1 /* 2 * Interface for controlling IO bandwidth on a request queue 3 * 4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 5 */ 6 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/blkdev.h> 10 #include <linux/bio.h> 11 #include <linux/blktrace_api.h> 12 #include <linux/blk-cgroup.h> 13 #include "blk.h" 14 15 /* Max dispatch from a group in 1 round */ 16 static int throtl_grp_quantum = 8; 17 18 /* Total max dispatch from all groups in one round */ 19 static int throtl_quantum = 32; 20 21 /* Throttling is performed over a slice and after that slice is renewed */ 22 #define DFL_THROTL_SLICE_HD (HZ / 10) 23 #define DFL_THROTL_SLICE_SSD (HZ / 50) 24 #define MAX_THROTL_SLICE (HZ) 25 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 26 #define MIN_THROTL_BPS (320 * 1024) 27 #define MIN_THROTL_IOPS (10) 28 #define DFL_LATENCY_TARGET (-1L) 29 #define DFL_IDLE_THRESHOLD (0) 30 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 31 #define LATENCY_FILTERED_SSD (0) 32 /* 33 * For HD, very small latency comes from sequential IO. Such IO is helpless to 34 * help determine if its IO is impacted by others, hence we ignore the IO 35 */ 36 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 37 38 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT) 39 40 static struct blkcg_policy blkcg_policy_throtl; 41 42 /* A workqueue to queue throttle related work */ 43 static struct workqueue_struct *kthrotld_workqueue; 44 45 /* 46 * To implement hierarchical throttling, throtl_grps form a tree and bios 47 * are dispatched upwards level by level until they reach the top and get 48 * issued. When dispatching bios from the children and local group at each 49 * level, if the bios are dispatched into a single bio_list, there's a risk 50 * of a local or child group which can queue many bios at once filling up 51 * the list starving others. 52 * 53 * To avoid such starvation, dispatched bios are queued separately 54 * according to where they came from. When they are again dispatched to 55 * the parent, they're popped in round-robin order so that no single source 56 * hogs the dispatch window. 57 * 58 * throtl_qnode is used to keep the queued bios separated by their sources. 59 * Bios are queued to throtl_qnode which in turn is queued to 60 * throtl_service_queue and then dispatched in round-robin order. 61 * 62 * It's also used to track the reference counts on blkg's. A qnode always 63 * belongs to a throtl_grp and gets queued on itself or the parent, so 64 * incrementing the reference of the associated throtl_grp when a qnode is 65 * queued and decrementing when dequeued is enough to keep the whole blkg 66 * tree pinned while bios are in flight. 67 */ 68 struct throtl_qnode { 69 struct list_head node; /* service_queue->queued[] */ 70 struct bio_list bios; /* queued bios */ 71 struct throtl_grp *tg; /* tg this qnode belongs to */ 72 }; 73 74 struct throtl_service_queue { 75 struct throtl_service_queue *parent_sq; /* the parent service_queue */ 76 77 /* 78 * Bios queued directly to this service_queue or dispatched from 79 * children throtl_grp's. 80 */ 81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */ 82 unsigned int nr_queued[2]; /* number of queued bios */ 83 84 /* 85 * RB tree of active children throtl_grp's, which are sorted by 86 * their ->disptime. 87 */ 88 struct rb_root pending_tree; /* RB tree of active tgs */ 89 struct rb_node *first_pending; /* first node in the tree */ 90 unsigned int nr_pending; /* # queued in the tree */ 91 unsigned long first_pending_disptime; /* disptime of the first tg */ 92 struct timer_list pending_timer; /* fires on first_pending_disptime */ 93 }; 94 95 enum tg_state_flags { 96 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */ 97 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */ 98 }; 99 100 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 101 102 enum { 103 LIMIT_LOW, 104 LIMIT_MAX, 105 LIMIT_CNT, 106 }; 107 108 struct throtl_grp { 109 /* must be the first member */ 110 struct blkg_policy_data pd; 111 112 /* active throtl group service_queue member */ 113 struct rb_node rb_node; 114 115 /* throtl_data this group belongs to */ 116 struct throtl_data *td; 117 118 /* this group's service queue */ 119 struct throtl_service_queue service_queue; 120 121 /* 122 * qnode_on_self is used when bios are directly queued to this 123 * throtl_grp so that local bios compete fairly with bios 124 * dispatched from children. qnode_on_parent is used when bios are 125 * dispatched from this throtl_grp into its parent and will compete 126 * with the sibling qnode_on_parents and the parent's 127 * qnode_on_self. 128 */ 129 struct throtl_qnode qnode_on_self[2]; 130 struct throtl_qnode qnode_on_parent[2]; 131 132 /* 133 * Dispatch time in jiffies. This is the estimated time when group 134 * will unthrottle and is ready to dispatch more bio. It is used as 135 * key to sort active groups in service tree. 136 */ 137 unsigned long disptime; 138 139 unsigned int flags; 140 141 /* are there any throtl rules between this group and td? */ 142 bool has_rules[2]; 143 144 /* internally used bytes per second rate limits */ 145 uint64_t bps[2][LIMIT_CNT]; 146 /* user configured bps limits */ 147 uint64_t bps_conf[2][LIMIT_CNT]; 148 149 /* internally used IOPS limits */ 150 unsigned int iops[2][LIMIT_CNT]; 151 /* user configured IOPS limits */ 152 unsigned int iops_conf[2][LIMIT_CNT]; 153 154 /* Number of bytes disptached in current slice */ 155 uint64_t bytes_disp[2]; 156 /* Number of bio's dispatched in current slice */ 157 unsigned int io_disp[2]; 158 159 unsigned long last_low_overflow_time[2]; 160 161 uint64_t last_bytes_disp[2]; 162 unsigned int last_io_disp[2]; 163 164 unsigned long last_check_time; 165 166 unsigned long latency_target; /* us */ 167 unsigned long latency_target_conf; /* us */ 168 /* When did we start a new slice */ 169 unsigned long slice_start[2]; 170 unsigned long slice_end[2]; 171 172 unsigned long last_finish_time; /* ns / 1024 */ 173 unsigned long checked_last_finish_time; /* ns / 1024 */ 174 unsigned long avg_idletime; /* ns / 1024 */ 175 unsigned long idletime_threshold; /* us */ 176 unsigned long idletime_threshold_conf; /* us */ 177 178 unsigned int bio_cnt; /* total bios */ 179 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */ 180 unsigned long bio_cnt_reset_time; 181 }; 182 183 /* We measure latency for request size from <= 4k to >= 1M */ 184 #define LATENCY_BUCKET_SIZE 9 185 186 struct latency_bucket { 187 unsigned long total_latency; /* ns / 1024 */ 188 int samples; 189 }; 190 191 struct avg_latency_bucket { 192 unsigned long latency; /* ns / 1024 */ 193 bool valid; 194 }; 195 196 struct throtl_data 197 { 198 /* service tree for active throtl groups */ 199 struct throtl_service_queue service_queue; 200 201 struct request_queue *queue; 202 203 /* Total Number of queued bios on READ and WRITE lists */ 204 unsigned int nr_queued[2]; 205 206 unsigned int throtl_slice; 207 208 /* Work for dispatching throttled bios */ 209 struct work_struct dispatch_work; 210 unsigned int limit_index; 211 bool limit_valid[LIMIT_CNT]; 212 213 unsigned long low_upgrade_time; 214 unsigned long low_downgrade_time; 215 216 unsigned int scale; 217 218 struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE]; 219 struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE]; 220 struct latency_bucket __percpu *latency_buckets; 221 unsigned long last_calculate_time; 222 unsigned long filtered_latency; 223 224 bool track_bio_latency; 225 }; 226 227 static void throtl_pending_timer_fn(unsigned long arg); 228 229 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd) 230 { 231 return pd ? container_of(pd, struct throtl_grp, pd) : NULL; 232 } 233 234 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg) 235 { 236 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl)); 237 } 238 239 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 240 { 241 return pd_to_blkg(&tg->pd); 242 } 243 244 /** 245 * sq_to_tg - return the throl_grp the specified service queue belongs to 246 * @sq: the throtl_service_queue of interest 247 * 248 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 249 * embedded in throtl_data, %NULL is returned. 250 */ 251 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 252 { 253 if (sq && sq->parent_sq) 254 return container_of(sq, struct throtl_grp, service_queue); 255 else 256 return NULL; 257 } 258 259 /** 260 * sq_to_td - return throtl_data the specified service queue belongs to 261 * @sq: the throtl_service_queue of interest 262 * 263 * A service_queue can be embedded in either a throtl_grp or throtl_data. 264 * Determine the associated throtl_data accordingly and return it. 265 */ 266 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 267 { 268 struct throtl_grp *tg = sq_to_tg(sq); 269 270 if (tg) 271 return tg->td; 272 else 273 return container_of(sq, struct throtl_data, service_queue); 274 } 275 276 /* 277 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 278 * make the IO dispatch more smooth. 