xref: /linux/block/blk-throttle.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14 
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17 
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20 
21 /* Throttling is performed over a slice and after that slice is renewed */
22 #define DFL_THROTL_SLICE_HD (HZ / 10)
23 #define DFL_THROTL_SLICE_SSD (HZ / 50)
24 #define MAX_THROTL_SLICE (HZ)
25 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
26 #define MIN_THROTL_BPS (320 * 1024)
27 #define MIN_THROTL_IOPS (10)
28 #define DFL_LATENCY_TARGET (-1L)
29 #define DFL_IDLE_THRESHOLD (0)
30 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
31 #define LATENCY_FILTERED_SSD (0)
32 /*
33  * For HD, very small latency comes from sequential IO. Such IO is helpless to
34  * help determine if its IO is impacted by others, hence we ignore the IO
35  */
36 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
37 
38 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
39 
40 static struct blkcg_policy blkcg_policy_throtl;
41 
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
44 
45 /*
46  * To implement hierarchical throttling, throtl_grps form a tree and bios
47  * are dispatched upwards level by level until they reach the top and get
48  * issued.  When dispatching bios from the children and local group at each
49  * level, if the bios are dispatched into a single bio_list, there's a risk
50  * of a local or child group which can queue many bios at once filling up
51  * the list starving others.
52  *
53  * To avoid such starvation, dispatched bios are queued separately
54  * according to where they came from.  When they are again dispatched to
55  * the parent, they're popped in round-robin order so that no single source
56  * hogs the dispatch window.
57  *
58  * throtl_qnode is used to keep the queued bios separated by their sources.
59  * Bios are queued to throtl_qnode which in turn is queued to
60  * throtl_service_queue and then dispatched in round-robin order.
61  *
62  * It's also used to track the reference counts on blkg's.  A qnode always
63  * belongs to a throtl_grp and gets queued on itself or the parent, so
64  * incrementing the reference of the associated throtl_grp when a qnode is
65  * queued and decrementing when dequeued is enough to keep the whole blkg
66  * tree pinned while bios are in flight.
67  */
68 struct throtl_qnode {
69 	struct list_head	node;		/* service_queue->queued[] */
70 	struct bio_list		bios;		/* queued bios */
71 	struct throtl_grp	*tg;		/* tg this qnode belongs to */
72 };
73 
74 struct throtl_service_queue {
75 	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
76 
77 	/*
78 	 * Bios queued directly to this service_queue or dispatched from
79 	 * children throtl_grp's.
80 	 */
81 	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
82 	unsigned int		nr_queued[2];	/* number of queued bios */
83 
84 	/*
85 	 * RB tree of active children throtl_grp's, which are sorted by
86 	 * their ->disptime.
87 	 */
88 	struct rb_root		pending_tree;	/* RB tree of active tgs */
89 	struct rb_node		*first_pending;	/* first node in the tree */
90 	unsigned int		nr_pending;	/* # queued in the tree */
91 	unsigned long		first_pending_disptime;	/* disptime of the first tg */
92 	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
93 };
94 
95 enum tg_state_flags {
96 	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
97 	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
98 };
99 
100 #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
101 
102 enum {
103 	LIMIT_LOW,
104 	LIMIT_MAX,
105 	LIMIT_CNT,
106 };
107 
108 struct throtl_grp {
109 	/* must be the first member */
110 	struct blkg_policy_data pd;
111 
112 	/* active throtl group service_queue member */
113 	struct rb_node rb_node;
114 
115 	/* throtl_data this group belongs to */
116 	struct throtl_data *td;
117 
118 	/* this group's service queue */
119 	struct throtl_service_queue service_queue;
120 
121 	/*
122 	 * qnode_on_self is used when bios are directly queued to this
123 	 * throtl_grp so that local bios compete fairly with bios
124 	 * dispatched from children.  qnode_on_parent is used when bios are
125 	 * dispatched from this throtl_grp into its parent and will compete
126 	 * with the sibling qnode_on_parents and the parent's
127 	 * qnode_on_self.
128 	 */
129 	struct throtl_qnode qnode_on_self[2];
130 	struct throtl_qnode qnode_on_parent[2];
131 
132 	/*
133 	 * Dispatch time in jiffies. This is the estimated time when group
134 	 * will unthrottle and is ready to dispatch more bio. It is used as
135 	 * key to sort active groups in service tree.
136 	 */
137 	unsigned long disptime;
138 
139 	unsigned int flags;
140 
141 	/* are there any throtl rules between this group and td? */
142 	bool has_rules[2];
143 
144 	/* internally used bytes per second rate limits */
145 	uint64_t bps[2][LIMIT_CNT];
146 	/* user configured bps limits */
147 	uint64_t bps_conf[2][LIMIT_CNT];
148 
149 	/* internally used IOPS limits */
150 	unsigned int iops[2][LIMIT_CNT];
151 	/* user configured IOPS limits */
152 	unsigned int iops_conf[2][LIMIT_CNT];
153 
154 	/* Number of bytes disptached in current slice */
155 	uint64_t bytes_disp[2];
156 	/* Number of bio's dispatched in current slice */
157 	unsigned int io_disp[2];
158 
159 	unsigned long last_low_overflow_time[2];
160 
161 	uint64_t last_bytes_disp[2];
162 	unsigned int last_io_disp[2];
163 
164 	unsigned long last_check_time;
165 
166 	unsigned long latency_target; /* us */
167 	unsigned long latency_target_conf; /* us */
168 	/* When did we start a new slice */
169 	unsigned long slice_start[2];
170 	unsigned long slice_end[2];
171 
172 	unsigned long last_finish_time; /* ns / 1024 */
173 	unsigned long checked_last_finish_time; /* ns / 1024 */
174 	unsigned long avg_idletime; /* ns / 1024 */
175 	unsigned long idletime_threshold; /* us */
176 	unsigned long idletime_threshold_conf; /* us */
177 
178 	unsigned int bio_cnt; /* total bios */
179 	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
180 	unsigned long bio_cnt_reset_time;
181 };
182 
183 /* We measure latency for request size from <= 4k to >= 1M */
184 #define LATENCY_BUCKET_SIZE 9
185 
186 struct latency_bucket {
187 	unsigned long total_latency; /* ns / 1024 */
188 	int samples;
189 };
190 
191 struct avg_latency_bucket {
192 	unsigned long latency; /* ns / 1024 */
193 	bool valid;
194 };
195 
196 struct throtl_data
197 {
198 	/* service tree for active throtl groups */
199 	struct throtl_service_queue service_queue;
200 
201 	struct request_queue *queue;
202 
203 	/* Total Number of queued bios on READ and WRITE lists */
204 	unsigned int nr_queued[2];
205 
206 	unsigned int throtl_slice;
207 
208 	/* Work for dispatching throttled bios */
209 	struct work_struct dispatch_work;
210 	unsigned int limit_index;
211 	bool limit_valid[LIMIT_CNT];
212 
213 	unsigned long low_upgrade_time;
214 	unsigned long low_downgrade_time;
215 
216 	unsigned int scale;
217 
218 	struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
219 	struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
220 	struct latency_bucket __percpu *latency_buckets;
221 	unsigned long last_calculate_time;
222 	unsigned long filtered_latency;
223 
224 	bool track_bio_latency;
225 };
226 
227 static void throtl_pending_timer_fn(unsigned long arg);
228 
229 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
230 {
231 	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
232 }
233 
234 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
235 {
236 	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
237 }
238 
239 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
240 {
241 	return pd_to_blkg(&tg->pd);
242 }
243 
244 /**
245  * sq_to_tg - return the throl_grp the specified service queue belongs to
246  * @sq: the throtl_service_queue of interest
247  *
248  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
249  * embedded in throtl_data, %NULL is returned.
250  */
251 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
252 {
253 	if (sq && sq->parent_sq)
254 		return container_of(sq, struct throtl_grp, service_queue);
255 	else
256 		return NULL;
257 }
258 
259 /**
260  * sq_to_td - return throtl_data the specified service queue belongs to
261  * @sq: the throtl_service_queue of interest
262  *
263  * A service_queue can be embedded in either a throtl_grp or throtl_data.
264  * Determine the associated throtl_data accordingly and return it.
265  */
266 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
267 {
268 	struct throtl_grp *tg = sq_to_tg(sq);
269 
270 	if (tg)
271 		return tg->td;
272 	else
273 		return container_of(sq, struct throtl_data, service_queue);
274 }
275 
276 /*
277  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
278  * make the IO dispatch more smooth.
279  * Scale up: linearly scale up according to lapsed time since upgrade. For
280  *           every throtl_slice, the limit scales up 1/2 .low limit till the
281  *           limit hits .max limit
282  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
283  */
284 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
285 {
286 	/* arbitrary value to avoid too big scale */
287 	if (td->scale < 4096 && time_after_eq(jiffies,
288 	    td->low_upgrade_time + td->scale * td->throtl_slice))
289 		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
290 
291 	return low + (low >> 1) * td->scale;
292 }
293 
294 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
295 {
296 	struct blkcg_gq *blkg = tg_to_blkg(tg);
297 	struct throtl_data *td;
298 	uint64_t ret;
299 
300 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
301 		return U64_MAX;
302 
303 	td = tg->td;
304 	ret = tg->bps[rw][td->limit_index];
305 	if (ret == 0 && td->limit_index == LIMIT_LOW) {
306 		/* intermediate node or iops isn't 0 */
307 		if (!list_empty(&blkg->blkcg->css.children) ||
308 		    tg->iops[rw][td->limit_index])
309 			return U64_MAX;
310 		else
311 			return MIN_THROTL_BPS;
312 	}
313 
314 	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
315 	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
316 		uint64_t adjusted;
317 
318 		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
319 		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
320 	}
321 	return ret;
322 }
323 
324 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
325 {
326 	struct blkcg_gq *blkg = tg_to_blkg(tg);
327 	struct throtl_data *td;
328 	unsigned int ret;
329 
330 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
331 		return UINT_MAX;
332 
333 	td = tg->td;
334 	ret = tg->iops[rw][td->limit_index];
335 	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
336 		/* intermediate node or bps isn't 0 */
337 		if (!list_empty(&blkg->blkcg->css.children) ||
338 		    tg->bps[rw][td->limit_index])
339 			return UINT_MAX;
340 		else
341 			return MIN_THROTL_IOPS;
342 	}
343 
344 	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
345 	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
346 		uint64_t adjusted;
347 
348 		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
349 		if (adjusted > UINT_MAX)
350 			adjusted = UINT_MAX;
351 		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
352 	}
353 	return ret;
354 }
355 
356 #define request_bucket_index(sectors) \
357 	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
358 
359 /**
360  * throtl_log - log debug message via blktrace
361  * @sq: the service_queue being reported
362  * @fmt: printf format string
363  * @args: printf args
364  *
365  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
366  * throtl_grp; otherwise, just "throtl".
