1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include <linux/blk-cgroup.h> 14 #include "blk.h" 15 16 /* Max dispatch from a group in 1 round */ 17 static int throtl_grp_quantum = 8; 18 19 /* Total max dispatch from all groups in one round */ 20 static int throtl_quantum = 32; 21 22 /* Throttling is performed over a slice and after that slice is renewed */ 23 #define DFL_THROTL_SLICE_HD (HZ / 10) 24 #define DFL_THROTL_SLICE_SSD (HZ / 50) 25 #define MAX_THROTL_SLICE (HZ) 26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 27 #define MIN_THROTL_BPS (320 * 1024) 28 #define MIN_THROTL_IOPS (10) 29 #define DFL_LATENCY_TARGET (-1L) 30 #define DFL_IDLE_THRESHOLD (0) 31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 32 #define LATENCY_FILTERED_SSD (0) 33 /* 34 * For HD, very small latency comes from sequential IO. Such IO is helpless to 35 * help determine if its IO is impacted by others, hence we ignore the IO 36 */ 37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 38 39 static struct blkcg_policy blkcg_policy_throtl; 40 41 /* A workqueue to queue throttle related work */ 42 static struct workqueue_struct *kthrotld_workqueue; 43 44 /* 45 * To implement hierarchical throttling, throtl_grps form a tree and bios 46 * are dispatched upwards level by level until they reach the top and get 47 * issued. When dispatching bios from the children and local group at each 48 * level, if the bios are dispatched into a single bio_list, there's a risk 49 * of a local or child group which can queue many bios at once filling up 50 * the list starving others. 51 * 52 * To avoid such starvation, dispatched bios are queued separately 53 * according to where they came from. When they are again dispatched to 54 * the parent, they're popped in round-robin order so that no single source 55 * hogs the dispatch window. 56 * 57 * throtl_qnode is used to keep the queued bios separated by their sources. 58 * Bios are queued to throtl_qnode which in turn is queued to 59 * throtl_service_queue and then dispatched in round-robin order. 60 * 61 * It's also used to track the reference counts on blkg's. A qnode always 62 * belongs to a throtl_grp and gets queued on itself or the parent, so 63 * incrementing the reference of the associated throtl_grp when a qnode is 64 * queued and decrementing when dequeued is enough to keep the whole blkg 65 * tree pinned while bios are in flight. 66 */ 67 struct throtl_qnode { 68 struct list_head node; /* service_queue->queued[] */ 69 struct bio_list bios; /* queued bios */ 70 struct throtl_grp *tg; /* tg this qnode belongs to */ 71 }; 72 73 struct throtl_service_queue { 74 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 75 76 /* 77 * Bios queued directly to this service_queue or dispatched from 78 * children throtl_grp's. 79 */ 80 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 81 unsigned int nr_queued[2]; /* number of queued bios */ 82 83 /* 84 * RB tree of active children throtl_grp's, which are sorted by 85 * their ->disptime. 86 */ 87 struct rb_root_cached pending_tree; /* RB tree of active tgs */ 88 unsigned int nr_pending; /* # queued in the tree */ 89 unsigned long first_pending_disptime; /* disptime of the first tg */ 90 struct timer_list pending_timer; /* fires on first_pending_disptime */ 91 }; 92 93 enum tg_state_flags { 94 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 95 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 96 }; 97 98 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 99 100 enum { 101 LIMIT_LOW, 102 LIMIT_MAX, 103 LIMIT_CNT, 104 }; 105 106 struct throtl_grp { 107 /* must be the first member */ 108 struct blkg_policy_data pd; 109 110 /* active throtl group service_queue member */ 111 struct rb_node rb_node; 112 113 /* throtl_data this group belongs to */ 114 struct throtl_data *td; 115 116 /* this group's service queue */ 117 struct throtl_service_queue service_queue; 118 119 /* 120 * qnode_on_self is used when bios are directly queued to this 121 * throtl_grp so that local bios compete fairly with bios 122 * dispatched from children. qnode_on_parent is used when bios are 123 * dispatched from this throtl_grp into its parent and will compete 124 * with the sibling qnode_on_parents and the parent's 125 * qnode_on_self. 126 */ 127 struct throtl_qnode qnode_on_self[2]; 128 struct throtl_qnode qnode_on_parent[2]; 129 130 /* 131 * Dispatch time in jiffies. This is the estimated time when group 132 * will unthrottle and is ready to dispatch more bio. It is used as 133 * key to sort active groups in service tree. 134 */ 135 unsigned long disptime; 136 137 unsigned int flags; 138 139 /* are there any throtl rules between this group and td? */ 140 bool has_rules[2]; 141 142 /* internally used bytes per second rate limits */ 143 uint64_t bps[2][LIMIT_CNT]; 144 /* user configured bps limits */ 145 uint64_t bps_conf[2][LIMIT_CNT]; 146 147 /* internally used IOPS limits */ 148 unsigned int iops[2][LIMIT_CNT]; 149 /* user configured IOPS limits */ 150 unsigned int iops_conf[2][LIMIT_CNT]; 151 152 /* Number of bytes disptached in current slice */ 153 uint64_t bytes_disp[2]; 154 /* Number of bio's dispatched in current slice */ 155 unsigned int io_disp[2]; 156 157 unsigned long last_low_overflow_time[2]; 158 159 uint64_t last_bytes_disp[2]; 160 unsigned int last_io_disp[2]; 161 162 unsigned long last_check_time; 163 164 unsigned long latency_target; /* us */ 165 unsigned long latency_target_conf; /* us */ 166 /* When did we start a new slice */ 167 unsigned long slice_start[2]; 168 unsigned long slice_end[2]; 169 170 unsigned long last_finish_time; /* ns / 1024 */ 171 unsigned long checked_last_finish_time; /* ns / 1024 */ 172 unsigned long avg_idletime; /* ns / 1024 */ 173 unsigned long idletime_threshold; /* us */ 174 unsigned long idletime_threshold_conf; /* us */ 175 176 unsigned int bio_cnt; /* total bios */ 177 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ 178 unsigned long bio_cnt_reset_time; 179 }; 180 181 /* We measure latency for request size from <= 4k to >= 1M */ 182 #define LATENCY_BUCKET_SIZE 9 183 184 struct latency_bucket { 185 unsigned long total_latency; /* ns / 1024 */ 186 int samples; 187 }; 188 189 struct avg_latency_bucket { 190 unsigned long latency; /* ns / 1024 */ 191 bool valid; 192 }; 193 194 struct throtl_data 195 { 196 /* service tree for active throtl groups */ 197 struct throtl_service_queue service_queue; 198 199 struct request_queue *queue; 200 201 /* Total Number of queued bios on READ and WRITE lists */ 202 unsigned int nr_queued[2]; 203 204 unsigned int throtl_slice; 205 206 /* Work for dispatching throttled bios */ 207 struct work_struct dispatch_work; 208 unsigned int limit_index; 209 bool limit_valid[LIMIT_CNT]; 210 211 unsigned long low_upgrade_time; 212 unsigned long low_downgrade_time; 213 214 unsigned int scale; 215 216 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 217 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 218 struct latency_bucket __percpu *latency_buckets[2]; 219 unsigned long last_calculate_time; 220 unsigned long filtered_latency; 221 222 bool track_bio_latency; 223 }; 224 225 static void throtl_pending_timer_fn(struct timer_list *t); 226 227 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 228 { 229 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 230 } 231 232 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 233 { 234 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 235 } 236 237 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 238 { 239 return pd_to_blkg(&tg->pd); 240 } 241 242 /** 243 * sq_to_tg - return the throl_grp the specified service queue belongs to 244 * @sq: the throtl_service_queue of interest 245 * 246 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 247 * embedded in throtl_data, %NULL is returned. 248 */ 249 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 250 { 251 if (sq && sq->parent_sq) 252 return container_of(sq, struct throtl_grp, service_queue); 253 else 254 return NULL; 255 } 256 257 /** 258 * sq_to_td - return throtl_data the specified service queue belongs to 259 * @sq: the throtl_service_queue of interest 260 * 261 * A service_queue can be embedded in either a throtl_grp or throtl_data. 262 * Determine the associated throtl_data accordingly and return it. 263 */ 264 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 265 { 266 struct throtl_grp *tg = sq_to_tg(sq); 267 268 if (tg) 269 return tg->td; 270 else 271 return container_of(sq, struct throtl_data, service_queue); 272 } 273 274 /* 275 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 276 * make the IO dispatch more smooth. 