279 * Scale up: linearly scale up according to lapsed time since upgrade. For 280 * every throtl_slice, the limit scales up 1/2 .low limit till the 281 * limit hits .max limit 282 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 283 */ 284 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 285 { 286 /* arbitrary value to avoid too big scale */ 287 if (td->scale < 4096 && time_after_eq(jiffies, 288 td->low_upgrade_time + td->scale * td->throtl_slice)) 289 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 290 291 return low + (low >> 1) * td->scale; 292 } 293 294 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 295 { 296 struct blkcg_gq *blkg = tg_to_blkg(tg); 297 struct throtl_data *td; 298 uint64_t ret; 299 300 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 301 return U64_MAX; 302 303 td = tg->td; 304 ret = tg->bps[rw][td->limit_index]; 305 if (ret == 0 && td->limit_index == LIMIT_LOW) { 306 /* intermediate node or iops isn't 0 */ 307 if (!list_empty(&blkg->blkcg->css.children) || 308 tg->iops[rw][td->limit_index]) 309 return U64_MAX; 310 else 311 return MIN_THROTL_BPS; 312 } 313 314 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 315 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 316 uint64_t adjusted; 317 318 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 319 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 320 } 321 return ret; 322 } 323 324 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 325 { 326 struct blkcg_gq *blkg = tg_to_blkg(tg); 327 struct throtl_data *td; 328 unsigned int ret; 329 330 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 331 return UINT_MAX; 332 333 td = tg->td; 334 ret = tg->iops[rw][td->limit_index]; 335 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 336 /* intermediate node or bps isn't 0 */ 337 if (!list_empty(&blkg->blkcg->css.children) || 338 tg->bps[rw][td->limit_index]) 339 return UINT_MAX; 340 else 341 return MIN_THROTL_IOPS; 342 } 343 344 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 345 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 346 uint64_t adjusted; 347 348 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 349 if (adjusted > UINT_MAX) 350 adjusted = UINT_MAX; 351 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 352 } 353 return ret; 354 } 355 356 #define request_bucket_index(sectors) \ 357 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 358 359 /** 360 * throtl_log - log debug message via blktrace 361 * @sq: the service_queue being reported 362 * @fmt: printf format string 363 * @args: printf args 364 * 365 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 366 * throtl_grp; otherwise, just "throtl". 367 */ 368 #define throtl_log(sq, fmt, args...) do { \ 369 struct throtl_grp *__tg = sq_to_tg((sq)); \ 370 struct throtl_data *__td = sq_to_td((sq)); \ 371 \ 372 (void)__td; \ 373 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 374 break; \ 375 if ((__tg)) { \ 376 char __pbuf[128]; \ 377 \ 378 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \ 379 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \ 380 } else { \ 381 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 382 } \ 383 } while (0) 384 385 static inline unsigned int throtl_bio_data_size(struct bio *bio) 386 { 387 /* assume it's one sector */ 388 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 389 return 512; 390 return bio->bi_iter.bi_size; 391 } 392 393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 394 { 395 INIT_LIST_HEAD(&qn->node); 396 bio_list_init(&qn->bios); 397 qn->tg = tg; 398 } 399 400 /** 401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 402 * @bio: bio being added 403 * @qn: qnode to add bio to 404 * @queued: the service_queue->queued[] list @qn belongs to 405 * 406 * Add @bio to @qn and put @qn on @queued if it's not already on. 407 * @qn->tg's reference count is bumped when @qn is activated. See the 408 * comment on top of throtl_qnode definition for details. 409 */ 410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 411 struct list_head *queued) 412 { 413 bio_list_add(&qn->bios, bio); 414 if (list_empty(&qn->node)) { 415 list_add_tail(&qn->node, queued); 416 blkg_get(tg_to_blkg(qn->tg)); 417 } 418 } 419 420 /** 421 * throtl_peek_queued - peek the first bio on a qnode list 422 * @queued: the qnode list to peek 423 */ 424 static struct bio *throtl_peek_queued(struct list_head *queued) 425 { 426 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 427 struct bio *bio; 428 429 if (list_empty(queued)) 430 return NULL; 431 432 bio = bio_list_peek(&qn->bios); 433 WARN_ON_ONCE(!bio); 434 return bio; 435 } 436 437 /** 438 * throtl_pop_queued - pop the first bio form a qnode list 439 * @queued: the qnode list to pop a bio from 440 * @tg_to_put: optional out argument for throtl_grp to put 441 * 442 * Pop the first bio from the qnode list @queued. After popping, the first 443 * qnode is removed from @queued if empty or moved to the end of @queued so 444 * that the popping order is round-robin. 445 * 446 * When the first qnode is removed, its associated throtl_grp should be put 447 * too. If @tg_to_put is NULL, this function automatically puts it; 448 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 449 * responsible for putting it. 450 */ 451 static struct bio *throtl_pop_queued(struct list_head *queued, 452 struct throtl_grp **tg_to_put) 453 { 454 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node); 455 struct bio *bio; 456 457 if (list_empty(queued)) 458 return NULL; 459 460 bio = bio_list_pop(&qn->bios); 461 WARN_ON_ONCE(!bio); 462 463 if (bio_list_empty(&qn->bios)) { 464 list_del_init(&qn->node); 465 if (tg_to_put) 466 *tg_to_put = qn->tg; 467 else 468 blkg_put(tg_to_blkg(qn->tg)); 469 } else { 470 list_move_tail(&qn->node, queued); 471 } 472 473 return bio; 474 } 475 476 /* init a service_queue, assumes the caller zeroed it */ 477 static void throtl_service_queue_init(struct throtl_service_queue *sq) 478 { 479 INIT_LIST_HEAD(&sq->queued[0]); 480 INIT_LIST_HEAD(&sq->queued[1]); 481 sq->pending_tree = RB_ROOT; 482 setup_timer(&sq->pending_timer, throtl_pending_timer_fn, 483 (unsigned long)sq); 484 } 485 486 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node) 487 { 488 struct throtl_grp *tg; 489 int rw; 490 491 tg = kzalloc_node(sizeof(*tg), gfp, node); 492 if (!tg) 493 return NULL; 494 495 throtl_service_queue_init(&tg->service_queue); 496 497 for (rw = READ; rw <= WRITE; rw++) { 498 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 499 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 500 } 501 502 RB_CLEAR_NODE(&tg->rb_node); 503 tg->bps[READ][LIMIT_MAX] = U64_MAX; 504 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 505 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 506 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 507 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 508 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 509 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 510 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 511 /* LIMIT_LOW will have default value 0 */ 512 513 tg->latency_target = DFL_LATENCY_TARGET; 514 tg->latency_target_conf = DFL_LATENCY_TARGET; 515 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 516 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 517 518 return &tg->pd; 519 } 520 521 static void throtl_pd_init(struct blkg_policy_data *pd) 522 { 523 struct throtl_grp *tg = pd_to_tg(pd); 524 struct blkcg_gq *blkg = tg_to_blkg(tg); 525 struct throtl_data *td = blkg->q->td; 526 struct throtl_service_queue *sq = &tg->service_queue; 527 528 /* 529 * If on the default hierarchy, we switch to properly hierarchical 530 * behavior where limits on a given throtl_grp are applied to the 531 * whole subtree rather than just the group itself. e.g. If 16M 532 * read_bps limit is set on the root group, the whole system can't 533 * exceed 16M for the device. 534 * 535 * If not on the default hierarchy, the broken flat hierarchy 536 * behavior is retained where all throtl_grps are treated as if 537 * they're all separate root groups right below throtl_data. 538 * Limits of a group don't interact with limits of other groups 539 * regardless of the position of the group in the hierarchy. 540 */ 541 sq->parent_sq = &td->service_queue; 542 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 543 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 544 tg->td = td; 545 } 546 547 /* 548 * Set has_rules[] if @tg or any of its parents have limits configured. 549 * This doesn't require walking up to the top of the hierarchy as the 550 * parent's has_rules[] is guaranteed to be correct. 551 */ 552 static void tg_update_has_rules(struct throtl_grp *tg) 553 { 554 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 555 struct throtl_data *td = tg->td; 556 int rw; 557 558 for (rw = READ; rw <= WRITE; rw++) 559 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 560 (td->limit_valid[td->limit_index] && 561 (tg_bps_limit(tg, rw) != U64_MAX || 562 tg_iops_limit(tg, rw) != UINT_MAX)); 563 } 564 565 static void throtl_pd_online(struct blkg_policy_data *pd) 566 { 567 struct throtl_grp *tg = pd_to_tg(pd); 568 /* 569 * We don't want new groups to escape the limits of its ancestors. 570 * Update has_rules[] after a new group is brought online. 