1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interface for controlling IO bandwidth on a request queue 4 * 5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/bio.h> 12 #include <linux/blktrace_api.h> 13 #include "blk.h" 14 #include "blk-cgroup-rwstat.h" 15 #include "blk-stat.h" 16 #include "blk-throttle.h" 17 18 /* Max dispatch from a group in 1 round */ 19 #define THROTL_GRP_QUANTUM 8 20 21 /* Total max dispatch from all groups in one round */ 22 #define THROTL_QUANTUM 32 23 24 /* Throttling is performed over a slice and after that slice is renewed */ 25 #define DFL_THROTL_SLICE_HD (HZ / 10) 26 #define DFL_THROTL_SLICE_SSD (HZ / 50) 27 #define MAX_THROTL_SLICE (HZ) 28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ 29 #define MIN_THROTL_BPS (320 * 1024) 30 #define MIN_THROTL_IOPS (10) 31 #define DFL_LATENCY_TARGET (-1L) 32 #define DFL_IDLE_THRESHOLD (0) 33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ 34 #define LATENCY_FILTERED_SSD (0) 35 /* 36 * For HD, very small latency comes from sequential IO. Such IO is helpless to 37 * help determine if its IO is impacted by others, hence we ignore the IO 38 */ 39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */ 40 41 /* A workqueue to queue throttle related work */ 42 static struct workqueue_struct *kthrotld_workqueue; 43 44 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) 45 46 /* We measure latency for request size from <= 4k to >= 1M */ 47 #define LATENCY_BUCKET_SIZE 9 48 49 struct latency_bucket { 50 unsigned long total_latency; /* ns / 1024 */ 51 int samples; 52 }; 53 54 struct avg_latency_bucket { 55 unsigned long latency; /* ns / 1024 */ 56 bool valid; 57 }; 58 59 struct throtl_data 60 { 61 /* service tree for active throtl groups */ 62 struct throtl_service_queue service_queue; 63 64 struct request_queue *queue; 65 66 /* Total Number of queued bios on READ and WRITE lists */ 67 unsigned int nr_queued[2]; 68 69 unsigned int throtl_slice; 70 71 /* Work for dispatching throttled bios */ 72 struct work_struct dispatch_work; 73 unsigned int limit_index; 74 bool limit_valid[LIMIT_CNT]; 75 76 unsigned long low_upgrade_time; 77 unsigned long low_downgrade_time; 78 79 unsigned int scale; 80 81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; 82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; 83 struct latency_bucket __percpu *latency_buckets[2]; 84 unsigned long last_calculate_time; 85 unsigned long filtered_latency; 86 87 bool track_bio_latency; 88 }; 89 90 static void throtl_pending_timer_fn(struct timer_list *t); 91 92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) 93 { 94 return pd_to_blkg(&tg->pd); 95 } 96 97 /** 98 * sq_to_tg - return the throl_grp the specified service queue belongs to 99 * @sq: the throtl_service_queue of interest 100 * 101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one 102 * embedded in throtl_data, %NULL is returned. 103 */ 104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) 105 { 106 if (sq && sq->parent_sq) 107 return container_of(sq, struct throtl_grp, service_queue); 108 else 109 return NULL; 110 } 111 112 /** 113 * sq_to_td - return throtl_data the specified service queue belongs to 114 * @sq: the throtl_service_queue of interest 115 * 116 * A service_queue can be embedded in either a throtl_grp or throtl_data. 117 * Determine the associated throtl_data accordingly and return it. 118 */ 119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) 120 { 121 struct throtl_grp *tg = sq_to_tg(sq); 122 123 if (tg) 124 return tg->td; 125 else 126 return container_of(sq, struct throtl_data, service_queue); 127 } 128 129 /* 130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to 131 * make the IO dispatch more smooth. 