1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include "blk.h" 14 #include "blk-cgroup-rwstat.h" 15 #include "blk-stat.h" 16 #include "blk-throttle.h" 17 18 /* Max dispatch from a group in 1 round */ 19 #define THROTL_GRP_QUANTUM 8 20 21 /* Total max dispatch from all groups in one round */ 22 #define THROTL_QUANTUM 32 23 24 /* Throttling is performed over a slice and after that slice is renewed */ 25 #define DFL_THROTL_SLICE_HD (HZ / 10) 26 #define DFL_THROTL_SLICE_SSD (HZ / 50) 27 #define MAX_THROTL_SLICE (HZ) 28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 29 #define MIN_THROTL_BPS (320 * 1024) 30 #define MIN_THROTL_IOPS (10) 31 #define DFL_LATENCY_TARGET (-1L) 32 #define DFL_IDLE_THRESHOLD (0) 33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 34 #define LATENCY_FILTERED_SSD (0) 35 /* 36 * For HD, very small latency comes from sequential IO. Such IO is helpless to 37 * help determine if its IO is impacted by others, hence we ignore the IO 38 */ 39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 40 41 /* A workqueue to queue throttle related work */ 42 static struct workqueue_struct *kthrotld_workqueue; 43 44 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 45 46 /* We measure latency for request size from <= 4k to >= 1M */ 47 #define LATENCY_BUCKET_SIZE 9 48 49 struct latency_bucket { 50 unsigned long total_latency; /* ns / 1024 */ 51 int samples; 52 }; 53 54 struct avg_latency_bucket { 55 unsigned long latency; /* ns / 1024 */ 56 bool valid; 57 }; 58 59 struct throtl_data 60 { 61 /* service tree for active throtl groups */ 62 struct throtl_service_queue service_queue; 63 64 struct request_queue *queue; 65 66 /* Total Number of queued bios on READ and WRITE lists */ 67 unsigned int nr_queued[2]; 68 69 unsigned int throtl_slice; 70 71 /* Work for dispatching throttled bios */ 72 struct work_struct dispatch_work; 73 unsigned int limit_index; 74 bool limit_valid[LIMIT_CNT]; 75 76 unsigned long low_upgrade_time; 77 unsigned long low_downgrade_time; 78 79 unsigned int scale; 80 81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 83 struct latency_bucket __percpu *latency_buckets[2]; 84 unsigned long last_calculate_time; 85 unsigned long filtered_latency; 86 87 bool track_bio_latency; 88 }; 89 90 static void throtl_pending_timer_fn(struct timer_list *t); 91 92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 93 { 94 return pd_to_blkg(&tg->pd); 95 } 96 97 /** 98 * sq_to_tg - return the throl_grp the specified service queue belongs to 99 * @sq: the throtl_service_queue of interest 100 * 101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 102 * embedded in throtl_data, %NULL is returned. 103 */ 104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 105 { 106 if (sq && sq->parent_sq) 107 return container_of(sq, struct throtl_grp, service_queue); 108 else 109 return NULL; 110 } 111 112 /** 113 * sq_to_td - return throtl_data the specified service queue belongs to 114 * @sq: the throtl_service_queue of interest 115 * 116 * A service_queue can be embedded in either a throtl_grp or throtl_data. 117 * Determine the associated throtl_data accordingly and return it. 118 */ 119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 120 { 121 struct throtl_grp *tg = sq_to_tg(sq); 122 123 if (tg) 124 return tg->td; 125 else 126 return container_of(sq, struct throtl_data, service_queue); 127 } 128 129 /* 130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 131 * make the IO dispatch more smooth. 132 * Scale up: linearly scale up according to lapsed time since upgrade. For 133 * every throtl_slice, the limit scales up 1/2 .low limit till the 134 * limit hits .max limit 135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 136 */ 137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 138 { 139 /* arbitrary value to avoid too big scale */ 140 if (td->scale < 4096 && time_after_eq(jiffies, 141 td->low_upgrade_time + td->scale * td->throtl_slice)) 142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 143 144 return low + (low >> 1) * td->scale; 145 } 146 147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 148 { 149 struct blkcg_gq *blkg = tg_to_blkg(tg); 150 struct throtl_data *td; 151 uint64_t ret; 152 153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 154 return U64_MAX; 155 156 td = tg->td; 157 ret = tg->bps[rw][td->limit_index]; 158 if (ret == 0 && td->limit_index == LIMIT_LOW) { 159 /* intermediate node or iops isn't 0 */ 160 if (!list_empty(&blkg->blkcg->css.children) || 161 tg->iops[rw][td->limit_index]) 162 return U64_MAX; 163 else 164 return MIN_THROTL_BPS; 165 } 166 167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 169 uint64_t adjusted; 170 171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 173 } 174 return ret; 175 } 176 177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 178 { 179 struct blkcg_gq *blkg = tg_to_blkg(tg); 180 struct throtl_data *td; 181 unsigned int ret; 182 183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 184 return UINT_MAX; 185 186 td = tg->td; 187 ret = tg->iops[rw][td->limit_index]; 188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 189 /* intermediate node or bps isn't 0 */ 190 if (!list_empty(&blkg->blkcg->css.children) || 191 tg->bps[rw][td->limit_index]) 192 return UINT_MAX; 193 else 194 return MIN_THROTL_IOPS; 195 } 196 197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 199 uint64_t adjusted; 200 201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 202 if (adjusted > UINT_MAX) 203 adjusted = UINT_MAX; 204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 205 } 206 return ret; 207 } 208 209 #define request_bucket_index(sectors) \ 210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 211 212 /** 213 * throtl_log - log debug message via blktrace 214 * @sq: the service_queue being reported 215 * @fmt: printf format string 216 * @args: printf args 217 * 218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 219 * throtl_grp; otherwise, just "throtl". 220 */ 221 #define throtl_log(sq, fmt, args...) do { \ 222 struct throtl_grp *__tg = sq_to_tg((sq)); \ 223 struct throtl_data *__td = sq_to_td((sq)); \ 224 \ 225 (void)__td; \ 226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 227 break; \ 228 if ((__tg)) { \ 229 blk_add_cgroup_trace_msg(__td->queue, \ 230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\ 231 } else { \ 232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 233 } \ 234 } while (0) 235 236 static inline unsigned int throtl_bio_data_size(struct bio *bio) 237 { 238 /* assume it's one sector */ 239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 240 return 512; 241 return bio->bi_iter.bi_size; 242 } 243 244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 245 { 246 INIT_LIST_HEAD(&qn->node); 247 bio_list_init(&qn->bios); 248 qn->tg = tg; 249 } 250 251 /** 252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 253 * @bio: bio being added 254 * @qn: qnode to add bio to 255 * @queued: the service_queue->queued[] list @qn belongs to 256 * 257 * Add @bio to @qn and put @qn on @queued if it's not already on. 258 * @qn->tg's reference count is bumped when @qn is activated. See the 259 * comment on top of throtl_qnode definition for details. 260 */ 261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 262 struct list_head *queued) 263 { 264 bio_list_add(&qn->bios, bio); 265 if (list_empty(&qn->node)) { 266 list_add_tail(&qn->node, queued); 267 blkg_get(tg_to_blkg(qn->tg)); 268 } 269 } 270 271 /** 272 * throtl_peek_queued - peek the first bio on a qnode list 273 * @queued: the qnode list to peek 274 */ 275 static struct bio *throtl_peek_queued(struct list_head *queued) 276 { 277 struct throtl_qnode *qn; 278 struct bio *bio; 279 280 if (list_empty(queued)) 281 return NULL; 282 283 qn = list_first_entry(queued, struct throtl_qnode, node); 284 bio = bio_list_peek(&qn->bios); 285 WARN_ON_ONCE(!bio); 286 return bio; 287 } 288 289 /** 290 * throtl_pop_queued - pop the first bio form a qnode list 291 * @queued: the qnode list to pop a bio from 292 * @tg_to_put: optional out argument for throtl_grp to put 293 * 294 * Pop the first bio from the qnode list @queued. After popping, the first 295 * qnode is removed from @queued if empty or moved to the end of @queued so 296 * that the popping order is round-robin. 