571 */ 572 tg_update_has_rules(tg); 573 } 574 575 static void blk_throtl_update_limit_valid(struct throtl_data *td) 576 { 577 struct cgroup_subsys_state *pos_css; 578 struct blkcg_gq *blkg; 579 bool low_valid = false; 580 581 rcu_read_lock(); 582 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 583 struct throtl_grp *tg = blkg_to_tg(blkg); 584 585 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 586 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 587 low_valid = true; 588 } 589 rcu_read_unlock(); 590 591 td->limit_valid[LIMIT_LOW] = low_valid; 592 } 593 594 static void throtl_upgrade_state(struct throtl_data *td); 595 static void throtl_pd_offline(struct blkg_policy_data *pd) 596 { 597 struct throtl_grp *tg = pd_to_tg(pd); 598 599 tg->bps[READ][LIMIT_LOW] = 0; 600 tg->bps[WRITE][LIMIT_LOW] = 0; 601 tg->iops[READ][LIMIT_LOW] = 0; 602 tg->iops[WRITE][LIMIT_LOW] = 0; 603 604 blk_throtl_update_limit_valid(tg->td); 605 606 if (!tg->td->limit_valid[tg->td->limit_index]) 607 throtl_upgrade_state(tg->td); 608 } 609 610 static void throtl_pd_free(struct blkg_policy_data *pd) 611 { 612 struct throtl_grp *tg = pd_to_tg(pd); 613 614 del_timer_sync(&tg->service_queue.pending_timer); 615 kfree(tg); 616 } 617 618 static struct throtl_grp * 619 throtl_rb_first(struct throtl_service_queue *parent_sq) 620 { 621 /* Service tree is empty */ 622 if (!parent_sq->nr_pending) 623 return NULL; 624 625 if (!parent_sq->first_pending) 626 parent_sq->first_pending = rb_first(&parent_sq->pending_tree); 627 628 if (parent_sq->first_pending) 629 return rb_entry_tg(parent_sq->first_pending); 630 631 return NULL; 632 } 633 634 static void rb_erase_init(struct rb_node *n, struct rb_root *root) 635 { 636 rb_erase(n, root); 637 RB_CLEAR_NODE(n); 638 } 639 640 static void throtl_rb_erase(struct rb_node *n, 641 struct throtl_service_queue *parent_sq) 642 { 643 if (parent_sq->first_pending == n) 644 parent_sq->first_pending = NULL; 645 rb_erase_init(n, &parent_sq->pending_tree); 646 --parent_sq->nr_pending; 647 } 648 649 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 650 { 651 struct throtl_grp *tg; 652 653 tg = throtl_rb_first(parent_sq); 654 if (!tg) 655 return; 656 657 parent_sq->first_pending_disptime = tg->disptime; 658 } 659 660 static void tg_service_queue_add(struct throtl_grp *tg) 661 { 662 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 663 struct rb_node **node = &parent_sq->pending_tree.rb_node; 664 struct rb_node *parent = NULL; 665 struct throtl_grp *__tg; 666 unsigned long key = tg->disptime; 667 int left = 1; 668 669 while (*node != NULL) { 670 parent = *node; 671 __tg = rb_entry_tg(parent); 672 673 if (time_before(key, __tg->disptime)) 674 node = &parent->rb_left; 675 else { 676 node = &parent->rb_right; 677 left = 0; 678 } 679 } 680 681 if (left) 682 parent_sq->first_pending = &tg->rb_node; 683 684 rb_link_node(&tg->rb_node, parent, node); 685 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree); 686 } 687 688 static void __throtl_enqueue_tg(struct throtl_grp *tg) 689 { 690 tg_service_queue_add(tg); 691 tg->flags |= THROTL_TG_PENDING; 692 tg->service_queue.parent_sq->nr_pending++; 693 } 694 695 static void throtl_enqueue_tg(struct throtl_grp *tg) 696 { 697 if (!(tg->flags & THROTL_TG_PENDING)) 698 __throtl_enqueue_tg(tg); 699 } 700 701 static void __throtl_dequeue_tg(struct throtl_grp *tg) 702 { 703 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 704 tg->flags &= ~THROTL_TG_PENDING; 705 } 706 707 static void throtl_dequeue_tg(struct throtl_grp *tg) 708 { 709 if (tg->flags & THROTL_TG_PENDING) 710 __throtl_dequeue_tg(tg); 711 } 712 713 /* Call with queue lock held */ 714 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 715 unsigned long expires) 716 { 717 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 718 719 /* 720 * Since we are adjusting the throttle limit dynamically, the sleep 721 * time calculated according to previous limit might be invalid. It's 722 * possible the cgroup sleep time is very long and no other cgroups 723 * have IO running so notify the limit changes. Make sure the cgroup 724 * doesn't sleep too long to avoid the missed notification. 725 */ 726 if (time_after(expires, max_expire)) 727 expires = max_expire; 728 mod_timer(&sq->pending_timer, expires); 729 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 730 expires - jiffies, jiffies); 731 } 732 733 /** 734 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 735 * @sq: the service_queue to schedule dispatch for 736 * @force: force scheduling 737 * 738 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 739 * dispatch time of the first pending child. Returns %true if either timer 740 * is armed or there's no pending child left. %false if the current 741 * dispatch window is still open and the caller should continue 742 * dispatching. 743 * 744 * If @force is %true, the dispatch timer is always scheduled and this 745 * function is guaranteed to return %true. This is to be used when the 746 * caller can't dispatch itself and needs to invoke pending_timer 747 * unconditionally. Note that forced scheduling is likely to induce short 748 * delay before dispatch starts even if @sq->first_pending_disptime is not 749 * in the future and thus shouldn't be used in hot paths. 750 */ 751 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 752 bool force) 753 { 754 /* any pending children left? */ 755 if (!sq->nr_pending) 756 return true; 757 758 update_min_dispatch_time(sq); 759 760 /* is the next dispatch time in the future? */ 761 if (force || time_after(sq->first_pending_disptime, jiffies)) { 762 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 763 return true; 764 } 765 766 /* tell the caller to continue dispatching */ 767 return false; 768 } 769 770 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 771 bool rw, unsigned long start) 772 { 773 tg->bytes_disp[rw] = 0; 774 tg->io_disp[rw] = 0; 775 776 /* 777 * Previous slice has expired. We must have trimmed it after last 778 * bio dispatch. That means since start of last slice, we never used 779 * that bandwidth. Do try to make use of that bandwidth while giving 780 * credit. 781 */ 782 if (time_after_eq(start, tg->slice_start[rw])) 783 tg->slice_start[rw] = start; 784 785 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 786 throtl_log(&tg->service_queue, 787 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 788 rw == READ ? 'R' : 'W', tg->slice_start[rw], 789 tg->slice_end[rw], jiffies); 790 } 791 792 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 793 { 794 tg->bytes_disp[rw] = 0; 795 tg->io_disp[rw] = 0; 796 tg->slice_start[rw] = jiffies; 797 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 798 throtl_log(&tg->service_queue, 799 "[%c] new slice start=%lu end=%lu jiffies=%lu", 800 rw == READ ? 'R' : 'W', tg->slice_start[rw], 801 tg->slice_end[rw], jiffies); 802 } 803 804 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 805 unsigned long jiffy_end) 806 { 807 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 808 } 809 810 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 811 unsigned long jiffy_end) 812 { 813 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 814 throtl_log(&tg->service_queue, 815 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 816 rw == READ ? 'R' : 'W', tg->slice_start[rw], 817 tg->slice_end[rw], jiffies); 818 } 819 820 /* Determine if previously allocated or extended slice is complete or not */ 821 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 822 { 823 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 824 return false; 825 826 return 1; 827 } 828 829 /* Trim the used slices and adjust slice start accordingly */ 830 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 831 { 832 unsigned long nr_slices, time_elapsed, io_trim; 833 u64 bytes_trim, tmp; 834 835 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 836 837 /* 838 * If bps are unlimited (-1), then time slice don't get 839 * renewed. Don't try to trim the slice if slice is used. A new 840 * slice will start when appropriate. 841 */ 842 if (throtl_slice_used(tg, rw)) 843 return; 844 845 /* 846 * A bio has been dispatched. Also adjust slice_end. It might happen 847 * that initially cgroup limit was very low resulting in high 848 * slice_end, but later limit was bumped up and bio was dispached 849 * sooner, then we need to reduce slice_end. A high bogus slice_end 850 * is bad because it does not allow new slice to start. 851 */ 852 853 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 854 855 time_elapsed = jiffies - tg->slice_start[rw]; 856 857 nr_slices = time_elapsed / tg->td->throtl_slice; 858 859 if (!nr_slices) 860 return; 861 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 862 do_div(tmp, HZ); 863 bytes_trim = tmp; 864 865 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 866 HZ; 867 868 if (!bytes_trim && !io_trim) 869 return; 870 871 if (tg->bytes_disp[rw] >= bytes_trim) 872 tg->bytes_disp[rw] -= bytes_trim; 873 else 874 tg->bytes_disp[rw] = 0; 875 876 if (tg->io_disp[rw] >= io_trim) 877 tg->io_disp[rw] -= io_trim; 878 else 879 tg->io_disp[rw] = 0; 880 881 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 882 883 throtl_log(&tg->service_queue, 884 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 885 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 886 tg->slice_start[rw], tg->slice_end[rw], jiffies); 887 } 888 889 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 890 unsigned long *wait) 891 { 892 bool rw = bio_data_dir(bio); 893 unsigned int io_allowed; 894 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 895 u64 tmp; 896 897 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 898 899 /* Slice has just started. Consider one slice interval */ 900 if (!jiffy_elapsed) 901 jiffy_elapsed_rnd = tg->td->throtl_slice; 902 903 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 904 905 /* 906 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 907 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 908 * will allow dispatch after 1 second and after that slice should 909 * have been trimmed. 