132 * Scale up: linearly scale up according to elapsed time since upgrade. For 133 * every throtl_slice, the limit scales up 1/2 .low limit till the 134 * limit hits .max limit 135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit 136 */ 137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) 138 { 139 /* arbitrary value to avoid too big scale */ 140 if (td->scale < 4096 && time_after_eq(jiffies, 141 td->low_upgrade_time + td->scale * td->throtl_slice)) 142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; 143 144 return low + (low >> 1) * td->scale; 145 } 146 147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) 148 { 149 struct blkcg_gq *blkg = tg_to_blkg(tg); 150 struct throtl_data *td; 151 uint64_t ret; 152 153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 154 return U64_MAX; 155 156 td = tg->td; 157 ret = tg->bps[rw][td->limit_index]; 158 if (ret == 0 && td->limit_index == LIMIT_LOW) { 159 /* intermediate node or iops isn't 0 */ 160 if (!list_empty(&blkg->blkcg->css.children) || 161 tg->iops[rw][td->limit_index]) 162 return U64_MAX; 163 else 164 return MIN_THROTL_BPS; 165 } 166 167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && 168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { 169 uint64_t adjusted; 170 171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); 172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted); 173 } 174 return ret; 175 } 176 177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) 178 { 179 struct blkcg_gq *blkg = tg_to_blkg(tg); 180 struct throtl_data *td; 181 unsigned int ret; 182 183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) 184 return UINT_MAX; 185 186 td = tg->td; 187 ret = tg->iops[rw][td->limit_index]; 188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { 189 /* intermediate node or bps isn't 0 */ 190 if (!list_empty(&blkg->blkcg->css.children) || 191 tg->bps[rw][td->limit_index]) 192 return UINT_MAX; 193 else 194 return MIN_THROTL_IOPS; 195 } 196 197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && 198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { 199 uint64_t adjusted; 200 201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); 202 if (adjusted > UINT_MAX) 203 adjusted = UINT_MAX; 204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); 205 } 206 return ret; 207 } 208 209 #define request_bucket_index(sectors) \ 210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) 211 212 /** 213 * throtl_log - log debug message via blktrace 214 * @sq: the service_queue being reported 215 * @fmt: printf format string 216 * @args: printf args 217 * 218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a 219 * throtl_grp; otherwise, just "throtl". 220 */ 221 #define throtl_log(sq, fmt, args...) do { \ 222 struct throtl_grp *__tg = sq_to_tg((sq)); \ 223 struct throtl_data *__td = sq_to_td((sq)); \ 224 \ 225 (void)__td; \ 226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \ 227 break; \ 228 if ((__tg)) { \ 229 blk_add_cgroup_trace_msg(__td->queue, \ 230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\ 231 } else { \ 232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ 233 } \ 234 } while (0) 235 236 static inline unsigned int throtl_bio_data_size(struct bio *bio) 237 { 238 /* assume it's one sector */ 239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 240 return 512; 241 return bio->bi_iter.bi_size; 242 } 243 244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) 245 { 246 INIT_LIST_HEAD(&qn->node); 247 bio_list_init(&qn->bios); 248 qn->tg = tg; 249 } 250 251 /** 252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it 253 * @bio: bio being added 254 * @qn: qnode to add bio to 255 * @queued: the service_queue->queued[] list @qn belongs to 256 * 257 * Add @bio to @qn and put @qn on @queued if it's not already on. 258 * @qn->tg's reference count is bumped when @qn is activated. See the 259 * comment on top of throtl_qnode definition for details. 