xref: /linux/block/blk-throttle.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17 
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20 
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23 
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 
29 /* A workqueue to queue throttle related work */
30 static struct workqueue_struct *kthrotld_workqueue;
31 
32 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
33 
34 /* We measure latency for request size from <= 4k to >= 1M */
35 #define LATENCY_BUCKET_SIZE 9
36 
37 struct latency_bucket {
38 	unsigned long total_latency; /* ns / 1024 */
39 	int samples;
40 };
41 
42 struct throtl_data
43 {
44 	/* service tree for active throtl groups */
45 	struct throtl_service_queue service_queue;
46 
47 	struct request_queue *queue;
48 
49 	/* Total Number of queued bios on READ and WRITE lists */
50 	unsigned int nr_queued[2];
51 
52 	unsigned int throtl_slice;
53 
54 	/* Work for dispatching throttled bios */
55 	struct work_struct dispatch_work;
56 
57 	bool track_bio_latency;
58 };
59 
60 static void throtl_pending_timer_fn(struct timer_list *t);
61 
62 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
63 {
64 	return pd_to_blkg(&tg->pd);
65 }
66 
67 /**
68  * sq_to_tg - return the throl_grp the specified service queue belongs to
69  * @sq: the throtl_service_queue of interest
70  *
71  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
72  * embedded in throtl_data, %NULL is returned.
73  */
74 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
75 {
76 	if (sq && sq->parent_sq)
77 		return container_of(sq, struct throtl_grp, service_queue);
78 	else
79 		return NULL;
80 }
81 
82 /**
83  * sq_to_td - return throtl_data the specified service queue belongs to
84  * @sq: the throtl_service_queue of interest
85  *
86  * A service_queue can be embedded in either a throtl_grp or throtl_data.
87  * Determine the associated throtl_data accordingly and return it.
88  */
89 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
90 {
91 	struct throtl_grp *tg = sq_to_tg(sq);
92 
93 	if (tg)
94 		return tg->td;
95 	else
96 		return container_of(sq, struct throtl_data, service_queue);
97 }
98 
99 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
100 {
101 	struct blkcg_gq *blkg = tg_to_blkg(tg);
102 
103 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
104 		return U64_MAX;
105 
106 	return tg->bps[rw];
107 }
108 
109 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
110 {
111 	struct blkcg_gq *blkg = tg_to_blkg(tg);
112 
113 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
114 		return UINT_MAX;
115 
116 	return tg->iops[rw];
117 }
118 
119 #define request_bucket_index(sectors) \
120 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
121 
122 /**
123  * throtl_log - log debug message via blktrace
124  * @sq: the service_queue being reported
125  * @fmt: printf format string
126  * @args: printf args
127  *
128  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
129  * throtl_grp; otherwise, just "throtl".
130  */
131 #define throtl_log(sq, fmt, args...)	do {				\
132 	struct throtl_grp *__tg = sq_to_tg((sq));			\
133 	struct throtl_data *__td = sq_to_td((sq));			\
134 									\
135 	(void)__td;							\
136 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
137 		break;							\
138 	if ((__tg)) {							\
139 		blk_add_cgroup_trace_msg(__td->queue,			\
140 			&tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
141 	} else {							\
142 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
143 	}								\
144 } while (0)
145 
146 static inline unsigned int throtl_bio_data_size(struct bio *bio)
147 {
148 	/* assume it's one sector */
149 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
150 		return 512;
151 	return bio->bi_iter.bi_size;
152 }
153 
154 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
155 {
156 	INIT_LIST_HEAD(&qn->node);
157 	bio_list_init(&qn->bios);
158 	qn->tg = tg;
159 }
160 
161 /**
162  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
163  * @bio: bio being added
164  * @qn: qnode to add bio to
165  * @queued: the service_queue->queued[] list @qn belongs to
166  *
167  * Add @bio to @qn and put @qn on @queued if it's not already on.
168  * @qn->tg's reference count is bumped when @qn is activated.  See the
169  * comment on top of throtl_qnode definition for details.
170  */
171 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
172 				 struct list_head *queued)
173 {
174 	bio_list_add(&qn->bios, bio);
175 	if (list_empty(&qn->node)) {
176 		list_add_tail(&qn->node, queued);
177 		blkg_get(tg_to_blkg(qn->tg));
178 	}
179 }
180 
181 /**
182  * throtl_peek_queued - peek the first bio on a qnode list
183  * @queued: the qnode list to peek
184  */
185 static struct bio *throtl_peek_queued(struct list_head *queued)
186 {
187 	struct throtl_qnode *qn;
188 	struct bio *bio;
189 
190 	if (list_empty(queued))
191 		return NULL;
192 
193 	qn = list_first_entry(queued, struct throtl_qnode, node);
194 	bio = bio_list_peek(&qn->bios);
195 	WARN_ON_ONCE(!bio);
196 	return bio;
197 }
198 
199 /**
200  * throtl_pop_queued - pop the first bio form a qnode list
201  * @queued: the qnode list to pop a bio from
202  * @tg_to_put: optional out argument for throtl_grp to put
203  *
204  * Pop the first bio from the qnode list @queued.  After popping, the first
205  * qnode is removed from @queued if empty or moved to the end of @queued so
206  * that the popping order is round-robin.
207  *
208  * When the first qnode is removed, its associated throtl_grp should be put
209  * too.  If @tg_to_put is NULL, this function automatically puts it;
210  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
211  * responsible for putting it.