910 */ 911 912 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd; 913 do_div(tmp, HZ); 914 915 if (tmp > UINT_MAX) 916 io_allowed = UINT_MAX; 917 else 918 io_allowed = tmp; 919 920 if (tg->io_disp[rw] + 1 <= io_allowed) { 921 if (wait) 922 *wait = 0; 923 return true; 924 } 925 926 /* Calc approx time to dispatch */ 927 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1; 928 929 if (jiffy_wait > jiffy_elapsed) 930 jiffy_wait = jiffy_wait - jiffy_elapsed; 931 else 932 jiffy_wait = 1; 933 934 if (wait) 935 *wait = jiffy_wait; 936 return 0; 937 } 938 939 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 940 unsigned long *wait) 941 { 942 bool rw = bio_data_dir(bio); 943 u64 bytes_allowed, extra_bytes, tmp; 944 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 945 unsigned int bio_size = throtl_bio_data_size(bio); 946 947 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 948 949 /* Slice has just started. Consider one slice interval */ 950 if (!jiffy_elapsed) 951 jiffy_elapsed_rnd = tg->td->throtl_slice; 952 953 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 954 955 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd; 956 do_div(tmp, HZ); 957 bytes_allowed = tmp; 958 959 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 960 if (wait) 961 *wait = 0; 962 return true; 963 } 964 965 /* Calc approx time to dispatch */ 966 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 967 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw)); 968 969 if (!jiffy_wait) 970 jiffy_wait = 1; 971 972 /* 973 * This wait time is without taking into consideration the rounding 974 * up we did. Add that time also. 975 */ 976 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 977 if (wait) 978 *wait = jiffy_wait; 979 return 0; 980 } 981 982 /* 983 * Returns whether one can dispatch a bio or not. Also returns approx number 984 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 985 */ 986 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 987 unsigned long *wait) 988 { 989 bool rw = bio_data_dir(bio); 990 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 991 992 /* 993 * Currently whole state machine of group depends on first bio 994 * queued in the group bio list. So one should not be calling 995 * this function with a different bio if there are other bios 996 * queued. 997 */ 998 BUG_ON(tg->service_queue.nr_queued[rw] && 999 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 1000 1001 /* If tg->bps = -1, then BW is unlimited */ 1002 if (tg_bps_limit(tg, rw) == U64_MAX && 1003 tg_iops_limit(tg, rw) == UINT_MAX) { 1004 if (wait) 1005 *wait = 0; 1006 return true; 1007 } 1008 1009 /* 1010 * If previous slice expired, start a new one otherwise renew/extend 1011 * existing slice to make sure it is at least throtl_slice interval 1012 * long since now. New slice is started only for empty throttle group. 1013 * If there is queued bio, that means there should be an active 1014 * slice and it should be extended instead. 1015 */ 1016 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 1017 throtl_start_new_slice(tg, rw); 1018 else { 1019 if (time_before(tg->slice_end[rw], 1020 jiffies + tg->td->throtl_slice)) 1021 throtl_extend_slice(tg, rw, 1022 jiffies + tg->td->throtl_slice); 1023 } 1024 1025 if (tg_with_in_bps_limit(tg, bio, &bps_wait) && 1026 tg_with_in_iops_limit(tg, bio, &iops_wait)) { 1027 if (wait) 1028 *wait = 0; 1029 return 1; 1030 } 1031 1032 max_wait = max(bps_wait, iops_wait); 1033 1034 if (wait) 1035 *wait = max_wait; 1036 1037 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 1038 throtl_extend_slice(tg, rw, jiffies + max_wait); 1039 1040 return 0; 1041 } 1042 1043 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 1044 { 1045 bool rw = bio_data_dir(bio); 1046 unsigned int bio_size = throtl_bio_data_size(bio); 1047 1048 /* Charge the bio to the group */ 1049 tg->bytes_disp[rw] += bio_size; 1050 tg->io_disp[rw]++; 1051 tg->last_bytes_disp[rw] += bio_size; 1052 tg->last_io_disp[rw]++; 1053 1054 /* 1055 * BIO_THROTTLED is used to prevent the same bio to be throttled 1056 * more than once as a throttled bio will go through blk-throtl the 1057 * second time when it eventually gets issued. Set it when a bio 1058 * is being charged to a tg. 1059 */ 1060 if (!bio_flagged(bio, BIO_THROTTLED)) 1061 bio_set_flag(bio, BIO_THROTTLED); 1062 } 1063 1064 /** 1065 * throtl_add_bio_tg - add a bio to the specified throtl_grp 1066 * @bio: bio to add 1067 * @qn: qnode to use 1068 * @tg: the target throtl_grp 1069 * 1070 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 1071 * tg->qnode_on_self[] is used. 1072 */ 1073 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 1074 struct throtl_grp *tg) 1075 { 1076 struct throtl_service_queue *sq = &tg->service_queue; 1077 bool rw = bio_data_dir(bio); 1078 1079 if (!qn) 1080 qn = &tg->qnode_on_self[rw]; 1081 1082 /* 1083 * If @tg doesn't currently have any bios queued in the same 1084 * direction, queueing @bio can change when @tg should be 1085 * dispatched. Mark that @tg was empty. This is automatically 1086 * cleaered on the next tg_update_disptime(). 1087 */ 1088 if (!sq->nr_queued[rw]) 1089 tg->flags |= THROTL_TG_WAS_EMPTY; 1090 1091 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1092 1093 sq->nr_queued[rw]++; 1094 throtl_enqueue_tg(tg); 1095 } 1096 1097 static void tg_update_disptime(struct throtl_grp *tg) 1098 { 1099 struct throtl_service_queue *sq = &tg->service_queue; 1100 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1101 struct bio *bio; 1102 1103 bio = throtl_peek_queued(&sq->queued[READ]); 1104 if (bio) 1105 tg_may_dispatch(tg, bio, &read_wait); 1106 1107 bio = throtl_peek_queued(&sq->queued[WRITE]); 1108 if (bio) 1109 tg_may_dispatch(tg, bio, &write_wait); 1110 1111 min_wait = min(read_wait, write_wait); 1112 disptime = jiffies + min_wait; 1113 1114 /* Update dispatch time */ 1115 throtl_dequeue_tg(tg); 1116 tg->disptime = disptime; 1117 throtl_enqueue_tg(tg); 1118 1119 /* see throtl_add_bio_tg() */ 1120 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1121 } 1122 1123 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1124 struct throtl_grp *parent_tg, bool rw) 1125 { 1126 if (throtl_slice_used(parent_tg, rw)) { 1127 throtl_start_new_slice_with_credit(parent_tg, rw, 1128 child_tg->slice_start[rw]); 1129 } 1130 1131 } 1132 1133 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1134 { 1135 struct throtl_service_queue *sq = &tg->service_queue; 1136 struct throtl_service_queue *parent_sq = sq->parent_sq; 1137 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1138 struct throtl_grp *tg_to_put = NULL; 1139 struct bio *bio; 1140 1141 /* 1142 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1143 * from @tg may put its reference and @parent_sq might end up 1144 * getting released prematurely. Remember the tg to put and put it 1145 * after @bio is transferred to @parent_sq. 1146 */ 1147 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1148 sq->nr_queued[rw]--; 1149 1150 throtl_charge_bio(tg, bio); 1151 1152 /* 1153 * If our parent is another tg, we just need to transfer @bio to 1154 * the parent using throtl_add_bio_tg(). If our parent is 1155 * @td->service_queue, @bio is ready to be issued. Put it on its 1156 * bio_lists[] and decrease total number queued. The caller is 1157 * responsible for issuing these bios. 1158 */ 1159 if (parent_tg) { 1160 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1161 start_parent_slice_with_credit(tg, parent_tg, rw); 1162 } else { 1163 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1164 &parent_sq->queued[rw]); 1165 BUG_ON(tg->td->nr_queued[rw] <= 0); 1166 tg->td->nr_queued[rw]--; 1167 } 1168 1169 throtl_trim_slice(tg, rw); 1170 1171 if (tg_to_put) 1172 blkg_put(tg_to_blkg(tg_to_put)); 1173 } 1174 1175 static int throtl_dispatch_tg(struct throtl_grp *tg) 1176 { 1177 struct throtl_service_queue *sq = &tg->service_queue; 1178 unsigned int nr_reads = 0, nr_writes = 0; 1179 unsigned int max_nr_reads = throtl_grp_quantum*3/4; 1180 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads; 1181 struct bio *bio; 1182 1183 /* Try to dispatch 75% READS and 25% WRITES */ 1184 1185 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1186 tg_may_dispatch(tg, bio, NULL)) { 1187 1188 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1189 nr_reads++; 1190 1191 if (nr_reads >= max_nr_reads) 1192 break; 1193 } 1194 1195 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1196 tg_may_dispatch(tg, bio, NULL)) { 1197 1198 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1199 nr_writes++; 1200 1201 if (nr_writes >= max_nr_writes) 1202 break; 1203 } 1204 1205 return nr_reads + nr_writes; 1206 } 1207 1208 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1209 { 1210 unsigned int nr_disp = 0; 1211 1212 while (1) { 1213 struct throtl_grp *tg = throtl_rb_first(parent_sq); 1214 struct throtl_service_queue *sq = &tg->service_queue; 1215 1216 if (!tg) 1217 break; 1218 1219 if (time_before(jiffies, tg->disptime)) 1220 break; 1221 1222 throtl_dequeue_tg(tg); 1223 1224 nr_disp += throtl_dispatch_tg(tg); 1225 1226 if (sq->nr_queued[0] || sq->nr_queued[1]) 1227 tg_update_disptime(tg); 1228 1229 if (nr_disp >= throtl_quantum) 1230 break; 1231 } 1232 1233 return nr_disp; 1234 } 1235 1236 static bool throtl_can_upgrade(struct throtl_data *td, 1237 struct throtl_grp *this_tg); 1238 /** 1239 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1240 * @arg: the throtl_service_queue being serviced 1241 * 1242 * This timer is armed when a child throtl_grp with active bio's become 1243 * pending and queued on the service_queue's pending_tree and expires when 1244 * the first child throtl_grp should be dispatched. This function 1245 * dispatches bio's from the children throtl_grps to the parent 1246 * service_queue. 