260 */ 261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, 262 struct list_head *queued) 263 { 264 bio_list_add(&qn->bios, bio); 265 if (list_empty(&qn->node)) { 266 list_add_tail(&qn->node, queued); 267 blkg_get(tg_to_blkg(qn->tg)); 268 } 269 } 270 271 /** 272 * throtl_peek_queued - peek the first bio on a qnode list 273 * @queued: the qnode list to peek 274 */ 275 static struct bio *throtl_peek_queued(struct list_head *queued) 276 { 277 struct throtl_qnode *qn; 278 struct bio *bio; 279 280 if (list_empty(queued)) 281 return NULL; 282 283 qn = list_first_entry(queued, struct throtl_qnode, node); 284 bio = bio_list_peek(&qn->bios); 285 WARN_ON_ONCE(!bio); 286 return bio; 287 } 288 289 /** 290 * throtl_pop_queued - pop the first bio form a qnode list 291 * @queued: the qnode list to pop a bio from 292 * @tg_to_put: optional out argument for throtl_grp to put 293 * 294 * Pop the first bio from the qnode list @queued. After popping, the first 295 * qnode is removed from @queued if empty or moved to the end of @queued so 296 * that the popping order is round-robin. 297 * 298 * When the first qnode is removed, its associated throtl_grp should be put 299 * too. If @tg_to_put is NULL, this function automatically puts it; 300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is 301 * responsible for putting it. 302 */ 303 static struct bio *throtl_pop_queued(struct list_head *queued, 304 struct throtl_grp **tg_to_put) 305 { 306 struct throtl_qnode *qn; 307 struct bio *bio; 308 309 if (list_empty(queued)) 310 return NULL; 311 312 qn = list_first_entry(queued, struct throtl_qnode, node); 313 bio = bio_list_pop(&qn->bios); 314 WARN_ON_ONCE(!bio); 315 316 if (bio_list_empty(&qn->bios)) { 317 list_del_init(&qn->node); 318 if (tg_to_put) 319 *tg_to_put = qn->tg; 320 else 321 blkg_put(tg_to_blkg(qn->tg)); 322 } else { 323 list_move_tail(&qn->node, queued); 324 } 325 326 return bio; 327 } 328 329 /* init a service_queue, assumes the caller zeroed it */ 330 static void throtl_service_queue_init(struct throtl_service_queue *sq) 331 { 332 INIT_LIST_HEAD(&sq->queued[READ]); 333 INIT_LIST_HEAD(&sq->queued[WRITE]); 334 sq->pending_tree = RB_ROOT_CACHED; 335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); 336 } 337 338 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk, 339 struct blkcg *blkcg, gfp_t gfp) 340 { 341 struct throtl_grp *tg; 342 int rw; 343 344 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id); 345 if (!tg) 346 return NULL; 347 348 if (blkg_rwstat_init(&tg->stat_bytes, gfp)) 349 goto err_free_tg; 350 351 if (blkg_rwstat_init(&tg->stat_ios, gfp)) 352 goto err_exit_stat_bytes; 353 354 throtl_service_queue_init(&tg->service_queue); 355 356 for (rw = READ; rw <= WRITE; rw++) { 357 throtl_qnode_init(&tg->qnode_on_self[rw], tg); 358 throtl_qnode_init(&tg->qnode_on_parent[rw], tg); 359 } 360 361 RB_CLEAR_NODE(&tg->rb_node); 362 tg->bps[READ][LIMIT_MAX] = U64_MAX; 363 tg->bps[WRITE][LIMIT_MAX] = U64_MAX; 364 tg->iops[READ][LIMIT_MAX] = UINT_MAX; 365 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; 366 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; 367 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; 368 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; 369 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; 370 /* LIMIT_LOW will have default value 0 */ 371 372 tg->latency_target = DFL_LATENCY_TARGET; 373 tg->latency_target_conf = DFL_LATENCY_TARGET; 374 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 375 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; 376 377 return &tg->pd; 378 379 err_exit_stat_bytes: 380 blkg_rwstat_exit(&tg->stat_bytes); 381 err_free_tg: 382 kfree(tg); 383 return NULL; 384 } 385 386 static void throtl_pd_init(struct blkg_policy_data *pd) 387 { 388 struct throtl_grp *tg = pd_to_tg(pd); 389 struct blkcg_gq *blkg = tg_to_blkg(tg); 390 struct throtl_data *td = blkg->q->td; 391 struct throtl_service_queue *sq = &tg->service_queue; 392 393 /* 394 * If on the default hierarchy, we switch to properly hierarchical 395 * behavior where limits on a given throtl_grp are applied to the 396 * whole subtree rather than just the group itself. e.g. If 16M 397 * read_bps limit is set on a parent group, summary bps of 398 * parent group and its subtree groups can't exceed 16M for the 399 * device. 