmp; 974 975 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 976 if (wait) 977 *wait = 0; 978 return true; 979 } 980 981 /* Calc approx time to dispatch */ 982 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 983 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); 984 985 if (!jiffy_wait) 986 jiffy_wait = 1; 987 988 /* 989 * This wait time is without taking into consideration the rounding 990 * up we did. Add that time also. 991 */ 992 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 993 if (wait) 994 *wait = jiffy_wait; 995 return false; 996 } 997 998 /* 999 * Returns whether one can dispatch a bio or not. Also returns approx number 1000 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 1001 */ 1002 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 1003 unsigned long *wait) 1004 { 1005 bool rw = bio_data_dir(bio); 1006 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 1007 u64 bps_limit = tg_bps_limit(tg, rw); 1008 u32 iops_limit = tg_iops_limit(tg, rw); 1009 1010 /* 1011 * Currently whole state machine of group depends on first bio 1012 * queued in the group bio list. So one should not be calling 1013 * this function with a different bio if there are other bios 1014 * queued. 1015 */ 1016 BUG_ON(tg->service_queue.nr_queued[rw] && 1017 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 1018 1019 /* If tg->bps = -1, then BW is unlimited */ 1020 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) { 1021 if (wait) 1022 *wait = 0; 1023 return true; 1024 } 1025 1026 /* 1027 * If previous slice expired, start a new one otherwise renew/extend 1028 * existing slice to make sure it is at least throtl_slice interval 1029 * long since now. New slice is started only for empty throttle group. 1030 * If there is queued bio, that means there should be an active 1031 * slice and it should be extended instead. 1032 */ 1033 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 1034 throtl_start_new_slice(tg, rw); 1035 else { 1036 if (time_before(tg->slice_end[rw], 1037 jiffies + tg->td->throtl_slice)) 1038 throtl_extend_slice(tg, rw, 1039 jiffies + tg->td->throtl_slice); 1040 } 1041 1042 if (iops_limit != UINT_MAX) 1043 tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0); 1044 1045 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) && 1046 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) { 1047 if (wait) 1048 *wait = 0; 1049 return true; 1050 } 1051 1052 max_wait = max(bps_wait, iops_wait); 1053 1054 if (wait) 1055 *wait = max_wait; 1056 1057 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 1058 throtl_extend_slice(tg, rw, jiffies + max_wait); 1059 1060 return false; 1061 } 1062 1063 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 1064 { 1065 bool rw = bio_data_dir(bio); 1066 unsigned int bio_size = throtl_bio_data_size(bio); 1067 1068 /* Charge the bio to the group */ 1069 tg->bytes_disp[rw] += bio_size; 1070 tg->io_disp[rw]++; 1071 tg->last_bytes_disp[rw] += bio_size; 1072 tg->last_io_disp[rw]++; 1073 1074 /* 1075 * BIO_THROTTLED is used to prevent the same bio to be throttled 1076 * more than once as a throttled bio will go through blk-throtl the 1077 * second time when it eventually gets issued. Set it when a bio 1078 * is being charged to a tg. 1079 */ 1080 if (!bio_flagged(bio, BIO_THROTTLED)) 1081 bio_set_flag(bio, BIO_THROTTLED); 1082 } 1083 1084 /** 1085 * throtl_add_bio_tg - add a bio to the specified throtl_grp 1086 * @bio: bio to add 1087 * @qn: qnode to use 1088 * @tg: the target throtl_grp 1089 * 1090 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 1091 * tg->qnode_on_self[] is used. 1092 */ 1093 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 1094 struct throtl_grp *tg) 1095 { 1096 struct throtl_service_queue *sq = &tg->service_queue; 1097 bool rw = bio_data_dir(bio); 1098 1099 if (!qn) 1100 qn = &tg->qnode_on_self[rw]; 1101 1102 /* 1103 * If @tg doesn't currently have any bios queued in the same 1104 * direction, queueing @bio can change when @tg should be 1105 * dispatched. Mark that @tg was empty. This is automatically 1106 * cleared on the next tg_update_disptime(). 1107 */ 1108 if (!sq->nr_queued[rw]) 1109 tg->flags |= THROTL_TG_WAS_EMPTY; 1110 1111 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1112 1113 sq->nr_queued[rw]++; 1114 throtl_enqueue_tg(tg); 1115 } 1116 1117 static void tg_update_disptime(struct throtl_grp *tg) 1118 { 1119 struct throtl_service_queue *sq = &tg->service_queue; 1120 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1121 struct bio *bio; 1122 1123 bio = throtl_peek_queued(&sq->queued[READ]); 1124 if (bio) 1125 tg_may_dispatch(tg, bio, &read_wait); 1126 1127 bio = throtl_peek_queued(&sq->queued[WRITE]); 1128 if (bio) 1129 tg_may_dispatch(tg, bio, &write_wait); 1130 1131 min_wait = min(read_wait, write_wait); 1132 disptime = jiffies + min_wait; 1133 1134 /* Update dispatch time */ 1135 throtl_dequeue_tg(tg); 1136 tg->disptime = disptime; 1137 throtl_enqueue_tg(tg); 1138 1139 /* see throtl_add_bio_tg() */ 1140 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1141 } 1142 1143 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1144 struct throtl_grp *parent_tg, bool rw) 1145 { 1146 if (throtl_slice_used(parent_tg, rw)) { 1147 throtl_start_new_slice_with_credit(parent_tg, rw, 1148 child_tg->slice_start[rw]); 1149 } 1150 1151 } 1152 1153 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1154 { 1155 struct throtl_service_queue *sq = &tg->service_queue; 1156 struct throtl_service_queue *parent_sq = sq->parent_sq; 1157 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1158 struct throtl_grp *tg_to_put = NULL; 1159 struct bio *bio; 1160 1161 /* 1162 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1163 * from @tg may put its reference and @parent_sq might end up 1164 * getting released