212  */
213 static struct bio *throtl_pop_queued(struct list_head *queued,
214 				     struct throtl_grp **tg_to_put)
215 {
216 	struct throtl_qnode *qn;
217 	struct bio *bio;
218 
219 	if (list_empty(queued))
220 		return NULL;
221 
222 	qn = list_first_entry(queued, struct throtl_qnode, node);
223 	bio = bio_list_pop(&qn->bios);
224 	WARN_ON_ONCE(!bio);
225 
226 	if (bio_list_empty(&qn->bios)) {
227 		list_del_init(&qn->node);
228 		if (tg_to_put)
229 			*tg_to_put = qn->tg;
230 		else
231 			blkg_put(tg_to_blkg(qn->tg));
232 	} else {
233 		list_move_tail(&qn->node, queued);
234 	}
235 
236 	return bio;
237 }
238 
239 /* init a service_queue, assumes the caller zeroed it */
240 static void throtl_service_queue_init(struct throtl_service_queue *sq)
241 {
242 	INIT_LIST_HEAD(&sq->queued[READ]);
243 	INIT_LIST_HEAD(&sq->queued[WRITE]);
244 	sq->pending_tree = RB_ROOT_CACHED;
245 	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
246 }
247 
248 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
249 		struct blkcg *blkcg, gfp_t gfp)
250 {
251 	struct throtl_grp *tg;
252 	int rw;
253 
254 	tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
255 	if (!tg)
256 		return NULL;
257 
258 	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
259 		goto err_free_tg;
260 
261 	if (blkg_rwstat_init(&tg->stat_ios, gfp))
262 		goto err_exit_stat_bytes;
263 
264 	throtl_service_queue_init(&tg->service_queue);
265 
266 	for (rw = READ; rw <= WRITE; rw++) {
267 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
268 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
269 	}
270 
271 	RB_CLEAR_NODE(&tg->rb_node);
272 	tg->bps[READ] = U64_MAX;
273 	tg->bps[WRITE] = U64_MAX;
274 	tg->iops[READ] = UINT_MAX;
275 	tg->iops[WRITE] = UINT_MAX;
276 
277 	return &tg->pd;
278 
279 err_exit_stat_bytes:
280 	blkg_rwstat_exit(&tg->stat_bytes);
281 err_free_tg:
282 	kfree(tg);
283 	return NULL;
284 }
285 
286 static void throtl_pd_init(struct blkg_policy_data *pd)
287 {
288 	struct throtl_grp *tg = pd_to_tg(pd);
289 	struct blkcg_gq *blkg = tg_to_blkg(tg);
290 	struct throtl_data *td = blkg->q->td;
291 	struct throtl_service_queue *sq = &tg->service_queue;
292 
293 	/*
294 	 * If on the default hierarchy, we switch to properly hierarchical
295 	 * behavior where limits on a given throtl_grp are applied to the
296 	 * whole subtree rather than just the group itself.  e.g. If 16M
297 	 * read_bps limit is set on a parent group, summary bps of
298 	 * parent group and its subtree groups can't exceed 16M for the
299 	 * device.
300 	 *
301 	 * If not on the default hierarchy, the broken flat hierarchy
302 	 * behavior is retained where all throtl_grps are treated as if
303 	 * they're all separate root groups right below throtl_data.
304 	 * Limits of a group don't interact with limits of other groups
305 	 * regardless of the position of the group in the hierarchy.
306 	 */
307 	sq->parent_sq = &td->service_queue;
308 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
309 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
310 	tg->td = td;
311 }
312 
313 /*
314  * Set has_rules[] if @tg or any of its parents have limits configured.
315  * This doesn't require walking up to the top of the hierarchy as the
316  * parent's has_rules[] is guaranteed to be correct.
317  */
318 static void tg_update_has_rules(struct throtl_grp *tg)
319 {
320 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
321 	int rw;
322 
323 	for (rw = READ; rw <= WRITE; rw++) {
324 		tg->has_rules_iops[rw] =
325 			(parent_tg && parent_tg->has_rules_iops[rw]) ||
326 			tg_iops_limit(tg, rw) != UINT_MAX;
327 		tg->has_rules_bps[rw] =
328 			(parent_tg && parent_tg->has_rules_bps[rw]) ||
329 			tg_bps_limit(tg, rw) != U64_MAX;
330 	}
331 }
332 
333 static void throtl_pd_online(struct blkg_policy_data *pd)
334 {
335 	struct throtl_grp *tg = pd_to_tg(pd);
336 	/*
337 	 * We don't want new groups to escape the limits of its ancestors.
338 	 * Update has_rules[] after a new group is brought online.
339 	 */
340 	tg_update_has_rules(tg);
341 }
342 
343 static void throtl_pd_free(struct blkg_policy_data *pd)
344 {
345 	struct throtl_grp *tg = pd_to_tg(pd);
346 
347 	del_timer_sync(&tg->service_queue.pending_timer);
348 	blkg_rwstat_exit(&tg->stat_bytes);
349 	blkg_rwstat_exit(&tg->stat_ios);
350 	kfree(tg);
351 }
352 
353 static struct throtl_grp *
354 throtl_rb_first(struct throtl_service_queue *parent_sq)
355 {
356 	struct rb_node *n;
357 
358 	n = rb_first_cached(&parent_sq->pending_tree);
359 	WARN_ON_ONCE(!n);
360 	if (!n)
361 		return NULL;
362 	return rb_entry_tg(n);
363 }
364 
365 static void throtl_rb_erase(struct rb_node *n,
366 			    struct throtl_service_queue *parent_sq)
367 {
368 	rb_erase_cached(n, &parent_sq->pending_tree);
369 	RB_CLEAR_NODE(n);
370 }
371 
372 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
373 {
374 	struct throtl_grp *tg;
375 
376 	tg = throtl_rb_first(parent_sq);
377 	if (!tg)
378 		return;
379 
380 	parent_sq->first_pending_disptime = tg->disptime;
381 }
382 
383 static void tg_service_queue_add(struct throtl_grp *tg)
384 {
385 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
386 	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
387 	struct rb_node *parent = NULL;
388 	struct throtl_grp *__tg;
389 	unsigned long key = tg->disptime;
390 	bool leftmost = true;
391 
392 	while (*node != NULL) {
393 		parent = *node;
394 		__tg = rb_entry_tg(parent);
395 
396 		if (time_before(key, __tg->disptime))
397 			node = &parent->rb_left;
398 		else {
399 			node = &parent->rb_right;
400 			leftmost = false;
401 		}
402 	}
403 
404 	rb_link_node(&tg->rb_node, parent, node);
405 	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
406 			       leftmost);
407 }
408 
409 static void throtl_enqueue_tg(struct throtl_grp *tg)
410 {
411 	if (!(tg->flags & THROTL_TG_PENDING)) {
412 		tg_service_queue_add(tg);
413 		tg->flags |= THROTL_TG_PENDING;
414 		tg->service_queue.parent_sq->nr_pending++;
415 	}
416 }
417 
418 static void throtl_dequeue_tg(struct throtl_grp *tg)
419 {
420 	if (tg->flags & THROTL_TG_PENDING) {
421 		struct throtl_service_queue *parent_sq =
422 			tg->service_queue.parent_sq;
423 
424 		throtl_rb_erase(&tg->rb_node, parent_sq);
425 		--parent_sq->nr_pending;
426 		tg->flags &= ~THROTL_TG_PENDING;
427 	}
428 }
429 
430 /* Call with queue lock held */
431 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
432 					  unsigned long expires)
433 {
434 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
435 
436 	/*
437 	 * Since we are adjusting the throttle limit dynamically, the sleep
438 	 * time calculated according to previous limit might be invalid. It's
439 	 * possible the cgroup sleep time is very long and no other cgroups
440 	 * have IO running so notify the limit changes. Make sure the cgroup
441 	 * doesn't sleep too long to avoid the missed notification.