1247 * 1248 * If the parent's parent is another throtl_grp, dispatching is propagated 1249 * by either arming its pending_timer or repeating dispatch directly. If 1250 * the top-level service_tree is reached, throtl_data->dispatch_work is 1251 * kicked so that the ready bio's are issued. 1252 */ 1253 static void throtl_pending_timer_fn(unsigned long arg) 1254 { 1255 struct throtl_service_queue *sq = (void *)arg; 1256 struct throtl_grp *tg = sq_to_tg(sq); 1257 struct throtl_data *td = sq_to_td(sq); 1258 struct request_queue *q = td->queue; 1259 struct throtl_service_queue *parent_sq; 1260 bool dispatched; 1261 int ret; 1262 1263 spin_lock_irq(q->queue_lock); 1264 if (throtl_can_upgrade(td, NULL)) 1265 throtl_upgrade_state(td); 1266 1267 again: 1268 parent_sq = sq->parent_sq; 1269 dispatched = false; 1270 1271 while (true) { 1272 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1273 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1274 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1275 1276 ret = throtl_select_dispatch(sq); 1277 if (ret) { 1278 throtl_log(sq, "bios disp=%u", ret); 1279 dispatched = true; 1280 } 1281 1282 if (throtl_schedule_next_dispatch(sq, false)) 1283 break; 1284 1285 /* this dispatch windows is still open, relax and repeat */ 1286 spin_unlock_irq(q->queue_lock); 1287 cpu_relax(); 1288 spin_lock_irq(q->queue_lock); 1289 } 1290 1291 if (!dispatched) 1292 goto out_unlock; 1293 1294 if (parent_sq) { 1295 /* @parent_sq is another throl_grp, propagate dispatch */ 1296 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1297 tg_update_disptime(tg); 1298 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1299 /* window is already open, repeat dispatching */ 1300 sq = parent_sq; 1301 tg = sq_to_tg(sq); 1302 goto again; 1303 } 1304 } 1305 } else { 1306 /* reached the top-level, queue issueing */ 1307 queue_work(kthrotld_workqueue, &td->dispatch_work); 1308 } 1309 out_unlock: 1310 spin_unlock_irq(q->queue_lock); 1311 } 1312 1313 /** 1314 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1315 * @work: work item being executed 1316 * 1317 * This function is queued for execution when bio's reach the bio_lists[] 1318 * of throtl_data->service_queue. Those bio's are ready and issued by this 1319 * function. 1320 */ 1321 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1322 { 1323 struct throtl_data *td = container_of(work, struct throtl_data, 1324 dispatch_work); 1325 struct throtl_service_queue *td_sq = &td->service_queue; 1326 struct request_queue *q = td->queue; 1327 struct bio_list bio_list_on_stack; 1328 struct bio *bio; 1329 struct blk_plug plug; 1330 int rw; 1331 1332 bio_list_init(&bio_list_on_stack); 1333 1334 spin_lock_irq(q->queue_lock); 1335 for (rw = READ; rw <= WRITE; rw++) 1336 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1337 bio_list_add(&bio_list_on_stack, bio); 1338 spin_unlock_irq(q->queue_lock); 1339 1340 if (!bio_list_empty(&bio_list_on_stack)) { 1341 blk_start_plug(&plug); 1342 while((bio = bio_list_pop(&bio_list_on_stack))) 1343 generic_make_request(bio); 1344 blk_finish_plug(&plug); 1345 } 1346 } 1347 1348 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1349 int off) 1350 { 1351 struct throtl_grp *tg = pd_to_tg(pd); 1352 u64 v = *(u64 *)((void *)tg + off); 1353 1354 if (v == U64_MAX) 1355 return 0; 1356 return __blkg_prfill_u64(sf, pd, v); 1357 } 1358 1359 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1360 int off) 1361 { 1362 struct throtl_grp *tg = pd_to_tg(pd); 1363 unsigned int v = *(unsigned int *)((void *)tg + off); 1364 1365 if (v == UINT_MAX) 1366 return 0; 1367 return __blkg_prfill_u64(sf, pd, v); 1368 } 1369 1370 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1371 { 1372 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1373 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1374 return 0; 1375 } 1376 1377 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1378 { 1379 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1380 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1381 return 0; 1382 } 1383 1384 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1385 { 1386 struct throtl_service_queue *sq = &tg->service_queue; 1387 struct cgroup_subsys_state *pos_css; 1388 struct blkcg_gq *blkg; 1389 1390 throtl_log(&tg->service_queue, 1391 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1392 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1393 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1394 1395 /* 1396 * Update has_rules[] flags for the updated tg's subtree. A tg is 1397 * considered to have rules if either the tg itself or any of its 1398 * ancestors has rules. This identifies groups without any 1399 * restrictions in the whole hierarchy and allows them to bypass 1400 * blk-throttle. 1401 */ 1402 blkg_for_each_descendant_pre(blkg, pos_css, 1403 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1404 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1405 struct throtl_grp *parent_tg; 1406 1407 tg_update_has_rules(this_tg); 1408 /* ignore root/second level */ 1409 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1410 !blkg->parent->parent) 1411 continue; 1412 parent_tg = blkg_to_tg(blkg->parent); 1413 /* 1414 * make sure all children has lower idle time threshold and 1415 * higher latency target 1416 */ 1417 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1418 parent_tg->idletime_threshold); 1419 this_tg->latency_target = max(this_tg->latency_target, 1420 parent_tg->latency_target); 1421 } 1422 1423 /* 1424 * We're already holding queue_lock and know @tg is valid. Let's 1425 * apply the new config directly. 1426 * 1427 * Restart the slices for both READ and WRITES. It might happen 1428 * that a group's limit are dropped suddenly and we don't want to 1429 * account recently dispatched IO with new low rate. 1430 */ 1431 throtl_start_new_slice(tg, 0); 1432 throtl_start_new_slice(tg, 1); 1433 1434 if (tg->flags & THROTL_TG_PENDING) { 1435 tg_update_disptime(tg); 1436 throtl_schedule_next_dispatch(sq->parent_sq, true); 1437 } 1438 } 1439 1440 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1441 char *buf, size_t nbytes, loff_t off, bool is_u64) 1442 { 1443 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1444 struct blkg_conf_ctx ctx; 1445 struct throtl_grp *tg; 1446 int ret; 1447 u64 v; 1448 1449 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1450 if (ret) 1451 return ret; 1452 1453 ret = -EINVAL; 1454 if (sscanf(ctx.body, "%llu", &v) != 1) 1455 goto out_finish; 1456 if (!v) 1457 v = U64_MAX; 1458 1459 tg = blkg_to_tg(ctx.blkg); 1460 1461 if (is_u64) 1462 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1463 else 1464 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1465 1466 tg_conf_updated(tg, false); 1467 ret = 0; 1468 out_finish: 1469 blkg_conf_finish(&ctx); 1470 return ret ?: nbytes; 1471 } 1472 1473 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1474 char *buf, size_t nbytes, loff_t off) 1475 { 1476 return tg_set_conf(of, buf, nbytes, off, true); 1477 } 1478 1479 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1480 char *buf, size_t nbytes, loff_t off) 1481 { 1482 return tg_set_conf(of, buf, nbytes, off, false); 1483 } 1484 1485 static struct cftype throtl_legacy_files[] = { 1486 { 1487 .name = "throttle.read_bps_device", 1488 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1489 .seq_show = tg_print_conf_u64, 1490 .write = tg_set_conf_u64, 1491 }, 1492 { 1493 .name = "throttle.write_bps_device", 1494 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1495 .seq_show = tg_print_conf_u64, 1496 .write = tg_set_conf_u64, 1497 }, 1498 { 1499 .name = "throttle.read_iops_device", 1500 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1501 .seq_show = tg_print_conf_uint, 1502 .write = tg_set_conf_uint, 1503 }, 1504 { 1505 .name = "throttle.write_iops_device", 1506 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1507 .seq_show = tg_print_conf_uint, 1508 .write = tg_set_conf_uint, 1509 }, 1510 { 1511 .name = "throttle.io_service_bytes", 1512 .private = (unsigned long)&blkcg_policy_throtl, 1513 .seq_show = blkg_print_stat_bytes, 1514 }, 1515 { 1516 .name = "throttle.io_serviced", 1517 .private = (unsigned long)&blkcg_policy_throtl, 1518 .seq_show = blkg_print_stat_ios, 1519 }, 1520 { } /* terminate */ 1521 }; 1522 1523 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1524 int off) 1525 { 1526 struct throtl_grp *tg = pd_to_tg(pd); 1527 const char *dname = blkg_dev_name(pd->blkg); 1528 char bufs[4][21] = { "max", "max", "max", "max" }; 1529 u64 bps_dft; 1530 unsigned int iops_dft; 1531 char idle_time[26] = ""; 1532 char latency_time[26] = ""; 1533 1534 if (!dname) 1535 return 0; 1536 1537 if (off == LIMIT_LOW) { 1538 bps_dft = 0; 1539 iops_dft = 0; 1540 } else { 1541 bps_dft = U64_MAX; 1542 iops_dft = UINT_MAX; 1543 } 1544 1545 if (tg->bps_conf[READ][off] == bps_dft && 1546 tg->bps_conf[WRITE][off] == bps_dft && 1547 tg->iops_conf[READ][off] == iops_dft && 1548 tg->iops_conf[WRITE][off] == iops_dft && 1549 (off != LIMIT_LOW || 1550 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1551 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1552 return 0; 1553 1554 if (tg->bps_conf[READ][off] != U64_MAX) 1555 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1556 tg->bps_conf[READ][off]); 1557 if (tg->bps_conf[WRITE][off] != U64_MAX) 1558 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1559 tg->bps_conf[WRITE][off]); 1560 if (tg->iops_conf[READ][off] != UINT_MAX) 1561 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1562 tg->iops_conf[READ][off]); 1563 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1564 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1565 tg->iops_conf[WRITE][off]); 1566 if (off == LIMIT_LOW) { 1567 if (tg->idletime_threshold_conf == ULONG_MAX) 1568 strcpy(idle_time, " idle=max"); 1569 else 1570 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1571 tg->idletime_threshold_conf); 1572 1573 if (tg->latency_target_conf == ULONG_MAX) 1574 strcpy(latency_time, " latency=max"); 1575 else 1576 snprintf(latency_time, sizeof(latency_time), 1577 " latency=%lu", tg->latency_target_conf); 1578 } 1579 1580 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1581 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1582 latency_time); 1583 return 0; 1584 } 1585 1586 static int tg_print_limit(struct seq_file *sf, void *v) 1587 { 1588 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1589 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1590 return 0; 1591 } 1592 1593 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1594 char *buf, size_t nbytes, loff_t off) 1595 { 1596 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1597 struct blkg_conf_ctx ctx; 1598 struct throtl_grp *tg; 1599 u64 v[4]; 1600 unsigned long idle_time; 1601 unsigned long latency_time; 1602 int ret; 1603 int index = of_cft(of)->private; 1604 1605 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1606 if (ret) 1607 return ret; 1608 1609 tg = blkg_to_tg(ctx.blkg); 1610 1611 v[0] = tg->bps_conf[READ][index]; 1612 v[1] = tg->bps_conf[WRITE][index]; 1613 v[2] = tg->iops_conf[READ][index]; 1614 v[3] = tg->iops_conf[WRITE][index]; 1615 1616 idle_time = tg->idletime_threshold_conf; 1617 latency_time = tg->latency_target_conf; 1618 while (true) { 1619 char tok[27]; /* wiops=18446744073709551616 */ 1620 char *p; 1621 u64 val = U64_MAX; 1622 int len; 1623 1624 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1625 break; 1626 if (tok[0] == '\0') 1627 break; 1628 ctx.body += len; 1629 1630 ret = -EINVAL; 1631 p = tok; 1632 strsep(&p, "="); 1633 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1634 goto out_finish; 1635 1636 ret = -ERANGE; 1637 if (!val) 1638 goto out_finish; 1639 1640 ret = -EINVAL; 1641 if (!strcmp(tok, "rbps")) 1642 v[0] = val; 1643 else if (!strcmp(tok, "wbps")) 1644 v[1] = val; 1645 else if (!strcmp(tok, "riops")) 1646 v[2] = min_t(u64, val, UINT_MAX); 1647 else if (!strcmp(tok, "wiops")) 1648 v[3] = min_t(u64, val, UINT_MAX); 1649 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1650 idle_time = val; 1651 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1652 latency_time = val; 1653 else 1654 goto out_finish; 1655 } 1656 1657 tg->bps_conf[READ][index] = v[0]; 1658 tg->bps_conf[WRITE][index] = v[1]; 1659 tg->iops_conf[READ][index] = v[2]; 1660 tg->iops_conf[WRITE][index] = v[3]; 1661 1662 if (index == LIMIT_MAX) { 1663 tg->bps[READ][index] = v[0]; 1664 tg->bps[WRITE][index] = v[1]; 1665 tg->iops[READ][index] = v[2]; 1666 tg->iops[WRITE][index] = v[3]; 1667 } 1668 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1669 tg->bps_conf[READ][LIMIT_MAX]); 1670 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1671 tg->bps_conf[WRITE][LIMIT_MAX]); 1672 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1673 tg->iops_conf[READ][LIMIT_MAX]); 1674 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1675 tg->iops_conf[WRITE][LIMIT_MAX]); 1676 tg->idletime_threshold_conf = idle_time; 1677 tg->latency_target_conf = latency_time; 1678 1679 /* force user to configure all settings for low limit */ 1680 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1681 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1682 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1683 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1684 tg->bps[READ][LIMIT_LOW] = 0; 1685 tg->bps[WRITE][LIMIT_LOW] = 0; 1686 tg->iops[READ][LIMIT_LOW] = 0; 1687 tg->iops[WRITE][LIMIT_LOW] = 0; 1688 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1689 tg->latency_target = DFL_LATENCY_TARGET; 1690 } else if (index == LIMIT_LOW) { 1691 tg->idletime_threshold = tg->idletime_threshold_conf; 1692 tg->latency_target = tg->latency_target_conf; 1693 } 1694 1695 blk_throtl_update_limit_valid(tg->td); 1696 if (tg->td->limit_valid[LIMIT_LOW]) { 1697 if (index == LIMIT_LOW) 1698 tg->td->limit_index = LIMIT_LOW; 1699 } else 1700 tg->td->limit_index = LIMIT_MAX; 1701 tg_conf_updated(tg, index == LIMIT_LOW && 1702 tg->td->limit_valid[LIMIT_LOW]); 1703 ret = 0; 1704 out_finish: 1705 blkg_conf_finish(&ctx); 1706 return ret ?: nbytes; 1707 } 1708 1709 static struct cftype throtl_files[] = { 1710 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1711 { 1712 .name = "low", 1713 .flags = CFTYPE_NOT_ON_ROOT, 1714 .seq_show = tg_print_limit, 1715 .write = tg_set_limit, 1716 .private = LIMIT_LOW, 1717 }, 1718 #endif 1719 { 1720 .name = "max", 1721 .flags = CFTYPE_NOT_ON_ROOT, 1722 .seq_show = tg_print_limit, 1723 .write = tg_set_limit, 1724 .private = LIMIT_MAX, 1725 }, 1726 { } /* terminate */ 1727 }; 1728 1729 static void throtl_shutdown_wq(struct request_queue *q) 1730 { 1731 struct throtl_data *td = q->td; 1732 1733 cancel_work_sync(&td->dispatch_work); 1734 } 1735 1736 static struct blkcg_policy blkcg_policy_throtl = { 1737 .dfl_cftypes = throtl_files, 1738 .legacy_cftypes = throtl_legacy_files, 1739 1740 .pd_alloc_fn = throtl_pd_alloc, 1741 .pd_init_fn = throtl_pd_init, 1742 .pd_online_fn = throtl_pd_online, 1743 .pd_offline_fn = throtl_pd_offline, 1744 .pd_free_fn = throtl_pd_free, 1745 }; 1746 1747 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1748 { 1749 unsigned long rtime = jiffies, wtime = jiffies; 1750 1751 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1752 rtime = tg->last_low_overflow_time[READ]; 1753 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1754 wtime = tg->last_low_overflow_time[WRITE]; 1755 return min(rtime, wtime); 1756 } 1757 1758 /* tg should not be an intermediate node */ 1759 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1760 { 1761 struct throtl_service_queue *parent_sq; 1762 struct throtl_grp *parent = tg; 1763 unsigned long ret = __tg_last_low_overflow_time(tg); 1764 1765 while (true) { 1766 parent_sq = parent->service_queue.parent_sq; 1767 parent = sq_to_tg(parent_sq); 1768 if (!parent) 1769 break; 1770 1771 /* 1772 * The parent doesn't have low limit, it always reaches low 1773 * limit. Its overflow time is useless for children 1774 */ 1775 if (!parent->bps[READ][LIMIT_LOW] && 1776 !parent->iops[READ][LIMIT_LOW] && 1777 !parent->bps[WRITE][LIMIT_LOW] && 1778 !parent->iops[WRITE][LIMIT_LOW]) 1779 continue; 1780 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1781 ret = __tg_last_low_overflow_time(parent); 1782 } 1783 return ret; 1784 } 1785 1786 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1787 { 1788 /* 1789 * cgroup is idle if: 1790 * - single idle is too long, longer than a fixed value (in case user 1791 * configure a too big threshold) or 4 times of idletime threshold 1792 * - average think time is more than threshold 1793 * - IO latency is largely below threshold 1794 */ 1795 unsigned long time; 1796 bool ret; 1797 1798 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1799 ret = tg->latency_target == DFL_LATENCY_TARGET || 1800 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1801 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1802 tg->avg_idletime > tg->idletime_threshold || 1803 (tg->latency_target && tg->bio_cnt && 1804 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1805 throtl_log(&tg->service_queue, 1806 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1807 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1808 tg->bio_cnt, ret, tg->td->scale); 1809 return ret; 1810 } 1811 1812 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1813 { 1814 struct throtl_service_queue *sq = &tg->service_queue; 1815 bool read_limit, write_limit; 1816 1817 /* 1818 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1819 * reaches), it's ok to upgrade to next limit 1820 */ 1821 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1822 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1823 if (!read_limit && !write_limit) 1824 return true; 1825 if (read_limit && sq->nr_queued[READ] && 1826 (!write_limit || sq->nr_queued[WRITE])) 1827 return true; 1828 if (write_limit && sq->nr_queued[WRITE] && 1829 (!read_limit || sq->nr_queued[READ])) 1830 return true; 1831 1832 if (time_after_eq(jiffies, 1833 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1834 throtl_tg_is_idle(tg)) 1835 return true; 1836 return false; 1837 } 1838 1839 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1840 { 1841 while (true) { 1842 if (throtl_tg_can_upgrade(tg)) 1843 return true; 1844 tg = sq_to_tg(tg->service_queue.parent_sq); 1845 if (!tg || !tg_to_blkg(tg)->parent) 