277 * Scale up: linearly scale up according to lapsed time since upgrade. For 278 * every throtl_slice, the limit scales up 1/2 .low limit till the 279 * limit hits .max limit 280 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 281 */ 282 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 283 { 284 /* arbitrary value to avoid too big scale */ 285 if (td->scale < 4096 && time_after_eq(jiffies, 286 td->low_upgrade_time + td->scale * td->throtl_slice)) 287 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 288 289 return low + (low >> 1) * td->scale; 290 } 291 292 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 293 { 294 struct blkcg_gq *blkg = tg_to_blkg(tg); 295 struct throtl_data *td; 296 uint64_t ret; 297 298 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 299 return U64_MAX; 300 301 td = tg->td; 302 ret = tg->bps[rw][td->limit_index]; 303 if (ret == 0 && td->limit_index == LIMIT_LOW) { 304 /* intermediate node or iops isn't 0 */ 305 if (!list_empty(&blkg->blkcg->css.children) || 306 tg->iops[rw][td->limit_index]) 307 return U64_MAX; 308 else 309 return MIN_THROTL_BPS; 310 } 311 312 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 313 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 314 uint64_t adjusted; 315 316 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 317 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 318 } 319 return ret; 320 } 321 322 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 323 { 324 struct blkcg_gq *blkg = tg_to_blkg(tg); 325 struct throtl_data *td; 326 unsigned int ret; 327 328 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 329 return UINT_MAX; 330 331 td = tg->td; 332 ret = tg->iops[rw][td->limit_index]; 333 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 334 /* intermediate node or bps isn't 0 */ 335 if (!list_empty(&blkg->blkcg->css.children) || 336 tg->bps[rw][td->limit_index]) 337 return UINT_MAX; 338 else 339 return MIN_THROTL_IOPS; 340 } 341 342 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 343 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 344 uint64_t adjusted; 345 346 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 347 if (adjusted > UINT_MAX) 348 adjusted = UINT_MAX; 349 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 350 } 351 return ret; 352 } 353 354 #define request_bucket_index(sectors) \ 355 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 356 357 /** 358 * throtl_log - log debug message via blktrace 359 * @sq: the service_queue being reported 360 * @fmt: printf format string 361 * @args: printf args 362 * 363 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 364 * throtl_grp; otherwise, just "throtl". 365 */ 366 #define throtl_log(sq, fmt, args...) do { \ 367 struct throtl_grp *__tg = sq_to_tg((sq)); \ 368 struct throtl_data *__td = sq_to_td((sq)); \ 369 \ 370 (void)__td; \ 371 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 372 break; \ 373 if ((__tg)) { \ 374 blk_add_cgroup_trace_msg(__td->queue, \ 375 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\ 376 } else { \ 377 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 378 } \ 379 } while (0) 380 381 static inline unsigned int throtl_bio_data_size(struct bio *bio) 382 { 383 /* assume it's one sector */ 384 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 385 return 512; 386 return bio->bi_iter.bi_size; 387 } 388 389 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 390 { 391 INIT_LIST_HEAD(&qn->node); 392 bio_list_init(&qn->bios); 393 qn->tg = tg; 394 } 395 396 /** 397 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 398 * @bio: bio being added 399 * @qn: qnode to add bio to 400 * @queued: the service_queue->queued[] list @qn belongs to 401 * 402 * Add @bio to @qn and put @qn on @queued if it's not already on. 403 * @qn->tg's reference count is bumped when @qn is activated. See the 404 * comment on top of throtl_qnode definition for details. 405 */ 406 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 407 struct list_head *queued) 408 { 409 bio_list_add(&qn->bios, bio); 410 if (list_empty(&qn->node)) { 411 list_add_tail(&qn->node, queued); 412 blkg_get(tg_to_blkg(qn->tg)); 413 } 414 } 415 416 /** 417 * throtl_peek_queued - peek the first bio on a qnode list 418 * @queued: the qnode list to peek 419 */ 420 static struct bio *throtl_peek_queued(struct list_head *queued) 421 { 422 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 423 struct bio *bio; 424 425 if (list_empty(queued)) 426 return NULL; 427 428 bio = bio_list_peek(&qn->bios); 429 WARN_ON_ONCE(!bio); 430 return bio; 431 } 432 433 /** 434 * throtl_pop_queued - pop the first bio form a qnode list 435 * @queued: the qnode list to pop a bio from 436 * @tg_to_put: optional out argument for throtl_grp to put 437 * 438 * Pop the first bio from the qnode list @queued. After popping, the first 439 * qnode is removed from @queued if empty or moved to the end of @queued so 440 * that the popping order is round-robin. 441 * 442 * When the first qnode is removed, its associated throtl_grp should be put 443 * too. If @tg_to_put is NULL, this function automatically puts it; 444 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 445 * responsible for putting it. 446 */ 447 static struct bio *throtl_pop_queued(struct list_head *queued, 448 struct throtl_grp **tg_to_put) 449 { 450 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 451 struct bio *bio; 452 453 if (list_empty(queued)) 454 return NULL; 455 456 bio = bio_list_pop(&qn->bios); 457 WARN_ON_ONCE(!bio); 458 459 if (bio_list_empty(&qn->bios)) { 460 list_del_init(&qn->node); 461 if (tg_to_put) 462 *tg_to_put = qn->tg; 463 else 464 blkg_put(tg_to_blkg(qn->tg)); 465 } else { 466 list_move_tail(&qn->node, queued); 467 } 468 469 return bio; 470 } 471 472 /* init a service_queue, assumes the caller zeroed it */ 473 static void throtl_service_queue_init(struct throtl_service_queue *sq) 474 { 475 INIT_LIST_HEAD(&sq->queued[0]); 476 INIT_LIST_HEAD(&sq->queued[1]); 477 sq->pending_tree = RB_ROOT_CACHED; 478 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 479 } 480 481 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, 482 struct request_queue *q, 483 struct blkcg *blkcg) 484 { 485 struct throtl_grp *tg; 486 int rw; 487 488 tg = kzalloc_node(sizeof(*tg), gfp, q->node); 489 if (!tg) 490 return NULL; 491 492 throtl_service_queue_init(&tg->service_queue); 493 494 for (rw = READ; rw <= WRITE; rw++) { 495 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 496 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 497 } 498 499 RB_CLEAR_NODE(&tg->rb_node); 500 tg->bps[READ][LIMIT_MAX] = U64_MAX; 501 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 502 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 503 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 504 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 505 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 506 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 507 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 508 /* LIMIT_LOW will have default value 0 */ 509 510 tg->latency_target = DFL_LATENCY_TARGET; 511 tg->latency_target_conf = DFL_LATENCY_TARGET; 512 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 513 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 514 515 return &tg->pd; 516 } 517 518 static void throtl_pd_init(struct blkg_policy_data *pd) 519 { 520 struct throtl_grp *tg = pd_to_tg(pd); 521 struct blkcg_gq *blkg = tg_to_blkg(tg); 522 struct throtl_data *td = blkg->q->td; 523 struct throtl_service_queue *sq = &tg->service_queue; 524 525 /* 526 * If on the default hierarchy, we switch to properly hierarchical 527 * behavior where limits on a given throtl_grp are applied to the 528 * whole subtree rather than just the group itself. e.g. If 16M 529 * read_bps limit is set on the root group, the whole system can't 530 * exceed 16M for the device. 531 * 532 * If not on the default hierarchy, the broken flat hierarchy 533 * behavior is retained where all throtl_grps are treated as if 534 * they're all separate root groups right below throtl_data. 535 * Limits of a group don't interact with limits of other groups 536 * regardless of the position of the group in the hierarchy. 537 */ 538 sq->parent_sq = &td->service_queue; 539 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 540 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 541 tg->td = td; 542 } 543 544 /* 545 * Set has_rules[] if @tg or any of its parents have limits configured. 546 * This doesn't require walking up to the top of the hierarchy as the 547 * parent's has_rules[] is guaranteed to be correct. 548 */ 549 static void tg_update_has_rules(struct throtl_grp *tg) 550 { 551 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 552 struct throtl_data *td = tg->td; 553 int rw; 554 555 for (rw = READ; rw <= WRITE; rw++) 556 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 557 (td->limit_valid[td->limit_index] && 558 (tg_bps_limit(tg, rw) != U64_MAX || 559 tg_iops_limit(tg, rw) != UINT_MAX)); 560 } 561 562 static void throtl_pd_online(struct blkg_policy_data *pd) 563 { 564 struct throtl_grp *tg = pd_to_tg(pd); 565 /* 566 * We don't want new groups to escape the limits of its ancestors. 567 * Update has_rules[] after a new group is brought online. 