442 	 */
443 	if (time_after(expires, max_expire))
444 		expires = max_expire;
445 	mod_timer(&sq->pending_timer, expires);
446 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
447 		   expires - jiffies, jiffies);
448 }
449 
450 /**
451  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
452  * @sq: the service_queue to schedule dispatch for
453  * @force: force scheduling
454  *
455  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
456  * dispatch time of the first pending child.  Returns %true if either timer
457  * is armed or there's no pending child left.  %false if the current
458  * dispatch window is still open and the caller should continue
459  * dispatching.
460  *
461  * If @force is %true, the dispatch timer is always scheduled and this
462  * function is guaranteed to return %true.  This is to be used when the
463  * caller can't dispatch itself and needs to invoke pending_timer
464  * unconditionally.  Note that forced scheduling is likely to induce short
465  * delay before dispatch starts even if @sq->first_pending_disptime is not
466  * in the future and thus shouldn't be used in hot paths.
467  */
468 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
469 					  bool force)
470 {
471 	/* any pending children left? */
472 	if (!sq->nr_pending)
473 		return true;
474 
475 	update_min_dispatch_time(sq);
476 
477 	/* is the next dispatch time in the future? */
478 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
479 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
480 		return true;
481 	}
482 
483 	/* tell the caller to continue dispatching */
484 	return false;
485 }
486 
487 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
488 		bool rw, unsigned long start)
489 {
490 	tg->bytes_disp[rw] = 0;
491 	tg->io_disp[rw] = 0;
492 	tg->carryover_bytes[rw] = 0;
493 	tg->carryover_ios[rw] = 0;
494 
495 	/*
496 	 * Previous slice has expired. We must have trimmed it after last
497 	 * bio dispatch. That means since start of last slice, we never used
498 	 * that bandwidth. Do try to make use of that bandwidth while giving
499 	 * credit.
500 	 */
501 	if (time_after(start, tg->slice_start[rw]))
502 		tg->slice_start[rw] = start;
503 
504 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
505 	throtl_log(&tg->service_queue,
506 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
507 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
508 		   tg->slice_end[rw], jiffies);
509 }
510 
511 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
512 					  bool clear_carryover)
513 {
514 	tg->bytes_disp[rw] = 0;
515 	tg->io_disp[rw] = 0;
516 	tg->slice_start[rw] = jiffies;
517 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
518 	if (clear_carryover) {
519 		tg->carryover_bytes[rw] = 0;
520 		tg->carryover_ios[rw] = 0;
521 	}
522 
523 	throtl_log(&tg->service_queue,
524 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
525 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
526 		   tg->slice_end[rw], jiffies);
527 }
528 
529 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
530 					unsigned long jiffy_end)
531 {
532 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
533 }
534 
535 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
536 				       unsigned long jiffy_end)
537 {
538 	throtl_set_slice_end(tg, rw, jiffy_end);
539 	throtl_log(&tg->service_queue,
540 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
541 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
542 		   tg->slice_end[rw], jiffies);
543 }
544 
545 /* Determine if previously allocated or extended slice is complete or not */
546 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
547 {
548 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
549 		return false;
550 
551 	return true;
552 }
553 
554 static unsigned int calculate_io_allowed(u32 iops_limit,
555 					 unsigned long jiffy_elapsed)
556 {
557 	unsigned int io_allowed;
558 	u64 tmp;
559 
560 	/*
561 	 * jiffy_elapsed should not be a big value as minimum iops can be
562 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
563 	 * will allow dispatch after 1 second and after that slice should
564 	 * have been trimmed.
565 	 */
566 
567 	tmp = (u64)iops_limit * jiffy_elapsed;
568 	do_div(tmp, HZ);
569 
570 	if (tmp > UINT_MAX)
571 		io_allowed = UINT_MAX;
572 	else
573 		io_allowed = tmp;
574 
575 	return io_allowed;
576 }
577 
578 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
579 {
580 	/*
581 	 * Can result be wider than 64 bits?
582 	 * We check against 62, not 64, due to ilog2 truncation.
583 	 */
584 	if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62)
585 		return U64_MAX;
586 	return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
587 }
588 
589 /* Trim the used slices and adjust slice start accordingly */
590 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
591 {
592 	unsigned long time_elapsed;
593 	long long bytes_trim;
594 	int io_trim;
595 
596 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
597 
598 	/*
599 	 * If bps are unlimited (-1), then time slice don't get
600 	 * renewed. Don't try to trim the slice if slice is used. A new
601 	 * slice will start when appropriate.
602 	 */
603 	if (throtl_slice_used(tg, rw))
604 		return;
605 
606 	/*
607 	 * A bio has been dispatched. Also adjust slice_end. It might happen
608 	 * that initially cgroup limit was very low resulting in high
609 	 * slice_end, but later limit was bumped up and bio was dispatched
610 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
611 	 * is bad because it does not allow new slice to start.
612 	 */
613 
614 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
615 
616 	time_elapsed = rounddown(jiffies - tg->slice_start[rw],
617 				 tg->td->throtl_slice);
618 	if (!time_elapsed)
619 		return;
620 
621 	bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
622 					     time_elapsed) +
623 		     tg->carryover_bytes[rw];
624 	io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) +
625 		  tg->carryover_ios[rw];
626 	if (bytes_trim <= 0 && io_trim <= 0)
627 		return;
628 
629 	tg->carryover_bytes[rw] = 0;
630 	if ((long long)tg->bytes_disp[rw] >= bytes_trim)
631 		tg->bytes_disp[rw] -= bytes_trim;
632 	else
633 		tg->bytes_disp[rw] = 0;
634 
635 	tg->carryover_ios[rw] = 0;
636 	if ((int)tg->io_disp[rw] >= io_trim)
637 		tg->io_disp[rw] -= io_trim;
638 	else
639 		tg->io_disp[rw] = 0;
640 
641 	tg->slice_start[rw] += time_elapsed;
642 
643 	throtl_log(&tg->service_queue,
644 		   "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
645 		   rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
646 		   bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
647 		   jiffies);
648 }
649 
650 static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
651 {
652 	unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
653 	u64 bps_limit = tg_bps_limit(tg, rw);
654 	u32 iops_limit = tg_iops_limit(tg, rw);
655 
656 	/*
657 	 * If config is updated while bios are still throttled, calculate and
658 	 * accumulate how many bytes/ios are waited across changes. And
659 	 * carryover_bytes/ios will be used to calculate new wait time under new
660 	 * configuration.