297 * 298 * When the first qnode is removed, its associated throtl_grp should be put 299 * too. If @tg_to_put is NULL, this function automatically puts it; 300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 301 * responsible for putting it. 302 */ 303 static struct bio *throtl_pop_queued(struct list_head *queued, 304 struct throtl_grp **tg_to_put) 305 { 306 struct throtl_qnode *qn; 307 struct bio *bio; 308 309 if (list_empty(queued)) 310 return NULL; 311 312 qn = list_first_entry(queued, struct throtl_qnode, node); 313 bio = bio_list_pop(&qn->bios); 314 WARN_ON_ONCE(!bio); 315 316 if (bio_list_empty(&qn->bios)) { 317 list_del_init(&qn->node); 318 if (tg_to_put) 319 *tg_to_put = qn->tg; 320 else 321 blkg_put(tg_to_blkg(qn->tg)); 322 } else { 323 list_move_tail(&qn->node, queued); 324 } 325 326 return bio; 327 } 328 329 /* init a service_queue, assumes the caller zeroed it */ 330 static void throtl_service_queue_init(struct throtl_service_queue *sq) 331 { 332 INIT_LIST_HEAD(&sq->queued[0]); 333 INIT_LIST_HEAD(&sq->queued[1]); 334 sq->pending_tree = RB_ROOT_CACHED; 335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 336 } 337 338 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, 339 struct request_queue *q, 340 struct blkcg *blkcg) 341 { 342 struct throtl_grp *tg; 343 int rw; 344 345 tg = kzalloc_node(sizeof(*tg), gfp, q->node); 346 if (!tg) 347 return NULL; 348 349 if (blkg_rwstat_init(&tg->stat_bytes, gfp)) 350 goto err_free_tg; 351 352 if (blkg_rwstat_init(&tg->stat_ios, gfp)) 353 goto err_exit_stat_bytes; 354 355 throtl_service_queue_init(&tg->service_queue); 356 357 for (rw = READ; rw <= WRITE; rw++) { 358 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 359 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 360 } 361 362 RB_CLEAR_NODE(&tg->rb_node); 363 tg->bps[READ][LIMIT_MAX] = U64_MAX; 364 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 365 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 366 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 367 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 368 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 369 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 370 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 371 /* LIMIT_LOW will have default value 0 */ 372 373 tg->latency_target = DFL_LATENCY_TARGET; 374 tg->latency_target_conf = DFL_LATENCY_TARGET; 375 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 376 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 377 378 return &tg->pd; 379 380 err_exit_stat_bytes: 381 blkg_rwstat_exit(&tg->stat_bytes); 382 err_free_tg: 383 kfree(tg); 384 return NULL; 385 } 386 387 static void throtl_pd_init(struct blkg_policy_data *pd) 388 { 389 struct throtl_grp *tg = pd_to_tg(pd); 390 struct blkcg_gq *blkg = tg_to_blkg(tg); 391 struct throtl_data *td = blkg->q->td; 392 struct throtl_service_queue *sq = &tg->service_queue; 393 394 /* 395 * If on the default hierarchy, we switch to properly hierarchical 396 * behavior where limits on a given throtl_grp are applied to the 397 * whole subtree rather than just the group itself. e.g. If 16M 398 * read_bps limit is set on the root group, the whole system can't 399 * exceed 16M for the device. 400 * 401 * If not on the default hierarchy, the broken flat hierarchy 402 * behavior is retained where all throtl_grps are treated as if 403 * they're all separate root groups right below throtl_data. 404 * Limits of a group don't interact with limits of other groups 405 * regardless of the position of the group in the hierarchy. 406 */ 407 sq->parent_sq = &td->service_queue; 408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 410 tg->td = td; 411 } 412 413 /* 414 * Set has_rules[] if @tg or any of its parents have limits configured. 415 * This doesn't require walking up to the top of the hierarchy as the 416 * parent's has_rules[] is guaranteed to be correct. 417 */ 418 static void tg_update_has_rules(struct throtl_grp *tg) 419 { 420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 421 struct throtl_data *td = tg->td; 422 int rw; 423 int has_iops_limit = 0; 424 425 for (rw = READ; rw <= WRITE; rw++) { 426 unsigned int iops_limit = tg_iops_limit(tg, rw); 427 428 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) || 429 (td->limit_valid[td->limit_index] && 430 (tg_bps_limit(tg, rw) != U64_MAX || 431 iops_limit != UINT_MAX)); 432 433 if (iops_limit != UINT_MAX) 434 has_iops_limit = 1; 435 } 436 437 if (has_iops_limit) 438 tg->flags |= THROTL_TG_HAS_IOPS_LIMIT; 439 else 440 tg->flags &= ~THROTL_TG_HAS_IOPS_LIMIT; 441 } 442 443 static void throtl_pd_online(struct blkg_policy_data *pd) 444 { 445 struct throtl_grp *tg = pd_to_tg(pd); 446 /* 447 * We don't want new groups to escape the limits of its ancestors. 448 * Update has_rules[] after a new group is brought online. 449 */ 450 tg_update_has_rules(tg); 451 } 452 453 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 454 static void blk_throtl_update_limit_valid(struct throtl_data *td) 455 { 456 struct cgroup_subsys_state *pos_css; 457 struct blkcg_gq *blkg; 458 bool low_valid = false; 459 460 rcu_read_lock(); 461 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 462 struct throtl_grp *tg = blkg_to_tg(blkg); 463 464 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 465 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { 466 low_valid = true; 467 break; 468 } 469 } 470 rcu_read_unlock(); 471 472 td->limit_valid[LIMIT_LOW] = low_valid; 473 } 474 #else 475 static inline void blk_throtl_update_limit_valid(struct throtl_data *td) 476 { 477 } 478 #endif 479 480 static void throtl_upgrade_state(struct throtl_data *td); 481 static void throtl_pd_offline(struct blkg_policy_data *pd) 482 { 483 struct throtl_grp *tg = pd_to_tg(pd); 484 485 tg->bps[READ][LIMIT_LOW] = 0; 486 tg->bps[WRITE][LIMIT_LOW] = 0; 487 tg->iops[READ][LIMIT_LOW] = 0; 488 tg->iops[WRITE][LIMIT_LOW] = 0; 489 490 blk_throtl_update_limit_valid(tg->td); 491 492 if (!tg->td->limit_valid[tg->td->limit_index]) 493 throtl_upgrade_state(tg->td); 494 } 495 496 static void throtl_pd_free(struct blkg_policy_data *pd) 497 { 498 struct throtl_grp *tg = pd_to_tg(pd); 499 500 del_timer_sync(&tg->service_queue.pending_timer); 501 blkg_rwstat_exit(&tg->stat_bytes); 502 blkg_rwstat_exit(&tg->stat_ios); 503 kfree(tg); 504 } 505 506 static struct throtl_grp * 507 throtl_rb_first(struct throtl_service_queue *parent_sq) 508 { 509 struct rb_node *n; 510 511 n = rb_first_cached(&parent_sq->pending_tree); 512 WARN_ON_ONCE(!n); 513 if (!n) 514 return NULL; 515 return rb_entry_tg(n); 516 } 517 518 static void throtl_rb_erase(struct rb_node *n, 519 struct throtl_service_queue *parent_sq) 520 { 521 rb_erase_cached(n, &parent_sq->pending_tree); 522 RB_CLEAR_NODE(n); 523 --parent_sq->nr_pending; 524 } 525 526 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 527 { 528 struct throtl_grp *tg; 529 530 tg = throtl_rb_first(parent_sq); 531 if (!tg) 532 return; 533 534 parent_sq->first_pending_disptime = tg->disptime; 535 } 536 537 static void tg_service_queue_add(struct throtl_grp *tg) 538 { 539 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 540 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 541 struct rb_node *parent = NULL; 542 struct throtl_grp *__tg; 543 unsigned long key = tg->disptime; 544 bool leftmost = true; 545 546 while (*node != NULL) { 547 parent = *node; 548 __tg = rb_entry_tg(parent); 549 550 if (time_before(key, __tg->disptime)) 551 node = &parent->rb_left; 552 else { 553 node = &parent->rb_right; 554 leftmost = false; 555 } 556 } 557 558 rb_link_node(&tg->rb_node, parent, node); 559 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 560 leftmost); 561 } 562 563 static void throtl_enqueue_tg(struct throtl_grp *tg) 564 { 565 if (!(tg->flags & THROTL_TG_PENDING)) { 566 tg_service_queue_add(tg); 567 tg->flags |= THROTL_TG_PENDING; 568 tg->service_queue.parent_sq->nr_pending++; 569 } 570 } 571 572 static void throtl_dequeue_tg(struct throtl_grp *tg) 573 { 574 if (tg->flags & THROTL_TG_PENDING) { 575 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 576 tg->flags &= ~THROTL_TG_PENDING; 577 } 578 } 579 580 /* Call with queue lock held */ 581 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 582 unsigned long expires) 583 { 584 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 585 586 /* 587 * Since we are adjusting the throttle limit dynamically, the sleep 588 * time calculated according to previous limit might be invalid. It's 589 * possible the cgroup sleep time is very long and no other cgroups 590 * have IO running so notify the limit changes. Make sure the cgroup 591 * doesn't sleep too long to avoid the missed notification. 592 */ 593 if (time_after(expires, max_expire)) 594 expires = max_expire; 595 mod_timer(&sq->pending_timer, expires); 596 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 597 expires - jiffies, jiffies); 598 } 599 600 /** 601 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 602 * @sq: the service_queue to schedule dispatch for 603 * @force: force scheduling 604 * 605 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 606 * dispatch time of the first pending child. Returns %true if either timer 607 * is armed or there's no pending child left. %false if the current 608 * dispatch window is still open and the caller should continue 609 * dispatching. 