prematurely. Remember the tg to put and put it 1165 * after @bio is transferred to @parent_sq. 1166 */ 1167 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1168 sq->nr_queued[rw]--; 1169 1170 throtl_charge_bio(tg, bio); 1171 1172 /* 1173 * If our parent is another tg, we just need to transfer @bio to 1174 * the parent using throtl_add_bio_tg(). If our parent is 1175 * @td->service_queue, @bio is ready to be issued. Put it on its 1176 * bio_lists[] and decrease total number queued. The caller is 1177 * responsible for issuing these bios. 1178 */ 1179 if (parent_tg) { 1180 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1181 start_parent_slice_with_credit(tg, parent_tg, rw); 1182 } else { 1183 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1184 &parent_sq->queued[rw]); 1185 BUG_ON(tg->td->nr_queued[rw] <= 0); 1186 tg->td->nr_queued[rw]--; 1187 } 1188 1189 throtl_trim_slice(tg, rw); 1190 1191 if (tg_to_put) 1192 blkg_put(tg_to_blkg(tg_to_put)); 1193 } 1194 1195 static int throtl_dispatch_tg(struct throtl_grp *tg) 1196 { 1197 struct throtl_service_queue *sq = &tg->service_queue; 1198 unsigned int nr_reads = 0, nr_writes = 0; 1199 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; 1200 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; 1201 struct bio *bio; 1202 1203 /* Try to dispatch 75% READS and 25% WRITES */ 1204 1205 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1206 tg_may_dispatch(tg, bio, NULL)) { 1207 1208 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1209 nr_reads++; 1210 1211 if (nr_reads >= max_nr_reads) 1212 break; 1213 } 1214 1215 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1216 tg_may_dispatch(tg, bio, NULL)) { 1217 1218 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1219 nr_writes++; 1220 1221 if (nr_writes >= max_nr_writes) 1222 break; 1223 } 1224 1225 return nr_reads + nr_writes; 1226 } 1227 1228 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1229 { 1230 unsigned int nr_disp = 0; 1231 1232 while (1) { 1233 struct throtl_grp *tg; 1234 struct throtl_service_queue *sq; 1235 1236 if (!parent_sq->nr_pending) 1237 break; 1238 1239 tg = throtl_rb_first(parent_sq); 1240 if (!tg) 1241 break; 1242 1243 if (time_before(jiffies, tg->disptime)) 1244 break; 1245 1246 throtl_dequeue_tg(tg); 1247 1248 nr_disp += throtl_dispatch_tg(tg); 1249 1250 sq = &tg->service_queue; 1251 if (sq->nr_queued[0] || sq->nr_queued[1]) 1252 tg_update_disptime(tg); 1253 1254 if (nr_disp >= THROTL_QUANTUM) 1255 break; 1256 } 1257 1258 return nr_disp; 1259 } 1260 1261 static bool throtl_can_upgrade(struct throtl_data *td, 1262 struct throtl_grp *this_tg); 1263 /** 1264 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1265 * @t: the pending_timer member of the throtl_service_queue being serviced 1266 * 1267 * This timer is armed when a child throtl_grp with active bio's become 1268 * pending and queued on the service_queue's pending_tree and expires when 1269 * the first child throtl_grp should be dispatched. This function 1270 * dispatches bio's from the children throtl_grps to the parent 1271 * service_queue. 1272 * 1273 * If the parent's parent is another throtl_grp, dispatching is propagated 1274 * by either arming its pending_timer or repeating dispatch directly. If 1275 * the top-level service_tree is reached, throtl_data->dispatch_work is 1276 * kicked so that the ready bio's are issued. 1277 */ 1278 static void throtl_pending_timer_fn(struct timer_list *t) 1279 { 1280 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1281 struct throtl_grp *tg = sq_to_tg(sq); 1282 struct throtl_data *td = sq_to_td(sq); 1283 struct request_queue *q = td->queue; 1284 struct throtl_service_queue *parent_sq; 1285 bool dispatched; 1286 int ret; 1287 1288 spin_lock_irq(&q->queue_lock); 1289 if (throtl_can_upgrade(td, NULL)) 1290 throtl_upgrade_state(td); 1291 1292 again: 1293 parent_sq = sq->parent_sq; 1294 dispatched = false; 1295 1296 while (true) { 1297 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1298 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1299 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1300 1301 ret = throtl_select_dispatch(sq); 1302 if (ret) { 1303 throtl_log(sq, "bios disp=%u", ret); 1304 dispatched = true; 1305 } 1306 1307 if (throtl_schedule_next_dispatch(sq, false)) 1308 break; 1309 1310 /* this dispatch windows is still open, relax and repeat */ 1311 spin_unlock_irq(&q->queue_lock); 1312 cpu_relax(); 1313 spin_lock_irq(&q->queue_lock); 1314 } 1315 1316 if (!dispatched) 1317 goto out_unlock; 1318 1319 if (parent_sq) { 1320 /* @parent_sq is another throl_grp, propagate dispatch */ 1321 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1322 tg_update_disptime(tg); 1323 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1324 /* window is already open, repeat dispatching */ 1325 sq = parent_sq; 1326 tg = sq_to_tg(sq); 1327 goto again; 1328 } 1329 } 1330 } else { 1331 /* reached the top-level, queue issuing */ 1332 queue_work(kthrotld_workqueue, &td->dispatch_work); 1333 } 1334 out_unlock: 1335 spin_unlock_irq(&q->queue_lock); 1336 } 1337 1338 /** 1339 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1340 * @work: work item being executed 1341 * 1342 * This function is queued for execution when bios reach the bio_lists[] 1343 * of throtl_data->service_queue. Those bios are ready and issued by this 1344 * function. 