661 	 */
662 	if (bps_limit != U64_MAX)
663 		tg->carryover_bytes[rw] +=
664 			calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
665 			tg->bytes_disp[rw];
666 	if (iops_limit != UINT_MAX)
667 		tg->carryover_ios[rw] +=
668 			calculate_io_allowed(iops_limit, jiffy_elapsed) -
669 			tg->io_disp[rw];
670 }
671 
672 static void tg_update_carryover(struct throtl_grp *tg)
673 {
674 	if (tg->service_queue.nr_queued[READ])
675 		__tg_update_carryover(tg, READ);
676 	if (tg->service_queue.nr_queued[WRITE])
677 		__tg_update_carryover(tg, WRITE);
678 
679 	/* see comments in struct throtl_grp for meaning of these fields. */
680 	throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
681 		   tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
682 		   tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
683 }
684 
685 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
686 				 u32 iops_limit)
687 {
688 	bool rw = bio_data_dir(bio);
689 	int io_allowed;
690 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
691 
692 	if (iops_limit == UINT_MAX) {
693 		return 0;
694 	}
695 
696 	jiffy_elapsed = jiffies - tg->slice_start[rw];
697 
698 	/* Round up to the next throttle slice, wait time must be nonzero */
699 	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
700 	io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
701 		     tg->carryover_ios[rw];
702 	if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
703 		return 0;
704 
705 	/* Calc approx time to dispatch */
706 	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
707 	return jiffy_wait;
708 }
709 
710 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
711 				u64 bps_limit)
712 {
713 	bool rw = bio_data_dir(bio);
714 	long long bytes_allowed;
715 	u64 extra_bytes;
716 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
717 	unsigned int bio_size = throtl_bio_data_size(bio);
718 
719 	/* no need to throttle if this bio's bytes have been accounted */
720 	if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
721 		return 0;
722 	}
723 
724 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
725 
726 	/* Slice has just started. Consider one slice interval */
727 	if (!jiffy_elapsed)
728 		jiffy_elapsed_rnd = tg->td->throtl_slice;
729 
730 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
731 	bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
732 			tg->carryover_bytes[rw];
733 	if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
734 		return 0;
735 
736 	/* Calc approx time to dispatch */
737 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
738 	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
739 
740 	if (!jiffy_wait)
741 		jiffy_wait = 1;
742 
743 	/*
744 	 * This wait time is without taking into consideration the rounding
745 	 * up we did. Add that time also.
746 	 */
747 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
748 	return jiffy_wait;
749 }
750 
751 /*
752  * Returns whether one can dispatch a bio or not. Also returns approx number
753  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
754  */
755 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
756 			    unsigned long *wait)
757 {
758 	bool rw = bio_data_dir(bio);
759 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
760 	u64 bps_limit = tg_bps_limit(tg, rw);
761 	u32 iops_limit = tg_iops_limit(tg, rw);
762 
763 	/*
764  	 * Currently whole state machine of group depends on first bio
765 	 * queued in the group bio list. So one should not be calling
766 	 * this function with a different bio if there are other bios
767 	 * queued.
768 	 */
769 	BUG_ON(tg->service_queue.nr_queued[rw] &&
770 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
771 
772 	/* If tg->bps = -1, then BW is unlimited */
773 	if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
774 	    tg->flags & THROTL_TG_CANCELING) {
775 		if (wait)
776 			*wait = 0;
777 		return true;
778 	}
779 
780 	/*
781 	 * If previous slice expired, start a new one otherwise renew/extend
782 	 * existing slice to make sure it is at least throtl_slice interval
783 	 * long since now. New slice is started only for empty throttle group.
784 	 * If there is queued bio, that means there should be an active
785 	 * slice and it should be extended instead.
786 	 */
787 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
788 		throtl_start_new_slice(tg, rw, true);
789 	else {
790 		if (time_before(tg->slice_end[rw],
791 		    jiffies + tg->td->throtl_slice))
792 			throtl_extend_slice(tg, rw,
793 				jiffies + tg->td->throtl_slice);
794 	}
795 
796 	bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
797 	iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
798 	if (bps_wait + iops_wait == 0) {
799 		if (wait)
800 			*wait = 0;
801 		return true;
802 	}
803 
804 	max_wait = max(bps_wait, iops_wait);
805 
806 	if (wait)
807 		*wait = max_wait;
808 
809 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
810 		throtl_extend_slice(tg, rw, jiffies + max_wait);
811 
812 	return false;
813 }
814 
815 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
816 {
817 	bool rw = bio_data_dir(bio);
818 	unsigned int bio_size = throtl_bio_data_size(bio);
819 
820 	/* Charge the bio to the group */
821 	if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
822 		tg->bytes_disp[rw] += bio_size;
823 		tg->last_bytes_disp[rw] += bio_size;
824 	}
825 
826 	tg->io_disp[rw]++;
827 	tg->last_io_disp[rw]++;
828 }
829 
830 /**
831  * throtl_add_bio_tg - add a bio to the specified throtl_grp
832  * @bio: bio to add
833  * @qn: qnode to use
834  * @tg: the target throtl_grp
835  *
836  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
837  * tg->qnode_on_self[] is used.
838  */
839 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
840 			      struct throtl_grp *tg)
841 {
842 	struct throtl_service_queue *sq = &tg->service_queue;
843 	bool rw = bio_data_dir(bio);
844 
845 	if (!qn)
846 		qn = &tg->qnode_on_self[rw];
847 
848 	/*
849 	 * If @tg doesn't currently have any bios queued in the same
850 	 * direction, queueing @bio can change when @tg should be
851 	 * dispatched.  Mark that @tg was empty.  This is automatically
852 	 * cleared on the next tg_update_disptime().
853 	 */
854 	if (!sq->nr_queued[rw])
855 		tg->flags |= THROTL_TG_WAS_EMPTY;
856 
857 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
858 
859 	sq->nr_queued[rw]++;
860 	throtl_enqueue_tg(tg);
861 }
862 
863 static void tg_update_disptime(struct throtl_grp *tg)
864 {
865 	struct throtl_service_queue *sq = &tg->service_queue;
866 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
867 	struct bio *bio;
868 
869 	bio = throtl_peek_queued(&sq->queued[READ]);
870 	if (bio)
871 		tg_may_dispatch(tg, bio, &read_wait);
872 
873 	bio = throtl_peek_queued(&sq->queued[WRITE]);
874 	if (bio)
875 		tg_may_dispatch(tg, bio, &write_wait);
876 
877 	min_wait = min(read_wait, write_wait);
878 	disptime = jiffies + min_wait;
879 
880 	/* Update dispatch time */
881 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
882 	tg->disptime = disptime;
883 	tg_service_queue_add(tg);
884 
885 	/* see throtl_add_bio_tg() */
886 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
887 }
888 
889 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
890 					struct throtl_grp *parent_tg, bool rw)
891 {
892 	if (throtl_slice_used(parent_tg, rw)) {
893 		throtl_start_new_slice_with_credit(parent_tg, rw,
894 				child_tg->slice_start[rw]);
895 	}
896 
897 }
898 
899 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
900 {
901 	struct throtl_service_queue *sq = &tg->service_queue;
902 	struct throtl_service_queue *parent_sq = sq->parent_sq;
903 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
904 	struct throtl_grp *tg_to_put = NULL;
905 	struct bio *bio;
906 
907 	/*
908 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
909 	 * from @tg may put its reference and @parent_sq might end up
910 	 * getting released prematurely.  Remember the tg to put and put it
911 	 * after @bio is transferred to @parent_sq.