1846 return false; 1847 } 1848 return false; 1849 } 1850 1851 static bool throtl_can_upgrade(struct throtl_data *td, 1852 struct throtl_grp *this_tg) 1853 { 1854 struct cgroup_subsys_state *pos_css; 1855 struct blkcg_gq *blkg; 1856 1857 if (td->limit_index != LIMIT_LOW) 1858 return false; 1859 1860 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1861 return false; 1862 1863 rcu_read_lock(); 1864 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1865 struct throtl_grp *tg = blkg_to_tg(blkg); 1866 1867 if (tg == this_tg) 1868 continue; 1869 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1870 continue; 1871 if (!throtl_hierarchy_can_upgrade(tg)) { 1872 rcu_read_unlock(); 1873 return false; 1874 } 1875 } 1876 rcu_read_unlock(); 1877 return true; 1878 } 1879 1880 static void throtl_upgrade_check(struct throtl_grp *tg) 1881 { 1882 unsigned long now = jiffies; 1883 1884 if (tg->td->limit_index != LIMIT_LOW) 1885 return; 1886 1887 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1888 return; 1889 1890 tg->last_check_time = now; 1891 1892 if (!time_after_eq(now, 1893 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1894 return; 1895 1896 if (throtl_can_upgrade(tg->td, NULL)) 1897 throtl_upgrade_state(tg->td); 1898 } 1899 1900 static void throtl_upgrade_state(struct throtl_data *td) 1901 { 1902 struct cgroup_subsys_state *pos_css; 1903 struct blkcg_gq *blkg; 1904 1905 throtl_log(&td->service_queue, "upgrade to max"); 1906 td->limit_index = LIMIT_MAX; 1907 td->low_upgrade_time = jiffies; 1908 td->scale = 0; 1909 rcu_read_lock(); 1910 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1911 struct throtl_grp *tg = blkg_to_tg(blkg); 1912 struct throtl_service_queue *sq = &tg->service_queue; 1913 1914 tg->disptime = jiffies - 1; 1915 throtl_select_dispatch(sq); 1916 throtl_schedule_next_dispatch(sq, false); 1917 } 1918 rcu_read_unlock(); 1919 throtl_select_dispatch(&td->service_queue); 1920 throtl_schedule_next_dispatch(&td->service_queue, false); 1921 queue_work(kthrotld_workqueue, &td->dispatch_work); 1922 } 1923 1924 static void throtl_downgrade_state(struct throtl_data *td, int new) 1925 { 1926 td->scale /= 2; 1927 1928 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1929 if (td->scale) { 1930 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1931 return; 1932 } 1933 1934 td->limit_index = new; 1935 td->low_downgrade_time = jiffies; 1936 } 1937 1938 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1939 { 1940 struct throtl_data *td = tg->td; 1941 unsigned long now = jiffies; 1942 1943 /* 1944 * If cgroup is below low limit, consider downgrade and throttle other 1945 * cgroups 1946 */ 1947 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1948 time_after_eq(now, tg_last_low_overflow_time(tg) + 1949 td->throtl_slice) && 1950 (!throtl_tg_is_idle(tg) || 1951 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1952 return true; 1953 return false; 1954 } 1955 1956 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1957 { 1958 while (true) { 1959 if (!throtl_tg_can_downgrade(tg)) 1960 return false; 1961 tg = sq_to_tg(tg->service_queue.parent_sq); 1962 if (!tg || !tg_to_blkg(tg)->parent) 1963 break; 1964 } 1965 return true; 1966 } 1967 1968 static void throtl_downgrade_check(struct throtl_grp *tg) 1969 { 1970 uint64_t bps; 1971 unsigned int iops; 1972 unsigned long elapsed_time; 1973 unsigned long now = jiffies; 1974 1975 if (tg->td->limit_index != LIMIT_MAX || 1976 !tg->td->limit_valid[LIMIT_LOW]) 1977 return; 1978 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1979 return; 1980 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1981 return; 1982 1983 elapsed_time = now - tg->last_check_time; 1984 tg->last_check_time = now; 1985 1986 if (time_before(now, tg_last_low_overflow_time(tg) + 1987 tg->td->throtl_slice)) 1988 return; 1989 1990 if (tg->bps[READ][LIMIT_LOW]) { 1991 bps = tg->last_bytes_disp[READ] * HZ; 1992 do_div(bps, elapsed_time); 1993 if (bps >= tg->bps[READ][LIMIT_LOW]) 1994 tg->last_low_overflow_time[READ] = now; 1995 } 1996 1997 if (tg->bps[WRITE][LIMIT_LOW]) { 1998 bps = tg->last_bytes_disp[WRITE] * HZ; 1999 do_div(bps, elapsed_time); 2000 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 2001 tg->last_low_overflow_time[WRITE] = now; 2002 } 2003 2004 if (tg->iops[READ][LIMIT_LOW]) { 2005 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 2006 if (iops >= tg->iops[READ][LIMIT_LOW]) 2007 tg->last_low_overflow_time[READ] = now; 2008 } 2009 2010 if (tg->iops[WRITE][LIMIT_LOW]) { 2011 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 2012 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 2013 tg->last_low_overflow_time[WRITE] = now; 2014 } 2015 2016 /* 2017 * If cgroup is below low limit, consider downgrade and throttle other 2018 * cgroups 2019 */ 2020 if (throtl_hierarchy_can_downgrade(tg)) 2021 throtl_downgrade_state(tg->td, LIMIT_LOW); 2022 2023 tg->last_bytes_disp[READ] = 0; 2024 tg->last_bytes_disp[WRITE] = 0; 2025 tg->last_io_disp[READ] = 0; 2026 tg->last_io_disp[WRITE] = 0; 2027 } 2028 2029 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2030 { 2031 unsigned long now = ktime_get_ns() >> 10; 2032 unsigned long last_finish_time = tg->last_finish_time; 2033 2034 if (now <= last_finish_time || last_finish_time == 0 || 2035 last_finish_time == tg->checked_last_finish_time) 2036 return; 2037 2038 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2039 tg->checked_last_finish_time = last_finish_time; 2040 } 2041 2042 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2043 static void throtl_update_latency_buckets(struct throtl_data *td) 2044 { 2045 struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE]; 2046 int i, cpu; 2047 unsigned long last_latency = 0; 2048 unsigned long latency; 2049 2050 if (!blk_queue_nonrot(td->queue)) 2051 return; 2052 if (time_before(jiffies, td->last_calculate_time + HZ)) 2053 return; 2054 td->last_calculate_time = jiffies; 2055 2056 memset(avg_latency, 0, sizeof(avg_latency)); 2057 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2058 struct latency_bucket *tmp = &td->tmp_buckets[i]; 2059 2060 for_each_possible_cpu(cpu) { 2061 struct latency_bucket *bucket; 2062 2063 /* this isn't race free, but ok in practice */ 2064 bucket = per_cpu_ptr(td->latency_buckets, cpu); 2065 tmp->total_latency += bucket[i].total_latency; 2066 tmp->samples += bucket[i].samples; 2067 bucket[i].total_latency = 0; 2068 bucket[i].samples = 0; 2069 } 2070 2071 if (tmp->samples >= 32) { 2072 int samples = tmp->samples; 2073 2074 latency = tmp->total_latency; 2075 2076 tmp->total_latency = 0; 2077 tmp->samples = 0; 2078 latency /= samples; 2079 if (latency == 0) 2080 continue; 2081 avg_latency[i].latency = latency; 2082 } 2083 } 2084 2085 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2086 if (!avg_latency[i].latency) { 2087 if (td->avg_buckets[i].latency < last_latency) 2088 td->avg_buckets[i].latency = last_latency; 2089 continue; 2090 } 2091 2092 if (!td->avg_buckets[i].valid) 2093 latency = avg_latency[i].latency; 2094 else 2095 latency = (td->avg_buckets[i].latency * 7 + 2096 avg_latency[i].latency) >> 3; 2097 2098 td->avg_buckets[i].latency = max(latency, last_latency); 2099 td->avg_buckets[i].valid = true; 2100 last_latency = td->avg_buckets[i].latency; 2101 } 2102 2103 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2104 throtl_log(&td->service_queue, 2105 "Latency bucket %d: latency=%ld, valid=%d", i, 2106 td->avg_buckets[i].latency, td->avg_buckets[i].valid); 2107 } 2108 #else 2109 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2110 { 2111 } 2112 #endif 2113 2114 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio) 2115 { 2116 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2117 int ret; 2118 2119 ret = bio_associate_current(bio); 2120 if (ret == 0 || ret == -EBUSY) 2121 bio->bi_cg_private = tg; 2122 blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio)); 2123 #else 2124 bio_associate_current(bio); 2125 #endif 2126 } 2127 2128 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg, 2129 struct bio *bio) 2130 { 2131 struct throtl_qnode *qn = NULL; 2132 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg); 2133 struct throtl_service_queue *sq; 2134 bool rw = bio_data_dir(bio); 2135 bool throttled = false; 2136 struct throtl_data *td = tg->td; 2137 2138 WARN_ON_ONCE(!rcu_read_lock_held()); 2139 2140 /* see throtl_charge_bio() */ 2141 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw]) 2142 goto out; 2143 2144 spin_lock_irq(q->queue_lock); 2145 2146 throtl_update_latency_buckets(td); 2147 2148 if (unlikely(blk_queue_bypass(q))) 2149 goto out_unlock; 2150 2151 blk_throtl_assoc_bio(tg, bio); 2152 blk_throtl_update_idletime(tg); 2153 2154 sq = &tg->service_queue; 2155 2156 again: 2157 while (true) { 2158 if (tg->last_low_overflow_time[rw] == 0) 2159 tg->last_low_overflow_time[rw] = jiffies; 2160 throtl_downgrade_check(tg); 2161 throtl_upgrade_check(tg); 2162 /* throtl is FIFO - if bios are already queued, should queue */ 2163 if (sq->nr_queued[rw]) 2164 break; 2165 2166 /* if above limits, break to queue */ 2167 if (!tg_may_dispatch(tg, bio, NULL)) { 2168 tg->last_low_overflow_time[rw] = jiffies; 2169 if (throtl_can_upgrade(td, tg)) { 2170 throtl_upgrade_state(td); 2171 goto again; 2172 } 2173 break; 2174 } 2175 2176 /* within limits, let's charge and dispatch directly */ 2177 throtl_charge_bio(tg, bio); 2178 2179 /* 2180 * We need to trim slice even when bios are not being queued 2181 * otherwise it might happen that a bio is not queued for 2182 * a long time and slice keeps on extending and trim is not 2183 * called for a long time. Now if limits are reduced suddenly 2184 * we take into account all the IO dispatched so far at new 2185 * low rate and * newly queued IO gets a really long dispatch 2186 * time. 2187 * 2188 * So keep on trimming slice even if bio is not queued. 