367  */
368 #define throtl_log(sq, fmt, args...)	do {				\
369 	struct throtl_grp *__tg = sq_to_tg((sq));			\
370 	struct throtl_data *__td = sq_to_td((sq));			\
371 									\
372 	(void)__td;							\
373 	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
374 		break;							\
375 	if ((__tg)) {							\
376 		char __pbuf[128];					\
377 									\
378 		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
379 		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
380 	} else {							\
381 		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
382 	}								\
383 } while (0)
384 
385 static inline unsigned int throtl_bio_data_size(struct bio *bio)
386 {
387 	/* assume it's one sector */
388 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389 		return 512;
390 	return bio->bi_iter.bi_size;
391 }
392 
393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394 {
395 	INIT_LIST_HEAD(&qn->node);
396 	bio_list_init(&qn->bios);
397 	qn->tg = tg;
398 }
399 
400 /**
401  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402  * @bio: bio being added
403  * @qn: qnode to add bio to
404  * @queued: the service_queue->queued[] list @qn belongs to
405  *
406  * Add @bio to @qn and put @qn on @queued if it's not already on.
407  * @qn->tg's reference count is bumped when @qn is activated.  See the
408  * comment on top of throtl_qnode definition for details.
409  */
410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411 				 struct list_head *queued)
412 {
413 	bio_list_add(&qn->bios, bio);
414 	if (list_empty(&qn->node)) {
415 		list_add_tail(&qn->node, queued);
416 		blkg_get(tg_to_blkg(qn->tg));
417 	}
418 }
419 
420 /**
421  * throtl_peek_queued - peek the first bio on a qnode list
422  * @queued: the qnode list to peek
423  */
424 static struct bio *throtl_peek_queued(struct list_head *queued)
425 {
426 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
427 	struct bio *bio;
428 
429 	if (list_empty(queued))
430 		return NULL;
431 
432 	bio = bio_list_peek(&qn->bios);
433 	WARN_ON_ONCE(!bio);
434 	return bio;
435 }
436 
437 /**
438  * throtl_pop_queued - pop the first bio form a qnode list
439  * @queued: the qnode list to pop a bio from
440  * @tg_to_put: optional out argument for throtl_grp to put
441  *
442  * Pop the first bio from the qnode list @queued.  After popping, the first
443  * qnode is removed from @queued if empty or moved to the end of @queued so
444  * that the popping order is round-robin.
445  *
446  * When the first qnode is removed, its associated throtl_grp should be put
447  * too.  If @tg_to_put is NULL, this function automatically puts it;
448  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
449  * responsible for putting it.
450  */
451 static struct bio *throtl_pop_queued(struct list_head *queued,
452 				     struct throtl_grp **tg_to_put)
453 {
454 	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
455 	struct bio *bio;
456 
457 	if (list_empty(queued))
458 		return NULL;
459 
460 	bio = bio_list_pop(&qn->bios);
461 	WARN_ON_ONCE(!bio);
462 
463 	if (bio_list_empty(&qn->bios)) {
464 		list_del_init(&qn->node);
465 		if (tg_to_put)
466 			*tg_to_put = qn->tg;
467 		else
468 			blkg_put(tg_to_blkg(qn->tg));
469 	} else {
470 		list_move_tail(&qn->node, queued);
471 	}
472 
473 	return bio;
474 }
475 
476 /* init a service_queue, assumes the caller zeroed it */
477 static void throtl_service_queue_init(struct throtl_service_queue *sq)
478 {
479 	INIT_LIST_HEAD(&sq->queued[0]);
480 	INIT_LIST_HEAD(&sq->queued[1]);
481 	sq->pending_tree = RB_ROOT;
482 	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
483 		    (unsigned long)sq);
484 }
485 
486 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
487 {
488 	struct throtl_grp *tg;
489 	int rw;
490 
491 	tg = kzalloc_node(sizeof(*tg), gfp, node);
492 	if (!tg)
493 		return NULL;
494 
495 	throtl_service_queue_init(&tg->service_queue);
496 
497 	for (rw = READ; rw <= WRITE; rw++) {
498 		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
499 		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
500 	}
501 
502 	RB_CLEAR_NODE(&tg->rb_node);
503 	tg->bps[READ][LIMIT_MAX] = U64_MAX;
504 	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
505 	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
506 	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
507 	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
508 	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
509 	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
510 	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
511 	/* LIMIT_LOW will have default value 0 */
512 
513 	tg->latency_target = DFL_LATENCY_TARGET;
514 	tg->latency_target_conf = DFL_LATENCY_TARGET;
515 	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
516 	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
517 
518 	return &tg->pd;
519 }
520 
521 static void throtl_pd_init(struct blkg_policy_data *pd)
522 {
523 	struct throtl_grp *tg = pd_to_tg(pd);
524 	struct blkcg_gq *blkg = tg_to_blkg(tg);
525 	struct throtl_data *td = blkg->q->td;
526 	struct throtl_service_queue *sq = &tg->service_queue;
527 
528 	/*
529 	 * If on the default hierarchy, we switch to properly hierarchical
530 	 * behavior where limits on a given throtl_grp are applied to the
531 	 * whole subtree rather than just the group itself.  e.g. If 16M
532 	 * read_bps limit is set on the root group, the whole system can't
533 	 * exceed 16M for the device.
534 	 *
535 	 * If not on the default hierarchy, the broken flat hierarchy
536 	 * behavior is retained where all throtl_grps are treated as if
537 	 * they're all separate root groups right below throtl_data.
538 	 * Limits of a group don't interact with limits of other groups
539 	 * regardless of the position of the group in the hierarchy.
540 	 */
541 	sq->parent_sq = &td->service_queue;
542 	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
543 		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
544 	tg->td = td;
545 }
546 
547 /*
548  * Set has_rules[] if @tg or any of its parents have limits configured.
549  * This doesn't require walking up to the top of the hierarchy as the
550  * parent's has_rules[] is guaranteed to be correct.
551  */
552 static void tg_update_has_rules(struct throtl_grp *tg)
553 {
554 	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
555 	struct throtl_data *td = tg->td;
556 	int rw;
557 
558 	for (rw = READ; rw <= WRITE; rw++)
559 		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
560 			(td->limit_valid[td->limit_index] &&
561 			 (tg_bps_limit(tg, rw) != U64_MAX ||
562 			  tg_iops_limit(tg, rw) != UINT_MAX));
563 }
564 
565 static void throtl_pd_online(struct blkg_policy_data *pd)
566 {
567 	struct throtl_grp *tg = pd_to_tg(pd);
568 	/*
569 	 * We don't want new groups to escape the limits of its ancestors.
570 	 * Update has_rules[] after a new group is brought online.