610 * 611 * If @force is %true, the dispatch timer is always scheduled and this 612 * function is guaranteed to return %true. This is to be used when the 613 * caller can't dispatch itself and needs to invoke pending_timer 614 * unconditionally. Note that forced scheduling is likely to induce short 615 * delay before dispatch starts even if @sq->first_pending_disptime is not 616 * in the future and thus shouldn't be used in hot paths. 617 */ 618 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 619 bool force) 620 { 621 /* any pending children left? */ 622 if (!sq->nr_pending) 623 return true; 624 625 update_min_dispatch_time(sq); 626 627 /* is the next dispatch time in the future? */ 628 if (force || time_after(sq->first_pending_disptime, jiffies)) { 629 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 630 return true; 631 } 632 633 /* tell the caller to continue dispatching */ 634 return false; 635 } 636 637 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 638 bool rw, unsigned long start) 639 { 640 tg->bytes_disp[rw] = 0; 641 tg->io_disp[rw] = 0; 642 643 /* 644 * Previous slice has expired. We must have trimmed it after last 645 * bio dispatch. That means since start of last slice, we never used 646 * that bandwidth. Do try to make use of that bandwidth while giving 647 * credit. 648 */ 649 if (time_after_eq(start, tg->slice_start[rw])) 650 tg->slice_start[rw] = start; 651 652 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 653 throtl_log(&tg->service_queue, 654 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 655 rw == READ ? 'R' : 'W', tg->slice_start[rw], 656 tg->slice_end[rw], jiffies); 657 } 658 659 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw) 660 { 661 tg->bytes_disp[rw] = 0; 662 tg->io_disp[rw] = 0; 663 tg->slice_start[rw] = jiffies; 664 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 665 666 throtl_log(&tg->service_queue, 667 "[%c] new slice start=%lu end=%lu jiffies=%lu", 668 rw == READ ? 'R' : 'W', tg->slice_start[rw], 669 tg->slice_end[rw], jiffies); 670 } 671 672 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 673 unsigned long jiffy_end) 674 { 675 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 676 } 677 678 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 679 unsigned long jiffy_end) 680 { 681 throtl_set_slice_end(tg, rw, jiffy_end); 682 throtl_log(&tg->service_queue, 683 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 684 rw == READ ? 'R' : 'W', tg->slice_start[rw], 685 tg->slice_end[rw], jiffies); 686 } 687 688 /* Determine if previously allocated or extended slice is complete or not */ 689 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 690 { 691 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 692 return false; 693 694 return true; 695 } 696 697 /* Trim the used slices and adjust slice start accordingly */ 698 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 699 { 700 unsigned long nr_slices, time_elapsed, io_trim; 701 u64 bytes_trim, tmp; 702 703 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 704 705 /* 706 * If bps are unlimited (-1), then time slice don't get 707 * renewed. Don't try to trim the slice if slice is used. A new 708 * slice will start when appropriate. 709 */ 710 if (throtl_slice_used(tg, rw)) 711 return; 712 713 /* 714 * A bio has been dispatched. Also adjust slice_end. It might happen 715 * that initially cgroup limit was very low resulting in high 716 * slice_end, but later limit was bumped up and bio was dispatched 717 * sooner, then we need to reduce slice_end. A high bogus slice_end 718 * is bad because it does not allow new slice to start. 719 */ 720 721 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 722 723 time_elapsed = jiffies - tg->slice_start[rw]; 724 725 nr_slices = time_elapsed / tg->td->throtl_slice; 726 727 if (!nr_slices) 728 return; 729 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices; 730 do_div(tmp, HZ); 731 bytes_trim = tmp; 732 733 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) / 734 HZ; 735 736 if (!bytes_trim && !io_trim) 737 return; 738 739 if (tg->bytes_disp[rw] >= bytes_trim) 740 tg->bytes_disp[rw] -= bytes_trim; 741 else 742 tg->bytes_disp[rw] = 0; 743 744 if (tg->io_disp[rw] >= io_trim) 745 tg->io_disp[rw] -= io_trim; 746 else 747 tg->io_disp[rw] = 0; 748 749 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice; 750 751 throtl_log(&tg->service_queue, 752 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu", 753 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim, 754 tg->slice_start[rw], tg->slice_end[rw], jiffies); 755 } 756 757 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, 758 u32 iops_limit, unsigned long *wait) 759 { 760 bool rw = bio_data_dir(bio); 761 unsigned int io_allowed; 762 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 763 u64 tmp; 764 765 if (iops_limit == UINT_MAX) { 766 if (wait) 767 *wait = 0; 768 return true; 769 } 770 771 jiffy_elapsed = jiffies - tg->slice_start[rw]; 772 773 /* Round up to the next throttle slice, wait time must be nonzero */ 774 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); 775 776 /* 777 * jiffy_elapsed_rnd should not be a big value as minimum iops can be 778 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 779 * will allow dispatch after 1 second and after that slice should 780 * have been trimmed. 781 */ 782 783 tmp = (u64)iops_limit * jiffy_elapsed_rnd; 784 do_div(tmp, HZ); 785 786 if (tmp > UINT_MAX) 787 io_allowed = UINT_MAX; 788 else 789 io_allowed = tmp; 790 791 if (tg->io_disp[rw] + 1 <= io_allowed) { 792 if (wait) 793 *wait = 0; 794 return true; 795 } 796 797 /* Calc approx time to dispatch */ 798 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 799 800 if (wait) 801 *wait = jiffy_wait; 802 return false; 803 } 804 805 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, 806 u64 bps_limit, unsigned long *wait) 807 { 808 bool rw = bio_data_dir(bio); 809 u64 bytes_allowed, extra_bytes, tmp; 810 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 811 unsigned int bio_size = throtl_bio_data_size(bio); 812 813 /* no need to throttle if this bio's bytes have been accounted */ 814 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_THROTTLED)) { 815 if (wait) 816 *wait = 0; 817 return true; 818 } 819 820 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 821 822 /* Slice has just started. Consider one slice interval */ 823 if (!jiffy_elapsed) 824 jiffy_elapsed_rnd = tg->td->throtl_slice; 825 826 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 827 828 tmp = bps_limit * jiffy_elapsed_rnd; 829 do_div(tmp, HZ); 830 bytes_allowed = tmp; 831 832 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { 833 if (wait) 834 *wait = 0; 835 return true; 836 } 837 838 /* Calc approx time to dispatch */ 839 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 840 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); 841 842 if (!jiffy_wait) 843 jiffy_wait = 1; 844 845 /* 846 * This wait time is without taking into consideration the rounding 847 * up we did. Add that time also. 848 */ 849 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 850 if (wait) 851 *wait = jiffy_wait; 852 return false; 853 } 854 855 /* 856 * Returns whether one can dispatch a bio or not. Also returns approx number 857 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 858 */ 859 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 860 unsigned long *wait) 861 { 862 bool rw = bio_data_dir(bio); 863 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 864 u64 bps_limit = tg_bps_limit(tg, rw); 865 u32 iops_limit = tg_iops_limit(tg, rw); 866 867 /* 868 * Currently whole state machine of group depends on first bio 869 * queued in the group bio list. So one should not be calling 870 * this function with a different bio if there are other bios 871 * queued. 872 */ 873 BUG_ON(tg->service_queue.nr_queued[rw] && 874 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 875 876 /* If tg->bps = -1, then BW is unlimited */ 877 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) || 878 tg->flags & THROTL_TG_CANCELING) { 879 if (wait) 880 *wait = 0; 881 return true; 882 } 883 884 /* 885 * If previous slice expired, start a new one otherwise renew/extend 886 * existing slice to make sure it is at least throtl_slice interval 887 * long since now. New slice is started only for empty throttle group. 888 * If there is queued bio, that means there should be an active 889 * slice and it should be extended instead. 