568 */ 569 tg_update_has_rules(tg); 570 } 571 572 static void blk_throtl_update_limit_valid(struct throtl_data *td) 573 { 574 struct cgroup_subsys_state *pos_css; 575 struct blkcg_gq *blkg; 576 bool low_valid = false; 577 578 rcu_read_lock(); 579 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 580 struct throtl_grp *tg = blkg_to_tg(blkg); 581 582 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 583 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { 584 low_valid = true; 585 break; 586 } 587 } 588 rcu_read_unlock(); 589 590 td->limit_valid[LIMIT_LOW] = low_valid; 591 } 592 593 static void throtl_upgrade_state(struct throtl_data *td); 594 static void throtl_pd_offline(struct blkg_policy_data *pd) 595 { 596 struct throtl_grp *tg = pd_to_tg(pd); 597 598 tg->bps[READ][LIMIT_LOW] = 0; 599 tg->bps[WRITE][LIMIT_LOW] = 0; 600 tg->iops[READ][LIMIT_LOW] = 0; 601 tg->iops[WRITE][LIMIT_LOW] = 0; 602 603 blk_throtl_update_limit_valid(tg->td); 604 605 if (!tg->td->limit_valid[tg->td->limit_index]) 606 throtl_upgrade_state(tg->td); 607 } 608 609 static void throtl_pd_free(struct blkg_policy_data *pd) 610 { 611 struct throtl_grp *tg = pd_to_tg(pd); 612 613 del_timer_sync(&tg->service_queue.pending_timer); 614 kfree(tg); 615 } 616 617 static struct throtl_grp * 618 throtl_rb_first(struct throtl_service_queue *parent_sq) 619 { 620 struct rb_node *n; 621 /* Service tree is empty */ 622 if (!parent_sq->nr_pending) 623 return NULL; 624 625 n = rb_first_cached(&parent_sq->pending_tree); 626 WARN_ON_ONCE(!n); 627 if (!n) 628 return NULL; 629 return rb_entry_tg(n); 630 } 631 632 static void throtl_rb_erase(struct rb_node *n, 633 struct throtl_service_queue *parent_sq) 634 { 635 rb_erase_cached(n, &parent_sq->pending_tree); 636 RB_CLEAR_NODE(n); 637 --parent_sq->nr_pending; 638 } 639 640 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 641 { 642 struct throtl_grp *tg; 643 644 tg = throtl_rb_first(parent_sq); 645 if (!tg) 646 return; 647 648 parent_sq->first_pending_disptime = tg->disptime; 649 } 650 651 static void tg_service_queue_add(struct throtl_grp *tg) 652 { 653 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 654 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 655 struct rb_node *parent = NULL; 656 struct throtl_grp *__tg; 657 unsigned long key = tg->disptime; 658 bool leftmost = true; 659 660 while (*node != NULL) { 661 parent = *node; 662 __tg = rb_entry_tg(parent); 663 664 if (time_before(key, __tg->disptime)) 665 node = &parent->rb_left; 666 else { 667 node = &parent->rb_right; 668 leftmost = false; 669 } 670 } 671 672 rb_link_node(&tg->rb_node, parent, node); 673 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 674 leftmost); 675 } 676 677 static void __throtl_enqueue_tg(struct throtl_grp *tg) 678 { 679 tg_service_queue_add(tg); 680 tg->flags |= THROTL_TG_PENDING; 681 tg->service_queue.parent_sq->nr_pending++; 682 } 683 684 static void throtl_enqueue_tg(struct throtl_grp *tg) 685 { 686 if (!(tg->flags & THROTL_TG_PENDING)) 687 __throtl_enqueue_tg(tg); 688 } 689 690 static void __throtl_dequeue_tg(struct throtl_grp *tg) 691 { 692 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 693 tg->flags &= ~THROTL_TG_PENDING; 694 } 695 696 static void throtl_dequeue_tg(struct throtl_grp *tg) 697 { 698 if (tg->flags & THROTL_TG_PENDING) 699 __throtl_dequeue_tg(tg); 700 } 701 702 /* Call with queue lock held */ 703 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 704 unsigned long expires) 705 { 706 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 707 708 /* 709 * Since we are adjusting the throttle limit dynamically, the sleep 710 * time calculated according to previous limit might be invalid. It's 711 * possible the cgroup sleep time is very long and no other cgroups 712 * have IO running so notify the limit changes. Make sure the cgroup 713 * doesn't sleep too long to avoid the missed notification. 714 */ 715 if (time_after(expires, max_expire)) 716 expires = max_expire; 717 mod_timer(&sq->pending_timer, expires); 718 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 719 expires - jiffies, jiffies); 720 } 721 722 /** 723 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 724 * @sq: the service_queue to schedule dispatch for 725 * @force: force scheduling 726 * 727 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 728 * dispatch time of the first pending child. Returns %true if either timer 729 * is armed or there's no pending child left. %false if the current 730 * dispatch window is still open and the caller should continue 731 * dispatching. 732 * 733 * If @force is %true, the dispatch timer is always scheduled and this 734 * function is guaranteed to return %true. This is to be used when the 735 * caller can't dispatch itself and needs to invoke pending_timer 736 * unconditionally. Note that forced scheduling is likely to induce short 737 * delay before dispatch starts even if @sq->first_pending_disptime is not 738 * in the future and thus shouldn't be used in hot paths. 739 */ 740 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 741 bool force) 742 { 743 /* any pending children left? */ 744 if (!sq->nr_pending) 745 return true; 746 747 update_min_dispatch_time(sq); 748 749 /* is the next dispatch time in the future? */ 750 if (force || time_after(sq->first_pending_disptime, jiffies)) { 751 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 752 return true; 753 } 754 755 /* tell the caller to continue dispatching */ 756 return false; 757 } 758 759 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 760 bool rw, unsigned long start) 761 { 762 tg->bytes_disp[rw] = 0; 763 tg->io_disp[rw] = 0; 764 765 /* 766 * Previous slice has expired. We must have trimmed it after last 767 * bio dispatch. That means since start of last slice, we never used 768 * that bandwidth. Do try to make use of that bandwidth while giving 769 * credit. 770 */ 771 if (time_after_eq(start, tg->slice_start[rw])) 772 tg->slice_start[rw] = start; 773 774 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 775 throtl_log(&tg->service_queue, 776 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 777 rw == READ ? 'R' : 'W', tg->slice_start[rw], 778 tg->slice_end[rw], jiffies); 779 } 780 781 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 782 { 783 tg->bytes_disp[rw] = 0; 784 tg->io_disp[rw] = 0; 785 tg->slice_start[rw] = jiffies; 786 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 787 throtl_log(&tg->service_queue, 788 "[%c] new slice start=%lu end=%lu jiffies=%lu", 789 rw == READ ? 'R' : 'W', tg->slice_start[rw], 790 tg->slice_end[rw], jiffies); 791 } 792 793 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 794 unsigned long jiffy_end) 795 { 796 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 797 } 798 799 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 800 unsigned long jiffy_end) 801 { 802 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 803 throtl_log(&tg->service_queue, 804 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 805 rw == READ ? 'R' : 'W', tg->slice_start[rw], 806 tg->slice_end[rw], jiffies); 807 } 808 809 /* Determine if previously allocated or extended slice is complete or not */ 810 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 811 { 812 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 813 return false; 814 815 return true; 816 } 817 818 /* Trim the used slices and adjust slice start accordingly */ 819 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 820 { 821 unsigned long nr_slices, time_elapsed, io_trim; 822 u64 bytes_trim, tmp; 823 824 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 825 826 /* 827 * If bps are unlimited (-1), then time slice don't get 828 * renewed. Don't try to trim the slice if slice is used. A new 829 * slice will start when appropriate. 830 */ 831 if (throtl_slice_used(tg, rw)) 832 return; 833 834 /* 835 * A bio has been dispatched. Also adjust slice_end. It might happen 836 * that initially cgroup limit was very low resulting in high 837 * slice_end, but later limit was bumped up and bio was dispached 838 * sooner, then we need to reduce slice_end. A high bogus slice_end 839 * is bad because it does not allow new slice to start. 840 */ 841 842 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 843 844 time_elapsed = jiffies - tg->slice_start[rw]; 845 846 nr_slices = time_elapsed / tg->td->throtl_slice; 847 848 if (!nr_slices) 849 return; 850 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 851 do_div(tmp, HZ); 852 bytes_trim = tmp; 853 854 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 855 HZ; 856 857 if (!bytes_trim && !io_trim) 858 return; 859 860 if (tg->bytes_disp[rw] >= bytes_trim) 861 tg->bytes_disp[rw] -= bytes_trim; 862 else 863 tg->bytes_disp[rw] = 0; 864 865 if (tg->io_disp[rw] >= io_trim) 866 tg->io_disp[rw] -= io_trim; 867 else 868 tg->io_disp[rw] = 0; 869 870 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 871 872 throtl_log(&tg->service_queue, 873 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 874 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 875 tg->slice_start[rw], tg->slice_end[rw], jiffies); 876 } 877 878 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 879 unsigned long *wait) 880 { 881 bool rw = bio_data_dir(bio); 882 unsigned int io_allowed; 883 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 884 u64 tmp; 885 886 jiffy_elapsed = jiffies - tg->slice_start[rw]; 887 888 /* Round up to the next throttle slice, wait time must be nonzero */ 889 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); 890 891 /* 892 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 893 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 894 * will allow dispatch after 1 second and after that slice should 895 * have been trimmed. 