571 	 */
572 	tg_update_has_rules(tg);
573 }
574 
575 static void blk_throtl_update_limit_valid(struct throtl_data *td)
576 {
577 	struct cgroup_subsys_state *pos_css;
578 	struct blkcg_gq *blkg;
579 	bool low_valid = false;
580 
581 	rcu_read_lock();
582 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
583 		struct throtl_grp *tg = blkg_to_tg(blkg);
584 
585 		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
586 		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
587 			low_valid = true;
588 	}
589 	rcu_read_unlock();
590 
591 	td->limit_valid[LIMIT_LOW] = low_valid;
592 }
593 
594 static void throtl_upgrade_state(struct throtl_data *td);
595 static void throtl_pd_offline(struct blkg_policy_data *pd)
596 {
597 	struct throtl_grp *tg = pd_to_tg(pd);
598 
599 	tg->bps[READ][LIMIT_LOW] = 0;
600 	tg->bps[WRITE][LIMIT_LOW] = 0;
601 	tg->iops[READ][LIMIT_LOW] = 0;
602 	tg->iops[WRITE][LIMIT_LOW] = 0;
603 
604 	blk_throtl_update_limit_valid(tg->td);
605 
606 	if (!tg->td->limit_valid[tg->td->limit_index])
607 		throtl_upgrade_state(tg->td);
608 }
609 
610 static void throtl_pd_free(struct blkg_policy_data *pd)
611 {
612 	struct throtl_grp *tg = pd_to_tg(pd);
613 
614 	del_timer_sync(&tg->service_queue.pending_timer);
615 	kfree(tg);
616 }
617 
618 static struct throtl_grp *
619 throtl_rb_first(struct throtl_service_queue *parent_sq)
620 {
621 	/* Service tree is empty */
622 	if (!parent_sq->nr_pending)
623 		return NULL;
624 
625 	if (!parent_sq->first_pending)
626 		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
627 
628 	if (parent_sq->first_pending)
629 		return rb_entry_tg(parent_sq->first_pending);
630 
631 	return NULL;
632 }
633 
634 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
635 {
636 	rb_erase(n, root);
637 	RB_CLEAR_NODE(n);
638 }
639 
640 static void throtl_rb_erase(struct rb_node *n,
641 			    struct throtl_service_queue *parent_sq)
642 {
643 	if (parent_sq->first_pending == n)
644 		parent_sq->first_pending = NULL;
645 	rb_erase_init(n, &parent_sq->pending_tree);
646 	--parent_sq->nr_pending;
647 }
648 
649 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
650 {
651 	struct throtl_grp *tg;
652 
653 	tg = throtl_rb_first(parent_sq);
654 	if (!tg)
655 		return;
656 
657 	parent_sq->first_pending_disptime = tg->disptime;
658 }
659 
660 static void tg_service_queue_add(struct throtl_grp *tg)
661 {
662 	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
663 	struct rb_node **node = &parent_sq->pending_tree.rb_node;
664 	struct rb_node *parent = NULL;
665 	struct throtl_grp *__tg;
666 	unsigned long key = tg->disptime;
667 	int left = 1;
668 
669 	while (*node != NULL) {
670 		parent = *node;
671 		__tg = rb_entry_tg(parent);
672 
673 		if (time_before(key, __tg->disptime))
674 			node = &parent->rb_left;
675 		else {
676 			node = &parent->rb_right;
677 			left = 0;
678 		}
679 	}
680 
681 	if (left)
682 		parent_sq->first_pending = &tg->rb_node;
683 
684 	rb_link_node(&tg->rb_node, parent, node);
685 	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
686 }
687 
688 static void __throtl_enqueue_tg(struct throtl_grp *tg)
689 {
690 	tg_service_queue_add(tg);
691 	tg->flags |= THROTL_TG_PENDING;
692 	tg->service_queue.parent_sq->nr_pending++;
693 }
694 
695 static void throtl_enqueue_tg(struct throtl_grp *tg)
696 {
697 	if (!(tg->flags & THROTL_TG_PENDING))
698 		__throtl_enqueue_tg(tg);
699 }
700 
701 static void __throtl_dequeue_tg(struct throtl_grp *tg)
702 {
703 	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
704 	tg->flags &= ~THROTL_TG_PENDING;
705 }
706 
707 static void throtl_dequeue_tg(struct throtl_grp *tg)
708 {
709 	if (tg->flags & THROTL_TG_PENDING)
710 		__throtl_dequeue_tg(tg);
711 }
712 
713 /* Call with queue lock held */
714 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
715 					  unsigned long expires)
716 {
717 	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
718 
719 	/*
720 	 * Since we are adjusting the throttle limit dynamically, the sleep
721 	 * time calculated according to previous limit might be invalid. It's
722 	 * possible the cgroup sleep time is very long and no other cgroups
723 	 * have IO running so notify the limit changes. Make sure the cgroup
724 	 * doesn't sleep too long to avoid the missed notification.
725 	 */
726 	if (time_after(expires, max_expire))
727 		expires = max_expire;
728 	mod_timer(&sq->pending_timer, expires);
729 	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
730 		   expires - jiffies, jiffies);
731 }
732 
733 /**
734  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
735  * @sq: the service_queue to schedule dispatch for
736  * @force: force scheduling
737  *
738  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
739  * dispatch time of the first pending child.  Returns %true if either timer
740  * is armed or there's no pending child left.  %false if the current
741  * dispatch window is still open and the caller should continue
742  * dispatching.
743  *
744  * If @force is %true, the dispatch timer is always scheduled and this
745  * function is guaranteed to return %true.  This is to be used when the
746  * caller can't dispatch itself and needs to invoke pending_timer
747  * unconditionally.  Note that forced scheduling is likely to induce short
748  * delay before dispatch starts even if @sq->first_pending_disptime is not
749  * in the future and thus shouldn't be used in hot paths.
750  */
751 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
752 					  bool force)
753 {
754 	/* any pending children left? */
755 	if (!sq->nr_pending)
756 		return true;
757 
758 	update_min_dispatch_time(sq);
759 
760 	/* is the next dispatch time in the future? */
761 	if (force || time_after(sq->first_pending_disptime, jiffies)) {
762 		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
763 		return true;
764 	}
765 
766 	/* tell the caller to continue dispatching */
767 	return false;
768 }
769 
770 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
771 		bool rw, unsigned long start)
772 {
773 	tg->bytes_disp[rw] = 0;
774 	tg->io_disp[rw] = 0;
775 
776 	/*
777 	 * Previous slice has expired. We must have trimmed it after last
778 	 * bio dispatch. That means since start of last slice, we never used
779 	 * that bandwidth. Do try to make use of that bandwidth while giving
780 	 * credit.
781 	 */
782 	if (time_after_eq(start, tg->slice_start[rw]))
783 		tg->slice_start[rw] = start;
784 
785 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
786 	throtl_log(&tg->service_queue,
787 		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
788 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
789 		   tg->slice_end[rw], jiffies);
790 }
791 
792 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
793 {
794 	tg->bytes_disp[rw] = 0;
795 	tg->io_disp[rw] = 0;
796 	tg->slice_start[rw] = jiffies;
797 	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
798 	throtl_log(&tg->service_queue,
799 		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
800 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
801 		   tg->slice_end[rw], jiffies);
802 }
803 
804 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
805 					unsigned long jiffy_end)
806 {
807 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
808 }
809 
810 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
811 				       unsigned long jiffy_end)
812 {
813 	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
814 	throtl_log(&tg->service_queue,
815 		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
816 		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
817 		   tg->slice_end[rw], jiffies);
818 }
819 
820 /* Determine if previously allocated or extended slice is complete or not */
821 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
822 {
823 	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
824 		return false;
825 
826 	return 1;
827 }
828 
829 /* Trim the used slices and adjust slice start accordingly */
830 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
831 {
832 	unsigned long nr_slices, time_elapsed, io_trim;
833 	u64 bytes_trim, tmp;
834 
835 	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
836 
837 	/*
838 	 * If bps are unlimited (-1), then time slice don't get
839 	 * renewed. Don't try to trim the slice if slice is used. A new
840 	 * slice will start when appropriate.
841 	 */
842 	if (throtl_slice_used(tg, rw))
843 		return;
844 
845 	/*
846 	 * A bio has been dispatched. Also adjust slice_end. It might happen
847 	 * that initially cgroup limit was very low resulting in high
848 	 * slice_end, but later limit was bumped up and bio was dispached
849 	 * sooner, then we need to reduce slice_end. A high bogus slice_end
850 	 * is bad because it does not allow new slice to start.
851 	 */
852 
853 	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
854 
855 	time_elapsed = jiffies - tg->slice_start[rw];
856 
857 	nr_slices = time_elapsed / tg->td->throtl_slice;
858 
859 	if (!nr_slices)
860 		return;
861 	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
862 	do_div(tmp, HZ);
863 	bytes_trim = tmp;
864 
865 	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
866 		HZ;
867 
868 	if (!bytes_trim && !io_trim)
869 		return;
870 
871 	if (tg->bytes_disp[rw] >= bytes_trim)
872 		tg->bytes_disp[rw] -= bytes_trim;
873 	else
874 		tg->bytes_disp[rw] = 0;
875 
876 	if (tg->io_disp[rw] >= io_trim)
877 		tg->io_disp[rw] -= io_trim;
878 	else
879 		tg->io_disp[rw] = 0;
880 
881 	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
882 
883 	throtl_log(&tg->service_queue,
884 		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
885 		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
886 		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
887 }
888 
889 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
890 				  unsigned long *wait)
891 {
892 	bool rw = bio_data_dir(bio);
893 	unsigned int io_allowed;
894 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
895 	u64 tmp;
896 
897 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
898 
899 	/* Slice has just started. Consider one slice interval */
900 	if (!jiffy_elapsed)
901 		jiffy_elapsed_rnd = tg->td->throtl_slice;
902 
903 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
904 
905 	/*
906 	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
907 	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
908 	 * will allow dispatch after 1 second and after that slice should
909 	 * have been trimmed.
910 	 */
911 
912 	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
913 	do_div(tmp, HZ);
914 
915 	if (tmp > UINT_MAX)
916 		io_allowed = UINT_MAX;
917 	else
918 		io_allowed = tmp;
919 
920 	if (tg->io_disp[rw] + 1 <= io_allowed) {
921 		if (wait)
922 			*wait = 0;
923 		return true;
924 	}
925 
926 	/* Calc approx time to dispatch */
927 	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
928 
929 	if (jiffy_wait > jiffy_elapsed)
930 		jiffy_wait = jiffy_wait - jiffy_elapsed;
931 	else
932 		jiffy_wait = 1;
933 
934 	if (wait)
935 		*wait = jiffy_wait;
936 	return 0;
937 }
938 
939 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
940 				 unsigned long *wait)
941 {
942 	bool rw = bio_data_dir(bio);
943 	u64 bytes_allowed, extra_bytes, tmp;
944 	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
945 	unsigned int bio_size = throtl_bio_data_size(bio);
946 
947 	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
948 
949 	/* Slice has just started. Consider one slice interval */
950 	if (!jiffy_elapsed)
951 		jiffy_elapsed_rnd = tg->td->throtl_slice;
952 
953 	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
954 
955 	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
956 	do_div(tmp, HZ);
957 	bytes_allowed = tmp;
958 
959 	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
960 		if (wait)
961 			*wait = 0;
962 		return true;
963 	}
964 
965 	/* Calc approx time to dispatch */
966 	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
967 	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
968 
969 	if (!jiffy_wait)
970 		jiffy_wait = 1;
971 
972 	/*
973 	 * This wait time is without taking into consideration the rounding
974 	 * up we did. Add that time also.
975 	 */
976 	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
977 	if (wait)
978 		*wait = jiffy_wait;
979 	return 0;
980 }
981 
982 /*
983  * Returns whether one can dispatch a bio or not. Also returns approx number
984  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
985  */
986 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
987 			    unsigned long *wait)
988 {
989 	bool rw = bio_data_dir(bio);
990 	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
991 
992 	/*
993  	 * Currently whole state machine of group depends on first bio
994 	 * queued in the group bio list. So one should not be calling
995 	 * this function with a different bio if there are other bios
996 	 * queued.