1345 */ 1346 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1347 { 1348 struct throtl_data *td = container_of(work, struct throtl_data, 1349 dispatch_work); 1350 struct throtl_service_queue *td_sq = &td->service_queue; 1351 struct request_queue *q = td->queue; 1352 struct bio_list bio_list_on_stack; 1353 struct bio *bio; 1354 struct blk_plug plug; 1355 int rw; 1356 1357 bio_list_init(&bio_list_on_stack); 1358 1359 spin_lock_irq(&q->queue_lock); 1360 for (rw = READ; rw <= WRITE; rw++) 1361 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1362 bio_list_add(&bio_list_on_stack, bio); 1363 spin_unlock_irq(&q->queue_lock); 1364 1365 if (!bio_list_empty(&bio_list_on_stack)) { 1366 blk_start_plug(&plug); 1367 while ((bio = bio_list_pop(&bio_list_on_stack))) 1368 submit_bio_noacct(bio); 1369 blk_finish_plug(&plug); 1370 } 1371 } 1372 1373 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1374 int off) 1375 { 1376 struct throtl_grp *tg = pd_to_tg(pd); 1377 u64 v = *(u64 *)((void *)tg + off); 1378 1379 if (v == U64_MAX) 1380 return 0; 1381 return __blkg_prfill_u64(sf, pd, v); 1382 } 1383 1384 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1385 int off) 1386 { 1387 struct throtl_grp *tg = pd_to_tg(pd); 1388 unsigned int v = *(unsigned int *)((void *)tg + off); 1389 1390 if (v == UINT_MAX) 1391 return 0; 1392 return __blkg_prfill_u64(sf, pd, v); 1393 } 1394 1395 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1396 { 1397 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1398 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1399 return 0; 1400 } 1401 1402 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1403 { 1404 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1405 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1406 return 0; 1407 } 1408 1409 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1410 { 1411 struct throtl_service_queue *sq = &tg->service_queue; 1412 struct cgroup_subsys_state *pos_css; 1413 struct blkcg_gq *blkg; 1414 1415 throtl_log(&tg->service_queue, 1416 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1417 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1418 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1419 1420 /* 1421 * Update has_rules[] flags for the updated tg's subtree. A tg is 1422 * considered to have rules if either the tg itself or any of its 1423 * ancestors has rules. This identifies groups without any 1424 * restrictions in the whole hierarchy and allows them to bypass 1425 * blk-throttle. 1426 */ 1427 blkg_for_each_descendant_pre(blkg, pos_css, 1428 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1429 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1430 struct throtl_grp *parent_tg; 1431 1432 tg_update_has_rules(this_tg); 1433 /* ignore root/second level */ 1434 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1435 !blkg->parent->parent) 1436 continue; 1437 parent_tg = blkg_to_tg(blkg->parent); 1438 /* 1439 * make sure all children has lower idle time threshold and 1440 * higher latency target 1441 */ 1442 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1443 parent_tg->idletime_threshold); 1444 this_tg->latency_target = max(this_tg->latency_target, 1445 parent_tg->latency_target); 1446 } 1447 1448 /* 1449 * We're already holding queue_lock and know @tg is valid. Let's 1450 * apply the new config directly. 1451 * 1452 * Restart the slices for both READ and WRITES. It might happen 1453 * that a group's limit are dropped suddenly and we don't want to 1454 * account recently dispatched IO with new low rate. 1455 */ 1456 throtl_start_new_slice(tg, READ); 1457 throtl_start_new_slice(tg, WRITE); 1458 1459 if (tg->flags & THROTL_TG_PENDING) { 1460 tg_update_disptime(tg); 1461 throtl_schedule_next_dispatch(sq->parent_sq, true); 1462 } 1463 } 1464 1465 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1466 char *buf, size_t nbytes, loff_t off, bool is_u64) 1467 { 1468 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1469 struct blkg_conf_ctx ctx; 1470 struct throtl_grp *tg; 1471 int ret; 1472 u64 v; 1473 1474 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1475 if (ret) 1476 return ret; 1477 1478 ret = -EINVAL; 1479 if (sscanf(ctx.body, "%llu", &v) != 1) 1480 goto out_finish; 1481 if (!v) 1482 v = U64_MAX; 1483 1484 tg = blkg_to_tg(ctx.blkg); 1485 1486 if (is_u64) 1487 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1488 else 1489 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1490 1491 tg_conf_updated(tg, false); 1492 ret = 0; 1493 out_finish: 1494 blkg_conf_finish(&ctx); 1495 return ret ?: nbytes; 1496 } 1497 1498 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1499 char *buf, size_t nbytes, loff_t off) 1500 { 1501 return tg_set_conf(of, buf, nbytes, off, true); 1502 } 1503 1504 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1505 char *buf, size_t nbytes, loff_t off) 1506 { 1507 return tg_set_conf(of, buf, nbytes, off, false); 1508 } 1509 1510 static int tg_print_rwstat(struct seq_file *sf, void *v) 1511 { 1512 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1513 blkg_prfill_rwstat, &blkcg_policy_throtl, 1514 seq_cft(sf)->private, true); 1515 return 0; 1516 } 1517 1518 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, 1519 struct blkg_policy_data *pd, int off) 1520 { 1521 struct blkg_rwstat_sample sum; 1522 1523 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, 1524 &sum); 1525 return __blkg_prfill_rwstat(sf, pd, &sum); 1526 } 1527 1528 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) 1529 { 1530 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1531 tg_prfill_rwstat_recursive, &blkcg_policy_throtl, 1532 seq_cft(sf)->private, true); 1533 return 0; 1534 } 1535 1536 static struct cftype throtl_legacy_files[] = { 1537 { 1538 .name = "throttle.read_bps_device", 1539 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1540 .seq_show = tg_print_conf_u64, 1541 .write = tg_set_conf_u64, 1542 }, 1543 { 1544 .name = "throttle.write_bps_device", 1545 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1546 .seq_show = tg_print_conf_u64, 1547 .write = tg_set_conf_u64, 1548 }, 1549 { 1550 .name = "throttle.read_iops_device", 1551 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1552 .seq_show = tg_print_conf_uint, 1553 .write = tg_set_conf_uint, 1554 }, 1555 { 1556 .name = "throttle.write_iops_device", 1557 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1558 .seq_show = tg_print_conf_uint, 1559 .write = tg_set_conf_uint, 1560 }, 1561 { 1562 .name = "throttle.io_service_bytes", 1563 .private = offsetof(struct throtl_grp, stat_bytes), 1564 .seq_show = tg_print_rwstat, 1565 }, 1566 { 1567 .name = "throttle.io_service_bytes_recursive", 1568 .private = offsetof(struct throtl_grp, stat_bytes), 1569 .seq_show = tg_print_rwstat_recursive, 1570 }, 1571 { 1572 .name = "throttle.io_serviced", 1573 .private = offsetof(struct throtl_grp, stat_ios), 1574 .seq_show = tg_print_rwstat, 1575 }, 1576 { 1577 .name = "throttle.io_serviced_recursive", 1578 .private = offsetof(struct throtl_grp, stat_ios), 1579 .seq_show = tg_print_rwstat_recursive, 1580 }, 1581 { } /* terminate */ 1582 }; 1583 1584 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1585 int off) 1586 { 1587 struct throtl_grp *tg = pd_to_tg(pd); 1588 const char *dname = blkg_dev_name(pd->blkg); 1589 char bufs[4][21] = { "max", "max", "max", "max" }; 1590 u64 bps_dft; 1591 unsigned int iops_dft; 1592 char idle_time[26] = ""; 1593 char latency_time[26] = ""; 1594 1595 if (!dname) 1596 return 0; 1597 1598 if (off == LIMIT_LOW) { 1599 bps_dft = 0; 1600 iops_dft = 0; 1601 } else { 1602 bps_dft = U64_MAX; 1603 iops_dft = UINT_MAX; 1604 } 1605 1606 if (tg->bps_conf[READ][off] == bps_dft && 1607 tg->bps_conf[WRITE][off] == bps_dft && 1608 tg->iops_conf[READ][off] == iops_dft && 1609 tg->iops_conf[WRITE][off] == iops_dft && 1610 (off != LIMIT_LOW || 1611 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1612 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1613 return 0; 1614 1615 if (tg->bps_conf[READ][off] != U64_MAX) 1616 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1617 tg->bps_conf[READ][off]); 1618 if (tg->bps_conf[WRITE][off] != U64_MAX) 1619 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1620 tg->bps_conf[WRITE][off]); 1621 if (tg->iops_conf[READ][off] != UINT_MAX) 1622 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1623 tg->iops_conf[READ][off]); 1624 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1625 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1626 tg->iops_conf[WRITE][off]); 1627 if (off == LIMIT_LOW) { 1628 if (tg->idletime_threshold_conf == ULONG_MAX) 1629 strcpy(idle_time, " idle=max"); 1630 else 1631 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1632 tg->idletime_threshold_conf); 1633 1634 if (tg->latency_target_conf == ULONG_MAX) 1635 strcpy(latency_time, " latency=max"); 1636 else 1637 snprintf(latency_time, sizeof(latency_time), 1638 " latency=%lu", tg->latency_target_conf); 1639 } 1640 1641 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1642 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1643 latency_time); 1644 return 0; 1645 } 1646 1647 static int tg_print_limit(struct seq_file *sf, void *v) 1648 { 1649 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1650 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1651 return 0; 1652 } 1653 1654 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1655 char *buf, size_t nbytes, loff_t off) 1656 { 1657 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1658 struct blkg_conf_ctx ctx; 1659 struct throtl_grp *tg; 1660 u64 v[4]; 1661 unsigned long idle_time; 1662 unsigned long latency_time; 1663 int ret; 1664 int index = of_cft(of)->private; 1665 1666 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1667 if (ret) 1668 return ret; 1669 1670 tg = blkg_to_tg(ctx.blkg); 1671 1672 v[0] = tg->bps_conf[READ][index]; 1673 v[1] = tg->bps_conf[WRITE][index]; 1674 v[2] = tg->iops_conf[READ][index]; 1675 v[3] = tg->iops_conf[WRITE][index]; 1676 1677 idle_time = tg->idletime_threshold_conf; 1678 latency_time = tg->latency_target_conf; 1679 while (true) { 1680 char tok[27]; /* wiops=18446744073709551616 */ 1681 char *p; 1682 u64 val = U64_MAX; 1683 int len; 1684 1685 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1686 break; 1687 if (tok[0] == '\0') 1688 break; 1689 ctx.body += len; 1690 1691 ret = -EINVAL; 1692 p = tok; 1693 strsep(&p, "="); 1694 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1695 goto out_finish; 1696 1697 ret = -ERANGE; 1698 if (!val) 1699 goto out_finish; 1700 1701 ret = -EINVAL; 1702 if (!strcmp(tok, "rbps") && val > 1) 1703 v[0] = val; 1704 else if (!strcmp(tok, "wbps") && val > 1) 1705 v[1] = val; 1706 else if (!strcmp(tok, "riops") && val > 1) 1707 v[2] = min_t(u64, val, UINT_MAX); 1708 else if (!strcmp(tok, "wiops") && val > 1) 1709 v[3] = min_t(u64, val, UINT_MAX); 1710 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1711 idle_time = val; 1712 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1713 latency_time = val; 1714 else 1715 goto out_finish; 1716 } 1717 1718 tg->bps_conf[READ][index] = v[0]; 1719 tg->bps_conf[WRITE][index] = v[1]; 1720 tg->iops_conf[READ][index] = v[2]; 1721 tg->iops_conf[WRITE][index] = v[3]; 1722 1723 if (index == LIMIT_MAX) { 1724 tg->bps[READ][index] = v[0]; 1725 tg->bps[WRITE][index] = v[1]; 1726 tg->iops[READ][index] = v[2]; 1727 tg->iops[WRITE][index] = v[3]; 1728 } 1729 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1730 tg->bps_conf[READ][LIMIT_MAX]); 1731 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1732 tg->bps_conf[WRITE][LIMIT_MAX]); 1733 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1734 tg->iops_conf[READ][LIMIT_MAX]); 1735 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1736 tg->iops_conf[WRITE][LIMIT_MAX]); 1737 tg->idletime_threshold_conf = idle_time; 1738 tg->latency_target_conf = latency_time; 1739 1740 /* force user to configure all settings for low limit */ 1741 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1742 