912 	 */
913 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
914 	sq->nr_queued[rw]--;
915 
916 	throtl_charge_bio(tg, bio);
917 
918 	/*
919 	 * If our parent is another tg, we just need to transfer @bio to
920 	 * the parent using throtl_add_bio_tg().  If our parent is
921 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
922 	 * bio_lists[] and decrease total number queued.  The caller is
923 	 * responsible for issuing these bios.
924 	 */
925 	if (parent_tg) {
926 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
927 		start_parent_slice_with_credit(tg, parent_tg, rw);
928 	} else {
929 		bio_set_flag(bio, BIO_BPS_THROTTLED);
930 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
931 				     &parent_sq->queued[rw]);
932 		BUG_ON(tg->td->nr_queued[rw] <= 0);
933 		tg->td->nr_queued[rw]--;
934 	}
935 
936 	throtl_trim_slice(tg, rw);
937 
938 	if (tg_to_put)
939 		blkg_put(tg_to_blkg(tg_to_put));
940 }
941 
942 static int throtl_dispatch_tg(struct throtl_grp *tg)
943 {
944 	struct throtl_service_queue *sq = &tg->service_queue;
945 	unsigned int nr_reads = 0, nr_writes = 0;
946 	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
947 	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
948 	struct bio *bio;
949 
950 	/* Try to dispatch 75% READS and 25% WRITES */
951 
952 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
953 	       tg_may_dispatch(tg, bio, NULL)) {
954 
955 		tg_dispatch_one_bio(tg, READ);
956 		nr_reads++;
957 
958 		if (nr_reads >= max_nr_reads)
959 			break;
960 	}
961 
962 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
963 	       tg_may_dispatch(tg, bio, NULL)) {
964 
965 		tg_dispatch_one_bio(tg, WRITE);
966 		nr_writes++;
967 
968 		if (nr_writes >= max_nr_writes)
969 			break;
970 	}
971 
972 	return nr_reads + nr_writes;
973 }
974 
975 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
976 {
977 	unsigned int nr_disp = 0;
978 
979 	while (1) {
980 		struct throtl_grp *tg;
981 		struct throtl_service_queue *sq;
982 
983 		if (!parent_sq->nr_pending)
984 			break;
985 
986 		tg = throtl_rb_first(parent_sq);
987 		if (!tg)
988 			break;
989 
990 		if (time_before(jiffies, tg->disptime))
991 			break;
992 
993 		nr_disp += throtl_dispatch_tg(tg);
994 
995 		sq = &tg->service_queue;
996 		if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
997 			tg_update_disptime(tg);
998 		else
999 			throtl_dequeue_tg(tg);
1000 
1001 		if (nr_disp >= THROTL_QUANTUM)
1002 			break;
1003 	}
1004 
1005 	return nr_disp;
1006 }
1007 
1008 /**
1009  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1010  * @t: the pending_timer member of the throtl_service_queue being serviced
1011  *
1012  * This timer is armed when a child throtl_grp with active bio's become
1013  * pending and queued on the service_queue's pending_tree and expires when
1014  * the first child throtl_grp should be dispatched.  This function
1015  * dispatches bio's from the children throtl_grps to the parent
1016  * service_queue.
1017  *
1018  * If the parent's parent is another throtl_grp, dispatching is propagated
1019  * by either arming its pending_timer or repeating dispatch directly.  If
1020  * the top-level service_tree is reached, throtl_data->dispatch_work is
1021  * kicked so that the ready bio's are issued.
1022  */
1023 static void throtl_pending_timer_fn(struct timer_list *t)
1024 {
1025 	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1026 	struct throtl_grp *tg = sq_to_tg(sq);
1027 	struct throtl_data *td = sq_to_td(sq);
1028 	struct throtl_service_queue *parent_sq;
1029 	struct request_queue *q;
1030 	bool dispatched;
1031 	int ret;
1032 
1033 	/* throtl_data may be gone, so figure out request queue by blkg */
1034 	if (tg)
1035 		q = tg->pd.blkg->q;
1036 	else
1037 		q = td->queue;
1038 
1039 	spin_lock_irq(&q->queue_lock);
1040 
1041 	if (!q->root_blkg)
1042 		goto out_unlock;
1043 
1044 again:
1045 	parent_sq = sq->parent_sq;
1046 	dispatched = false;
1047 
1048 	while (true) {
1049 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1050 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1051 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1052 
1053 		ret = throtl_select_dispatch(sq);
1054 		if (ret) {
1055 			throtl_log(sq, "bios disp=%u", ret);
1056 			dispatched = true;
1057 		}
1058 
1059 		if (throtl_schedule_next_dispatch(sq, false))
1060 			break;
1061 
1062 		/* this dispatch windows is still open, relax and repeat */
1063 		spin_unlock_irq(&q->queue_lock);
1064 		cpu_relax();
1065 		spin_lock_irq(&q->queue_lock);
1066 	}
1067 
1068 	if (!dispatched)
1069 		goto out_unlock;
1070 
1071 	if (parent_sq) {
1072 		/* @parent_sq is another throl_grp, propagate dispatch */
1073 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1074 			tg_update_disptime(tg);
1075 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1076 				/* window is already open, repeat dispatching */
1077 				sq = parent_sq;
1078 				tg = sq_to_tg(sq);
1079 				goto again;
1080 			}
1081 		}
1082 	} else {
1083 		/* reached the top-level, queue issuing */
1084 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1085 	}
1086 out_unlock:
1087 	spin_unlock_irq(&q->queue_lock);
1088 }
1089 
1090 /**
1091  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1092  * @work: work item being executed
1093  *
1094  * This function is queued for execution when bios reach the bio_lists[]
1095  * of throtl_data->service_queue.  Those bios are ready and issued by this
1096  * function.