997 	 */
998 	BUG_ON(tg->service_queue.nr_queued[rw] &&
999 	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1000 
1001 	/* If tg->bps = -1, then BW is unlimited */
1002 	if (tg_bps_limit(tg, rw) == U64_MAX &&
1003 	    tg_iops_limit(tg, rw) == UINT_MAX) {
1004 		if (wait)
1005 			*wait = 0;
1006 		return true;
1007 	}
1008 
1009 	/*
1010 	 * If previous slice expired, start a new one otherwise renew/extend
1011 	 * existing slice to make sure it is at least throtl_slice interval
1012 	 * long since now. New slice is started only for empty throttle group.
1013 	 * If there is queued bio, that means there should be an active
1014 	 * slice and it should be extended instead.
1015 	 */
1016 	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1017 		throtl_start_new_slice(tg, rw);
1018 	else {
1019 		if (time_before(tg->slice_end[rw],
1020 		    jiffies + tg->td->throtl_slice))
1021 			throtl_extend_slice(tg, rw,
1022 				jiffies + tg->td->throtl_slice);
1023 	}
1024 
1025 	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1026 	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1027 		if (wait)
1028 			*wait = 0;
1029 		return 1;
1030 	}
1031 
1032 	max_wait = max(bps_wait, iops_wait);
1033 
1034 	if (wait)
1035 		*wait = max_wait;
1036 
1037 	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1038 		throtl_extend_slice(tg, rw, jiffies + max_wait);
1039 
1040 	return 0;
1041 }
1042 
1043 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1044 {
1045 	bool rw = bio_data_dir(bio);
1046 	unsigned int bio_size = throtl_bio_data_size(bio);
1047 
1048 	/* Charge the bio to the group */
1049 	tg->bytes_disp[rw] += bio_size;
1050 	tg->io_disp[rw]++;
1051 	tg->last_bytes_disp[rw] += bio_size;
1052 	tg->last_io_disp[rw]++;
1053 
1054 	/*
1055 	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1056 	 * more than once as a throttled bio will go through blk-throtl the
1057 	 * second time when it eventually gets issued.  Set it when a bio
1058 	 * is being charged to a tg.
1059 	 */
1060 	if (!bio_flagged(bio, BIO_THROTTLED))
1061 		bio_set_flag(bio, BIO_THROTTLED);
1062 }
1063 
1064 /**
1065  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1066  * @bio: bio to add
1067  * @qn: qnode to use
1068  * @tg: the target throtl_grp
1069  *
1070  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1071  * tg->qnode_on_self[] is used.
1072  */
1073 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1074 			      struct throtl_grp *tg)
1075 {
1076 	struct throtl_service_queue *sq = &tg->service_queue;
1077 	bool rw = bio_data_dir(bio);
1078 
1079 	if (!qn)
1080 		qn = &tg->qnode_on_self[rw];
1081 
1082 	/*
1083 	 * If @tg doesn't currently have any bios queued in the same
1084 	 * direction, queueing @bio can change when @tg should be
1085 	 * dispatched.  Mark that @tg was empty.  This is automatically
1086 	 * cleaered on the next tg_update_disptime().
1087 	 */
1088 	if (!sq->nr_queued[rw])
1089 		tg->flags |= THROTL_TG_WAS_EMPTY;
1090 
1091 	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1092 
1093 	sq->nr_queued[rw]++;
1094 	throtl_enqueue_tg(tg);
1095 }
1096 
1097 static void tg_update_disptime(struct throtl_grp *tg)
1098 {
1099 	struct throtl_service_queue *sq = &tg->service_queue;
1100 	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1101 	struct bio *bio;
1102 
1103 	bio = throtl_peek_queued(&sq->queued[READ]);
1104 	if (bio)
1105 		tg_may_dispatch(tg, bio, &read_wait);
1106 
1107 	bio = throtl_peek_queued(&sq->queued[WRITE]);
1108 	if (bio)
1109 		tg_may_dispatch(tg, bio, &write_wait);
1110 
1111 	min_wait = min(read_wait, write_wait);
1112 	disptime = jiffies + min_wait;
1113 
1114 	/* Update dispatch time */
1115 	throtl_dequeue_tg(tg);
1116 	tg->disptime = disptime;
1117 	throtl_enqueue_tg(tg);
1118 
1119 	/* see throtl_add_bio_tg() */
1120 	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1121 }
1122 
1123 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1124 					struct throtl_grp *parent_tg, bool rw)
1125 {
1126 	if (throtl_slice_used(parent_tg, rw)) {
1127 		throtl_start_new_slice_with_credit(parent_tg, rw,
1128 				child_tg->slice_start[rw]);
1129 	}
1130 
1131 }
1132 
1133 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1134 {
1135 	struct throtl_service_queue *sq = &tg->service_queue;
1136 	struct throtl_service_queue *parent_sq = sq->parent_sq;
1137 	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1138 	struct throtl_grp *tg_to_put = NULL;
1139 	struct bio *bio;
1140 
1141 	/*
1142 	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1143 	 * from @tg may put its reference and @parent_sq might end up
1144 	 * getting released prematurely.  Remember the tg to put and put it
1145 	 * after @bio is transferred to @parent_sq.
1146 	 */
1147 	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1148 	sq->nr_queued[rw]--;
1149 
1150 	throtl_charge_bio(tg, bio);
1151 
1152 	/*
1153 	 * If our parent is another tg, we just need to transfer @bio to
1154 	 * the parent using throtl_add_bio_tg().  If our parent is
1155 	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1156 	 * bio_lists[] and decrease total number queued.  The caller is
1157 	 * responsible for issuing these bios.
1158 	 */
1159 	if (parent_tg) {
1160 		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1161 		start_parent_slice_with_credit(tg, parent_tg, rw);
1162 	} else {
1163 		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1164 				     &parent_sq->queued[rw]);
1165 		BUG_ON(tg->td->nr_queued[rw] <= 0);
1166 		tg->td->nr_queued[rw]--;
1167 	}
1168 
1169 	throtl_trim_slice(tg, rw);
1170 
1171 	if (tg_to_put)
1172 		blkg_put(tg_to_blkg(tg_to_put));
1173 }
1174 
1175 static int throtl_dispatch_tg(struct throtl_grp *tg)
1176 {
1177 	struct throtl_service_queue *sq = &tg->service_queue;
1178 	unsigned int nr_reads = 0, nr_writes = 0;
1179 	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1180 	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1181 	struct bio *bio;
1182 
1183 	/* Try to dispatch 75% READS and 25% WRITES */
1184 
1185 	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1186 	       tg_may_dispatch(tg, bio, NULL)) {
1187 
1188 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1189 		nr_reads++;
1190 
1191 		if (nr_reads >= max_nr_reads)
1192 			break;
1193 	}
1194 
1195 	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1196 	       tg_may_dispatch(tg, bio, NULL)) {
1197 
1198 		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1199 		nr_writes++;
1200 
1201 		if (nr_writes >= max_nr_writes)
1202 			break;
1203 	}
1204 
1205 	return nr_reads + nr_writes;
1206 }
1207 
1208 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1209 {
1210 	unsigned int nr_disp = 0;
1211 
1212 	while (1) {
1213 		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1214 		struct throtl_service_queue *sq = &tg->service_queue;
1215 
1216 		if (!tg)
1217 			break;
1218 
1219 		if (time_before(jiffies, tg->disptime))
1220 			break;
1221 
1222 		throtl_dequeue_tg(tg);
1223 
1224 		nr_disp += throtl_dispatch_tg(tg);
1225 
1226 		if (sq->nr_queued[0] || sq->nr_queued[1])
1227 			tg_update_disptime(tg);
1228 
1229 		if (nr_disp >= throtl_quantum)
1230 			break;
1231 	}
1232 
1233 	return nr_disp;
1234 }
1235 
1236 static bool throtl_can_upgrade(struct throtl_data *td,
1237 	struct throtl_grp *this_tg);
1238 /**
1239  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1240  * @arg: the throtl_service_queue being serviced
1241  *
1242  * This timer is armed when a child throtl_grp with active bio's become
1243  * pending and queued on the service_queue's pending_tree and expires when
1244  * the first child throtl_grp should be dispatched.  This function
1245  * dispatches bio's from the children throtl_grps to the parent
1246  * service_queue.
1247  *
1248  * If the parent's parent is another throtl_grp, dispatching is propagated
1249  * by either arming its pending_timer or repeating dispatch directly.  If
1250  * the top-level service_tree is reached, throtl_data->dispatch_work is
1251  * kicked so that the ready bio's are issued.
1252  */
1253 static void throtl_pending_timer_fn(unsigned long arg)
1254 {
1255 	struct throtl_service_queue *sq = (void *)arg;
1256 	struct throtl_grp *tg = sq_to_tg(sq);
1257 	struct throtl_data *td = sq_to_td(sq);
1258 	struct request_queue *q = td->queue;
1259 	struct throtl_service_queue *parent_sq;
1260 	bool dispatched;
1261 	int ret;
1262 
1263 	spin_lock_irq(q->queue_lock);
1264 	if (throtl_can_upgrade(td, NULL))
1265 		throtl_upgrade_state(td);
1266 
1267 again:
1268 	parent_sq = sq->parent_sq;
1269 	dispatched = false;
1270 
1271 	while (true) {
1272 		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1273 			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1274 			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1275 
1276 		ret = throtl_select_dispatch(sq);
1277 		if (ret) {
1278 			throtl_log(sq, "bios disp=%u", ret);
1279 			dispatched = true;
1280 		}
1281 
1282 		if (throtl_schedule_next_dispatch(sq, false))
1283 			break;
1284 
1285 		/* this dispatch windows is still open, relax and repeat */
1286 		spin_unlock_irq(q->queue_lock);
1287 		cpu_relax();
1288 		spin_lock_irq(q->queue_lock);
1289 	}
1290 
1291 	if (!dispatched)
1292 		goto out_unlock;
1293 
1294 	if (parent_sq) {
1295 		/* @parent_sq is another throl_grp, propagate dispatch */
1296 		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1297 			tg_update_disptime(tg);
1298 			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1299 				/* window is already open, repeat dispatching */
1300 				sq = parent_sq;
1301 				tg = sq_to_tg(sq);
1302 				goto again;
1303 			}
1304 		}
1305 	} else {
1306 		/* reached the top-level, queue issueing */
1307 		queue_work(kthrotld_workqueue, &td->dispatch_work);
1308 	}
1309 out_unlock:
1310 	spin_unlock_irq(q->queue_lock);
1311 }
1312 
1313 /**
1314  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1315  * @work: work item being executed
1316  *
1317  * This function is queued for execution when bio's reach the bio_lists[]
1318  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1319  * function.