896 */ 897 898 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd; 899 do_div(tmp, HZ); 900 901 if (tmp > UINT_MAX) 902 io_allowed = UINT_MAX; 903 else 904 io_allowed = tmp; 905 906 if (tg->io_disp[rw] + 1 <= io_allowed) { 907 if (wait) 908 *wait = 0; 909 return true; 910 } 911 912 /* Calc approx time to dispatch */ 913 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 914 915 if (wait) 916 *wait = jiffy_wait; 917 return false; 918 } 919 920 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 921 unsigned long *wait) 922 { 923 bool rw = bio_data_dir(bio); 924 u64 bytes_allowed, extra_bytes, tmp; 925 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 926 unsigned int bio_size = throtl_bio_data_size(bio); 927 928 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 929 930 /* Slice has just started. Consider one slice interval */ 931 if (!jiffy_elapsed) 932 jiffy_elapsed_rnd = tg->td->throtl_slice; 933 934 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 935 936 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd; 937 do_div(tmp, HZ); 938 bytes_allowed = tmp; 939 940 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 941 if (wait) 942 *wait = 0; 943 return true; 944 } 945 946 /* Calc approx time to dispatch */ 947 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 948 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw)); 949 950 if (!jiffy_wait) 951 jiffy_wait = 1; 952 953 /* 954 * This wait time is without taking into consideration the rounding 955 * up we did. Add that time also. 956 */ 957 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 958 if (wait) 959 *wait = jiffy_wait; 960 return false; 961 } 962 963 /* 964 * Returns whether one can dispatch a bio or not. Also returns approx number 965 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 966 */ 967 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 968 unsigned long *wait) 969 { 970 bool rw = bio_data_dir(bio); 971 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 972 973 /* 974 * Currently whole state machine of group depends on first bio 975 * queued in the group bio list. So one should not be calling 976 * this function with a different bio if there are other bios 977 * queued. 978 */ 979 BUG_ON(tg->service_queue.nr_queued[rw] && 980 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 981 982 /* If tg->bps = -1, then BW is unlimited */ 983 if (tg_bps_limit(tg, rw) == U64_MAX && 984 tg_iops_limit(tg, rw) == UINT_MAX) { 985 if (wait) 986 *wait = 0; 987 return true; 988 } 989 990 /* 991 * If previous slice expired, start a new one otherwise renew/extend 992 * existing slice to make sure it is at least throtl_slice interval 993 * long since now. New slice is started only for empty throttle group. 994 * If there is queued bio, that means there should be an active 995 * slice and it should be extended instead. 996 */ 997 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 998 throtl_start_new_slice(tg, rw); 999 else { 1000 if (time_before(tg->slice_end[rw], 1001 jiffies + tg->td->throtl_slice)) 1002 throtl_extend_slice(tg, rw, 1003 jiffies + tg->td->throtl_slice); 1004 } 1005 1006 if (tg_with_in_bps_limit(tg, bio, &bps_wait) && 1007 tg_with_in_iops_limit(tg, bio, &iops_wait)) { 1008 if (wait) 1009 *wait = 0; 1010 return true; 1011 } 1012 1013 max_wait = max(bps_wait, iops_wait); 1014 1015 if (wait) 1016 *wait = max_wait; 1017 1018 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 1019 throtl_extend_slice(tg, rw, jiffies + max_wait); 1020 1021 return false; 1022 } 1023 1024 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 1025 { 1026 bool rw = bio_data_dir(bio); 1027 unsigned int bio_size = throtl_bio_data_size(bio); 1028 1029 /* Charge the bio to the group */ 1030 tg->bytes_disp[rw] += bio_size; 1031 tg->io_disp[rw]++; 1032 tg->last_bytes_disp[rw] += bio_size; 1033 tg->last_io_disp[rw]++; 1034 1035 /* 1036 * BIO_THROTTLED is used to prevent the same bio to be throttled 1037 * more than once as a throttled bio will go through blk-throtl the 1038 * second time when it eventually gets issued. Set it when a bio 1039 * is being charged to a tg. 1040 */ 1041 if (!bio_flagged(bio, BIO_THROTTLED)) 1042 bio_set_flag(bio, BIO_THROTTLED); 1043 } 1044 1045 /** 1046 * throtl_add_bio_tg - add a bio to the specified throtl_grp 1047 * @bio: bio to add 1048 * @qn: qnode to use 1049 * @tg: the target throtl_grp 1050 * 1051 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 1052 * tg->qnode_on_self[] is used. 1053 */ 1054 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 1055 struct throtl_grp *tg) 1056 { 1057 struct throtl_service_queue *sq = &tg->service_queue; 1058 bool rw = bio_data_dir(bio); 1059 1060 if (!qn) 1061 qn = &tg->qnode_on_self[rw]; 1062 1063 /* 1064 * If @tg doesn't currently have any bios queued in the same 1065 * direction, queueing @bio can change when @tg should be 1066 * dispatched. Mark that @tg was empty. This is automatically 1067 * cleaered on the next tg_update_disptime(). 1068 */ 1069 if (!sq->nr_queued[rw]) 1070 tg->flags |= THROTL_TG_WAS_EMPTY; 1071 1072 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1073 1074 sq->nr_queued[rw]++; 1075 throtl_enqueue_tg(tg); 1076 } 1077 1078 static void tg_update_disptime(struct throtl_grp *tg) 1079 { 1080 struct throtl_service_queue *sq = &tg->service_queue; 1081 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1082 struct bio *bio; 1083 1084 bio = throtl_peek_queued(&sq->queued[READ]); 1085 if (bio) 1086 tg_may_dispatch(tg, bio, &read_wait); 1087 1088 bio = throtl_peek_queued(&sq->queued[WRITE]); 1089 if (bio) 1090 tg_may_dispatch(tg, bio, &write_wait); 1091 1092 min_wait = min(read_wait, write_wait); 1093 disptime = jiffies + min_wait; 1094 1095 /* Update dispatch time */ 1096 throtl_dequeue_tg(tg); 1097 tg->disptime = disptime; 1098 throtl_enqueue_tg(tg); 1099 1100 /* see throtl_add_bio_tg() */ 1101 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1102 } 1103 1104 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1105 struct throtl_grp *parent_tg, bool rw) 1106 { 1107 if (throtl_slice_used(parent_tg, rw)) { 1108 throtl_start_new_slice_with_credit(parent_tg, rw, 1109 child_tg->slice_start[rw]); 1110 } 1111 1112 } 1113 1114 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1115 { 1116 struct throtl_service_queue *sq = &tg->service_queue; 1117 struct throtl_service_queue *parent_sq = sq->parent_sq; 1118 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1119 struct throtl_grp *tg_to_put = NULL; 1120 struct bio *bio; 1121 1122 /* 1123 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1124 * from @tg may put its reference and @parent_sq might end up 1125 * getting released prematurely. Remember the tg to put and put it 1126 * after @bio is transferred to @parent_sq. 1127 */ 1128 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1129 sq->nr_queued[rw]--; 1130 1131 throtl_charge_bio(tg, bio); 1132 1133 /* 1134 * If our parent is another tg, we just need to transfer @bio to 1135 * the parent using throtl_add_bio_tg(). If our parent is 1136 * @td->service_queue, @bio is ready to be issued. Put it on its 1137 * bio_lists[] and decrease total number queued. The caller is 1138 * responsible for issuing these bios. 1139 */ 1140 if (parent_tg) { 1141 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1142 start_parent_slice_with_credit(tg, parent_tg, rw); 1143 } else { 1144 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1145 &parent_sq->queued[rw]); 1146 BUG_ON(tg->td->nr_queued[rw] <= 0); 1147 tg->td->nr_queued[rw]--; 1148 } 1149 1150 throtl_trim_slice(tg, rw); 1151 1152 if (tg_to_put) 1153 blkg_put(tg_to_blkg(tg_to_put)); 1154 } 1155 1156 static int throtl_dispatch_tg(struct throtl_grp *tg) 1157 { 1158 struct throtl_service_queue *sq = &tg->service_queue; 1159 unsigned int nr_reads = 0, nr_writes = 0; 1160 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 1161 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 1162 struct bio *bio; 1163 1164 /* Try to dispatch 75% READS and 25% WRITES */ 1165 1166 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1167 tg_may_dispatch(tg, bio, NULL)) { 1168 1169 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1170 nr_reads++; 1171 1172 if (nr_reads >= max_nr_reads) 1173 break; 1174 } 1175 1176 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1177 tg_may_dispatch(tg, bio, NULL)) { 1178 1179 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1180 nr_writes++; 1181 1182 if (nr_writes >= max_nr_writes) 1183 break; 1184 } 1185 1186 return nr_reads + nr_writes; 1187 } 1188 1189 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1190 { 1191 unsigned int nr_disp = 0; 1192 1193 while (1) { 1194 struct throtl_grp *tg = throtl_rb_first(parent_sq); 1195 struct throtl_service_queue *sq; 1196 1197 if (!tg) 1198 break; 1199 1200 if (time_before(jiffies, tg->disptime)) 1201 break; 1202 1203 throtl_dequeue_tg(tg); 1204 1205 nr_disp += throtl_dispatch_tg(tg); 1206 1207 sq = &tg->service_queue; 1208 if (sq->nr_queued[0] || sq->nr_queued[1]) 1209 tg_update_disptime(tg); 1210 1211 if (nr_disp >= throtl_quantum) 1212 break; 1213 } 1214 1215 return nr_disp; 1216 } 1217 1218 static bool throtl_can_upgrade(struct throtl_data *td, 1219 struct throtl_grp *this_tg); 1220 /** 1221 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1222 * @t: the pending_timer member of the throtl_service_queue being serviced 1223 * 1224 * This timer is armed when a child throtl_grp with active bio's become 1225 * pending and queued on the service_queue's pending_tree and expires when 1226 * the first child throtl_grp should be dispatched. This function 1227 * dispatches bio's from the children throtl_grps to the parent 1228 * service_queue. 1229 * 1230 * If the parent's parent is another throtl_grp, dispatching is propagated 1231 * by either arming its pending_timer or repeating dispatch directly. If 1232 * the top-level service_tree is reached, throtl_data->dispatch_work is 1233 * kicked so that the ready bio's are issued. 