400 * 401 * If not on the default hierarchy, the broken flat hierarchy 402 * behavior is retained where all throtl_grps are treated as if 403 * they're all separate root groups right below throtl_data. 404 * Limits of a group don't interact with limits of other groups 405 * regardless of the position of the group in the hierarchy. 406 */ 407 sq->parent_sq = &td->service_queue; 408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) 409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; 410 tg->td = td; 411 } 412 413 /* 414 * Set has_rules[] if @tg or any of its parents have limits configured. 415 * This doesn't require walking up to the top of the hierarchy as the 416 * parent's has_rules[] is guaranteed to be correct. 417 */ 418 static void tg_update_has_rules(struct throtl_grp *tg) 419 { 420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); 421 struct throtl_data *td = tg->td; 422 int rw; 423 424 for (rw = READ; rw <= WRITE; rw++) { 425 tg->has_rules_iops[rw] = 426 (parent_tg && parent_tg->has_rules_iops[rw]) || 427 (td->limit_valid[td->limit_index] && 428 tg_iops_limit(tg, rw) != UINT_MAX); 429 tg->has_rules_bps[rw] = 430 (parent_tg && parent_tg->has_rules_bps[rw]) || 431 (td->limit_valid[td->limit_index] && 432 (tg_bps_limit(tg, rw) != U64_MAX)); 433 } 434 } 435 436 static void throtl_pd_online(struct blkg_policy_data *pd) 437 { 438 struct throtl_grp *tg = pd_to_tg(pd); 439 /* 440 * We don't want new groups to escape the limits of its ancestors. 441 * Update has_rules[] after a new group is brought online. 442 */ 443 tg_update_has_rules(tg); 444 } 445 446 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 447 static void blk_throtl_update_limit_valid(struct throtl_data *td) 448 { 449 struct cgroup_subsys_state *pos_css; 450 struct blkcg_gq *blkg; 451 bool low_valid = false; 452 453 rcu_read_lock(); 454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 455 struct throtl_grp *tg = blkg_to_tg(blkg); 456 457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || 458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { 459 low_valid = true; 460 break; 461 } 462 } 463 rcu_read_unlock(); 464 465 td->limit_valid[LIMIT_LOW] = low_valid; 466 } 467 #else 468 static inline void blk_throtl_update_limit_valid(struct throtl_data *td) 469 { 470 } 471 #endif 472 473 static void throtl_upgrade_state(struct throtl_data *td); 474 static void throtl_pd_offline(struct blkg_policy_data *pd) 475 { 476 struct throtl_grp *tg = pd_to_tg(pd); 477 478 tg->bps[READ][LIMIT_LOW] = 0; 479 tg->bps[WRITE][LIMIT_LOW] = 0; 480 tg->iops[READ][LIMIT_LOW] = 0; 481 tg->iops[WRITE][LIMIT_LOW] = 0; 482 483 blk_throtl_update_limit_valid(tg->td); 484 485 if (!tg->td->limit_valid[tg->td->limit_index]) 486 throtl_upgrade_state(tg->td); 487 } 488 489 static void throtl_pd_free(struct blkg_policy_data *pd) 490 { 491 struct throtl_grp *tg = pd_to_tg(pd); 492 493 del_timer_sync(&tg->service_queue.pending_timer); 494 blkg_rwstat_exit(&tg->stat_bytes); 495 blkg_rwstat_exit(&tg->stat_ios); 496 kfree(tg); 497 } 498 499 static struct throtl_grp * 500 throtl_rb_first(struct throtl_service_queue *parent_sq) 501 { 502 struct rb_node *n; 503 504 n = rb_first_cached(&parent_sq->pending_tree); 505 WARN_ON_ONCE(!n); 506 if (!n) 507 return NULL; 508 return rb_entry_tg(n); 509 } 510 511 static void throtl_rb_erase(struct rb_node *n, 512 struct throtl_service_queue *parent_sq) 513 { 514 rb_erase_cached(n, &parent_sq->pending_tree); 515 RB_CLEAR_NODE(n); 516 } 517 518 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) 519 { 520 struct throtl_grp *tg; 521 522 tg = throtl_rb_first(parent_sq); 523 if (!tg) 524 return; 525 526 parent_sq->first_pending_disptime = tg->disptime; 527 } 528 529 static void tg_service_queue_add(struct throtl_grp *tg) 530 { 531 