1320  */
1321 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1322 {
1323 	struct throtl_data *td = container_of(work, struct throtl_data,
1324 					      dispatch_work);
1325 	struct throtl_service_queue *td_sq = &td->service_queue;
1326 	struct request_queue *q = td->queue;
1327 	struct bio_list bio_list_on_stack;
1328 	struct bio *bio;
1329 	struct blk_plug plug;
1330 	int rw;
1331 
1332 	bio_list_init(&bio_list_on_stack);
1333 
1334 	spin_lock_irq(q->queue_lock);
1335 	for (rw = READ; rw <= WRITE; rw++)
1336 		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1337 			bio_list_add(&bio_list_on_stack, bio);
1338 	spin_unlock_irq(q->queue_lock);
1339 
1340 	if (!bio_list_empty(&bio_list_on_stack)) {
1341 		blk_start_plug(&plug);
1342 		while((bio = bio_list_pop(&bio_list_on_stack)))
1343 			generic_make_request(bio);
1344 		blk_finish_plug(&plug);
1345 	}
1346 }
1347 
1348 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1349 			      int off)
1350 {
1351 	struct throtl_grp *tg = pd_to_tg(pd);
1352 	u64 v = *(u64 *)((void *)tg + off);
1353 
1354 	if (v == U64_MAX)
1355 		return 0;
1356 	return __blkg_prfill_u64(sf, pd, v);
1357 }
1358 
1359 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1360 			       int off)
1361 {
1362 	struct throtl_grp *tg = pd_to_tg(pd);
1363 	unsigned int v = *(unsigned int *)((void *)tg + off);
1364 
1365 	if (v == UINT_MAX)
1366 		return 0;
1367 	return __blkg_prfill_u64(sf, pd, v);
1368 }
1369 
1370 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1371 {
1372 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1373 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1374 	return 0;
1375 }
1376 
1377 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1378 {
1379 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1380 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1381 	return 0;
1382 }
1383 
1384 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1385 {
1386 	struct throtl_service_queue *sq = &tg->service_queue;
1387 	struct cgroup_subsys_state *pos_css;
1388 	struct blkcg_gq *blkg;
1389 
1390 	throtl_log(&tg->service_queue,
1391 		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1392 		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1393 		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1394 
1395 	/*
1396 	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1397 	 * considered to have rules if either the tg itself or any of its
1398 	 * ancestors has rules.  This identifies groups without any
1399 	 * restrictions in the whole hierarchy and allows them to bypass
1400 	 * blk-throttle.
1401 	 */
1402 	blkg_for_each_descendant_pre(blkg, pos_css,
1403 			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1404 		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1405 		struct throtl_grp *parent_tg;
1406 
1407 		tg_update_has_rules(this_tg);
1408 		/* ignore root/second level */
1409 		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1410 		    !blkg->parent->parent)
1411 			continue;
1412 		parent_tg = blkg_to_tg(blkg->parent);
1413 		/*
1414 		 * make sure all children has lower idle time threshold and
1415 		 * higher latency target
1416 		 */
1417 		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1418 				parent_tg->idletime_threshold);
1419 		this_tg->latency_target = max(this_tg->latency_target,
1420 				parent_tg->latency_target);
1421 	}
1422 
1423 	/*
1424 	 * We're already holding queue_lock and know @tg is valid.  Let's
1425 	 * apply the new config directly.
1426 	 *
1427 	 * Restart the slices for both READ and WRITES. It might happen
1428 	 * that a group's limit are dropped suddenly and we don't want to
1429 	 * account recently dispatched IO with new low rate.
1430 	 */
1431 	throtl_start_new_slice(tg, 0);
1432 	throtl_start_new_slice(tg, 1);
1433 
1434 	if (tg->flags & THROTL_TG_PENDING) {
1435 		tg_update_disptime(tg);
1436 		throtl_schedule_next_dispatch(sq->parent_sq, true);
1437 	}
1438 }
1439 
1440 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1441 			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1442 {
1443 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1444 	struct blkg_conf_ctx ctx;
1445 	struct throtl_grp *tg;
1446 	int ret;
1447 	u64 v;
1448 
1449 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1450 	if (ret)
1451 		return ret;
1452 
1453 	ret = -EINVAL;
1454 	if (sscanf(ctx.body, "%llu", &v) != 1)
1455 		goto out_finish;
1456 	if (!v)
1457 		v = U64_MAX;
1458 
1459 	tg = blkg_to_tg(ctx.blkg);
1460 
1461 	if (is_u64)
1462 		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1463 	else
1464 		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1465 
1466 	tg_conf_updated(tg, false);
1467 	ret = 0;
1468 out_finish:
1469 	blkg_conf_finish(&ctx);
1470 	return ret ?: nbytes;
1471 }
1472 
1473 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1474 			       char *buf, size_t nbytes, loff_t off)
1475 {
1476 	return tg_set_conf(of, buf, nbytes, off, true);
1477 }
1478 
1479 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1480 				char *buf, size_t nbytes, loff_t off)
1481 {
1482 	return tg_set_conf(of, buf, nbytes, off, false);
1483 }
1484 
1485 static struct cftype throtl_legacy_files[] = {
1486 	{
1487 		.name = "throttle.read_bps_device",
1488 		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1489 		.seq_show = tg_print_conf_u64,
1490 		.write = tg_set_conf_u64,
1491 	},
1492 	{
1493 		.name = "throttle.write_bps_device",
1494 		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1495 		.seq_show = tg_print_conf_u64,
1496 		.write = tg_set_conf_u64,
1497 	},
1498 	{
1499 		.name = "throttle.read_iops_device",
1500 		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1501 		.seq_show = tg_print_conf_uint,
1502 		.write = tg_set_conf_uint,
1503 	},
1504 	{
1505 		.name = "throttle.write_iops_device",
1506 		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1507 		.seq_show = tg_print_conf_uint,
1508 		.write = tg_set_conf_uint,
1509 	},
1510 	{
1511 		.name = "throttle.io_service_bytes",
1512 		.private = (unsigned long)&blkcg_policy_throtl,
1513 		.seq_show = blkg_print_stat_bytes,
1514 	},
1515 	{
1516 		.name = "throttle.io_serviced",
1517 		.private = (unsigned long)&blkcg_policy_throtl,
1518 		.seq_show = blkg_print_stat_ios,
1519 	},
1520 	{ }	/* terminate */
1521 };
1522 
1523 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1524 			 int off)
1525 {
1526 	struct throtl_grp *tg = pd_to_tg(pd);
1527 	const char *dname = blkg_dev_name(pd->blkg);
1528 	char bufs[4][21] = { "max", "max", "max", "max" };
1529 	u64 bps_dft;
1530 	unsigned int iops_dft;
1531 	char idle_time[26] = "";
1532 	char latency_time[26] = "";
1533 
1534 	if (!dname)
1535 		return 0;
1536 
1537 	if (off == LIMIT_LOW) {
1538 		bps_dft = 0;
1539 		iops_dft = 0;
1540 	} else {
1541 		bps_dft = U64_MAX;
1542 		iops_dft = UINT_MAX;
1543 	}
1544 
1545 	if (tg->bps_conf[READ][off] == bps_dft &&
1546 	    tg->bps_conf[WRITE][off] == bps_dft &&
1547 	    tg->iops_conf[READ][off] == iops_dft &&
1548 	    tg->iops_conf[WRITE][off] == iops_dft &&
1549 	    (off != LIMIT_LOW ||
1550 	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1551 	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1552 		return 0;
1553 
1554 	if (tg->bps_conf[READ][off] != U64_MAX)
1555 		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1556 			tg->bps_conf[READ][off]);
1557 	if (tg->bps_conf[WRITE][off] != U64_MAX)
1558 		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1559 			tg->bps_conf[WRITE][off]);
1560 	if (tg->iops_conf[READ][off] != UINT_MAX)
1561 		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1562 			tg->iops_conf[READ][off]);
1563 	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1564 		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1565 			tg->iops_conf[WRITE][off]);
1566 	if (off == LIMIT_LOW) {
1567 		if (tg->idletime_threshold_conf == ULONG_MAX)
1568 			strcpy(idle_time, " idle=max");
1569 		else
1570 			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1571 				tg->idletime_threshold_conf);
1572 
1573 		if (tg->latency_target_conf == ULONG_MAX)
1574 			strcpy(latency_time, " latency=max");
1575 		else
1576 			snprintf(latency_time, sizeof(latency_time),
1577 				" latency=%lu", tg->latency_target_conf);
1578 	}
1579 
1580 	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1581 		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1582 		   latency_time);
1583 	return 0;
1584 }
1585 
1586 static int tg_print_limit(struct seq_file *sf, void *v)
1587 {
1588 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1589 			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1590 	return 0;
1591 }
1592 
1593 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1594 			  char *buf, size_t nbytes, loff_t off)
1595 {
1596 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1597 	struct blkg_conf_ctx ctx;
1598 	struct throtl_grp *tg;
1599 	u64 v[4];
1600 	unsigned long idle_time;
1601 	unsigned long latency_time;
1602 	int ret;
1603 	int index = of_cft(of)->private;
1604 