1234 */ 1235 static void throtl_pending_timer_fn(struct timer_list *t) 1236 { 1237 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1238 struct throtl_grp *tg = sq_to_tg(sq); 1239 struct throtl_data *td = sq_to_td(sq); 1240 struct request_queue *q = td->queue; 1241 struct throtl_service_queue *parent_sq; 1242 bool dispatched; 1243 int ret; 1244 1245 spin_lock_irq(&q->queue_lock); 1246 if (throtl_can_upgrade(td, NULL)) 1247 throtl_upgrade_state(td); 1248 1249 again: 1250 parent_sq = sq->parent_sq; 1251 dispatched = false; 1252 1253 while (true) { 1254 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1255 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1256 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1257 1258 ret = throtl_select_dispatch(sq); 1259 if (ret) { 1260 throtl_log(sq, "bios disp=%u", ret); 1261 dispatched = true; 1262 } 1263 1264 if (throtl_schedule_next_dispatch(sq, false)) 1265 break; 1266 1267 /* this dispatch windows is still open, relax and repeat */ 1268 spin_unlock_irq(&q->queue_lock); 1269 cpu_relax(); 1270 spin_lock_irq(&q->queue_lock); 1271 } 1272 1273 if (!dispatched) 1274 goto out_unlock; 1275 1276 if (parent_sq) { 1277 /* @parent_sq is another throl_grp, propagate dispatch */ 1278 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1279 tg_update_disptime(tg); 1280 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1281 /* window is already open, repeat dispatching */ 1282 sq = parent_sq; 1283 tg = sq_to_tg(sq); 1284 goto again; 1285 } 1286 } 1287 } else { 1288 /* reached the top-level, queue issueing */ 1289 queue_work(kthrotld_workqueue, &td->dispatch_work); 1290 } 1291 out_unlock: 1292 spin_unlock_irq(&q->queue_lock); 1293 } 1294 1295 /** 1296 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1297 * @work: work item being executed 1298 * 1299 * This function is queued for execution when bio's reach the bio_lists[] 1300 * of throtl_data->service_queue. Those bio's are ready and issued by this 1301 * function. 1302 */ 1303 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1304 { 1305 struct throtl_data *td = container_of(work, struct throtl_data, 1306 dispatch_work); 1307 struct throtl_service_queue *td_sq = &td->service_queue; 1308 struct request_queue *q = td->queue; 1309 struct bio_list bio_list_on_stack; 1310 struct bio *bio; 1311 struct blk_plug plug; 1312 int rw; 1313 1314 bio_list_init(&bio_list_on_stack); 1315 1316 spin_lock_irq(&q->queue_lock); 1317 for (rw = READ; rw <= WRITE; rw++) 1318 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1319 bio_list_add(&bio_list_on_stack, bio); 1320 spin_unlock_irq(&q->queue_lock); 1321 1322 if (!bio_list_empty(&bio_list_on_stack)) { 1323 blk_start_plug(&plug); 1324 while((bio = bio_list_pop(&bio_list_on_stack))) 1325 generic_make_request(bio); 1326 blk_finish_plug(&plug); 1327 } 1328 } 1329 1330 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1331 int off) 1332 { 1333 struct throtl_grp *tg = pd_to_tg(pd); 1334 u64 v = *(u64 *)((void *)tg + off); 1335 1336 if (v == U64_MAX) 1337 return 0; 1338 return __blkg_prfill_u64(sf, pd, v); 1339 } 1340 1341 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1342 int off) 1343 { 1344 struct throtl_grp *tg = pd_to_tg(pd); 1345 unsigned int v = *(unsigned int *)((void *)tg + off); 1346 1347 if (v == UINT_MAX) 1348 return 0; 1349 return __blkg_prfill_u64(sf, pd, v); 1350 } 1351 1352 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1353 { 1354 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1355 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1356 return 0; 1357 } 1358 1359 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1360 { 1361 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1362 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1363 return 0; 1364 } 1365 1366 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1367 { 1368 struct throtl_service_queue *sq = &tg->service_queue; 1369 struct cgroup_subsys_state *pos_css; 1370 struct blkcg_gq *blkg; 1371 1372 throtl_log(&tg->service_queue, 1373 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1374 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1375 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1376 1377 /* 1378 * Update has_rules[] flags for the updated tg's subtree. A tg is 1379 * considered to have rules if either the tg itself or any of its 1380 * ancestors has rules. This identifies groups without any 1381 * restrictions in the whole hierarchy and allows them to bypass 1382 * blk-throttle. 1383 */ 1384 blkg_for_each_descendant_pre(blkg, pos_css, 1385 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1386 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1387 struct throtl_grp *parent_tg; 1388 1389 tg_update_has_rules(this_tg); 1390 /* ignore root/second level */ 1391 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1392 !blkg->parent->parent) 1393 continue; 1394 parent_tg = blkg_to_tg(blkg->parent); 1395 /* 1396 * make sure all children has lower idle time threshold and 1397 * higher latency target 1398 */ 1399 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1400 parent_tg->idletime_threshold); 1401 this_tg->latency_target = max(this_tg->latency_target, 1402 parent_tg->latency_target); 1403 } 1404 1405 /* 1406 * We're already holding queue_lock and know @tg is valid. Let's 1407 * apply the new config directly. 1408 * 1409 * Restart the slices for both READ and WRITES. It might happen 1410 * that a group's limit are dropped suddenly and we don't want to 1411 * account recently dispatched IO with new low rate. 1412 */ 1413 throtl_start_new_slice(tg, 0); 1414 throtl_start_new_slice(tg, 1); 1415 1416 if (tg->flags & THROTL_TG_PENDING) { 1417 tg_update_disptime(tg); 1418 throtl_schedule_next_dispatch(sq->parent_sq, true); 1419 } 1420 } 1421 1422 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1423 char *buf, size_t nbytes, loff_t off, bool is_u64) 1424 { 1425 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1426 struct blkg_conf_ctx ctx; 1427 struct throtl_grp *tg; 1428 int ret; 1429 u64 v; 1430 1431 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1432 if (ret) 1433 return ret; 1434 1435 ret = -EINVAL; 1436 if (sscanf(ctx.body, "%llu", &v) != 1) 1437 goto out_finish; 1438 if (!v) 1439 v = U64_MAX; 1440 1441 tg = blkg_to_tg(ctx.blkg); 1442 1443 if (is_u64) 1444 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1445 else 1446 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1447 1448 tg_conf_updated(tg, false); 1449 ret = 0; 1450 out_finish: 1451 blkg_conf_finish(&ctx); 1452 return ret ?: nbytes; 1453 } 1454 1455 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1456 char *buf, size_t nbytes, loff_t off) 1457 { 1458 return tg_set_conf(of, buf, nbytes, off, true); 1459 } 1460 1461 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1462 char *buf, size_t nbytes, loff_t off) 1463 { 1464 return tg_set_conf(of, buf, nbytes, off, false); 1465 } 1466 1467 static struct cftype throtl_legacy_files[] = { 1468 { 1469 .name = "throttle.read_bps_device", 1470 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1471 .seq_show = tg_print_conf_u64, 1472 .write = tg_set_conf_u64, 1473 }, 1474 { 1475 .name = "throttle.write_bps_device", 1476 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1477 .seq_show = tg_print_conf_u64, 1478 .write = tg_set_conf_u64, 1479 }, 1480 { 1481 .name = "throttle.read_iops_device", 1482 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1483 .seq_show = tg_print_conf_uint, 1484 .write = tg_set_conf_uint, 1485 }, 1486 { 1487 .name = "throttle.write_iops_device", 1488 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1489 .seq_show = tg_print_conf_uint, 1490 .write = tg_set_conf_uint, 1491 }, 1492 { 1493 .name = "throttle.io_service_bytes", 1494 .private = (unsigned long)&blkcg_policy_throtl, 1495 .seq_show = blkg_print_stat_bytes, 1496 }, 1497 { 1498 .name = "throttle.io_service_bytes_recursive", 1499 .private = (unsigned long)&blkcg_policy_throtl, 1500 .seq_show = blkg_print_stat_bytes_recursive, 1501 }, 1502 { 1503 .name = "throttle.io_serviced", 1504 .private = (unsigned long)&blkcg_policy_throtl, 1505 .seq_show = blkg_print_stat_ios, 1506 }, 1507 { 1508 .name = "throttle.io_serviced_recursive", 1509 .private = (unsigned long)&blkcg_policy_throtl, 1510 .seq_show = blkg_print_stat_ios_recursive, 1511 }, 1512 { } /* terminate */ 1513 }; 1514 1515 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1516 int off) 1517 { 1518 struct throtl_grp *tg = pd_to_tg(pd); 1519 const char *dname = blkg_dev_name(pd->blkg); 1520 char bufs[4][21] = { "max", "max", "max", "max" }; 1521 u64 bps_dft; 1522 unsigned int iops_dft; 1523 char idle_time[26] = ""; 1524 char latency_time[26] = ""; 1525 1526 if (!dname) 1527 return 0; 1528 1529 if (off == LIMIT_LOW) { 1530 bps_dft = 0; 1531 iops_dft = 0; 1532 } else { 1533 bps_dft = U64_MAX; 1534 iops_dft = UINT_MAX; 1535 } 1536 1537 if (tg->bps_conf[READ][off] == bps_dft && 1538 tg->bps_conf[WRITE][off] == bps_dft && 1539 tg->iops_conf[READ][off] == iops_dft && 1540 tg->iops_conf[WRITE][off] == iops_dft && 1541 (off != LIMIT_LOW || 1542 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1543 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1544 return 0; 1545 1546 if (tg->bps_conf[READ][off] != U64_MAX) 