890 */ 891 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 892 throtl_start_new_slice(tg, rw); 893 else { 894 if (time_before(tg->slice_end[rw], 895 jiffies + tg->td->throtl_slice)) 896 throtl_extend_slice(tg, rw, 897 jiffies + tg->td->throtl_slice); 898 } 899 900 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) && 901 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) { 902 if (wait) 903 *wait = 0; 904 return true; 905 } 906 907 max_wait = max(bps_wait, iops_wait); 908 909 if (wait) 910 *wait = max_wait; 911 912 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 913 throtl_extend_slice(tg, rw, jiffies + max_wait); 914 915 return false; 916 } 917 918 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 919 { 920 bool rw = bio_data_dir(bio); 921 unsigned int bio_size = throtl_bio_data_size(bio); 922 923 /* Charge the bio to the group */ 924 if (!bio_flagged(bio, BIO_THROTTLED)) { 925 tg->bytes_disp[rw] += bio_size; 926 tg->last_bytes_disp[rw] += bio_size; 927 } 928 929 tg->io_disp[rw]++; 930 tg->last_io_disp[rw]++; 931 932 /* 933 * BIO_THROTTLED is used to prevent the same bio to be throttled 934 * more than once as a throttled bio will go through blk-throtl the 935 * second time when it eventually gets issued. Set it when a bio 936 * is being charged to a tg. 937 */ 938 if (!bio_flagged(bio, BIO_THROTTLED)) 939 bio_set_flag(bio, BIO_THROTTLED); 940 } 941 942 /** 943 * throtl_add_bio_tg - add a bio to the specified throtl_grp 944 * @bio: bio to add 945 * @qn: qnode to use 946 * @tg: the target throtl_grp 947 * 948 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 949 * tg->qnode_on_self[] is used. 950 */ 951 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 952 struct throtl_grp *tg) 953 { 954 struct throtl_service_queue *sq = &tg->service_queue; 955 bool rw = bio_data_dir(bio); 956 957 if (!qn) 958 qn = &tg->qnode_on_self[rw]; 959 960 /* 961 * If @tg doesn't currently have any bios queued in the same 962 * direction, queueing @bio can change when @tg should be 963 * dispatched. Mark that @tg was empty. This is automatically 964 * cleared on the next tg_update_disptime(). 965 */ 966 if (!sq->nr_queued[rw]) 967 tg->flags |= THROTL_TG_WAS_EMPTY; 968 969 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 970 971 sq->nr_queued[rw]++; 972 throtl_enqueue_tg(tg); 973 } 974 975 static void tg_update_disptime(struct throtl_grp *tg) 976 { 977 struct throtl_service_queue *sq = &tg->service_queue; 978 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 979 struct bio *bio; 980 981 bio = throtl_peek_queued(&sq->queued[READ]); 982 if (bio) 983 tg_may_dispatch(tg, bio, &read_wait); 984 985 bio = throtl_peek_queued(&sq->queued[WRITE]); 986 if (bio) 987 tg_may_dispatch(tg, bio, &write_wait); 988 989 min_wait = min(read_wait, write_wait); 990 disptime = jiffies + min_wait; 991 992 /* Update dispatch time */ 993 throtl_dequeue_tg(tg); 994 tg->disptime = disptime; 995 throtl_enqueue_tg(tg); 996 997 /* see throtl_add_bio_tg() */ 998 tg->flags &= ~THROTL_TG_WAS_EMPTY; 999 } 1000 1001 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1002 struct throtl_grp *parent_tg, bool rw) 1003 { 1004 if (throtl_slice_used(parent_tg, rw)) { 1005 throtl_start_new_slice_with_credit(parent_tg, rw, 1006 child_tg->slice_start[rw]); 1007 } 1008 1009 } 1010 1011 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1012 { 1013 struct throtl_service_queue *sq = &tg->service_queue; 1014 struct throtl_service_queue *parent_sq = sq->parent_sq; 1015 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1016 struct throtl_grp *tg_to_put = NULL; 1017 struct bio *bio; 1018 1019 /* 1020 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1021 * from @tg may put its reference and @parent_sq might end up 1022 * getting released prematurely. Remember the tg to put and put it 1023 * after @bio is transferred to @parent_sq. 1024 */ 1025 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1026 sq->nr_queued[rw]--; 1027 1028 throtl_charge_bio(tg, bio); 1029 1030 /* 1031 * If our parent is another tg, we just need to transfer @bio to 1032 * the parent using throtl_add_bio_tg(). If our parent is 1033 * @td->service_queue, @bio is ready to be issued. Put it on its 1034 * bio_lists[] and decrease total number queued. The caller is 1035 * responsible for issuing these bios. 1036 */ 1037 if (parent_tg) { 1038 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1039 start_parent_slice_with_credit(tg, parent_tg, rw); 1040 } else { 1041 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1042 &parent_sq->queued[rw]); 1043 BUG_ON(tg->td->nr_queued[rw] <= 0); 1044 tg->td->nr_queued[rw]--; 1045 } 1046 1047 throtl_trim_slice(tg, rw); 1048 1049 if (tg_to_put) 1050 blkg_put(tg_to_blkg(tg_to_put)); 1051 } 1052 1053 static int throtl_dispatch_tg(struct throtl_grp *tg) 1054 { 1055 struct throtl_service_queue *sq = &tg->service_queue; 1056 unsigned int nr_reads = 0, nr_writes = 0; 1057 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; 1058 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; 1059 struct bio *bio; 1060 1061 /* Try to dispatch 75% READS and 25% WRITES */ 1062 1063 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1064 tg_may_dispatch(tg, bio, NULL)) { 1065 1066 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1067 nr_reads++; 1068 1069 if (nr_reads >= max_nr_reads) 1070 break; 1071 } 1072 1073 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1074 tg_may_dispatch(tg, bio, NULL)) { 1075 1076 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1077 nr_writes++; 1078 1079 if (nr_writes >= max_nr_writes) 1080 break; 1081 } 1082 1083 return nr_reads + nr_writes; 1084 } 1085 1086 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1087 { 1088 unsigned int nr_disp = 0; 1089 1090 while (1) { 1091 struct throtl_grp *tg; 1092 struct throtl_service_queue *sq; 1093 1094 if (!parent_sq->nr_pending) 1095 break; 1096 1097 tg = throtl_rb_first(parent_sq); 1098 if (!tg) 1099 break; 1100 1101 if (time_before(jiffies, tg->disptime)) 1102 break; 1103 1104 throtl_dequeue_tg(tg); 1105 1106 nr_disp += throtl_dispatch_tg(tg); 1107 1108 sq = &tg->service_queue; 1109 if (sq->nr_queued[0] || sq->nr_queued[1]) 1110 tg_update_disptime(tg); 1111 1112 if (nr_disp >= THROTL_QUANTUM) 1113 break; 1114 } 1115 1116 return nr_disp; 1117 } 1118 1119 static bool throtl_can_upgrade(struct throtl_data *td, 1120 struct throtl_grp *this_tg); 1121 /** 1122 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1123 * @t: the pending_timer member of the throtl_service_queue being serviced 1124 * 1125 * This timer is armed when a child throtl_grp with active bio's become 1126 * pending and queued on the service_queue's pending_tree and expires when 1127 * the first child throtl_grp should be dispatched. This function 1128 * dispatches bio's from the children throtl_grps to the parent 1129 * service_queue. 1130 * 1131 * If the parent's parent is another throtl_grp, dispatching is propagated 1132 * by either arming its pending_timer or repeating dispatch directly. If 1133 * the top-level service_tree is reached, throtl_data->dispatch_work is 1134 * kicked so that the ready bio's are issued. 1135 */ 1136 static void throtl_pending_timer_fn(struct timer_list *t) 1137 { 1138 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1139 struct throtl_grp *tg = sq_to_tg(sq); 1140 struct throtl_data *td = sq_to_td(sq); 1141 struct throtl_service_queue *parent_sq; 1142 struct request_queue *q; 1143 bool dispatched; 1144 int ret; 1145 1146 /* throtl_data may be gone, so figure out request queue by blkg */ 1147 if (tg) 1148 q = tg->pd.blkg->q; 1149 else 1150 q = td->queue; 1151 1152 spin_lock_irq(&q->queue_lock); 1153 1154 if (!q->root_blkg) 1155 goto out_unlock; 1156 1157 if (throtl_can_upgrade(td, NULL)) 1158 throtl_upgrade_state(td); 1159 1160 again: 1161 parent_sq = sq->parent_sq; 1162 dispatched = false; 1163 1164 while (true) { 1165 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1166 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1167 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1168 1169 ret = throtl_select_dispatch(sq); 1170 if (ret) { 1171 throtl_log(sq, "bios disp=%u", ret); 1172 dispatched = true; 1173 } 1174 1175 if (throtl_schedule_next_dispatch(sq, false)) 1176 break; 1177 1178 /* this dispatch windows is still open, relax and repeat */ 1179 spin_unlock_irq(&q->queue_lock); 1180 cpu_relax(); 1181 spin_lock_irq(&q->queue_lock); 1182 } 1183 1184 if (!dispatched) 1185 goto out_unlock; 1186 1187 if (parent_sq) { 1188 /* @parent_sq is another throl_grp, propagate dispatch */ 1189 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1190 tg_update_disptime(tg); 1191 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1192 /* window is already open, repeat dispatching */ 1193 sq = parent_sq; 1194 tg = sq_to_tg(sq); 1195 goto again; 1196 } 1197 } 1198 } else { 1199 /* reached the top-level, queue issuing */ 1200 queue_work(kthrotld_workqueue, &td->dispatch_work); 1201 } 1202 out_unlock: 1203 spin_unlock_irq(&q->queue_lock); 1204 } 1205 1206 /** 1207 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1208 * @work: work item being executed 1209 * 1210 * This function is queued for execution when bios reach the bio_lists[] 1211 * of throtl_data->service_queue. Those bios are ready and issued by this 1212 * function. 