1097  */
1098 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1099 {
1100 	struct throtl_data *td = container_of(work, struct throtl_data,
1101 					      dispatch_work);
1102 	struct throtl_service_queue *td_sq = &td->service_queue;
1103 	struct request_queue *q = td->queue;
1104 	struct bio_list bio_list_on_stack;
1105 	struct bio *bio;
1106 	struct blk_plug plug;
1107 	int rw;
1108 
1109 	bio_list_init(&bio_list_on_stack);
1110 
1111 	spin_lock_irq(&q->queue_lock);
1112 	for (rw = READ; rw <= WRITE; rw++)
1113 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1114 			bio_list_add(&bio_list_on_stack, bio);
1115 	spin_unlock_irq(&q->queue_lock);
1116 
1117 	if (!bio_list_empty(&bio_list_on_stack)) {
1118 		blk_start_plug(&plug);
1119 		while ((bio = bio_list_pop(&bio_list_on_stack)))
1120 			submit_bio_noacct_nocheck(bio);
1121 		blk_finish_plug(&plug);
1122 	}
1123 }
1124 
1125 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1126 			      int off)
1127 {
1128 	struct throtl_grp *tg = pd_to_tg(pd);
1129 	u64 v = *(u64 *)((void *)tg + off);
1130 
1131 	if (v == U64_MAX)
1132 		return 0;
1133 	return __blkg_prfill_u64(sf, pd, v);
1134 }
1135 
1136 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1137 			       int off)
1138 {
1139 	struct throtl_grp *tg = pd_to_tg(pd);
1140 	unsigned int v = *(unsigned int *)((void *)tg + off);
1141 
1142 	if (v == UINT_MAX)
1143 		return 0;
1144 	return __blkg_prfill_u64(sf, pd, v);
1145 }
1146 
1147 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1148 {
1149 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1150 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1151 	return 0;
1152 }
1153 
1154 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1155 {
1156 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1157 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1158 	return 0;
1159 }
1160 
1161 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1162 {
1163 	struct throtl_service_queue *sq = &tg->service_queue;
1164 	struct cgroup_subsys_state *pos_css;
1165 	struct blkcg_gq *blkg;
1166 
1167 	throtl_log(&tg->service_queue,
1168 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1169 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1170 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1171 
1172 	rcu_read_lock();
1173 	/*
1174 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1175 	 * considered to have rules if either the tg itself or any of its
1176 	 * ancestors has rules.  This identifies groups without any
1177 	 * restrictions in the whole hierarchy and allows them to bypass
1178 	 * blk-throttle.
1179 	 */
1180 	blkg_for_each_descendant_pre(blkg, pos_css,
1181 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1182 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1183 
1184 		tg_update_has_rules(this_tg);
1185 		/* ignore root/second level */
1186 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1187 		    !blkg->parent->parent)
1188 			continue;
1189 	}
1190 	rcu_read_unlock();
1191 
1192 	/*
1193 	 * We're already holding queue_lock and know @tg is valid.  Let's
1194 	 * apply the new config directly.
1195 	 *
1196 	 * Restart the slices for both READ and WRITES. It might happen
1197 	 * that a group's limit are dropped suddenly and we don't want to
1198 	 * account recently dispatched IO with new low rate.
1199 	 */
1200 	throtl_start_new_slice(tg, READ, false);
1201 	throtl_start_new_slice(tg, WRITE, false);
1202 
1203 	if (tg->flags & THROTL_TG_PENDING) {
1204 		tg_update_disptime(tg);
1205 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1206 	}
1207 }
1208 
1209 static int blk_throtl_init(struct gendisk *disk)
1210 {
1211 	struct request_queue *q = disk->queue;
1212 	struct throtl_data *td;
1213 	int ret;
1214 
1215 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1216 	if (!td)
1217 		return -ENOMEM;
1218 
1219 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1220 	throtl_service_queue_init(&td->service_queue);
1221 
1222 	/*
1223 	 * Freeze queue before activating policy, to synchronize with IO path,
1224 	 * which is protected by 'q_usage_counter'.
1225 	 */
1226 	blk_mq_freeze_queue(disk->queue);
1227 	blk_mq_quiesce_queue(disk->queue);
1228 
1229 	q->td = td;
1230 	td->queue = q;
1231 
1232 	/* activate policy */
1233 	ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
1234 	if (ret) {
1235 		q->td = NULL;
1236 		kfree(td);
1237 		goto out;
1238 	}
1239 
1240 	if (blk_queue_nonrot(q))
1241 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
1242 	else
1243 		td->throtl_slice = DFL_THROTL_SLICE_HD;
1244 	td->track_bio_latency = !queue_is_mq(q);
1245 	if (!td->track_bio_latency)
1246 		blk_stat_enable_accounting(q);
1247 
1248 out:
1249 	blk_mq_unquiesce_queue(disk->queue);
1250 	blk_mq_unfreeze_queue(disk->queue);
1251 
1252 	return ret;
1253 }
1254 
1255 
1256 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1257 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1258 {
1259 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1260 	struct blkg_conf_ctx ctx;
1261 	struct throtl_grp *tg;
1262 	int ret;
1263 	u64 v;
1264 
1265 	blkg_conf_init(&ctx, buf);
1266 
1267 	ret = blkg_conf_open_bdev(&ctx);
1268 	if (ret)
1269 		goto out_finish;
1270 
1271 	if (!blk_throtl_activated(ctx.bdev->bd_queue)) {
1272 		ret = blk_throtl_init(ctx.bdev->bd_disk);
1273 		if (ret)
1274 			goto out_finish;
1275 	}
1276 
1277 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1278 	if (ret)
1279 		goto out_finish;
1280 
1281 	ret = -EINVAL;
1282 	if (sscanf(ctx.body, "%llu", &v) != 1)
1283 		goto out_finish;
1284 	if (!v)
1285 		v = U64_MAX;
1286 
1287 	tg = blkg_to_tg(ctx.blkg);
1288 	tg_update_carryover(tg);
1289 
1290 	if (is_u64)
1291 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1292 	else
1293 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1294 
1295 	tg_conf_updated(tg, false);
1296 	ret = 0;
1297 out_finish:
1298 	blkg_conf_exit(&ctx);
1299 	return ret ?: nbytes;
1300 }
1301 
1302 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1303 			       char *buf, size_t nbytes, loff_t off)
1304 {
1305 	return tg_set_conf(of, buf, nbytes, off, true);
1306 }
1307 
1308 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1309 				char *buf, size_t nbytes, loff_t off)
1310 {
1311 	return tg_set_conf(of, buf, nbytes, off, false);
1312 }
1313 
1314 static int tg_print_rwstat(struct seq_file *sf, void *v)
1315 {
1316 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1317 			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1318 			  seq_cft(sf)->private, true);