1547 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1548 tg->bps_conf[READ][off]); 1549 if (tg->bps_conf[WRITE][off] != U64_MAX) 1550 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1551 tg->bps_conf[WRITE][off]); 1552 if (tg->iops_conf[READ][off] != UINT_MAX) 1553 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1554 tg->iops_conf[READ][off]); 1555 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1556 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1557 tg->iops_conf[WRITE][off]); 1558 if (off == LIMIT_LOW) { 1559 if (tg->idletime_threshold_conf == ULONG_MAX) 1560 strcpy(idle_time, " idle=max"); 1561 else 1562 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1563 tg->idletime_threshold_conf); 1564 1565 if (tg->latency_target_conf == ULONG_MAX) 1566 strcpy(latency_time, " latency=max"); 1567 else 1568 snprintf(latency_time, sizeof(latency_time), 1569 " latency=%lu", tg->latency_target_conf); 1570 } 1571 1572 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1573 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1574 latency_time); 1575 return 0; 1576 } 1577 1578 static int tg_print_limit(struct seq_file *sf, void *v) 1579 { 1580 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1581 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1582 return 0; 1583 } 1584 1585 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1586 char *buf, size_t nbytes, loff_t off) 1587 { 1588 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1589 struct blkg_conf_ctx ctx; 1590 struct throtl_grp *tg; 1591 u64 v[4]; 1592 unsigned long idle_time; 1593 unsigned long latency_time; 1594 int ret; 1595 int index = of_cft(of)->private; 1596 1597 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1598 if (ret) 1599 return ret; 1600 1601 tg = blkg_to_tg(ctx.blkg); 1602 1603 v[0] = tg->bps_conf[READ][index]; 1604 v[1] = tg->bps_conf[WRITE][index]; 1605 v[2] = tg->iops_conf[READ][index]; 1606 v[3] = tg->iops_conf[WRITE][index]; 1607 1608 idle_time = tg->idletime_threshold_conf; 1609 latency_time = tg->latency_target_conf; 1610 while (true) { 1611 char tok[27]; /* wiops=18446744073709551616 */ 1612 char *p; 1613 u64 val = U64_MAX; 1614 int len; 1615 1616 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1617 break; 1618 if (tok[0] == '\0') 1619 break; 1620 ctx.body += len; 1621 1622 ret = -EINVAL; 1623 p = tok; 1624 strsep(&p, "="); 1625 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1626 goto out_finish; 1627 1628 ret = -ERANGE; 1629 if (!val) 1630 goto out_finish; 1631 1632 ret = -EINVAL; 1633 if (!strcmp(tok, "rbps")) 1634 v[0] = val; 1635 else if (!strcmp(tok, "wbps")) 1636 v[1] = val; 1637 else if (!strcmp(tok, "riops")) 1638 v[2] = min_t(u64, val, UINT_MAX); 1639 else if (!strcmp(tok, "wiops")) 1640 v[3] = min_t(u64, val, UINT_MAX); 1641 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1642 idle_time = val; 1643 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1644 latency_time = val; 1645 else 1646 goto out_finish; 1647 } 1648 1649 tg->bps_conf[READ][index] = v[0]; 1650 tg->bps_conf[WRITE][index] = v[1]; 1651 tg->iops_conf[READ][index] = v[2]; 1652 tg->iops_conf[WRITE][index] = v[3]; 1653 1654 if (index == LIMIT_MAX) { 1655 tg->bps[READ][index] = v[0]; 1656 tg->bps[WRITE][index] = v[1]; 1657 tg->iops[READ][index] = v[2]; 1658 tg->iops[WRITE][index] = v[3]; 1659 } 1660 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1661 tg->bps_conf[READ][LIMIT_MAX]); 1662 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1663 tg->bps_conf[WRITE][LIMIT_MAX]); 1664 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1665 tg->iops_conf[READ][LIMIT_MAX]); 1666 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1667 tg->iops_conf[WRITE][LIMIT_MAX]); 1668 tg->idletime_threshold_conf = idle_time; 1669 tg->latency_target_conf = latency_time; 1670 1671 /* force user to configure all settings for low limit */ 1672 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1673 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1674 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1675 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1676 tg->bps[READ][LIMIT_LOW] = 0; 1677 tg->bps[WRITE][LIMIT_LOW] = 0; 1678 tg->iops[READ][LIMIT_LOW] = 0; 1679 tg->iops[WRITE][LIMIT_LOW] = 0; 1680 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1681 tg->latency_target = DFL_LATENCY_TARGET; 1682 } else if (index == LIMIT_LOW) { 1683 tg->idletime_threshold = tg->idletime_threshold_conf; 1684 tg->latency_target = tg->latency_target_conf; 1685 } 1686 1687 blk_throtl_update_limit_valid(tg->td); 1688 if (tg->td->limit_valid[LIMIT_LOW]) { 1689 if (index == LIMIT_LOW) 1690 tg->td->limit_index = LIMIT_LOW; 1691 } else 1692 tg->td->limit_index = LIMIT_MAX; 1693 tg_conf_updated(tg, index == LIMIT_LOW && 1694 tg->td->limit_valid[LIMIT_LOW]); 1695 ret = 0; 1696 out_finish: 1697 blkg_conf_finish(&ctx); 1698 return ret ?: nbytes; 1699 } 1700 1701 static struct cftype throtl_files[] = { 1702 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1703 { 1704 .name = "low", 1705 .flags = CFTYPE_NOT_ON_ROOT, 1706 .seq_show = tg_print_limit, 1707 .write = tg_set_limit, 1708 .private = LIMIT_LOW, 1709 }, 1710 #endif 1711 { 1712 .name = "max", 1713 .flags = CFTYPE_NOT_ON_ROOT, 1714 .seq_show = tg_print_limit, 1715 .write = tg_set_limit, 1716 .private = LIMIT_MAX, 1717 }, 1718 { } /* terminate */ 1719 }; 1720 1721 static void throtl_shutdown_wq(struct request_queue *q) 1722 { 1723 struct throtl_data *td = q->td; 1724 1725 cancel_work_sync(&td->dispatch_work); 1726 } 1727 1728 static struct blkcg_policy blkcg_policy_throtl = { 1729 .dfl_cftypes = throtl_files, 1730 .legacy_cftypes = throtl_legacy_files, 1731 1732 .pd_alloc_fn = throtl_pd_alloc, 1733 .pd_init_fn = throtl_pd_init, 1734 .pd_online_fn = throtl_pd_online, 1735 .pd_offline_fn = throtl_pd_offline, 1736 .pd_free_fn = throtl_pd_free, 1737 }; 1738 1739 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1740 { 1741 unsigned long rtime = jiffies, wtime = jiffies; 1742 1743 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1744 rtime = tg->last_low_overflow_time[READ]; 1745 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1746 wtime = tg->last_low_overflow_time[WRITE]; 1747 return min(rtime, wtime); 1748 } 1749 1750 /* tg should not be an intermediate node */ 1751 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1752 { 1753 struct throtl_service_queue *parent_sq; 1754 struct throtl_grp *parent = tg; 1755 unsigned long ret = __tg_last_low_overflow_time(tg); 1756 1757 while (true) { 1758 parent_sq = parent->service_queue.parent_sq; 1759 parent = sq_to_tg(parent_sq); 1760 if (!parent) 1761 break; 1762 1763 /* 1764 * The parent doesn't have low limit, it always reaches low 1765 * limit. Its overflow time is useless for children 1766 */ 1767 if (!parent->bps[READ][LIMIT_LOW] && 1768 !parent->iops[READ][LIMIT_LOW] && 1769 !parent->bps[WRITE][LIMIT_LOW] && 1770 !parent->iops[WRITE][LIMIT_LOW]) 1771 continue; 1772 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1773 ret = __tg_last_low_overflow_time(parent); 1774 } 1775 return ret; 1776 } 1777 1778 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1779 { 1780 /* 1781 * cgroup is idle if: 1782 * - single idle is too long, longer than a fixed value (in case user 1783 * configure a too big threshold) or 4 times of idletime threshold 1784 * - average think time is more than threshold 1785 * - IO latency is largely below threshold 1786 */ 1787 unsigned long time; 1788 bool ret; 1789 1790 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1791 ret = tg->latency_target == DFL_LATENCY_TARGET || 1792 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1793 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1794 tg->avg_idletime > tg->idletime_threshold || 1795 (tg->latency_target && tg->bio_cnt && 1796 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1797 throtl_log(&tg->service_queue, 1798 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1799 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1800 tg->bio_cnt, ret, tg->td->scale); 1801 return ret; 1802 } 1803 1804 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1805 { 1806 struct throtl_service_queue *sq = &tg->service_queue; 1807 bool read_limit, write_limit; 1808 1809 /* 1810 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1811 * reaches), it's ok to upgrade to next limit 1812 */ 1813 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1814 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1815 if (!read_limit && !write_limit) 1816 return true; 1817 if (read_limit && sq->nr_queued[READ] && 1818 (!write_limit || sq->nr_queued[WRITE])) 1819 return true; 1820 if (write_limit && sq->nr_queued[WRITE] && 1821 (!read_limit || sq->nr_queued[READ])) 1822 return true; 1823 1824 if (time_after_eq(jiffies, 1825 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1826 throtl_tg_is_idle(tg)) 1827 return true; 1828 return false; 1829 } 1830 1831 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1832 { 1833 while (true) { 1834 if (throtl_tg_can_upgrade(tg)) 1835 return true; 1836 tg = sq_to_tg(tg->service_queue.parent_sq); 1837 if (!tg || !tg_to_blkg(tg)->parent) 1838 return false; 1839 } 1840 return false; 1841 } 1842 1843 static bool throtl_can_upgrade(struct throtl_data *td, 1844 struct throtl_grp *this_tg) 1845 { 1846 struct cgroup_subsys_state *pos_css; 1847 struct