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1743 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1744 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1745 tg->bps[READ][LIMIT_LOW] = 0; 1746 tg->bps[WRITE][LIMIT_LOW] = 0; 1747 tg->iops[READ][LIMIT_LOW] = 0; 1748 tg->iops[WRITE][LIMIT_LOW] = 0; 1749 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1750 tg->latency_target = DFL_LATENCY_TARGET; 1751 } else if (index == LIMIT_LOW) { 1752 tg->idletime_threshold = tg->idletime_threshold_conf; 1753 tg->latency_target = tg->latency_target_conf; 1754 } 1755 1756 blk_throtl_update_limit_valid(tg->td); 1757 if (tg->td->limit_valid[LIMIT_LOW]) { 1758 if (index == LIMIT_LOW) 1759 tg->td->limit_index = LIMIT_LOW; 1760 } else 1761 tg->td->limit_index = LIMIT_MAX; 1762 tg_conf_updated(tg, index == LIMIT_LOW && 1763 tg->td->limit_valid[LIMIT_LOW]); 1764 ret = 0; 1765 out_finish: 1766 blkg_conf_finish(&ctx); 1767 return ret ?: nbytes; 1768 } 1769 1770 static struct cftype throtl_files[] = { 1771 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1772 { 1773 .name = "low", 1774 .flags = CFTYPE_NOT_ON_ROOT, 1775 .seq_show = tg_print_limit, 1776 .write = tg_set_limit, 1777 .private = LIMIT_LOW, 1778 }, 1779 #endif 1780 { 1781 .name = "max", 1782 .flags = CFTYPE_NOT_ON_ROOT, 1783 .seq_show = tg_print_limit, 1784 .write = tg_set_limit, 1785 .private = LIMIT_MAX, 1786 }, 1787 { } /* terminate */ 1788 }; 1789 1790 static void throtl_shutdown_wq(struct request_queue *q) 1791 { 1792 struct throtl_data *td = q->td; 1793 1794 cancel_work_sync(&td->dispatch_work); 1795 } 1796 1797 static struct blkcg_policy blkcg_policy_throtl = { 1798 .dfl_cftypes = throtl_files, 1799 .legacy_cftypes = throtl_legacy_files, 1800 1801 .pd_alloc_fn = throtl_pd_alloc, 1802 .pd_init_fn = throtl_pd_init, 1803 .pd_online_fn = throtl_pd_online, 1804 .pd_offline_fn = throtl_pd_offline, 1805 .pd_free_fn = throtl_pd_free, 1806 }; 1807 1808 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1809 { 1810 unsigned long rtime = jiffies, wtime = jiffies; 1811 1812 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1813 rtime = tg->last_low_overflow_time[READ]; 1814 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1815 wtime = tg->last_low_overflow_time[WRITE]; 1816 return min(rtime, wtime); 1817 } 1818 1819 /* tg should not be an intermediate node */ 1820 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1821 { 1822 struct throtl_service_queue *parent_sq; 1823 struct throtl_grp *parent = tg; 1824 unsigned long ret = __tg_last_low_overflow_time(tg); 1825 1826 while (true) { 1827 parent_sq = parent->service_queue.parent_sq; 1828 parent = sq_to_tg(parent_sq); 1829 if (!parent) 1830 break; 1831 1832 /* 1833 * The parent doesn't have low limit, it always reaches low 1834 * limit. Its overflow time is useless for children 1835 */ 1836 if (!parent->bps[READ][LIMIT_LOW] && 1837 !parent->iops[READ][LIMIT_LOW] && 1838 !parent->bps[WRITE][LIMIT_LOW] && 1839 !parent->iops[WRITE][LIMIT_LOW]) 1840 continue; 1841 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1842 ret = __tg_last_low_overflow_time(parent); 1843 } 1844 return ret; 1845 } 1846 1847 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1848 { 1849 /* 1850 * cgroup is idle if: 1851 * - single idle is too long, longer than a fixed value (in case user 1852 * configure a too big threshold) or 4 times of idletime threshold 1853 * - average think time is more than threshold 1854 * - IO latency is largely below threshold 1855 */ 1856 unsigned long time; 1857 bool ret; 1858 1859 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1860 ret = tg->latency_target == DFL_LATENCY_TARGET || 1861 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1862 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1863 tg->avg_idletime > tg->idletime_threshold || 1864 (tg->latency_target && tg->bio_cnt && 1865 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1866 throtl_log(&tg->service_queue, 1867 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1868 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1869 tg->bio_cnt, ret, tg->td->scale); 1870 return ret; 1871 } 1872 1873 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1874 { 1875 struct throtl_service_queue *sq = &tg->service_queue; 1876 bool read_limit, write_limit; 1877 1878 /* 1879 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1880 * reaches), it's ok to upgrade to next limit 1881 */ 1882 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1883 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1884 if (!read_limit && !write_limit) 1885 return true; 1886 if (read_limit && sq->nr_queued[READ] && 1887 (!write_limit || sq->nr_queued[WRITE])) 1888 return true; 1889 if (write_limit && sq->nr_queued[WRITE] && 1890 (!read_limit || sq->nr_queued[READ])) 1891 return true; 1892 1893 if (time_after_eq(jiffies, 1894 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1895 throtl_tg_is_idle(tg)) 1896 return true; 1897 return false; 1898 } 1899 1900 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1901 { 1902 while (true) { 1903 if (throtl_tg_can_upgrade(tg)) 1904 return true; 1905 tg = sq_to_tg(tg->service_queue.parent_sq); 1906 if (!tg || !tg_to_blkg(tg)->parent) 1907 return false; 1908 } 1909 return false; 1910 } 1911 1912 static bool throtl_can_upgrade(struct throtl_data *td, 1913 struct throtl_grp *this_tg) 1914 { 1915 struct cgroup_subsys_state *pos_css; 1916 struct blkcg_gq *blkg; 1917 1918 if (td->limit_index != LIMIT_LOW) 1919 return false; 1920 1921 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1922 return false; 1923 1924 rcu_read_lock(); 1925 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1926 struct throtl_grp *tg = blkg_to_tg(blkg); 1927 1928 if (tg == this_tg) 1929 continue; 1930 