2189 */ 2190 throtl_trim_slice(tg, rw); 2191 2192 /* 2193 * @bio passed through this layer without being throttled. 2194 * Climb up the ladder. If we''re already at the top, it 2195 * can be executed directly. 2196 */ 2197 qn = &tg->qnode_on_parent[rw]; 2198 sq = sq->parent_sq; 2199 tg = sq_to_tg(sq); 2200 if (!tg) 2201 goto out_unlock; 2202 } 2203 2204 /* out-of-limit, queue to @tg */ 2205 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2206 rw == READ ? 'R' : 'W', 2207 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2208 tg_bps_limit(tg, rw), 2209 tg->io_disp[rw], tg_iops_limit(tg, rw), 2210 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2211 2212 tg->last_low_overflow_time[rw] = jiffies; 2213 2214 td->nr_queued[rw]++; 2215 throtl_add_bio_tg(bio, qn, tg); 2216 throttled = true; 2217 2218 /* 2219 * Update @tg's dispatch time and force schedule dispatch if @tg 2220 * was empty before @bio. The forced scheduling isn't likely to 2221 * cause undue delay as @bio is likely to be dispatched directly if 2222 * its @tg's disptime is not in the future. 2223 */ 2224 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2225 tg_update_disptime(tg); 2226 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2227 } 2228 2229 out_unlock: 2230 spin_unlock_irq(q->queue_lock); 2231 out: 2232 /* 2233 * As multiple blk-throtls may stack in the same issue path, we 2234 * don't want bios to leave with the flag set. Clear the flag if 2235 * being issued. 2236 */ 2237 if (!throttled) 2238 bio_clear_flag(bio, BIO_THROTTLED); 2239 2240 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2241 if (throttled || !td->track_bio_latency) 2242 bio->bi_issue_stat.stat |= SKIP_LATENCY; 2243 #endif 2244 return throttled; 2245 } 2246 2247 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2248 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2249 int op, unsigned long time) 2250 { 2251 struct latency_bucket *latency; 2252 int index; 2253 2254 if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ || 2255 !blk_queue_nonrot(td->queue)) 2256 return; 2257 2258 index = request_bucket_index(size); 2259 2260 latency = get_cpu_ptr(td->latency_buckets); 2261 latency[index].total_latency += time; 2262 latency[index].samples++; 2263 put_cpu_ptr(td->latency_buckets); 2264 } 2265 2266 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2267 { 2268 struct request_queue *q = rq->q; 2269 struct throtl_data *td = q->td; 2270 2271 throtl_track_latency(td, blk_stat_size(&rq->issue_stat), 2272 req_op(rq), time_ns >> 10); 2273 } 2274 2275 void blk_throtl_bio_endio(struct bio *bio) 2276 { 2277 struct throtl_grp *tg; 2278 u64 finish_time_ns; 2279 unsigned long finish_time; 2280 unsigned long start_time; 2281 unsigned long lat; 2282 2283 tg = bio->bi_cg_private; 2284 if (!tg) 2285 return; 2286 bio->bi_cg_private = NULL; 2287 2288 finish_time_ns = ktime_get_ns(); 2289 tg->last_finish_time = finish_time_ns >> 10; 2290 2291 start_time = blk_stat_time(&bio->bi_issue_stat) >> 10; 2292 finish_time = __blk_stat_time(finish_time_ns) >> 10; 2293 if (!start_time || finish_time <= start_time) 2294 return; 2295 2296 lat = finish_time - start_time; 2297 /* this is only for bio based driver */ 2298 if (!(bio->bi_issue_stat.stat & SKIP_LATENCY)) 2299 throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat), 2300 bio_op(bio), lat); 2301 2302 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2303 int bucket; 2304 unsigned int threshold; 2305 2306 bucket = request_bucket_index( 2307 blk_stat_size(&bio->bi_issue_stat)); 2308 threshold = tg->td->avg_buckets[bucket].latency + 2309 tg->latency_target; 2310 if (lat > threshold) 2311 tg->bad_bio_cnt++; 2312 /* 2313 * Not race free, could get wrong count, which means cgroups 2314 * will be throttled 2315 */ 2316 tg->bio_cnt++; 2317 } 2318 2319 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2320 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2321 tg->bio_cnt /= 2; 2322 tg->bad_bio_cnt /= 2; 2323 } 2324 } 2325 #endif 2326 2327 /* 2328 * Dispatch all bios from all children tg's queued on @parent_sq. On 2329 * return, @parent_sq is guaranteed to not have any active children tg's 2330 * and all bios from previously active tg's are on @parent_sq->bio_lists[]. 2331 */ 2332 static void tg_drain_bios(struct throtl_service_queue *parent_sq) 2333 { 2334 struct throtl_grp *tg; 2335 2336 while ((tg = throtl_rb_first(parent_sq))) { 2337 struct throtl_service_queue *sq = &tg->service_queue; 2338 struct bio *bio; 2339 2340 throtl_dequeue_tg(tg); 2341 2342 while ((bio = throtl_peek_queued(&sq->queued[READ]))) 2343 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2344 while ((bio = throtl_peek_queued(&sq->queued[WRITE]))) 2345 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 2346 } 2347 } 2348 2349 /** 2350 * blk_throtl_drain - drain throttled bios 2351 * @q: request_queue to drain throttled bios for 2352 * 2353 * Dispatch all currently throttled bios on @q through ->make_request_fn(). 2354 */ 2355 void blk_throtl_drain(struct request_queue *q) 2356 __releases(q->queue_lock) __acquires(q->queue_lock) 2357 { 2358 struct throtl_data *td = q->td; 2359 struct blkcg_gq *blkg; 2360 struct cgroup_subsys_state *pos_css; 2361 struct bio *bio; 2362 int rw; 2363 2364 queue_lockdep_assert_held(q); 2365 rcu_read_lock(); 2366 2367 /* 2368 * Drain each tg while doing post-order walk on the blkg tree, so 2369 * that all bios are propagated to td->service_queue. It'd be 2370 * better to walk service_queue tree directly but blkg walk is 2371 * easier. 2372 */ 2373 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) 2374 tg_drain_bios(&blkg_to_tg(blkg)->service_queue); 2375 2376 /* finally, transfer bios from top-level tg's into the td */ 2377 tg_drain_bios(&td->service_queue); 2378 2379 rcu_read_unlock(); 2380 spin_unlock_irq(q->queue_lock); 2381 2382 /* all bios now should be in td->service_queue, issue them */ 2383 for (rw = READ; rw <= WRITE; rw++) 2384 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw], 2385 NULL))) 2386 generic_make_request(bio); 2387 2388 spin_lock_irq(q->queue_lock); 2389 } 2390 2391 int blk_throtl_init(struct request_queue *q) 2392 { 2393 struct throtl_data *td; 2394 int ret; 2395 2396 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2397 if (!td) 2398 return -ENOMEM; 2399 td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) * 2400 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2401 if (!td->latency_buckets) { 2402 kfree(td); 2403 return -ENOMEM; 2404 } 2405 2406 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2407 throtl_service_queue_init(&td->service_queue); 2408 2409 q->td = td; 2410 td->queue = q; 2411 2412 td->limit_valid[LIMIT_MAX] = true; 2413 td->limit_index = LIMIT_MAX; 2414 td->low_upgrade_time = jiffies; 2415 td->low_downgrade_time = jiffies; 2416 2417 /* activate policy */ 2418 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2419 if (ret) { 2420 free_percpu(td->latency_buckets); 2421 kfree(td); 2422 } 2423 return ret; 2424 } 2425 2426 void blk_throtl_exit(struct request_queue *q) 2427 { 2428 BUG_ON(!q->td); 2429 throtl_shutdown_wq(q); 2430 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2431 free_percpu(q->td->latency_buckets); 2432 kfree(q->td); 2433 } 2434 2435 void blk_throtl_register_queue(struct request_queue *q) 2436 { 2437 struct throtl_data *td; 2438 int i; 2439 2440 td = q->td; 2441 BUG_ON(!td); 2442 2443 if (blk_queue_nonrot(q)) { 2444 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2445 td->filtered_latency = LATENCY_FILTERED_SSD; 2446 } else { 2447 td->throtl_slice = DFL_THROTL_SLICE_HD; 2448 td->filtered_latency = LATENCY_FILTERED_HD; 2449 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2450 td->avg_buckets[i].latency = DFL_HD_BASELINE_LATENCY; 2451 } 2452 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2453 /* if no low limit, use previous default */ 2454 td->throtl_slice = DFL_THROTL_SLICE_HD; 2455 #endif 2456 2457 td->track_bio_latency = !q->mq_ops && !q->request_fn; 2458 if (!td->track_bio_latency) 2459 blk_stat_enable_accounting(q); 2460 } 2461 2462 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2463 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2464 { 2465 if (!q->td) 2466 return -EINVAL; 2467 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2468 } 2469 2470 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2471 const char *page, size_t count) 2472 { 2473 unsigned long v; 2474 unsigned long t; 2475 2476 if (!q->td) 2477 return -EINVAL; 2478 if (kstrtoul(page, 10, &v)) 2479 return -EINVAL; 2480 t = msecs_to_jiffies(v); 2481 if (t == 0 || t > MAX_THROTL_SLICE) 2482 return -EINVAL; 2483 q->td->throtl_slice = t; 2484 return count; 2485 } 2486 #endif 2487 2488 static int __init throtl_init(void) 2489 { 2490 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2491 if (!kthrotld_workqueue) 2492 panic("Failed to create kthrotld\n"); 2493 2494 return blkcg_policy_register(&blkcg_policy_throtl); 2495 } 2496 2497 module_init(throtl_init); 2498