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; 532 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; 533 struct rb_node *parent = NULL; 534 struct throtl_grp *__tg; 535 unsigned long key = tg->disptime; 536 bool leftmost = true; 537 538 while (*node != NULL) { 539 parent = *node; 540 __tg = rb_entry_tg(parent); 541 542 if (time_before(key, __tg->disptime)) 543 node = &parent->rb_left; 544 else { 545 node = &parent->rb_right; 546 leftmost = false; 547 } 548 } 549 550 rb_link_node(&tg->rb_node, parent, node); 551 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, 552 leftmost); 553 } 554 555 static void throtl_enqueue_tg(struct throtl_grp *tg) 556 { 557 if (!(tg->flags & THROTL_TG_PENDING)) { 558 tg_service_queue_add(tg); 559 tg->flags |= THROTL_TG_PENDING; 560 tg->service_queue.parent_sq->nr_pending++; 561 } 562 } 563 564 static void throtl_dequeue_tg(struct throtl_grp *tg) 565 { 566 if (tg->flags & THROTL_TG_PENDING) { 567 struct throtl_service_queue *parent_sq = 568 tg->service_queue.parent_sq; 569 570 throtl_rb_erase(&tg->rb_node, parent_sq); 571 --parent_sq->nr_pending; 572 tg->flags &= ~THROTL_TG_PENDING; 573 } 574 } 575 576 /* Call with queue lock held */ 577 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, 578 unsigned long expires) 579 { 580 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; 581 582 /* 583 * Since we are adjusting the throttle limit dynamically, the sleep 584 * time calculated according to previous limit might be invalid. It's 585 * possible the cgroup sleep time is very long and no other cgroups 586 * have IO running so notify the limit changes. Make sure the cgroup 587 * doesn't sleep too long to avoid the missed notification. 588 */ 589 if (time_after(expires, max_expire)) 590 expires = max_expire; 591 mod_timer(&sq->pending_timer, expires); 592 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", 593 expires - jiffies, jiffies); 594 } 595 596 /** 597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle 598 * @sq: the service_queue to schedule dispatch for 599 * @force: force scheduling 600 * 601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the 602 * dispatch time of the first pending child. Returns %true if either timer 603 * is armed or there's no pending child left. %false if the current 604 * dispatch window is still open and the caller should continue 605 * dispatching. 606 * 607 * If @force is %true, the dispatch timer is always scheduled and this 608 * function is guaranteed to return %true. This is to be used when the 609 * caller can't dispatch itself and needs to invoke pending_timer 610 * unconditionally. Note that forced scheduling is likely to induce short 611 * delay before dispatch starts even if @sq->first_pending_disptime is not 612 * in the future and thus shouldn't be used in hot paths. 613 */ 614 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, 615 bool force) 616 { 617 /* any pending children left? */ 618 if (!sq->nr_pending) 619 return true; 620 621 update_min_dispatch_time(sq); 622 623 /* is the next dispatch time in the future? */ 624 if (force || time_after(sq->first_pending_disptime, jiffies)) { 625 throtl_schedule_pending_timer(sq, sq->first_pending_disptime); 626 return true; 627 } 628 629 /* tell the caller to continue dispatching */ 630 return false; 631 } 632 633 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, 634 bool rw, unsigned long start) 635 { 636 tg->bytes_disp[rw] = 0; 637 tg->io_disp[rw] = 0; 638 tg->carryover_bytes[rw] = 0; 639 tg->carryover_ios[rw] = 0; 640 641 /* 642 * Previous slice has expired. We must have trimmed it after last 643 * bio dispatch. That means since start of last slice, we never used 644 * that bandwidth. Do try to make use of that bandwidth while giving 645 * credit. 646 */ 647 if (time_after(start, tg->slice_start[rw])) 648 tg->slice_start[rw] = start; 649 650 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 651 throtl_log(&tg->service_queue, 652 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", 653 rw == READ ? 