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1931 continue; 1932 if (!throtl_hierarchy_can_upgrade(tg)) { 1933 rcu_read_unlock(); 1934 return false; 1935 } 1936 } 1937 rcu_read_unlock(); 1938 return true; 1939 } 1940 1941 static void throtl_upgrade_check(struct throtl_grp *tg) 1942 { 1943 unsigned long now = jiffies; 1944 1945 if (tg->td->limit_index != LIMIT_LOW) 1946 return; 1947 1948 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1949 return; 1950 1951 tg->last_check_time = now; 1952 1953 if (!time_after_eq(now, 1954 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1955 return; 1956 1957 if (throtl_can_upgrade(tg->td, NULL)) 1958 throtl_upgrade_state(tg->td); 1959 } 1960 1961 static void throtl_upgrade_state(struct throtl_data *td) 1962 { 1963 struct cgroup_subsys_state *pos_css; 1964 struct blkcg_gq *blkg; 1965 1966 throtl_log(&td->service_queue, "upgrade to max"); 1967 td->limit_index = LIMIT_MAX; 1968 td->low_upgrade_time = jiffies; 1969 td->scale = 0; 1970 rcu_read_lock(); 1971 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1972 struct throtl_grp *tg = blkg_to_tg(blkg); 1973 struct throtl_service_queue *sq = &tg->service_queue; 1974 1975 tg->disptime = jiffies - 1; 1976 throtl_select_dispatch(sq); 1977 throtl_schedule_next_dispatch(sq, true); 1978 } 1979 rcu_read_unlock(); 1980 throtl_select_dispatch(&td->service_queue); 1981 throtl_schedule_next_dispatch(&td->service_queue, true); 1982 queue_work(kthrotld_workqueue, &td->dispatch_work); 1983 } 1984 1985 static void throtl_downgrade_state(struct throtl_data *td) 1986 { 1987 td->scale /= 2; 1988 1989 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1990 if (td->scale) { 1991 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1992 return; 1993 } 1994 1995 td->limit_index = LIMIT_LOW; 1996 td->low_downgrade_time = jiffies; 1997 } 1998 1999 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 2000 { 2001 struct throtl_data *td = tg->td; 2002 unsigned long now = jiffies; 2003 2004 /* 2005 * If cgroup is below low limit, consider downgrade and throttle other 2006 * cgroups 2007 */ 2008 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 2009 time_after_eq(now, tg_last_low_overflow_time(tg) + 2010 td->throtl_slice) && 2011 (!throtl_tg_is_idle(tg) || 2012 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 2013 return true; 2014 return false; 2015 } 2016 2017 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 2018 { 2019 while (true) { 2020 if (!throtl_tg_can_downgrade(tg)) 2021 return false; 2022 tg = sq_to_tg(tg->service_queue.parent_sq); 2023 if (!tg || !tg_to_blkg(tg)->parent) 2024 break; 2025 } 2026 return true; 2027 } 2028 2029 static void throtl_downgrade_check(struct throtl_grp *tg) 2030 { 2031 uint64_t bps; 2032 unsigned int iops; 2033 unsigned long elapsed_time; 2034 unsigned long now = jiffies; 2035 2036 if (tg->td->limit_index != LIMIT_MAX || 2037 !tg->td->limit_valid[LIMIT_LOW]) 2038 return; 2039 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 2040 return; 2041 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 2042 return; 2043 2044 elapsed_time = now - tg->last_check_time; 2045 tg->last_check_time = now; 2046 2047 if (time_before(now, tg_last_low_overflow_time(tg) + 2048 tg->td->throtl_slice)) 2049 return; 2050 2051 if (tg->bps[READ][LIMIT_LOW]) { 2052 bps = tg->last_bytes_disp[READ] * HZ; 2053 do_div(bps, elapsed_time); 2054 if (bps >= tg->bps[READ][LIMIT_LOW]) 2055 tg->last_low_overflow_time[READ] = now; 2056 } 2057 2058 if (tg->bps[WRITE][LIMIT_LOW]) { 2059 bps = tg->last_bytes_disp[WRITE] * HZ; 2060 do_div(bps, elapsed_time); 2061 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 2062 tg->last_low_overflow_time[WRITE] = now; 2063 } 2064 2065 if (tg->iops[READ][LIMIT_LOW]) { 2066 tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0); 2067 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 2068 if (iops >= tg->iops[READ][LIMIT_LOW]) 2069 tg->last_low_overflow_time[READ] = now; 2070 } 2071 2072 if (tg->iops[WRITE][LIMIT_LOW]) { 2073 tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0); 2074 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 2075 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 2076 tg->last_low_overflow_time[WRITE] = now; 2077 } 2078 2079 /* 2080 * If cgroup is below low limit, consider downgrade and throttle other 2081 * cgroups 2082 */ 2083 if (throtl_hierarchy_can_downgrade(tg)) 2084 throtl_downgrade_state(tg->td); 2085 2086 tg->last_bytes_disp[READ] = 0; 2087 tg->last_bytes_disp[WRITE] = 0; 2088 tg->last_io_disp[READ] = 0; 2089 tg->last_io_disp[WRITE] = 0; 2090 } 2091 2092 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2093 { 2094 unsigned long now; 2095 unsigned long last_finish_time = tg->last_finish_time; 2096 2097 if (last_finish_time == 0) 2098 return; 2099 2100 now = ktime_get_ns() >> 10; 2101 if (now <= last_finish_time || 2102 last_finish_time == tg->checked_last_finish_time) 2103 return; 2104 2105 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2106 tg->checked_last_finish_time = last_finish_time; 2107 } 2108 2109 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2110 static void throtl_update_latency_buckets(struct throtl_data *td) 2111 { 2112 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 2113 int i, cpu, rw; 2114 unsigned long last_latency[2] = { 0 }; 2115 unsigned long latency[2]; 2116 2117 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW]) 2118 return; 2119 if (time_before(jiffies, td->last_calculate_time + HZ)) 2120 return; 2121 td->last_calculate_time = jiffies; 2122 2123 memset(avg_latency, 0, sizeof(avg_latency)); 2124 for (rw = READ; rw <= WRITE; rw++) { 2125 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2126 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 2127 2128 for_each_possible_cpu(cpu) { 2129 struct