blkcg_gq *blkg; 1848 1849 if (td->limit_index != LIMIT_LOW) 1850 return false; 1851 1852 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1853 return false; 1854 1855 rcu_read_lock(); 1856 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1857 struct throtl_grp *tg = blkg_to_tg(blkg); 1858 1859 if (tg == this_tg) 1860 continue; 1861 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1862 continue; 1863 if (!throtl_hierarchy_can_upgrade(tg)) { 1864 rcu_read_unlock(); 1865 return false; 1866 } 1867 } 1868 rcu_read_unlock(); 1869 return true; 1870 } 1871 1872 static void throtl_upgrade_check(struct throtl_grp *tg) 1873 { 1874 unsigned long now = jiffies; 1875 1876 if (tg->td->limit_index != LIMIT_LOW) 1877 return; 1878 1879 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1880 return; 1881 1882 tg->last_check_time = now; 1883 1884 if (!time_after_eq(now, 1885 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1886 return; 1887 1888 if (throtl_can_upgrade(tg->td, NULL)) 1889 throtl_upgrade_state(tg->td); 1890 } 1891 1892 static void throtl_upgrade_state(struct throtl_data *td) 1893 { 1894 struct cgroup_subsys_state *pos_css; 1895 struct blkcg_gq *blkg; 1896 1897 throtl_log(&td->service_queue, "upgrade to max"); 1898 td->limit_index = LIMIT_MAX; 1899 td->low_upgrade_time = jiffies; 1900 td->scale = 0; 1901 rcu_read_lock(); 1902 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1903 struct throtl_grp *tg = blkg_to_tg(blkg); 1904 struct throtl_service_queue *sq = &tg->service_queue; 1905 1906 tg->disptime = jiffies - 1; 1907 throtl_select_dispatch(sq); 1908 throtl_schedule_next_dispatch(sq, true); 1909 } 1910 rcu_read_unlock(); 1911 throtl_select_dispatch(&td->service_queue); 1912 throtl_schedule_next_dispatch(&td->service_queue, true); 1913 queue_work(kthrotld_workqueue, &td->dispatch_work); 1914 } 1915 1916 static void throtl_downgrade_state(struct throtl_data *td, int new) 1917 { 1918 td->scale /= 2; 1919 1920 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1921 if (td->scale) { 1922 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1923 return; 1924 } 1925 1926 td->limit_index = new; 1927 td->low_downgrade_time = jiffies; 1928 } 1929 1930 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1931 { 1932 struct throtl_data *td = tg->td; 1933 unsigned long now = jiffies; 1934 1935 /* 1936 * If cgroup is below low limit, consider downgrade and throttle other 1937 * cgroups 1938 */ 1939 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1940 time_after_eq(now, tg_last_low_overflow_time(tg) + 1941 td->throtl_slice) && 1942 (!throtl_tg_is_idle(tg) || 1943 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1944 return true; 1945 return false; 1946 } 1947 1948 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1949 { 1950 while (true) { 1951 if (!throtl_tg_can_downgrade(tg)) 1952 return false; 1953 tg = sq_to_tg(tg->service_queue.parent_sq); 1954 if (!tg || !tg_to_blkg(tg)->parent) 1955 break; 1956 } 1957 return true; 1958 } 1959 1960 static void throtl_downgrade_check(struct throtl_grp *tg) 1961 { 1962 uint64_t bps; 1963 unsigned int iops; 1964 unsigned long elapsed_time; 1965 unsigned long now = jiffies; 1966 1967 if (tg->td->limit_index != LIMIT_MAX || 1968 !tg->td->limit_valid[LIMIT_LOW]) 1969 return; 1970 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1971 return; 1972 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1973 return; 1974 1975 elapsed_time = now - tg->last_check_time; 1976 tg->last_check_time = now; 1977 1978 if (time_before(now, tg_last_low_overflow_time(tg) + 1979 tg->td->throtl_slice)) 1980 return; 1981 1982 if (tg->bps[READ][LIMIT_LOW]) { 1983 bps = tg->last_bytes_disp[READ] * HZ; 1984 do_div(bps, elapsed_time); 1985 if (bps >= tg->bps[READ][LIMIT_LOW]) 1986 tg->last_low_overflow_time[READ] = now; 1987 } 1988 1989 if (tg->bps[WRITE][LIMIT_LOW]) { 1990 bps = tg->last_bytes_disp[WRITE] * HZ; 1991 do_div(bps, elapsed_time); 1992 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 1993 tg->last_low_overflow_time[WRITE] = now; 1994 } 1995 1996 if (tg->iops[READ][LIMIT_LOW]) { 1997 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 1998 if (iops >= tg->iops[READ][LIMIT_LOW]) 1999 tg->last_low_overflow_time[READ] = now; 2000 } 2001 2002 if (tg->iops[WRITE][LIMIT_LOW]) { 2003 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 2004 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 2005 tg->last_low_overflow_time[WRITE] = now; 2006 } 2007 2008 /* 2009 * If cgroup is below low limit, consider downgrade and throttle other 2010 * cgroups 2011 */ 2012 if (throtl_hierarchy_can_downgrade(tg)) 2013 throtl_downgrade_state(tg->td, LIMIT_LOW); 2014 2015 tg->last_bytes_disp[READ] = 0; 2016 tg->last_bytes_disp[WRITE] = 0; 2017 tg->last_io_disp[READ] = 0; 2018 tg->last_io_disp[WRITE] = 0; 2019 } 2020 2021 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2022 { 2023 unsigned long now = ktime_get_ns() >> 10; 2024 unsigned long last_finish_time = tg->last_finish_time; 2025 2026 if (now <= last_finish_time || last_finish_time == 0 || 2027 last_finish_time == tg->checked_last_finish_time) 2028 return; 2029 2030 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2031 tg->checked_last_finish_time = last_finish_time; 2032 } 2033 2034 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2035 static void throtl_update_latency_buckets(struct throtl_data *td) 2036 { 2037 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 2038 int i, cpu, rw; 2039 unsigned long last_latency[2] = { 0 }; 2040 unsigned long latency[2]; 2041 2042 if (!blk_queue_nonrot(td->queue)) 2043 return; 2044 if (time_before(jiffies, td->last_calculate_time + HZ)) 2045 return; 2046 td->last_calculate_time = jiffies; 2047 2048 memset(avg_latency, 0, sizeof(avg_latency)); 2049 for (rw = READ; rw <= WRITE; rw++) { 2050 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2051 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 2052 2053 for_each_possible_cpu(cpu) { 2054 struct latency_bucket *bucket; 2055 2056 /* this isn't race free, but ok in practice */ 2057 bucket = per_cpu_ptr(td->latency_buckets[rw], 2058 cpu); 2059 tmp->total_latency += bucket[i].total_latency; 2060 tmp->samples += bucket[i].samples; 2061 bucket[i].total_latency = 0; 2062 bucket[i].samples = 0; 2063 } 2064 2065 if (tmp->samples >= 32) { 2066 int samples = tmp->samples; 2067 2068 latency[rw] = tmp->total_latency; 2069 2070 tmp->total_latency = 0; 2071 tmp->samples = 0; 2072 latency[rw] /= samples; 2073 if (latency[rw] == 0) 2074 continue; 2075 avg_latency[rw][i].latency = latency[rw]; 2076 } 2077 } 2078 } 2079 2080 for (rw = READ; rw <= WRITE; rw++) { 2081 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2082 if (!avg_latency[rw][i].latency) { 2083 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2084 td->avg_buckets[rw][i].latency = 2085 last_latency[rw]; 2086 continue; 2087 } 2088 2089 if (!td->avg_buckets[rw][i].valid) 2090 latency[rw] = avg_latency[rw][i].latency; 2091 else 2092 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2093 avg_latency[rw][i].latency) >> 3; 2094 2095 td->avg_buckets[rw][i].latency = max(latency[rw], 2096 last_latency[rw]); 2097 td->avg_buckets[rw][i].valid = true; 2098 last_latency[rw] = td->avg_buckets[rw][i].latency; 2099 } 2100 } 2101 2102 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2103 throtl_log(&td->service_queue, 2104 "Latency bucket %d: read latency=%ld, read valid=%d, " 2105 "write latency=%ld, write valid=%d", i, 2106 td->avg_buckets[READ][i].latency, 2107 td->avg_buckets[READ][i].valid, 2108 td->avg_buckets[WRITE][i].latency, 2109 td->avg_buckets[WRITE][i].valid); 2110 } 2111 #else 2112 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2113 { 2114 } 2115 #endif 2116 2117 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg, 2118 struct bio *bio) 2119 { 2120 struct throtl_qnode *qn = NULL; 2121 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg); 2122 struct throtl_service_queue *sq; 2123 bool rw = bio_data_dir(bio); 2124 bool throttled = false; 2125 struct throtl_data *td = tg->td; 2126 2127 WARN_ON_ONCE(!rcu_read_lock_held()); 2128 2129 /* see throtl_charge_bio() */ 2130 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw]) 2131 goto out; 2132 2133 spin_lock_irq(&q->queue_lock); 2134 2135 throtl_update_latency_buckets(td); 2136 2137 blk_throtl_update_idletime(tg); 2138 2139 sq = &tg->service_queue; 2140 2141 again: 2142 while (true) { 2143 if (tg->last_low_overflow_time[rw] == 0) 2144 tg->last_low_overflow_time[rw] = jiffies; 2145 throtl_downgrade_check(tg); 2146 throtl_upgrade_check(tg); 2147 /* throtl is FIFO - if bios are already queued, should queue */ 2148 if (sq->nr_queued[rw]) 2149 break; 2150 2151 /* if above limits, break to queue */ 2152 if (!tg_may_dispatch(tg, bio, NULL)) { 2153 tg->last_low_overflow_time[rw] = jiffies; 2154 if (throtl_can_upgrade(td, tg)) { 2155 throtl_upgrade_state(td); 2156 goto again; 2157 } 2158 break; 2159 } 2160 2161 /* within limits, let's charge and dispatch directly */ 2162 throtl_charge_bio(tg, bio); 2163 2164 /* 2165 * We need to trim slice even when bios are not being queued 2166 * otherwise it might happen that a bio is not queued for 2167 * a long time and slice keeps on extending and trim is not 2168 * called for a long time. Now if limits are reduced suddenly 2169 * we take into account all the IO dispatched so far at new 2170 * low rate and * newly queued IO gets a really long dispatch 2171 * time. 2172 * 2173 * So keep on trimming slice even if bio is not queued. 