1605 	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1606 	if (ret)
1607 		return ret;
1608 
1609 	tg = blkg_to_tg(ctx.blkg);
1610 
1611 	v[0] = tg->bps_conf[READ][index];
1612 	v[1] = tg->bps_conf[WRITE][index];
1613 	v[2] = tg->iops_conf[READ][index];
1614 	v[3] = tg->iops_conf[WRITE][index];
1615 
1616 	idle_time = tg->idletime_threshold_conf;
1617 	latency_time = tg->latency_target_conf;
1618 	while (true) {
1619 		char tok[27];	/* wiops=18446744073709551616 */
1620 		char *p;
1621 		u64 val = U64_MAX;
1622 		int len;
1623 
1624 		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1625 			break;
1626 		if (tok[0] == '\0')
1627 			break;
1628 		ctx.body += len;
1629 
1630 		ret = -EINVAL;
1631 		p = tok;
1632 		strsep(&p, "=");
1633 		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1634 			goto out_finish;
1635 
1636 		ret = -ERANGE;
1637 		if (!val)
1638 			goto out_finish;
1639 
1640 		ret = -EINVAL;
1641 		if (!strcmp(tok, "rbps"))
1642 			v[0] = val;
1643 		else if (!strcmp(tok, "wbps"))
1644 			v[1] = val;
1645 		else if (!strcmp(tok, "riops"))
1646 			v[2] = min_t(u64, val, UINT_MAX);
1647 		else if (!strcmp(tok, "wiops"))
1648 			v[3] = min_t(u64, val, UINT_MAX);
1649 		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1650 			idle_time = val;
1651 		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1652 			latency_time = val;
1653 		else
1654 			goto out_finish;
1655 	}
1656 
1657 	tg->bps_conf[READ][index] = v[0];
1658 	tg->bps_conf[WRITE][index] = v[1];
1659 	tg->iops_conf[READ][index] = v[2];
1660 	tg->iops_conf[WRITE][index] = v[3];
1661 
1662 	if (index == LIMIT_MAX) {
1663 		tg->bps[READ][index] = v[0];
1664 		tg->bps[WRITE][index] = v[1];
1665 		tg->iops[READ][index] = v[2];
1666 		tg->iops[WRITE][index] = v[3];
1667 	}
1668 	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1669 		tg->bps_conf[READ][LIMIT_MAX]);
1670 	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1671 		tg->bps_conf[WRITE][LIMIT_MAX]);
1672 	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1673 		tg->iops_conf[READ][LIMIT_MAX]);
1674 	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1675 		tg->iops_conf[WRITE][LIMIT_MAX]);
1676 	tg->idletime_threshold_conf = idle_time;
1677 	tg->latency_target_conf = latency_time;
1678 
1679 	/* force user to configure all settings for low limit  */
1680 	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1681 	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1682 	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1683 	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1684 		tg->bps[READ][LIMIT_LOW] = 0;
1685 		tg->bps[WRITE][LIMIT_LOW] = 0;
1686 		tg->iops[READ][LIMIT_LOW] = 0;
1687 		tg->iops[WRITE][LIMIT_LOW] = 0;
1688 		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1689 		tg->latency_target = DFL_LATENCY_TARGET;
1690 	} else if (index == LIMIT_LOW) {
1691 		tg->idletime_threshold = tg->idletime_threshold_conf;
1692 		tg->latency_target = tg->latency_target_conf;
1693 	}
1694 
1695 	blk_throtl_update_limit_valid(tg->td);
1696 	if (tg->td->limit_valid[LIMIT_LOW]) {
1697 		if (index == LIMIT_LOW)
1698 			tg->td->limit_index = LIMIT_LOW;
1699 	} else
1700 		tg->td->limit_index = LIMIT_MAX;
1701 	tg_conf_updated(tg, index == LIMIT_LOW &&
1702 		tg->td->limit_valid[LIMIT_LOW]);
1703 	ret = 0;
1704 out_finish:
1705 	blkg_conf_finish(&ctx);
1706 	return ret ?: nbytes;
1707 }
1708 
1709 static struct cftype throtl_files[] = {
1710 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1711 	{
1712 		.name = "low",
1713 		.flags = CFTYPE_NOT_ON_ROOT,
1714 		.seq_show = tg_print_limit,
1715 		.write = tg_set_limit,
1716 		.private = LIMIT_LOW,
1717 	},
1718 #endif
1719 	{
1720 		.name = "max",
1721 		.flags = CFTYPE_NOT_ON_ROOT,
1722 		.seq_show = tg_print_limit,
1723 		.write = tg_set_limit,
1724 		.private = LIMIT_MAX,
1725 	},
1726 	{ }	/* terminate */
1727 };
1728 
1729 static void throtl_shutdown_wq(struct request_queue *q)
1730 {
1731 	struct throtl_data *td = q->td;
1732 
1733 	cancel_work_sync(&td->dispatch_work);
1734 }
1735 
1736 static struct blkcg_policy blkcg_policy_throtl = {
1737 	.dfl_cftypes		= throtl_files,
1738 	.legacy_cftypes		= throtl_legacy_files,
1739 
1740 	.pd_alloc_fn		= throtl_pd_alloc,
1741 	.pd_init_fn		= throtl_pd_init,
1742 	.pd_online_fn		= throtl_pd_online,
1743 	.pd_offline_fn		= throtl_pd_offline,
1744 	.pd_free_fn		= throtl_pd_free,
1745 };
1746 
1747 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1748 {
1749 	unsigned long rtime = jiffies, wtime = jiffies;
1750 
1751 	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1752 		rtime = tg->last_low_overflow_time[READ];
1753 	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1754 		wtime = tg->last_low_overflow_time[WRITE];
1755 	return min(rtime, wtime);
1756 }
1757 
1758 /* tg should not be an intermediate node */
1759 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1760 {
1761 	struct throtl_service_queue *parent_sq;
1762 	struct throtl_grp *parent = tg;
1763 	unsigned long ret = __tg_last_low_overflow_time(tg);
1764 
1765 	while (true) {
1766 		parent_sq = parent->service_queue.parent_sq;
1767 		parent = sq_to_tg(parent_sq);
1768 		if (!parent)
1769 			break;
1770 
1771 		/*
1772 		 * The parent doesn't have low limit, it always reaches low
1773 		 * limit. Its overflow time is useless for children
1774 		 */
1775 		if (!parent->bps[READ][LIMIT_LOW] &&
1776 		    !parent->iops[READ][LIMIT_LOW] &&
1777 		    !parent->bps[WRITE][LIMIT_LOW] &&
1778 		    !parent->iops[WRITE][LIMIT_LOW])
1779 			continue;
1780 		if (time_after(__tg_last_low_overflow_time(parent), ret))
1781 			ret = __tg_last_low_overflow_time(parent);
1782 	}
1783 	return ret;
1784 }
1785 
1786 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1787 {
1788 	/*
1789 	 * cgroup is idle if:
1790 	 * - single idle is too long, longer than a fixed value (in case user
1791 	 *   configure a too big threshold) or 4 times of idletime threshold
1792 	 * - average think time is more than threshold
1793 	 * - IO latency is largely below threshold
1794 	 */
1795 	unsigned long time;
1796 	bool ret;
1797 
1798 	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1799 	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1800 	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1801 	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1802 	      tg->avg_idletime > tg->idletime_threshold ||
1803 	      (tg->latency_target && tg->bio_cnt &&
1804 		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1805 	throtl_log(&tg->service_queue,
1806 		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1807 		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1808 		tg->bio_cnt, ret, tg->td->scale);
1809 	return ret;
1810 }
1811 
1812 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1813 {
1814 	struct throtl_service_queue *sq = &tg->service_queue;
1815 	bool read_limit, write_limit;
1816 
1817 	/*
1818 	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1819 	 * reaches), it's ok to upgrade to next limit
1820 	 */
1821 	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1822 	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1823 	if (!read_limit && !write_limit)
1824 		return true;
1825 	if (read_limit && sq->nr_queued[READ] &&
1826 	    (!write_limit || sq->nr_queued[WRITE]))
1827 		return true;
1828 	if (write_limit && sq->nr_queued[WRITE] &&
1829 	    (!read_limit || sq->nr_queued[READ]))
1830 		return true;
1831 
1832 	if (time_after_eq(jiffies,
1833 		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1834 	    throtl_tg_is_idle(tg))
1835 		return true;
1836 	return false;
1837 }
1838 
1839 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1840 {
1841 	while (true) {
1842 		if (throtl_tg_can_upgrade(tg))
1843 			return true;
1844 		tg = sq_to_tg(tg->service_queue.parent_sq);
1845 		if (!tg || !tg_to_blkg(tg)->parent)
1846 			return false;
1847 	}
1848 	return false;
1849 }
1850 
1851 static bool throtl_can_upgrade(struct throtl_data *td,
1852 	struct throtl_grp *this_tg)
1853 {
1854 	struct cgroup_subsys_state *pos_css;
1855 	struct blkcg_gq *blkg;
1856 
1857 	if (td->limit_index != LIMIT_LOW)
1858 		return false;
1859 
1860 	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1861 		return false;
1862 
1863 	rcu_read_lock();
1864 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1865 		struct throtl_grp *tg = blkg_to_tg(blkg);
1866 
1867 		if (tg == this_tg)
1868 			continue;
1869 		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1870 			continue;
1871 		if (!throtl_hierarchy_can_upgrade(tg)) {
1872 			rcu_read_unlock();
1873 			return false;
1874 		}
1875 	}
1876 	rcu_read_unlock();
1877 	return true;
1878 }
1879 
1880 static void throtl_upgrade_check(struct throtl_grp *tg)
1881 {
1882 	unsigned long now = jiffies;
1883 
1884 	if (tg->td->limit_index != LIMIT_LOW)
1885 		return;
1886 
1887 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1888 		return;
1889 
1890 	tg->last_check_time = now;
1891 
1892 	if (!time_after_eq(now,
1893 	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1894 		return;