latency_bucket *bucket; 2130 2131 /* this isn't race free, but ok in practice */ 2132 bucket = per_cpu_ptr(td->latency_buckets[rw], 2133 cpu); 2134 tmp->total_latency += bucket[i].total_latency; 2135 tmp->samples += bucket[i].samples; 2136 bucket[i].total_latency = 0; 2137 bucket[i].samples = 0; 2138 } 2139 2140 if (tmp->samples >= 32) { 2141 int samples = tmp->samples; 2142 2143 latency[rw] = tmp->total_latency; 2144 2145 tmp->total_latency = 0; 2146 tmp->samples = 0; 2147 latency[rw] /= samples; 2148 if (latency[rw] == 0) 2149 continue; 2150 avg_latency[rw][i].latency = latency[rw]; 2151 } 2152 } 2153 } 2154 2155 for (rw = READ; rw <= WRITE; rw++) { 2156 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2157 if (!avg_latency[rw][i].latency) { 2158 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2159 td->avg_buckets[rw][i].latency = 2160 last_latency[rw]; 2161 continue; 2162 } 2163 2164 if (!td->avg_buckets[rw][i].valid) 2165 latency[rw] = avg_latency[rw][i].latency; 2166 else 2167 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2168 avg_latency[rw][i].latency) >> 3; 2169 2170 td->avg_buckets[rw][i].latency = max(latency[rw], 2171 last_latency[rw]); 2172 td->avg_buckets[rw][i].valid = true; 2173 last_latency[rw] = td->avg_buckets[rw][i].latency; 2174 } 2175 } 2176 2177 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2178 throtl_log(&td->service_queue, 2179 "Latency bucket %d: read latency=%ld, read valid=%d, " 2180 "write latency=%ld, write valid=%d", i, 2181 td->avg_buckets[READ][i].latency, 2182 td->avg_buckets[READ][i].valid, 2183 td->avg_buckets[WRITE][i].latency, 2184 td->avg_buckets[WRITE][i].valid); 2185 } 2186 #else 2187 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2188 { 2189 } 2190 #endif 2191 2192 void blk_throtl_charge_bio_split(struct bio *bio) 2193 { 2194 struct blkcg_gq *blkg = bio->bi_blkg; 2195 struct throtl_grp *parent = blkg_to_tg(blkg); 2196 struct throtl_service_queue *parent_sq; 2197 bool rw = bio_data_dir(bio); 2198 2199 do { 2200 if (!parent->has_rules[rw]) 2201 break; 2202 2203 atomic_inc(&parent->io_split_cnt[rw]); 2204 atomic_inc(&parent->last_io_split_cnt[rw]); 2205 2206 parent_sq = parent->service_queue.parent_sq; 2207 parent = sq_to_tg(parent_sq); 2208 } while (parent); 2209 } 2210 2211 bool blk_throtl_bio(struct bio *bio) 2212 { 2213 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 2214 struct blkcg_gq *blkg = bio->bi_blkg; 2215 struct throtl_qnode *qn = NULL; 2216 struct throtl_grp *tg = blkg_to_tg(blkg); 2217 struct throtl_service_queue *sq; 2218 bool rw = bio_data_dir(bio); 2219 bool throttled = false; 2220 struct throtl_data *td = tg->td; 2221 2222 rcu_read_lock(); 2223 2224 /* see throtl_charge_bio() */ 2225 if (bio_flagged(bio, BIO_THROTTLED)) 2226 goto out; 2227 2228 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) { 2229 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf, 2230 bio->bi_iter.bi_size); 2231 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1); 2232 } 2233 2234 if (!tg->has_rules[rw]) 2235 goto out; 2236 2237 spin_lock_irq(&q->queue_lock); 2238 2239 throtl_update_latency_buckets(td); 2240 2241 blk_throtl_update_idletime(tg); 2242 2243 sq = &tg->service_queue; 2244 2245 again: 2246 while (true) { 2247 if (tg->last_low_overflow_time[rw] == 0) 2248 tg->last_low_overflow_time[rw] = jiffies; 2249 throtl_downgrade_check(tg); 2250 throtl_upgrade_check(tg); 2251 /* throtl is FIFO - if bios are already queued, should queue */ 2252 if (sq->nr_queued[rw]) 2253 break; 2254 2255 /* if above limits, break to queue */ 2256 if (!tg_may_dispatch(tg, bio, NULL)) { 2257 tg->last_low_overflow_time[rw] = jiffies; 2258 if (throtl_can_upgrade(td, tg)) { 2259 throtl_upgrade_state(td); 2260 goto again; 2261 } 2262 break; 2263 } 2264 2265 /* within limits, let's charge and dispatch directly */ 2266 throtl_charge_bio(tg, bio); 2267 2268 /* 2269 * We need to trim slice even when bios are not being queued 2270 * otherwise it might happen that a bio is not queued for 2271 * a long time and slice keeps on extending and trim is not 2272 * called for a long time. Now if limits are reduced suddenly 2273 * we take into account all the IO dispatched so far at new 2274 * low rate and * newly queued IO gets a really long dispatch 2275 * time. 2276 * 2277 * So keep on trimming slice even if bio is not queued. 2278 */ 2279 throtl_trim_slice(tg, rw); 2280 2281 /* 2282 * @bio passed through this layer without being throttled. 2283 * Climb up the ladder. If we're already at the top, it 2284 * can be executed directly. 2285 */ 2286 qn = &tg->qnode_on_parent[rw]; 2287 sq = sq->parent_sq; 2288 tg = sq_to_tg(sq); 2289 if (!tg) 2290 goto out_unlock; 2291 } 2292 2293 /* out-of-limit, queue to @tg */ 2294 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2295 rw == READ ? 'R' : 'W', 2296 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2297 tg_bps_limit(tg, rw), 2298 tg->io_disp[rw], tg_iops_limit(tg, rw), 2299 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2300 2301 tg->last_low_overflow_time[rw] = jiffies; 2302 2303 td->nr_queued[rw]++; 2304 throtl_add_bio_tg(bio, qn, tg); 2305 throttled = true; 2306 2307 /* 2308 * Update @tg's dispatch time and force schedule dispatch if @tg 2309 * was empty before @bio. The forced scheduling isn't likely to 2310 * cause undue delay as @bio is likely to be dispatched directly if 2311 * its @tg's disptime is not in the future. 