1213 */ 1214 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1215 { 1216 struct throtl_data *td = container_of(work, struct throtl_data, 1217 dispatch_work); 1218 struct throtl_service_queue *td_sq = &td->service_queue; 1219 struct request_queue *q = td->queue; 1220 struct bio_list bio_list_on_stack; 1221 struct bio *bio; 1222 struct blk_plug plug; 1223 int rw; 1224 1225 bio_list_init(&bio_list_on_stack); 1226 1227 spin_lock_irq(&q->queue_lock); 1228 for (rw = READ; rw <= WRITE; rw++) 1229 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1230 bio_list_add(&bio_list_on_stack, bio); 1231 spin_unlock_irq(&q->queue_lock); 1232 1233 if (!bio_list_empty(&bio_list_on_stack)) { 1234 blk_start_plug(&plug); 1235 while ((bio = bio_list_pop(&bio_list_on_stack))) 1236 submit_bio_noacct_nocheck(bio); 1237 blk_finish_plug(&plug); 1238 } 1239 } 1240 1241 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1242 int off) 1243 { 1244 struct throtl_grp *tg = pd_to_tg(pd); 1245 u64 v = *(u64 *)((void *)tg + off); 1246 1247 if (v == U64_MAX) 1248 return 0; 1249 return __blkg_prfill_u64(sf, pd, v); 1250 } 1251 1252 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1253 int off) 1254 { 1255 struct throtl_grp *tg = pd_to_tg(pd); 1256 unsigned int v = *(unsigned int *)((void *)tg + off); 1257 1258 if (v == UINT_MAX) 1259 return 0; 1260 return __blkg_prfill_u64(sf, pd, v); 1261 } 1262 1263 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1264 { 1265 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1266 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1267 return 0; 1268 } 1269 1270 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1271 { 1272 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1273 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1274 return 0; 1275 } 1276 1277 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1278 { 1279 struct throtl_service_queue *sq = &tg->service_queue; 1280 struct cgroup_subsys_state *pos_css; 1281 struct blkcg_gq *blkg; 1282 1283 throtl_log(&tg->service_queue, 1284 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1285 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1286 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1287 1288 /* 1289 * Update has_rules[] flags for the updated tg's subtree. A tg is 1290 * considered to have rules if either the tg itself or any of its 1291 * ancestors has rules. This identifies groups without any 1292 * restrictions in the whole hierarchy and allows them to bypass 1293 * blk-throttle. 1294 */ 1295 blkg_for_each_descendant_pre(blkg, pos_css, 1296 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1297 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1298 struct throtl_grp *parent_tg; 1299 1300 tg_update_has_rules(this_tg); 1301 /* ignore root/second level */ 1302 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1303 !blkg->parent->parent) 1304 continue; 1305 parent_tg = blkg_to_tg(blkg->parent); 1306 /* 1307 * make sure all children has lower idle time threshold and 1308 * higher latency target 1309 */ 1310 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1311 parent_tg->idletime_threshold); 1312 this_tg->latency_target = max(this_tg->latency_target, 1313 parent_tg->latency_target); 1314 } 1315 1316 /* 1317 * We're already holding queue_lock and know @tg is valid. Let's 1318 * apply the new config directly. 1319 * 1320 * Restart the slices for both READ and WRITES. It might happen 1321 * that a group's limit are dropped suddenly and we don't want to 1322 * account recently dispatched IO with new low rate. 1323 */ 1324 throtl_start_new_slice(tg, READ); 1325 throtl_start_new_slice(tg, WRITE); 1326 1327 if (tg->flags & THROTL_TG_PENDING) { 1328 tg_update_disptime(tg); 1329 throtl_schedule_next_dispatch(sq->parent_sq, true); 1330 } 1331 } 1332 1333 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1334 char *buf, size_t nbytes, loff_t off, bool is_u64) 1335 { 1336 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1337 struct blkg_conf_ctx ctx; 1338 struct throtl_grp *tg; 1339 int ret; 1340 u64 v; 1341 1342 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1343 if (ret) 1344 return ret; 1345 1346 ret = -EINVAL; 1347 if (sscanf(ctx.body, "%llu", &v) != 1) 1348 goto out_finish; 1349 if (!v) 1350 v = U64_MAX; 1351 1352 tg = blkg_to_tg(ctx.blkg); 1353 1354 if (is_u64) 1355 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1356 else 1357 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1358 1359 tg_conf_updated(tg, false); 1360 ret = 0; 1361 out_finish: 1362 blkg_conf_finish(&ctx); 1363 return ret ?: nbytes; 1364 } 1365 1366 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1367 char *buf, size_t nbytes, loff_t off) 1368 { 1369 return tg_set_conf(of, buf, nbytes, off, true); 1370 } 1371 1372 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1373 char *buf, size_t nbytes, loff_t off) 1374 { 1375 return tg_set_conf(of, buf, nbytes, off, false); 1376 } 1377 1378 static int tg_print_rwstat(struct seq_file *sf, void *v) 1379 { 1380 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1381 blkg_prfill_rwstat, &blkcg_policy_throtl, 1382 seq_cft(sf)->private, true); 1383 return 0; 1384 } 1385 1386 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, 1387 struct blkg_policy_data *pd, int off) 1388 { 1389 struct blkg_rwstat_sample sum; 1390 1391 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, 1392 &sum); 1393 return __blkg_prfill_rwstat(sf, pd, &sum); 1394 } 1395 1396 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) 1397 { 1398 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1399 tg_prfill_rwstat_recursive, &blkcg_policy_throtl, 1400 seq_cft(sf)->private, true); 1401 return 0; 1402 } 1403 1404 static struct cftype throtl_legacy_files[] = { 1405 { 1406 .name = "throttle.read_bps_device", 1407 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1408 .seq_show = tg_print_conf_u64, 1409 .write = tg_set_conf_u64, 1410 }, 1411 { 1412 .name = "throttle.write_bps_device", 1413 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1414 .seq_show = tg_print_conf_u64, 1415 .write = tg_set_conf_u64, 1416 }, 1417 { 1418 .name = "throttle.read_iops_device", 1419 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1420 .seq_show = tg_print_conf_uint, 1421 .write = tg_set_conf_uint, 1422 }, 1423 { 1424 .name = "throttle.write_iops_device", 1425 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1426 .seq_show = tg_print_conf_uint, 1427 .write = tg_set_conf_uint, 1428 }, 1429 { 1430 .name = "throttle.io_service_bytes", 1431 .private = offsetof(struct throtl_grp, stat_bytes), 1432 .seq_show = tg_print_rwstat, 1433 }, 1434 { 1435 .name = "throttle.io_service_bytes_recursive", 1436 .private = offsetof(struct throtl_grp, stat_bytes), 1437 .seq_show = tg_print_rwstat_recursive, 1438 }, 1439 { 1440 .name = "throttle.io_serviced", 1441 .private = offsetof(struct throtl_grp, stat_ios), 1442 .seq_show = tg_print_rwstat, 1443 }, 1444 { 1445 .name = "throttle.io_serviced_recursive", 1446 .private = offsetof(struct throtl_grp, stat_ios), 1447 .seq_show = tg_print_rwstat_recursive, 1448 }, 1449 { } /* terminate */ 1450 }; 1451 1452 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1453 int off) 1454 { 1455 struct throtl_grp *tg = pd_to_tg(pd); 1456 const char *dname = blkg_dev_name(pd->blkg); 1457 char bufs[4][21] = { "max", "max", "max", "max" }; 1458 u64 bps_dft; 1459 unsigned int iops_dft; 1460 char idle_time[26] = ""; 1461 char latency_time[26] = ""; 1462 1463 if (!dname) 1464 return 0; 1465 1466 if (off == LIMIT_LOW) { 1467 bps_dft = 0; 1468 iops_dft = 0; 1469 } else { 1470 bps_dft = U64_MAX; 1471 iops_dft = UINT_MAX; 1472 } 1473 1474 if (tg->bps_conf[READ][off] == bps_dft && 1475 tg->bps_conf[WRITE][off] == bps_dft && 1476 tg->iops_conf[READ][off] == iops_dft && 1477 tg->iops_conf[WRITE][off] == iops_dft && 1478 (off != LIMIT_LOW || 1479 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1480 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1481 return 0; 1482 1483 if (tg->bps_conf[READ][off] != U64_MAX) 1484 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1485 tg->bps_conf[READ][off]); 1486 if (tg->bps_conf[WRITE][off] != U64_MAX) 1487 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1488 tg->bps_conf[WRITE][off]); 1489 if (tg->iops_conf[READ][off] != UINT_MAX) 1490 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1491 tg->iops_conf[READ][off]); 1492 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1493 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1494 tg->iops_conf[WRITE][off]); 1495 if (off == LIMIT_LOW) { 1496 if (tg->idletime_threshold_conf == ULONG_MAX) 1497 strcpy(idle_time, " idle=max"); 1498 else 1499 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1500 tg->idletime_threshold_conf); 1501 1502 if (tg->latency_target_conf == ULONG_MAX) 1503 strcpy(latency_time, " latency=max"); 1504 else 1505 snprintf(latency_time, sizeof(latency_time), 1506 " latency=%lu", tg->latency_target_conf); 1507 } 1508 1509 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1510 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1511 latency_time); 1512 return 0; 1513 } 1514 1515 static int tg_print_limit(struct seq_file *sf, void *v) 1516 { 1517 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1518 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1519 return 0; 1520 } 1521 1522 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1523 char *buf, size_t nbytes, loff_t off) 1524 { 1525 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1526 struct blkg_conf_ctx ctx; 1527 struct throtl_grp *tg; 1528 u64 v[4]; 1529 unsigned long idle_time; 1530 unsigned long latency_time; 1531 int ret; 1532 int index = of_cft(of)->private; 1533 1534 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); 1535 if (ret) 1536 return ret; 1537 1538 tg = blkg_to_tg(ctx.blkg); 1539 1540 v[0] = tg->bps_conf[READ][index]; 1541 v[1] = tg->bps_conf[WRITE][index]; 1542 v[2] = tg->iops_conf[READ][index]; 1543 v[3] = tg->iops_conf[WRITE][index]; 1544 1545 idle_time = tg->idletime_threshold_conf; 1546 latency_time = tg->latency_target_conf; 1547 while (true) { 1548 char tok[27]; /* wiops=18446744073709551616 */ 1549 char *p; 1550 u64 val = U64_MAX; 1551 int len; 1552 1553 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1554 break; 1555 if (tok[0] == '\0') 1556 break; 1557 ctx.body += len; 1558 1559 ret = -EINVAL; 1560 p = tok; 1561 strsep(&p, "="); 1562 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1563 goto out_finish; 1564 1565 ret = -ERANGE; 1566 if (!val) 1567 goto out_finish; 1568 1569 ret = -EINVAL; 1570 if (!strcmp(tok, "rbps") && val > 1) 1571 v[0] = val; 1572 else if (!strcmp(tok, "wbps") && val > 1) 1573 v[1] = val; 1574 else if (!strcmp(tok, "riops") && val > 1) 1575 v[2] = min_t(u64, val, UINT_MAX); 1576 else if (!strcmp(tok, "wiops") && val > 1) 1577 v[3] = min_t(u64, val, UINT_MAX); 1578 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1579 idle_time = val; 1580 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1581 latency_time = val; 1582 else 1583 goto out_finish; 1584 } 1585 1586 tg->bps_conf[READ][index] = v[0]; 1587 tg->bps_conf[WRITE][index] = v[1]; 1588 tg->iops_conf[READ][index] = v[2]; 1589 tg->iops_conf[WRITE][index] = v[3]; 1590 1591 if (index == LIMIT_MAX) { 1592 tg->bps[READ][index] = v[0]; 1593 tg->bps[WRITE][index] = v[1]; 1594 tg->iops[READ][index] = v[2]; 1595 tg->iops[WRITE][index] = v[3]; 1596 } 1597 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1598 tg->bps_conf[READ][LIMIT_MAX]); 1599 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1600 tg->bps_conf[WRITE][LIMIT_MAX]); 1601 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1602 tg->iops_conf[READ][LIMIT_MAX]); 1603 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1604 tg->iops_conf[WRITE][LIMIT_MAX]); 1605 tg->idletime_threshold_conf = idle_time; 1606 tg->latency_target_conf = latency_time; 1607 1608 /* force user to configure all settings for low limit */ 1609 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1610 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1611 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1612 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1613 tg->bps[READ][LIMIT_LOW] = 0; 1614 tg->bps[WRITE][LIMIT_LOW] = 0; 1615 tg->iops[READ][LIMIT_LOW] = 0; 1616 tg->iops[WRITE][LIMIT_LOW] = 0; 1617 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1618 tg->latency_target = DFL_LATENCY_TARGET; 1619 } else if (index == LIMIT_LOW) { 1620 tg->idletime_threshold = tg->idletime_threshold_conf; 1621 tg->latency_target = tg->latency_target_conf; 1622 } 1623 1624 blk_throtl_update_limit_valid(tg->td); 1625 if (tg->td->limit_valid[LIMIT_LOW]) { 1626 if (index == LIMIT_LOW) 1627 tg->td->limit_index = LIMIT_LOW; 1628 } else 1629 tg->td->limit_index = LIMIT_MAX; 1630 tg_conf_updated(tg, index == LIMIT_LOW && 1631 tg->td->limit_valid[LIMIT_LOW]); 1632 ret = 0; 1633 out_finish: 1634 blkg_conf_finish(&ctx); 1635 return ret ?: nbytes; 1636 } 1637 1638 static struct cftype throtl_files[] = { 1639 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1640 { 1641 .name = "low", 1642 .flags = CFTYPE_NOT_ON_ROOT, 1643 .seq_show = tg_print_limit, 1644 .write = tg_set_limit, 1645 .private = LIMIT_LOW, 1646 }, 1647 #endif 1648 { 1649 .name = "max", 1650 .flags = CFTYPE_NOT_ON_ROOT, 1651 .seq_show = tg_print_limit, 1652 .write = tg_set_limit, 1653 .private = LIMIT_MAX, 1654 }, 1655 { } /* terminate */ 1656 }; 1657 1658 static void throtl_shutdown_wq(struct request_queue *q) 1659 { 1660 struct throtl_data *td = q->td; 1661 1662 cancel_work_sync(&td->dispatch_work); 1663 } 1664 1665 struct blkcg_policy blkcg_policy_throtl = { 1666 .dfl_cftypes = throtl_files, 1667 .legacy_cftypes = throtl_legacy_files, 1668 1669 .pd_alloc_fn = throtl_pd_alloc, 1670 .pd_init_fn = throtl_pd_init, 1671 .pd_online_fn = throtl_pd_online, 1672 .pd_offline_fn = throtl_pd_offline, 1673 .pd_free_fn = throtl_pd_free, 1674 }; 1675 1676 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1677 { 1678 unsigned long rtime = jiffies, wtime = jiffies; 1679 1680 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1681 rtime = tg->last_low_overflow_time[READ]; 1682 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1683 wtime = tg->last_low_overflow_time[WRITE]; 1684 return min(rtime, wtime); 1685 } 1686 1687 /* tg should not be an intermediate node */ 1688 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1689 { 1690 struct throtl_service_queue *parent_sq; 1691 struct throtl_grp *parent = tg; 1692 unsigned long ret = __tg_last_low_overflow_time(tg); 1693 1694 while (true) { 1695 parent_sq = parent->service_queue.parent_sq; 1696 parent = sq_to_tg(parent_sq); 1697 if (!parent) 1698 break; 1699 1700 /* 1701 * The parent doesn't have low limit, it always reaches low 1702 * limit. Its overflow time is useless for children 1703 */ 1704 if (!parent->bps[READ][LIMIT_LOW] && 1705 !parent->iops[READ][LIMIT_LOW] && 1706 !parent->bps[WRITE][LIMIT_LOW] && 1707 !parent->iops[WRITE][LIMIT_LOW]) 1708 continue; 1709 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1710 ret = __tg_last_low_overflow_time(parent); 1711 } 1712 return ret; 1713 } 1714 1715 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1716 { 1717 /* 1718 * cgroup is idle if: 1719 * - single idle is too long, longer than a fixed value (in case user 1720 * configure a too big threshold) or 4 times of idletime threshold 1721 * - average think time is more than threshold 1722 * - IO latency is largely below threshold 1723 */ 1724 unsigned long time; 1725 bool ret; 1726 1727 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1728 ret = tg->latency_target == DFL_LATENCY_TARGET || 1729 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1730 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1731 tg->avg_idletime > tg->idletime_threshold || 1732 (tg->latency_target && tg->bio_cnt && 1733 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1734 throtl_log(&tg->service_queue, 1735 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1736 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1737 tg->bio_cnt, ret, tg->td->scale); 1738 return ret; 1739 } 1740 1741 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1742 { 1743 struct throtl_service_queue *sq = &tg->service_queue; 1744 bool read_limit, write_limit; 1745 1746 /* 1747 * if cgroup reaches low limit (if low limit is 0, the cgroup always 1748 * reaches), it's ok to upgrade to next limit 1749 */ 1750 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; 1751 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; 1752 if (!read_limit && !write_limit) 1753 return true; 1754 if (read_limit && sq->nr_queued[READ] && 1755 (!write_limit || sq->nr_queued[WRITE])) 1756 return true; 1757 if (write_limit && sq->nr_queued[WRITE] && 1758 (!read_limit || sq->nr_queued[READ])) 1759 return true; 1760 1761 if (time_after_eq(jiffies, 1762 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1763 throtl_tg_is_idle(tg)) 1764 return true; 1765 return false; 1766 } 1767 1768 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1769 { 1770 while (true) { 1771 if (throtl_tg_can_upgrade(tg)) 1772 return true; 1773 tg = sq_to_tg(tg->service_queue.parent_sq); 1774 if (!tg || !tg_to_blkg(tg)->parent) 1775 return false; 1776 } 1777 return false; 1778 } 1779 1780 void blk_throtl_cancel_bios(struct request_queue *q) 1781 { 1782 struct cgroup_subsys_state *pos_css; 1783 struct blkcg_gq *blkg; 1784 1785 spin_lock_irq(&q->queue_lock); 1786 /* 1787 * queue_lock is held, rcu lock is not needed here technically. 1788 * However, rcu lock is still held to emphasize that following 1789 * path need RCU protection and to prevent warning from lockdep. 