1319 	return 0;
1320 }
1321 
1322 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1323 				      struct blkg_policy_data *pd, int off)
1324 {
1325 	struct blkg_rwstat_sample sum;
1326 
1327 	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1328 				  &sum);
1329 	return __blkg_prfill_rwstat(sf, pd, &sum);
1330 }
1331 
1332 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1333 {
1334 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1335 			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1336 			  seq_cft(sf)->private, true);
1337 	return 0;
1338 }
1339 
1340 static struct cftype throtl_legacy_files[] = {
1341 	{
1342 		.name = "throttle.read_bps_device",
1343 		.private = offsetof(struct throtl_grp, bps[READ]),
1344 		.seq_show = tg_print_conf_u64,
1345 		.write = tg_set_conf_u64,
1346 	},
1347 	{
1348 		.name = "throttle.write_bps_device",
1349 		.private = offsetof(struct throtl_grp, bps[WRITE]),
1350 		.seq_show = tg_print_conf_u64,
1351 		.write = tg_set_conf_u64,
1352 	},
1353 	{
1354 		.name = "throttle.read_iops_device",
1355 		.private = offsetof(struct throtl_grp, iops[READ]),
1356 		.seq_show = tg_print_conf_uint,
1357 		.write = tg_set_conf_uint,
1358 	},
1359 	{
1360 		.name = "throttle.write_iops_device",
1361 		.private = offsetof(struct throtl_grp, iops[WRITE]),
1362 		.seq_show = tg_print_conf_uint,
1363 		.write = tg_set_conf_uint,
1364 	},
1365 	{
1366 		.name = "throttle.io_service_bytes",
1367 		.private = offsetof(struct throtl_grp, stat_bytes),
1368 		.seq_show = tg_print_rwstat,
1369 	},
1370 	{
1371 		.name = "throttle.io_service_bytes_recursive",
1372 		.private = offsetof(struct throtl_grp, stat_bytes),
1373 		.seq_show = tg_print_rwstat_recursive,
1374 	},
1375 	{
1376 		.name = "throttle.io_serviced",
1377 		.private = offsetof(struct throtl_grp, stat_ios),
1378 		.seq_show = tg_print_rwstat,
1379 	},
1380 	{
1381 		.name = "throttle.io_serviced_recursive",
1382 		.private = offsetof(struct throtl_grp, stat_ios),
1383 		.seq_show = tg_print_rwstat_recursive,
1384 	},
1385 	{ }	/* terminate */
1386 };
1387 
1388 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1389 			 int off)
1390 {
1391 	struct throtl_grp *tg = pd_to_tg(pd);
1392 	const char *dname = blkg_dev_name(pd->blkg);
1393 	u64 bps_dft;
1394 	unsigned int iops_dft;
1395 
1396 	if (!dname)
1397 		return 0;
1398 
1399 	bps_dft = U64_MAX;
1400 	iops_dft = UINT_MAX;
1401 
1402 	if (tg->bps[READ] == bps_dft &&
1403 	    tg->bps[WRITE] == bps_dft &&
1404 	    tg->iops[READ] == iops_dft &&
1405 	    tg->iops[WRITE] == iops_dft)
1406 		return 0;
1407 
1408 	seq_printf(sf, "%s", dname);
1409 	if (tg->bps[READ] == U64_MAX)
1410 		seq_printf(sf, " rbps=max");
1411 	else
1412 		seq_printf(sf, " rbps=%llu", tg->bps[READ]);
1413 
1414 	if (tg->bps[WRITE] == U64_MAX)
1415 		seq_printf(sf, " wbps=max");
1416 	else
1417 		seq_printf(sf, " wbps=%llu", tg->bps[WRITE]);
1418 
1419 	if (tg->iops[READ] == UINT_MAX)
1420 		seq_printf(sf, " riops=max");
1421 	else
1422 		seq_printf(sf, " riops=%u", tg->iops[READ]);
1423 
1424 	if (tg->iops[WRITE] == UINT_MAX)
1425 		seq_printf(sf, " wiops=max");
1426 	else
1427 		seq_printf(sf, " wiops=%u", tg->iops[WRITE]);
1428 
1429 	seq_printf(sf, "\n");
1430 	return 0;
1431 }
1432 
1433 static int tg_print_limit(struct seq_file *sf, void *v)
1434 {
1435 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1436 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1437 	return 0;
1438 }
1439 
1440 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1441 			  char *buf, size_t nbytes, loff_t off)
1442 {
1443 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1444 	struct blkg_conf_ctx ctx;
1445 	struct throtl_grp *tg;
1446 	u64 v[4];
1447 	int ret;
1448 
1449 	blkg_conf_init(&ctx, buf);
1450 
1451 	ret = blkg_conf_open_bdev(&ctx);
1452 	if (ret)
1453 		goto out_finish;
1454 
1455 	if (!blk_throtl_activated(ctx.bdev->bd_queue)) {
1456 		ret = blk_throtl_init(ctx.bdev->bd_disk);
1457 		if (ret)
1458 			goto out_finish;
1459 	}
1460 
1461 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1462 	if (ret)
1463 		goto out_finish;
1464 
1465 	tg = blkg_to_tg(ctx.blkg);
1466 	tg_update_carryover(tg);
1467 
1468 	v[0] = tg->bps[READ];
1469 	v[1] = tg->bps[WRITE];
1470 	v[2] = tg->iops[READ];
1471 	v[3] = tg->iops[WRITE];
1472 
1473 	while (true) {
1474 		char tok[27];	/* wiops=18446744073709551616 */
1475 		char *p;
1476 		u64 val = U64_MAX;
1477 		int len;
1478 
1479 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1480 			break;
1481 		if (tok[0] == '\0')
1482 			break;
1483 		ctx.body += len;
1484 
1485 		ret = -EINVAL;
1486 		p = tok;
1487 		strsep(&p, "=");
1488 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1489 			goto out_finish;
1490 
1491 		ret = -ERANGE;
1492 		if (!val)
1493 			goto out_finish;
1494 
1495 		ret = -EINVAL;
1496 		if (!strcmp(tok, "rbps") && val > 1)
1497 			v[0] = val;
1498 		else if (!strcmp(tok, "wbps") && val > 1)
1499 			v[1] = val;
1500 		else if (!strcmp(tok, "riops") && val > 1)
1501 			v[2] = min_t(u64, val, UINT_MAX);
1502 		else if (!strcmp(tok, "wiops") && val > 1)
1503 			v[3] = min_t(u64, val, UINT_MAX);
1504 		else
1505 			goto out_finish;
1506 	}
1507 
1508 	tg->bps[READ] = v[0];
1509 	tg->bps[WRITE] = v[1];
1510 	tg->iops[READ] = v[2];
1511 	tg->iops[WRITE] = v[3];
1512 
1513 	tg_conf_updated(tg, false);
1514 	ret = 0;
1515 out_finish:
1516 	blkg_conf_exit(&ctx);
1517 	return ret ?: nbytes;
1518 }
1519 
1520 static struct cftype throtl_files[] = {
1521 	{
1522 		.name = "max",
1523 		.flags = CFTYPE_NOT_ON_ROOT,
1524 		.seq_show = tg_print_limit,
1525 		.write = tg_set_limit,
1526 	},
1527 	{ }	/* terminate */
1528 };
1529 
1530 static void throtl_shutdown_wq(struct request_queue *q)
1531 {
1532 	struct throtl_data *td = q->td;
1533 
1534 	cancel_work_sync(&td->dispatch_work);
1535 }
1536 
1537 struct blkcg_policy blkcg_policy_throtl = {
1538 	.dfl_cftypes		= throtl_files,
1539 	.legacy_cftypes		= throtl_legacy_files,
1540 
1541 	.pd_alloc_fn		= throtl_pd_alloc,
1542 	.pd_init_fn		= throtl_pd_init,
1543 	.pd_online_fn		= throtl_pd_online,
1544 	.pd_free_fn		= throtl_pd_free,
1545 };
1546 
1547 void blk_throtl_cancel_bios(struct gendisk *disk)
1548 {
1549 	struct request_queue *q = disk->queue;
1550 	struct cgroup_subsys_state *pos_css;
1551 	struct blkcg_gq *blkg;
1552 
1553 	if (!blk_throtl_activated(q))
1554 		return;
1555 
1556 	spin_lock_irq(&q->queue_lock);
1557 	/*
1558 	 * queue_lock is held, rcu lock is not needed here technically.