2312 */ 2313 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2314 tg_update_disptime(tg); 2315 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2316 } 2317 2318 out_unlock: 2319 spin_unlock_irq(&q->queue_lock); 2320 out: 2321 bio_set_flag(bio, BIO_THROTTLED); 2322 2323 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2324 if (throttled || !td->track_bio_latency) 2325 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; 2326 #endif 2327 rcu_read_unlock(); 2328 return throttled; 2329 } 2330 2331 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2332 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2333 int op, unsigned long time) 2334 { 2335 struct latency_bucket *latency; 2336 int index; 2337 2338 if (!td || td->limit_index != LIMIT_LOW || 2339 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2340 !blk_queue_nonrot(td->queue)) 2341 return; 2342 2343 index = request_bucket_index(size); 2344 2345 latency = get_cpu_ptr(td->latency_buckets[op]); 2346 latency[index].total_latency += time; 2347 latency[index].samples++; 2348 put_cpu_ptr(td->latency_buckets[op]); 2349 } 2350 2351 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2352 { 2353 struct request_queue *q = rq->q; 2354 struct throtl_data *td = q->td; 2355 2356 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), 2357 time_ns >> 10); 2358 } 2359 2360 void blk_throtl_bio_endio(struct bio *bio) 2361 { 2362 struct blkcg_gq *blkg; 2363 struct throtl_grp *tg; 2364 u64 finish_time_ns; 2365 unsigned long finish_time; 2366 unsigned long start_time; 2367 unsigned long lat; 2368 int rw = bio_data_dir(bio); 2369 2370 blkg = bio->bi_blkg; 2371 if (!blkg) 2372 return; 2373 tg = blkg_to_tg(blkg); 2374 if (!tg->td->limit_valid[LIMIT_LOW]) 2375 return; 2376 2377 finish_time_ns = ktime_get_ns(); 2378 tg->last_finish_time = finish_time_ns >> 10; 2379 2380 start_time = bio_issue_time(&bio->bi_issue) >> 10; 2381 finish_time = __bio_issue_time(finish_time_ns) >> 10; 2382 if (!start_time || finish_time <= start_time) 2383 return; 2384 2385 lat = finish_time - start_time; 2386 /* this is only for bio based driver */ 2387 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) 2388 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), 2389 bio_op(bio), lat); 2390 2391 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2392 int bucket; 2393 unsigned int threshold; 2394 2395 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); 2396 threshold = tg->td->avg_buckets[rw][bucket].latency + 2397 tg->latency_target; 2398 if (lat > threshold) 2399 tg->bad_bio_cnt++; 2400 /* 2401 * Not race free, could get wrong count, which means cgroups 2402 * will be throttled 2403 */ 2404 tg->bio_cnt++; 2405 } 2406 2407 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2408 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2409 tg->bio_cnt /= 2; 2410 tg->bad_bio_cnt /= 2; 2411 } 2412 } 2413 #endif 2414 2415 int blk_throtl_init(struct request_queue *q) 2416 { 2417 struct throtl_data *td; 2418 int ret; 2419 2420 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2421 if (!td) 2422 return -ENOMEM; 2423 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2424 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2425 if (!td->latency_buckets[READ]) { 2426 kfree(td); 2427 return -ENOMEM; 2428 } 2429 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2430 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2431 if (!td->latency_buckets[WRITE]) { 2432 free_percpu(td->latency_buckets[READ]); 2433 kfree(td); 2434 return -ENOMEM; 2435 } 2436 2437 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2438 throtl_service_queue_init(&td->service_queue); 2439 2440 q->td = td; 2441 td->queue = q; 2442 2443 td->limit_valid[LIMIT_MAX] = true; 2444 td->limit_index = LIMIT_MAX; 2445 td->low_upgrade_time = jiffies; 2446 td->low_downgrade_time = jiffies; 2447 2448 /* activate policy */ 2449 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2450 if (ret) { 2451 free_percpu(td->latency_buckets[READ]); 2452 free_percpu(td->latency_buckets[WRITE]); 2453 kfree(td); 2454 } 2455 return ret; 2456 } 2457 2458 void blk_throtl_exit(struct request_queue *q) 2459 { 2460 BUG_ON(!q->td); 2461 throtl_shutdown_wq(q); 2462 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2463 free_percpu(q->td->latency_buckets[READ]); 2464 free_percpu(q->td->latency_buckets[WRITE]); 2465 kfree(q->td); 2466 } 2467 2468 void blk_throtl_register_queue(struct request_queue *q) 2469 { 2470 struct throtl_data *td; 2471 int i; 2472 2473 td = q->td; 2474 BUG_ON(!td); 2475 2476 if (blk_queue_nonrot(q)) { 2477 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2478 td->filtered_latency = LATENCY_FILTERED_SSD; 2479 } else { 2480 td->throtl_slice = DFL_THROTL_SLICE_HD; 2481 td->filtered_latency = LATENCY_FILTERED_HD; 2482 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2483 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2484 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2485 } 2486 } 2487 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2488 /* if no low limit, use previous default */ 2489 td->throtl_slice = DFL_THROTL_SLICE_HD; 2490 #endif 2491 2492 td->track_bio_latency = !queue_is_mq(q); 2493 if (!td->track_bio_latency) 2494 blk_stat_enable_accounting(q); 2495 } 2496 2497 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2498 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2499 { 2500 if (!q->td) 2501 return -EINVAL; 2502 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2503 } 2504 2505 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2506 const char *page, size_t count) 2507 { 2508 unsigned long v; 2509 unsigned long t; 2510 2511 if (!q->td) 2512 return -EINVAL; 2513 if (kstrtoul(page, 10, &v)) 2514 return -EINVAL; 2515 t = msecs_to_jiffies(v); 2516 if (t == 0 || t > MAX_THROTL_SLICE) 2517 return -EINVAL; 2518 q->td->throtl_slice = t; 2519 return count; 2520 } 2521 #endif 2522 2523 static int __init throtl_init(void) 2524 { 2525 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2526 if (!kthrotld_workqueue) 2527 panic("Failed to create kthrotld\n"); 2528 2529 return blkcg_policy_register(&blkcg_policy_throtl); 2530 } 2531 2532 module_init(throtl_init); 2533