1790 */ 1791 rcu_read_lock(); 1792 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) { 1793 struct throtl_grp *tg = blkg_to_tg(blkg); 1794 struct throtl_service_queue *sq = &tg->service_queue; 1795 1796 /* 1797 * Set the flag to make sure throtl_pending_timer_fn() won't 1798 * stop until all throttled bios are dispatched. 1799 */ 1800 blkg_to_tg(blkg)->flags |= THROTL_TG_CANCELING; 1801 /* 1802 * Update disptime after setting the above flag to make sure 1803 * throtl_select_dispatch() won't exit without dispatching. 1804 */ 1805 tg_update_disptime(tg); 1806 1807 throtl_schedule_pending_timer(sq, jiffies + 1); 1808 } 1809 rcu_read_unlock(); 1810 spin_unlock_irq(&q->queue_lock); 1811 } 1812 1813 static bool throtl_can_upgrade(struct throtl_data *td, 1814 struct throtl_grp *this_tg) 1815 { 1816 struct cgroup_subsys_state *pos_css; 1817 struct blkcg_gq *blkg; 1818 1819 if (td->limit_index != LIMIT_LOW) 1820 return false; 1821 1822 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1823 return false; 1824 1825 rcu_read_lock(); 1826 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1827 struct throtl_grp *tg = blkg_to_tg(blkg); 1828 1829 if (tg == this_tg) 1830 continue; 1831 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1832 continue; 1833 if (!throtl_hierarchy_can_upgrade(tg)) { 1834 rcu_read_unlock(); 1835 return false; 1836 } 1837 } 1838 rcu_read_unlock(); 1839 return true; 1840 } 1841 1842 static void throtl_upgrade_check(struct throtl_grp *tg) 1843 { 1844 unsigned long now = jiffies; 1845 1846 if (tg->td->limit_index != LIMIT_LOW) 1847 return; 1848 1849 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1850 return; 1851 1852 tg->last_check_time = now; 1853 1854 if (!time_after_eq(now, 1855 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1856 return; 1857 1858 if (throtl_can_upgrade(tg->td, NULL)) 1859 throtl_upgrade_state(tg->td); 1860 } 1861 1862 static void throtl_upgrade_state(struct throtl_data *td) 1863 { 1864 struct cgroup_subsys_state *pos_css; 1865 struct blkcg_gq *blkg; 1866 1867 throtl_log(&td->service_queue, "upgrade to max"); 1868 td->limit_index = LIMIT_MAX; 1869 td->low_upgrade_time = jiffies; 1870 td->scale = 0; 1871 rcu_read_lock(); 1872 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1873 struct throtl_grp *tg = blkg_to_tg(blkg); 1874 struct throtl_service_queue *sq = &tg->service_queue; 1875 1876 tg->disptime = jiffies - 1; 1877 throtl_select_dispatch(sq); 1878 throtl_schedule_next_dispatch(sq, true); 1879 } 1880 rcu_read_unlock(); 1881 throtl_select_dispatch(&td->service_queue); 1882 throtl_schedule_next_dispatch(&td->service_queue, true); 1883 queue_work(kthrotld_workqueue, &td->dispatch_work); 1884 } 1885 1886 static void throtl_downgrade_state(struct throtl_data *td) 1887 { 1888 td->scale /= 2; 1889 1890 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1891 if (td->scale) { 1892 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1893 return; 1894 } 1895 1896 td->limit_index = LIMIT_LOW; 1897 td->low_downgrade_time = jiffies; 1898 } 1899 1900 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1901 { 1902 struct throtl_data *td = tg->td; 1903 unsigned long now = jiffies; 1904 1905 /* 1906 * If cgroup is below low limit, consider downgrade and throttle other 1907 * cgroups 1908 */ 1909 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && 1910 time_after_eq(now, tg_last_low_overflow_time(tg) + 1911 td->throtl_slice) && 1912 (!throtl_tg_is_idle(tg) || 1913 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1914 return true; 1915 return false; 1916 } 1917 1918 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1919 { 1920 while (true) { 1921 if (!throtl_tg_can_downgrade(tg)) 1922 return false; 1923 tg = sq_to_tg(tg->service_queue.parent_sq); 1924 if (!tg || !tg_to_blkg(tg)->parent) 1925 break; 1926 } 1927 return true; 1928 } 1929 1930 static void throtl_downgrade_check(struct throtl_grp *tg) 1931 { 1932 uint64_t bps; 1933 unsigned int iops; 1934 unsigned long elapsed_time; 1935 unsigned long now = jiffies; 1936 1937 if (tg->td->limit_index != LIMIT_MAX || 1938 !tg->td->limit_valid[LIMIT_LOW]) 1939 return; 1940 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1941 return; 1942 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1943 return; 1944 1945 elapsed_time = now - tg->last_check_time; 1946 tg->last_check_time = now; 1947 1948 if (time_before(now, tg_last_low_overflow_time(tg) + 1949 tg->td->throtl_slice)) 1950 return; 1951 1952 if (tg->bps[READ][LIMIT_LOW]) { 1953 bps = tg->last_bytes_disp[READ] * HZ; 1954 do_div(bps, elapsed_time); 1955 if (bps >= tg->bps[READ][LIMIT_LOW]) 1956 tg->last_low_overflow_time[READ] = now; 1957 } 1958 1959 if (tg->bps[WRITE][LIMIT_LOW]) { 1960 bps = tg->last_bytes_disp[WRITE] * HZ; 1961 do_div(bps, elapsed_time); 1962 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 1963 tg->last_low_overflow_time[WRITE] = now; 1964 } 1965 1966 if (tg->iops[READ][LIMIT_LOW]) { 1967 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 1968 if (iops >= tg->iops[READ][LIMIT_LOW]) 1969 tg->last_low_overflow_time[READ] = now; 1970 } 1971 1972 if (tg->iops[WRITE][LIMIT_LOW]) { 1973 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 1974 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 1975 tg->last_low_overflow_time[WRITE] = now; 1976 } 1977 1978 /* 1979 * If cgroup is below low limit, consider downgrade and throttle other 1980 * cgroups 1981 */ 1982 if (throtl_hierarchy_can_downgrade(tg)) 1983 throtl_downgrade_state(tg->td); 1984 1985 tg->last_bytes_disp[READ] = 0; 1986 tg->last_bytes_disp[WRITE] = 0; 1987 tg->last_io_disp[READ] = 0; 1988 tg->last_io_disp[WRITE] = 0; 1989 } 1990 1991 static void blk_throtl_update_idletime(struct throtl_grp *tg) 1992 { 1993 unsigned long now; 1994 unsigned long last_finish_time = tg->last_finish_time; 1995 1996 if (last_finish_time == 0) 1997 return; 1998 1999 now = ktime_get_ns() >> 10; 2000 if (now <= last_finish_time || 2001 last_finish_time == tg->checked_last_finish_time) 2002 return; 2003 2004 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2005 tg->checked_last_finish_time = last_finish_time; 2006 } 2007 2008 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2009 static void throtl_update_latency_buckets(struct throtl_data *td) 2010 { 2011 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 2012 int i, cpu, rw; 2013 unsigned long last_latency[2] = { 0 }; 2014 unsigned long latency[2]; 2015 2016 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW]) 2017 return; 2018 if (time_before(jiffies, td->last_calculate_time + HZ)) 2019 return; 2020 td->last_calculate_time = jiffies; 2021 2022 memset(avg_latency, 0, sizeof(avg_latency)); 2023 for (rw = READ; rw <= WRITE; rw++) { 2024 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2025 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 2026 2027 for_each_possible_cpu(cpu) { 2028 struct latency_bucket *bucket; 2029 2030 /* this isn't race free, but ok in practice */ 2031 bucket = per_cpu_ptr(td->latency_buckets[rw], 2032 cpu); 2033 tmp->total_latency += bucket[i].total_latency; 2034 tmp->samples += bucket[i].samples; 2035 bucket[i].total_latency = 0; 2036 bucket[i].samples = 0; 2037 } 2038 2039 if (tmp->samples >= 32) { 2040 int samples = tmp->samples; 2041 2042 latency[rw] = tmp->total_latency; 2043 2044 tmp->total_latency = 0; 2045 tmp->samples = 0; 2046 latency[rw] /= samples; 2047 if (latency[rw] == 0) 2048 continue; 2049 avg_latency[rw][i].latency = latency[rw]; 2050 } 2051 } 2052 } 2053 2054 for (rw = READ; rw <= WRITE; rw++) { 2055 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2056 if (!avg_latency[rw][i].latency) { 2057 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2058 td->avg_buckets[rw][i].latency = 2059 last_latency[rw]; 2060 continue; 2061 } 2062 2063 if (!td->avg_buckets[rw][i].valid) 2064 latency[rw] = avg_latency[rw][i].latency; 2065 else 2066 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2067 avg_latency[rw][i].latency) >> 3; 2068 2069 td->avg_buckets[rw][i].latency = max(latency[rw], 2070 last_latency[rw]); 2071 td->avg_buckets[rw][i].valid = true; 2072 last_latency[rw] = td->avg_buckets[rw][i].latency; 2073 } 2074 } 2075 2076 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2077 throtl_log(&td->service_queue, 2078 "Latency bucket %d: read latency=%ld, read valid=%d, " 2079 "write latency=%ld, write valid=%d", i, 2080 td->avg_buckets[READ][i].latency, 2081 td->avg_buckets[READ][i].valid, 2082 td->avg_buckets[WRITE][i].latency, 2083 td->avg_buckets[WRITE][i].valid); 2084 } 2085 #else 2086 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2087 { 2088 } 2089 #endif 2090 2091 bool __blk_throtl_bio(struct bio *bio) 2092 { 2093 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2094 struct blkcg_gq *blkg = bio->bi_blkg; 2095 struct throtl_qnode *qn = NULL; 2096 struct throtl_grp *tg = blkg_to_tg(blkg); 2097 struct throtl_service_queue *sq; 2098 bool rw = bio_data_dir(bio); 2099 bool throttled = false; 2100 struct throtl_data *td = tg->td; 2101 2102 rcu_read_lock(); 2103 2104 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) { 2105 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf, 2106 bio->bi_iter.bi_size); 2107 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1); 2108 } 2109 2110 spin_lock_irq(&q->queue_lock); 2111 2112 throtl_update_latency_buckets(td); 2113 2114 blk_throtl_update_idletime(tg); 2115 2116 sq = &tg->service_queue; 2117 2118 again: 2119 while (true) { 2120 if (tg->last_low_overflow_time[rw] == 0) 2121 tg->last_low_overflow_time[rw] = jiffies; 2122 throtl_downgrade_check(tg); 2123 throtl_upgrade_check(tg); 2124 /* throtl is FIFO - if bios are already queued, should queue */ 2125 if (sq->nr_queued[rw]) 2126 break; 2127 2128 /* if above limits, break to queue */ 2129 if (!tg_may_dispatch(tg, bio, NULL)) { 2130 tg->last_low_overflow_time[rw] = jiffies; 2131 if (throtl_can_upgrade(td, tg)) { 2132 throtl_upgrade_state(td); 2133 goto again; 2134 } 2135 break; 2136 } 2137 2138 /* within limits, let's charge and dispatch directly */ 2139 throtl_charge_bio(tg, bio); 2140 2141 /* 2142 * We need to trim slice even when bios are not being queued 2143 * otherwise it might happen that a bio is not queued for 2144 * a long time and slice keeps on extending and trim is not 2145 * called for a long time. Now if limits are reduced suddenly 2146 * we take into account all the IO dispatched so far at new 2147 * low rate and * newly queued IO gets a really long dispatch 2148 * time. 2149 * 2150 * So keep on trimming slice even if bio is not queued. 2151 */ 2152 throtl_trim_slice(tg, rw); 2153 2154 /* 2155 * @bio passed through this layer without being throttled. 2156 * Climb up the ladder. If we're already at the top, it 2157 * can be executed directly. 2158 */ 2159 qn = &tg->qnode_on_parent[rw]; 2160 sq = sq->parent_sq; 2161 tg = sq_to_tg(sq); 2162 if (!tg) 2163 goto out_unlock; 2164 } 2165 2166 /* out-of-limit, queue to @tg */ 2167 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2168 rw == READ ? 'R' : 'W', 2169 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2170 tg_bps_limit(tg, rw), 2171 tg->io_disp[rw], tg_iops_limit(tg, rw), 2172 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2173 2174 tg->last_low_overflow_time[rw] = jiffies; 2175 2176 td->nr_queued[rw]++; 2177 throtl_add_bio_tg(bio, qn, tg); 2178 throttled = true; 2179 2180 /* 2181 * Update @tg's dispatch time and force schedule dispatch if @tg 2182 * was empty before @bio. The forced scheduling isn't likely to 2183 * cause undue delay as @bio is likely to be dispatched directly if 2184 * its @tg's disptime is not in the future. 2185 */ 2186 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2187 tg_update_disptime(tg); 2188 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2189 } 2190 2191 out_unlock: 2192 bio_set_flag(bio, BIO_THROTTLED); 2193 2194 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2195 if (throttled || !td->track_bio_latency) 2196 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; 2197 #endif 2198 spin_unlock_irq(&q->queue_lock); 2199 2200 rcu_read_unlock(); 2201 return throttled; 2202 } 2203 2204 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2205 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2206 int op, unsigned long time) 2207 { 2208 struct latency_bucket *latency; 2209 int index; 2210 2211 if (!td || td->limit_index != LIMIT_LOW || 2212 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2213 !blk_queue_nonrot(td->queue)) 2214 return; 2215 2216 index = request_bucket_index(size); 2217 2218 latency = get_cpu_ptr(td->latency_buckets[op]); 2219 latency[index].total_latency += time; 2220 latency[index].samples++; 2221 put_cpu_ptr(td->latency_buckets[op]); 2222 } 2223 2224 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2225 { 2226 struct request_queue *q = rq->q; 2227 struct throtl_data *td = q->td; 2228 2229 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), 2230 time_ns >> 10); 2231 } 2232 2233 void blk_throtl_bio_endio(struct bio *bio) 2234 { 2235 struct blkcg_gq *blkg; 2236 struct throtl_grp *tg; 2237 u64 finish_time_ns; 2238 unsigned long finish_time; 2239 unsigned long start_time; 2240 unsigned long lat; 2241 int rw = bio_data_dir(bio); 2242 2243 blkg = bio->bi_blkg; 2244 if (!blkg) 2245 return; 2246 tg = blkg_to_tg(blkg); 2247 if (!tg->td->limit_valid[LIMIT_LOW]) 2248 return; 2249 2250 finish_time_ns = ktime_get_ns(); 2251 tg->last_finish_time = finish_time_ns >> 10; 2252 2253 start_time = bio_issue_time(&bio->bi_issue) >> 10; 2254 finish_time = __bio_issue_time(finish_time_ns) >> 10; 2255 if (!start_time || finish_time <= start_time) 2256 return; 2257 2258 lat = finish_time - start_time; 2259 /* this is only for bio based driver */ 2260 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) 2261 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), 2262 bio_op(bio), lat); 2263 2264 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2265 int bucket; 2266 unsigned int threshold; 2267 2268 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); 2269 threshold = tg->td->avg_buckets[rw][bucket].latency + 2270 tg->latency_target; 2271 if (lat > threshold) 2272 tg->bad_bio_cnt++; 2273 /* 2274 * Not race free, could get wrong count, which means cgroups 2275 * will be throttled 2276 */ 2277 tg->bio_cnt++; 2278 } 2279 2280 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2281 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2282 tg->bio_cnt /= 2; 2283 tg->bad_bio_cnt /= 2; 2284 } 2285 } 2286 #endif 2287 2288 int blk_throtl_init(struct request_queue *q) 2289 { 2290 struct throtl_data *td; 2291 int ret; 2292 2293 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2294 if (!td) 2295 return -ENOMEM; 2296 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2297 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2298 if (!td->latency_buckets[READ]) { 2299 kfree(td); 2300 return -ENOMEM; 2301 } 2302 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2303 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2304 if (!td->latency_buckets[WRITE]) { 2305 free_percpu(td->latency_buckets[READ]); 2306 kfree(td); 2307 return -ENOMEM; 2308 } 2309 2310 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2311 throtl_service_queue_init(&td->service_queue); 2312 2313 q->td = td; 2314 td->queue = q; 2315 2316 td->limit_valid[LIMIT_MAX] = true; 2317 td->limit_index = LIMIT_MAX; 2318 td->low_upgrade_time = jiffies; 2319 td->low_downgrade_time = jiffies; 2320 2321 /* activate policy */ 2322 ret = blkcg_activate_policy(q, &blkcg_policy_throtl); 2323 if (ret) { 2324 free_percpu(td->latency_buckets[READ]); 2325 free_percpu(td->latency_buckets[WRITE]); 2326 kfree(td); 2327 } 2328 return ret; 2329 } 2330 2331 void blk_throtl_exit(struct request_queue *q) 2332 { 2333 BUG_ON(!q->td); 2334 del_timer_sync(&q->td->service_queue.pending_timer); 2335 throtl_shutdown_wq(q); 2336 blkcg_deactivate_policy(q, &blkcg_policy_throtl); 2337 free_percpu(q->td->latency_buckets[READ]); 2338 free_percpu(q->td->latency_buckets[WRITE]); 2339 kfree(q->td); 2340 } 2341 2342 void blk_throtl_register_queue(struct request_queue *q) 2343 { 2344 struct throtl_data *td; 2345 int i; 2346 2347 td = q->td; 2348 BUG_ON(!td); 2349 2350 if (blk_queue_nonrot(q)) { 2351 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2352 td->filtered_latency = LATENCY_FILTERED_SSD; 2353 } else { 2354 td->throtl_slice = DFL_THROTL_SLICE_HD; 2355 td->filtered_latency = LATENCY_FILTERED_HD; 2356 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2357 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2358 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2359 } 2360 } 2361 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2362 /* if no low limit, use previous default */ 2363 td->throtl_slice = DFL_THROTL_SLICE_HD; 2364 #endif 2365 2366 td->track_bio_latency = !queue_is_mq(q); 2367 if (!td->track_bio_latency) 2368 blk_stat_enable_accounting(q); 2369 } 2370 2371 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2372 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2373 { 2374 if (!q->td) 2375 return -EINVAL; 2376 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2377 } 2378 2379 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2380 const char *page, size_t count) 2381 { 2382 unsigned long v; 2383 unsigned long t; 2384 2385 if (!q->td) 2386 return -EINVAL; 2387 if (kstrtoul(page, 10, &v)) 2388 return -EINVAL; 2389 t = msecs_to_jiffies(v); 2390 if (t == 0 || t > MAX_THROTL_SLICE) 2391 return -EINVAL; 2392 q->td->throtl_slice = t; 2393 return count; 2394 } 2395 #endif 2396 2397 static int __init throtl_init(void) 2398 { 2399 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2400 if (!kthrotld_workqueue) 2401 panic("Failed to create kthrotld\n"); 2402 2403 return blkcg_policy_register(&blkcg_policy_throtl); 2404 } 2405 2406 module_init(throtl_init); 2407