1895 
1896 	if (throtl_can_upgrade(tg->td, NULL))
1897 		throtl_upgrade_state(tg->td);
1898 }
1899 
1900 static void throtl_upgrade_state(struct throtl_data *td)
1901 {
1902 	struct cgroup_subsys_state *pos_css;
1903 	struct blkcg_gq *blkg;
1904 
1905 	throtl_log(&td->service_queue, "upgrade to max");
1906 	td->limit_index = LIMIT_MAX;
1907 	td->low_upgrade_time = jiffies;
1908 	td->scale = 0;
1909 	rcu_read_lock();
1910 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1911 		struct throtl_grp *tg = blkg_to_tg(blkg);
1912 		struct throtl_service_queue *sq = &tg->service_queue;
1913 
1914 		tg->disptime = jiffies - 1;
1915 		throtl_select_dispatch(sq);
1916 		throtl_schedule_next_dispatch(sq, false);
1917 	}
1918 	rcu_read_unlock();
1919 	throtl_select_dispatch(&td->service_queue);
1920 	throtl_schedule_next_dispatch(&td->service_queue, false);
1921 	queue_work(kthrotld_workqueue, &td->dispatch_work);
1922 }
1923 
1924 static void throtl_downgrade_state(struct throtl_data *td, int new)
1925 {
1926 	td->scale /= 2;
1927 
1928 	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1929 	if (td->scale) {
1930 		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1931 		return;
1932 	}
1933 
1934 	td->limit_index = new;
1935 	td->low_downgrade_time = jiffies;
1936 }
1937 
1938 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1939 {
1940 	struct throtl_data *td = tg->td;
1941 	unsigned long now = jiffies;
1942 
1943 	/*
1944 	 * If cgroup is below low limit, consider downgrade and throttle other
1945 	 * cgroups
1946 	 */
1947 	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1948 	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1949 					td->throtl_slice) &&
1950 	    (!throtl_tg_is_idle(tg) ||
1951 	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1952 		return true;
1953 	return false;
1954 }
1955 
1956 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1957 {
1958 	while (true) {
1959 		if (!throtl_tg_can_downgrade(tg))
1960 			return false;
1961 		tg = sq_to_tg(tg->service_queue.parent_sq);
1962 		if (!tg || !tg_to_blkg(tg)->parent)
1963 			break;
1964 	}
1965 	return true;
1966 }
1967 
1968 static void throtl_downgrade_check(struct throtl_grp *tg)
1969 {
1970 	uint64_t bps;
1971 	unsigned int iops;
1972 	unsigned long elapsed_time;
1973 	unsigned long now = jiffies;
1974 
1975 	if (tg->td->limit_index != LIMIT_MAX ||
1976 	    !tg->td->limit_valid[LIMIT_LOW])
1977 		return;
1978 	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1979 		return;
1980 	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1981 		return;
1982 
1983 	elapsed_time = now - tg->last_check_time;
1984 	tg->last_check_time = now;
1985 
1986 	if (time_before(now, tg_last_low_overflow_time(tg) +
1987 			tg->td->throtl_slice))
1988 		return;
1989 
1990 	if (tg->bps[READ][LIMIT_LOW]) {
1991 		bps = tg->last_bytes_disp[READ] * HZ;
1992 		do_div(bps, elapsed_time);
1993 		if (bps >= tg->bps[READ][LIMIT_LOW])
1994 			tg->last_low_overflow_time[READ] = now;
1995 	}
1996 
1997 	if (tg->bps[WRITE][LIMIT_LOW]) {
1998 		bps = tg->last_bytes_disp[WRITE] * HZ;
1999 		do_div(bps, elapsed_time);
2000 		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2001 			tg->last_low_overflow_time[WRITE] = now;
2002 	}
2003 
2004 	if (tg->iops[READ][LIMIT_LOW]) {
2005 		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2006 		if (iops >= tg->iops[READ][LIMIT_LOW])
2007 			tg->last_low_overflow_time[READ] = now;
2008 	}
2009 
2010 	if (tg->iops[WRITE][LIMIT_LOW]) {
2011 		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2012 		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2013 			tg->last_low_overflow_time[WRITE] = now;
2014 	}
2015 
2016 	/*
2017 	 * If cgroup is below low limit, consider downgrade and throttle other
2018 	 * cgroups
2019 	 */
2020 	if (throtl_hierarchy_can_downgrade(tg))
2021 		throtl_downgrade_state(tg->td, LIMIT_LOW);
2022 
2023 	tg->last_bytes_disp[READ] = 0;
2024 	tg->last_bytes_disp[WRITE] = 0;
2025 	tg->last_io_disp[READ] = 0;
2026 	tg->last_io_disp[WRITE] = 0;
2027 }
2028 
2029 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2030 {
2031 	unsigned long now = ktime_get_ns() >> 10;
2032 	unsigned long last_finish_time = tg->last_finish_time;
2033 
2034 	if (now <= last_finish_time || last_finish_time == 0 ||
2035 	    last_finish_time == tg->checked_last_finish_time)
2036 		return;
2037 
2038 	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2039 	tg->checked_last_finish_time = last_finish_time;
2040 }
2041 
2042 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2043 static void throtl_update_latency_buckets(struct throtl_data *td)
2044 {
2045 	struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
2046 	int i, cpu;
2047 	unsigned long last_latency = 0;
2048 	unsigned long latency;
2049 
2050 	if (!blk_queue_nonrot(td->queue))
2051 		return;
2052 	if (time_before(jiffies, td->last_calculate_time + HZ))
2053 		return;
2054 	td->last_calculate_time = jiffies;
2055 
2056 	memset(avg_latency, 0, sizeof(avg_latency));
2057 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2058 		struct latency_bucket *tmp = &td->tmp_buckets[i];
2059 
2060 		for_each_possible_cpu(cpu) {
2061 			struct latency_bucket *bucket;
2062 
2063 			/* this isn't race free, but ok in practice */
2064 			bucket = per_cpu_ptr(td->latency_buckets, cpu);
2065 			tmp->total_latency += bucket[i].total_latency;
2066 			tmp->samples += bucket[i].samples;
2067 			bucket[i].total_latency = 0;
2068 			bucket[i].samples = 0;
2069 		}
2070 
2071 		if (tmp->samples >= 32) {
2072 			int samples = tmp->samples;
2073 
2074 			latency = tmp->total_latency;
2075 
2076 			tmp->total_latency = 0;
2077 			tmp->samples = 0;
2078 			latency /= samples;
2079 			if (latency == 0)
2080 				continue;
2081 			avg_latency[i].latency = latency;
2082 		}
2083 	}
2084 
2085 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2086 		if (!avg_latency[i].latency) {
2087 			if (td->avg_buckets[i].latency < last_latency)
2088 				td->avg_buckets[i].latency = last_latency;
2089 			continue;
2090 		}
2091 
2092 		if (!td->avg_buckets[i].valid)
2093 			latency = avg_latency[i].latency;
2094 		else
2095 			latency = (td->avg_buckets[i].latency * 7 +
2096 				avg_latency[i].latency) >> 3;
2097 
2098 		td->avg_buckets[i].latency = max(latency, last_latency);
2099 		td->avg_buckets[i].valid = true;
2100 		last_latency = td->avg_buckets[i].latency;
2101 	}
2102 
2103 	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2104 		throtl_log(&td->service_queue,
2105 			"Latency bucket %d: latency=%ld, valid=%d", i,
2106 			td->avg_buckets[i].latency, td->avg_buckets[i].valid);
2107 }
2108 #else
2109 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2110 {
2111 }
2112 #endif
2113 
2114 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2115 {
2116 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2117 	int ret;
2118 
2119 	ret = bio_associate_current(bio);
2120 	if (ret == 0 || ret == -EBUSY)
2121 		bio->bi_cg_private = tg;
2122 	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2123 #else
2124 	bio_associate_current(bio);
2125 #endif
2126 }
2127 
2128 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2129 		    struct bio *bio)
2130 {
2131 	struct throtl_qnode *qn = NULL;
2132 	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2133 	struct throtl_service_queue *sq;
2134 	bool rw = bio_data_dir(bio);
2135 	bool throttled = false;
2136 	struct throtl_data *td = tg->td;
2137 
2138 	WARN_ON_ONCE(!rcu_read_lock_held());
2139 
2140 	/* see throtl_charge_bio() */
2141 	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2142 		goto out;
2143 
2144 	spin_lock_irq(q->queue_lock);
2145 
2146 	throtl_update_latency_buckets(td);
2147 
2148 	if (unlikely(blk_queue_bypass(q)))
2149 		goto out_unlock;
2150 
2151 	blk_throtl_assoc_bio(tg, bio);
2152 	blk_throtl_update_idletime(tg);
2153 
2154 	sq = &tg->service_queue;
2155 
2156 again:
2157 	while (true) {
2158 		if (tg->last_low_overflow_time[rw] == 0)
2159 			tg->last_low_overflow_time[rw] = jiffies;
2160 		throtl_downgrade_check(tg);
2161 		throtl_upgrade_check(tg);
2162 		/* throtl is FIFO - if bios are already queued, should queue */
2163 		if (sq->nr_queued[rw])
2164 			break;
2165 
2166 		/* if above limits, break to queue */
2167 		if (!tg_may_dispatch(tg, bio, NULL)) {
2168 			tg->last_low_overflow_time[rw] = jiffies;
2169 			if (throtl_can_upgrade(td, tg)) {
2170 				throtl_upgrade_state(td);
2171 				goto again;
2172 			}
2173 			break;
2174 		}
2175 
2176 		/* within limits, let's charge and dispatch directly */
2177 		throtl_charge_bio(tg, bio);
2178 
2179 		/*
2180 		 * We need to trim slice even when bios are not being queued
2181 		 * otherwise it might happen that a bio is not queued for
2182 		 * a long time and slice keeps on extending and trim is not
2183 		 * called for a long time. Now if limits are reduced suddenly
2184 		 * we take into account all the IO dispatched so far at new
2185 		 * low rate and * newly queued IO gets a really long dispatch
2186 		 * time.