1559 	 * However, rcu lock is still held to emphasize that following
1560 	 * path need RCU protection and to prevent warning from lockdep.
1561 	 */
1562 	rcu_read_lock();
1563 	blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1564 		struct throtl_grp *tg = blkg_to_tg(blkg);
1565 		struct throtl_service_queue *sq = &tg->service_queue;
1566 
1567 		/*
1568 		 * Set the flag to make sure throtl_pending_timer_fn() won't
1569 		 * stop until all throttled bios are dispatched.
1570 		 */
1571 		tg->flags |= THROTL_TG_CANCELING;
1572 
1573 		/*
1574 		 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1575 		 * will be inserted to service queue without THROTL_TG_PENDING
1576 		 * set in tg_update_disptime below. Then IO dispatched from
1577 		 * child in tg_dispatch_one_bio will trigger double insertion
1578 		 * and corrupt the tree.
1579 		 */
1580 		if (!(tg->flags & THROTL_TG_PENDING))
1581 			continue;
1582 
1583 		/*
1584 		 * Update disptime after setting the above flag to make sure
1585 		 * throtl_select_dispatch() won't exit without dispatching.
1586 		 */
1587 		tg_update_disptime(tg);
1588 
1589 		throtl_schedule_pending_timer(sq, jiffies + 1);
1590 	}
1591 	rcu_read_unlock();
1592 	spin_unlock_irq(&q->queue_lock);
1593 }
1594 
1595 bool __blk_throtl_bio(struct bio *bio)
1596 {
1597 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1598 	struct blkcg_gq *blkg = bio->bi_blkg;
1599 	struct throtl_qnode *qn = NULL;
1600 	struct throtl_grp *tg = blkg_to_tg(blkg);
1601 	struct throtl_service_queue *sq;
1602 	bool rw = bio_data_dir(bio);
1603 	bool throttled = false;
1604 	struct throtl_data *td = tg->td;
1605 
1606 	rcu_read_lock();
1607 	spin_lock_irq(&q->queue_lock);
1608 	sq = &tg->service_queue;
1609 
1610 	while (true) {
1611 		if (tg->last_low_overflow_time[rw] == 0)
1612 			tg->last_low_overflow_time[rw] = jiffies;
1613 		/* throtl is FIFO - if bios are already queued, should queue */
1614 		if (sq->nr_queued[rw])
1615 			break;
1616 
1617 		/* if above limits, break to queue */
1618 		if (!tg_may_dispatch(tg, bio, NULL)) {
1619 			tg->last_low_overflow_time[rw] = jiffies;
1620 			break;
1621 		}
1622 
1623 		/* within limits, let's charge and dispatch directly */
1624 		throtl_charge_bio(tg, bio);
1625 
1626 		/*
1627 		 * We need to trim slice even when bios are not being queued
1628 		 * otherwise it might happen that a bio is not queued for
1629 		 * a long time and slice keeps on extending and trim is not
1630 		 * called for a long time. Now if limits are reduced suddenly
1631 		 * we take into account all the IO dispatched so far at new
1632 		 * low rate and * newly queued IO gets a really long dispatch
1633 		 * time.
1634 		 *
1635 		 * So keep on trimming slice even if bio is not queued.
1636 		 */
1637 		throtl_trim_slice(tg, rw);
1638 
1639 		/*
1640 		 * @bio passed through this layer without being throttled.
1641 		 * Climb up the ladder.  If we're already at the top, it
1642 		 * can be executed directly.
1643 		 */
1644 		qn = &tg->qnode_on_parent[rw];
1645 		sq = sq->parent_sq;
1646 		tg = sq_to_tg(sq);
1647 		if (!tg) {
1648 			bio_set_flag(bio, BIO_BPS_THROTTLED);
1649 			goto out_unlock;
1650 		}
1651 	}
1652 
1653 	/* out-of-limit, queue to @tg */
1654 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1655 		   rw == READ ? 'R' : 'W',
1656 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
1657 		   tg_bps_limit(tg, rw),
1658 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
1659 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1660 
1661 	tg->last_low_overflow_time[rw] = jiffies;
1662 
1663 	td->nr_queued[rw]++;
1664 	throtl_add_bio_tg(bio, qn, tg);
1665 	throttled = true;
1666 
1667 	/*
1668 	 * Update @tg's dispatch time and force schedule dispatch if @tg
1669 	 * was empty before @bio.  The forced scheduling isn't likely to
1670 	 * cause undue delay as @bio is likely to be dispatched directly if
1671 	 * its @tg's disptime is not in the future.
1672 	 */
1673 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1674 		tg_update_disptime(tg);
1675 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1676 	}
1677 
1678 out_unlock:
1679 	spin_unlock_irq(&q->queue_lock);
1680 
1681 	rcu_read_unlock();
1682 	return throttled;
1683 }
1684 
1685 void blk_throtl_exit(struct gendisk *disk)
1686 {
1687 	struct request_queue *q = disk->queue;
1688 
1689 	if (!blk_throtl_activated(q))
1690 		return;
1691 
1692 	del_timer_sync(&q->td->service_queue.pending_timer);
1693 	throtl_shutdown_wq(q);
1694 	blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
1695 	kfree(q->td);
1696 }
1697 
1698 static int __init throtl_init(void)
1699 {
1700 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1701 	if (!kthrotld_workqueue)
1702 		panic("Failed to create kthrotld\n");
1703 
1704 	return blkcg_policy_register(&blkcg_policy_throtl);
1705 }
1706 
1707 module_init(throtl_init);
1708