2174 */ 2175 throtl_trim_slice(tg, rw); 2176 2177 /* 2178 * @bio passed through this layer without being throttled. 2179 * Climb up the ladder. If we''re already at the top, it 2180 * can be executed directly. 2181 */ 2182 qn = &tg->qnode_on_parent[rw]; 2183 sq = sq->parent_sq; 2184 tg = sq_to_tg(sq); 2185 if (!tg) 2186 goto out_unlock; 2187 } 2188 2189 /* out-of-limit, queue to @tg */ 2190 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2191 rw == READ ? 'R' : 'W', 2192 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2193 tg_bps_limit(tg, rw), 2194 tg->io_disp[rw], tg_iops_limit(tg, rw), 2195 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2196 2197 tg->last_low_overflow_time[rw] = jiffies; 2198 2199 td->nr_queued[rw]++; 2200 throtl_add_bio_tg(bio, qn, tg); 2201 throttled = true; 2202 2203 /* 2204 * Update @tg's dispatch time and force schedule dispatch if @tg 2205 * was empty before @bio. The forced scheduling isn't likely to 2206 * cause undue delay as @bio is likely to be dispatched directly if 2207 * its @tg's disptime is not in the future. 2208 */ 2209 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2210 tg_update_disptime(tg); 2211 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2212 } 2213 2214 out_unlock: 2215 spin_unlock_irq(&q->queue_lock); 2216 out: 2217 bio_set_flag(bio, BIO_THROTTLED); 2218 2219 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2220 if (throttled || !td->track_bio_latency) 2221 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; 2222 #endif 2223 return throttled; 2224 } 2225 2226 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2227 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2228 int op, unsigned long time) 2229 { 2230 struct latency_bucket *latency; 2231 int index; 2232 2233 if (!td || td->limit_index != LIMIT_LOW || 2234 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2235 !blk_queue_nonrot(td->queue)) 2236 return; 2237 2238 index = request_bucket_index(size); 2239 2240 latency = get_cpu_ptr(td->latency_buckets[op]); 2241 latency[index].total_latency += time; 2242 latency[index].samples++; 2243 put_cpu_ptr(td->latency_buckets[op]); 2244 } 2245 2246 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2247 { 2248 struct request_queue *q = rq->q; 2249 struct throtl_data *td = q->td; 2250 2251 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), 2252 time_ns >> 10); 2253 } 2254 2255 void blk_throtl_bio_endio(struct bio *bio) 2256 { 2257 struct blkcg_gq *blkg; 2258 struct throtl_grp *tg; 2259 u64 finish_time_ns; 2260 unsigned long finish_time; 2261 unsigned long start_time; 2262 unsigned long lat; 2263 int rw = bio_data_dir(bio); 2264 2265 blkg = bio->bi_blkg; 2266 if (!blkg) 2267 return; 2268 tg = blkg_to_tg(blkg); 2269 2270 finish_time_ns = ktime_get_ns(); 2271 tg->last_finish_time = finish_time_ns >> 10; 2272 2273 start_time = bio_issue_time(&bio->bi_issue) >> 10; 2274 finish_time = __bio_issue_time(finish_time_ns) >> 10; 2275 if (!start_time || finish_time <= start_time) 2276 return; 2277 2278 lat = finish_time - start_time; 2279 /* this is only for bio based driver */ 2280 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) 2281 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), 2282 bio_op(bio), lat); 2283 2284 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2285 int bucket; 2286 unsigned int threshold; 2287 2288 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); 2289 threshold = tg->td->avg_buckets[rw][bucket].latency + 2290 tg->latency_target; 2291 if (lat > threshold) 2292 tg->bad_bio_cnt++; 2293 /* 2294 * Not race free, could get wrong count, which means cgroups 2295 * will be throttled 2296 */ 2297 tg->bio_cnt++; 2298 } 2299 2300 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2301 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2302 tg->bio_cnt /= 2; 2303 tg->bad_bio_cnt /= 2; 2304 } 2305 } 2306 #endif 2307 2308 /* 2309 * Dispatch all bios from all children tg's queued on @parent_sq. On 2310 * return, @parent_sq is guaranteed to not have any active children tg's 2311 * and all bios from previously active tg's are on @parent_sq->bio_lists[]. 2312 */ 2313 static void tg_drain_bios(struct throtl_service_queue *parent_sq) 2314 { 2315 struct throtl_grp *tg; 2316 2317 while ((tg = throtl_rb_first(parent_sq))) { 2318 struct throtl_service_queue *sq = &tg->service_queue; 2319 struct bio *bio; 2320 2321 throtl_dequeue_tg(tg); 2322 2323 while ((bio = throtl_peek_queued(&sq->queued[READ]))) 2324 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2325 while ((bio = throtl_peek_queued(&sq->queued[WRITE]))) 2326 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2327 } 2328 } 2329 2330 /** 2331 * blk_throtl_drain - drain throttled bios 2332 * @q: request_queue to drain throttled bios for 2333 * 2334 * Dispatch all currently throttled bios on @q through ->make_request_fn(). 2335 */ 2336 void blk_throtl_drain(struct request_queue *q) 2337 __releases(&q->queue_lock) __acquires(&q->queue_lock) 2338 { 2339 struct throtl_data *td = q->td; 2340 struct blkcg_gq *blkg; 2341 struct cgroup_subsys_state *pos_css; 2342 struct bio *bio; 2343 int rw; 2344 2345 rcu_read_lock(); 2346 2347 /* 2348 * Drain each tg while doing post-order walk on the blkg tree, so 2349 * that all bios are propagated to td->service_queue. It'd be 2350 * better to walk service_queue tree directly but blkg walk is 2351 * easier. 2352 */ 2353 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) 2354 tg_drain_bios(&blkg_to_tg(blkg)->service_queue); 2355 2356 /* finally, transfer bios from top-level tg's into the td */ 2357 tg_drain_bios(&td->service_queue); 2358 2359 rcu_read_unlock(); 2360 spin_unlock_irq(&q->queue_lock); 2361 2362 /* all bios now should be in td->service_queue, issue them */ 2363 for (rw = READ; rw <= WRITE; rw++) 2364 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw], 2365 NULL))) 2366 generic_make_request(bio); 2367 2368 spin_lock_irq(&q->queue_lock); 2369 } 2370 2371 int blk_throtl_init(struct request_queue *q) 2372 { 2373 struct throtl_data *td; 2374 int ret; 2375 2376 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2377 if (!td) 2378 return -ENOMEM; 2379 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2380 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2381 if (!td->latency_buckets[READ]) { 2382 kfree(td); 2383 return -ENOMEM; 2384 } 2385 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2386 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2387 if (!td->latency_buckets[WRITE]) { 2388 free_percpu(td->latency_buckets[READ]); 2389 kfree(td); 2390 return -ENOMEM; 2391 } 2392 2393 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2394 throtl_service_queue_init(&td->service_queue); 2395 2396 q->td = td; 2397 td->queue = q; 2398 2399 td->limit_valid[LIMIT_MAX] = true; 2400 td->limit_index = LIMIT_MAX; 2401 td->low_upgrade_time = jiffies; 2402 td->low_downgrade_time = jiffies; 2403 2404 /* activate policy */ 2405 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2406 if (ret) { 2407 free_percpu(td->latency_buckets[READ]); 2408 free_percpu(td->latency_buckets[WRITE]); 2409 kfree(td); 2410 } 2411 return ret; 2412 } 2413 2414 void blk_throtl_exit(struct request_queue *q) 2415 { 2416 BUG_ON(!q->td); 2417 throtl_shutdown_wq(q); 2418 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2419 free_percpu(q->td->latency_buckets[READ]); 2420 free_percpu(q->td->latency_buckets[WRITE]); 2421 kfree(q->td); 2422 } 2423 2424 void blk_throtl_register_queue(struct request_queue *q) 2425 { 2426 struct throtl_data *td; 2427 int i; 2428 2429 td = q->td; 2430 BUG_ON(!td); 2431 2432 if (blk_queue_nonrot(q)) { 2433 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2434 td->filtered_latency = LATENCY_FILTERED_SSD; 2435 } else { 2436 td->throtl_slice = DFL_THROTL_SLICE_HD; 2437 td->filtered_latency = LATENCY_FILTERED_HD; 2438 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2439 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2440 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2441 } 2442 } 2443 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2444 /* if no low limit, use previous default */ 2445 td->throtl_slice = DFL_THROTL_SLICE_HD; 2446 #endif 2447 2448 td->track_bio_latency = !queue_is_mq(q); 2449 if (!td->track_bio_latency) 2450 blk_stat_enable_accounting(q); 2451 } 2452 2453 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2454 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2455 { 2456 if (!q->td) 2457 return -EINVAL; 2458 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2459 } 2460 2461 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2462 const char *page, size_t count) 2463 { 2464 unsigned long v; 2465 unsigned long t; 2466 2467 if (!q->td) 2468 return -EINVAL; 2469 if (kstrtoul(page, 10, &v)) 2470 return -EINVAL; 2471 t = msecs_to_jiffies(v); 2472 if (t == 0 || t > MAX_THROTL_SLICE) 2473 return -EINVAL; 2474 q->td->throtl_slice = t; 2475 return count; 2476 } 2477 #endif 2478 2479 static int __init throtl_init(void) 2480 { 2481 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2482 if (!kthrotld_workqueue) 2483 panic("Failed to create kthrotld\n"); 2484 2485 return blkcg_policy_register(&blkcg_policy_throtl); 2486 } 2487 2488 module_init(throtl_init); 2489