2187 		 *
2188 		 * So keep on trimming slice even if bio is not queued.
2189 		 */
2190 		throtl_trim_slice(tg, rw);
2191 
2192 		/*
2193 		 * @bio passed through this layer without being throttled.
2194 		 * Climb up the ladder.  If we''re already at the top, it
2195 		 * can be executed directly.
2196 		 */
2197 		qn = &tg->qnode_on_parent[rw];
2198 		sq = sq->parent_sq;
2199 		tg = sq_to_tg(sq);
2200 		if (!tg)
2201 			goto out_unlock;
2202 	}
2203 
2204 	/* out-of-limit, queue to @tg */
2205 	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2206 		   rw == READ ? 'R' : 'W',
2207 		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2208 		   tg_bps_limit(tg, rw),
2209 		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2210 		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2211 
2212 	tg->last_low_overflow_time[rw] = jiffies;
2213 
2214 	td->nr_queued[rw]++;
2215 	throtl_add_bio_tg(bio, qn, tg);
2216 	throttled = true;
2217 
2218 	/*
2219 	 * Update @tg's dispatch time and force schedule dispatch if @tg
2220 	 * was empty before @bio.  The forced scheduling isn't likely to
2221 	 * cause undue delay as @bio is likely to be dispatched directly if
2222 	 * its @tg's disptime is not in the future.
2223 	 */
2224 	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2225 		tg_update_disptime(tg);
2226 		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2227 	}
2228 
2229 out_unlock:
2230 	spin_unlock_irq(q->queue_lock);
2231 out:
2232 	/*
2233 	 * As multiple blk-throtls may stack in the same issue path, we
2234 	 * don't want bios to leave with the flag set.  Clear the flag if
2235 	 * being issued.
2236 	 */
2237 	if (!throttled)
2238 		bio_clear_flag(bio, BIO_THROTTLED);
2239 
2240 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2241 	if (throttled || !td->track_bio_latency)
2242 		bio->bi_issue_stat.stat |= SKIP_LATENCY;
2243 #endif
2244 	return throttled;
2245 }
2246 
2247 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2248 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2249 	int op, unsigned long time)
2250 {
2251 	struct latency_bucket *latency;
2252 	int index;
2253 
2254 	if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
2255 	    !blk_queue_nonrot(td->queue))
2256 		return;
2257 
2258 	index = request_bucket_index(size);
2259 
2260 	latency = get_cpu_ptr(td->latency_buckets);
2261 	latency[index].total_latency += time;
2262 	latency[index].samples++;
2263 	put_cpu_ptr(td->latency_buckets);
2264 }
2265 
2266 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2267 {
2268 	struct request_queue *q = rq->q;
2269 	struct throtl_data *td = q->td;
2270 
2271 	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2272 		req_op(rq), time_ns >> 10);
2273 }
2274 
2275 void blk_throtl_bio_endio(struct bio *bio)
2276 {
2277 	struct throtl_grp *tg;
2278 	u64 finish_time_ns;
2279 	unsigned long finish_time;
2280 	unsigned long start_time;
2281 	unsigned long lat;
2282 
2283 	tg = bio->bi_cg_private;
2284 	if (!tg)
2285 		return;
2286 	bio->bi_cg_private = NULL;
2287 
2288 	finish_time_ns = ktime_get_ns();
2289 	tg->last_finish_time = finish_time_ns >> 10;
2290 
2291 	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2292 	finish_time = __blk_stat_time(finish_time_ns) >> 10;
2293 	if (!start_time || finish_time <= start_time)
2294 		return;
2295 
2296 	lat = finish_time - start_time;
2297 	/* this is only for bio based driver */
2298 	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2299 		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2300 			bio_op(bio), lat);
2301 
2302 	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2303 		int bucket;
2304 		unsigned int threshold;
2305 
2306 		bucket = request_bucket_index(
2307 			blk_stat_size(&bio->bi_issue_stat));
2308 		threshold = tg->td->avg_buckets[bucket].latency +
2309 			tg->latency_target;
2310 		if (lat > threshold)
2311 			tg->bad_bio_cnt++;
2312 		/*
2313 		 * Not race free, could get wrong count, which means cgroups
2314 		 * will be throttled
2315 		 */
2316 		tg->bio_cnt++;
2317 	}
2318 
2319 	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2320 		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2321 		tg->bio_cnt /= 2;
2322 		tg->bad_bio_cnt /= 2;
2323 	}
2324 }
2325 #endif
2326 
2327 /*
2328  * Dispatch all bios from all children tg's queued on @parent_sq.  On
2329  * return, @parent_sq is guaranteed to not have any active children tg's
2330  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2331  */
2332 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2333 {
2334 	struct throtl_grp *tg;
2335 
2336 	while ((tg = throtl_rb_first(parent_sq))) {
2337 		struct throtl_service_queue *sq = &tg->service_queue;
2338 		struct bio *bio;
2339 
2340 		throtl_dequeue_tg(tg);
2341 
2342 		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2343 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2344 		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2345 			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2346 	}
2347 }
2348 
2349 /**
2350  * blk_throtl_drain - drain throttled bios
2351  * @q: request_queue to drain throttled bios for
2352  *
2353  * Dispatch all currently throttled bios on @q through ->make_request_fn().
2354  */
2355 void blk_throtl_drain(struct request_queue *q)
2356 	__releases(q->queue_lock) __acquires(q->queue_lock)
2357 {
2358 	struct throtl_data *td = q->td;
2359 	struct blkcg_gq *blkg;
2360 	struct cgroup_subsys_state *pos_css;
2361 	struct bio *bio;
2362 	int rw;
2363 
2364 	queue_lockdep_assert_held(q);
2365 	rcu_read_lock();
2366 
2367 	/*
2368 	 * Drain each tg while doing post-order walk on the blkg tree, so
2369 	 * that all bios are propagated to td->service_queue.  It'd be
2370 	 * better to walk service_queue tree directly but blkg walk is
2371 	 * easier.
2372 	 */
2373 	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2374 		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2375 
2376 	/* finally, transfer bios from top-level tg's into the td */
2377 	tg_drain_bios(&td->service_queue);
2378 
2379 	rcu_read_unlock();
2380 	spin_unlock_irq(q->queue_lock);
2381 
2382 	/* all bios now should be in td->service_queue, issue them */
2383 	for (rw = READ; rw <= WRITE; rw++)
2384 		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2385 						NULL)))
2386 			generic_make_request(bio);
2387 
2388 	spin_lock_irq(q->queue_lock);
2389 }
2390 
2391 int blk_throtl_init(struct request_queue *q)
2392 {
2393 	struct throtl_data *td;
2394 	int ret;
2395 
2396 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2397 	if (!td)
2398 		return -ENOMEM;
2399 	td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
2400 		LATENCY_BUCKET_SIZE, __alignof__(u64));
2401 	if (!td->latency_buckets) {
2402 		kfree(td);
2403 		return -ENOMEM;
2404 	}
2405 
2406 	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2407 	throtl_service_queue_init(&td->service_queue);
2408 
2409 	q->td = td;
2410 	td->queue = q;
2411 
2412 	td->limit_valid[LIMIT_MAX] = true;
2413 	td->limit_index = LIMIT_MAX;
2414 	td->low_upgrade_time = jiffies;
2415 	td->low_downgrade_time = jiffies;
2416 
2417 	/* activate policy */
2418 	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2419 	if (ret) {
2420 		free_percpu(td->latency_buckets);
2421 		kfree(td);
2422 	}
2423 	return ret;
2424 }
2425 
2426 void blk_throtl_exit(struct request_queue *q)
2427 {
2428 	BUG_ON(!q->td);
2429 	throtl_shutdown_wq(q);
2430 	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2431 	free_percpu(q->td->latency_buckets);
2432 	kfree(q->td);
2433 }
2434 
2435 void blk_throtl_register_queue(struct request_queue *q)
2436 {
2437 	struct throtl_data *td;
2438 	int i;
2439 
2440 	td = q->td;
2441 	BUG_ON(!td);
2442 
2443 	if (blk_queue_nonrot(q)) {
2444 		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2445 		td->filtered_latency = LATENCY_FILTERED_SSD;
2446 	} else {
2447 		td->throtl_slice = DFL_THROTL_SLICE_HD;
2448 		td->filtered_latency = LATENCY_FILTERED_HD;
2449 		for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2450 			td->avg_buckets[i].latency = DFL_HD_BASELINE_LATENCY;
2451 	}
2452 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2453 	/* if no low limit, use previous default */
2454 	td->throtl_slice = DFL_THROTL_SLICE_HD;
2455 #endif
2456 
2457 	td->track_bio_latency = !q->mq_ops && !q->request_fn;
2458 	if (!td->track_bio_latency)
2459 		blk_stat_enable_accounting(q);
2460 }
2461 
2462 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2463 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2464 {
2465 	if (!q->td)
2466 		return -EINVAL;
2467 	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2468 }
2469 
2470 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2471 	const char *page, size_t count)
2472 {
2473 	unsigned long v;
2474 	unsigned long t;
2475 
2476 	if (!q->td)
2477 		return -EINVAL;
2478 	if (kstrtoul(page, 10, &v))
2479 		return -EINVAL;
2480 	t = msecs_to_jiffies(v);
2481 	if (t == 0 || t > MAX_THROTL_SLICE)
2482 		return -EINVAL;
2483 	q->td->throtl_slice = t;
2484 	return count;
2485 }
2486 #endif
2487 
2488 static int __init throtl_init(void)
2489 {
2490 	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2491 	if (!kthrotld_workqueue)
2492 		panic("Failed to create kthrotld\n");
2493 
2494 	return blkcg_policy_register(&blkcg_policy_throtl);
2495 }
2496 
2497 module_init(throtl_init);
2498