'R' : 'W', tg->slice_start[rw], 654 tg->slice_end[rw], jiffies); 655 } 656 657 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw, 658 bool clear_carryover) 659 { 660 tg->bytes_disp[rw] = 0; 661 tg->io_disp[rw] = 0; 662 tg->slice_start[rw] = jiffies; 663 tg->slice_end[rw] = jiffies + tg->td->throtl_slice; 664 if (clear_carryover) { 665 tg->carryover_bytes[rw] = 0; 666 tg->carryover_ios[rw] = 0; 667 } 668 669 throtl_log(&tg->service_queue, 670 "[%c] new slice start=%lu end=%lu jiffies=%lu", 671 rw == READ ? 'R' : 'W', tg->slice_start[rw], 672 tg->slice_end[rw], jiffies); 673 } 674 675 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, 676 unsigned long jiffy_end) 677 { 678 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); 679 } 680 681 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, 682 unsigned long jiffy_end) 683 { 684 throtl_set_slice_end(tg, rw, jiffy_end); 685 throtl_log(&tg->service_queue, 686 "[%c] extend slice start=%lu end=%lu jiffies=%lu", 687 rw == READ ? 'R' : 'W', tg->slice_start[rw], 688 tg->slice_end[rw], jiffies); 689 } 690 691 /* Determine if previously allocated or extended slice is complete or not */ 692 static bool throtl_slice_used(struct throtl_grp *tg, bool rw) 693 { 694 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) 695 return false; 696 697 return true; 698 } 699 700 static unsigned int calculate_io_allowed(u32 iops_limit, 701 unsigned long jiffy_elapsed) 702 { 703 unsigned int io_allowed; 704 u64 tmp; 705 706 /* 707 * jiffy_elapsed should not be a big value as minimum iops can be 708 * 1 then at max jiffy elapsed should be equivalent of 1 second as we 709 * will allow dispatch after 1 second and after that slice should 710 * have been trimmed. 711 */ 712 713 tmp = (u64)iops_limit * jiffy_elapsed; 714 do_div(tmp, HZ); 715 716 if (tmp > UINT_MAX) 717 io_allowed = UINT_MAX; 718 else 719 io_allowed = tmp; 720 721 return io_allowed; 722 } 723 724 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed) 725 { 726 /* 727 * Can result be wider than 64 bits? 728 * We check against 62, not 64, due to ilog2 truncation. 729 */ 730 if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62) 731 return U64_MAX; 732 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ); 733 } 734 735 /* Trim the used slices and adjust slice start accordingly */ 736 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) 737 { 738 unsigned long time_elapsed; 739 long long bytes_trim; 740 int io_trim; 741 742 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); 743 744 /* 745 * If bps are unlimited (-1), then time slice don't get 746 * renewed. Don't try to trim the slice if slice is used. A new 747 * slice will start when appropriate. 748 */ 749 if (throtl_slice_used(tg, rw)) 750 return; 751 752 /* 753 * A bio has been dispatched. Also adjust slice_end. It might happen 754 * that initially cgroup limit was very low resulting in high 755 * slice_end, but later limit was bumped up and bio was dispatched 756 * sooner, then we need to reduce slice_end. A high bogus slice_end 757 * is bad because it does not allow new slice to start. 758 */ 759 760 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); 761 762 time_elapsed = rounddown(jiffies - tg->slice_start[rw], 763 tg->td->throtl_slice); 764 if (!time_elapsed) 765 return; 766 767 bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw), 768 time_elapsed) + 769 tg->carryover_bytes[rw]; 770 io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) + 771 tg->carryover_ios[rw]; 772 if (bytes_trim <= 0 && io_trim <= 0) 773 return; 774 775 tg->carryover_bytes[rw] = 0; 776 if ((long long)tg->bytes_disp[rw] >= bytes_trim) 777 tg->bytes_disp[rw] -= bytes_trim; 778 else 779 tg->bytes_disp[rw] = 0; 780 781 tg->carryover_ios[rw] = 0; 782 if ((int)tg->io_disp[rw] >= io_trim) 783 tg->io_disp[rw] -= io_trim; 784 else 785 tg->io_disp[rw] = 0; 786 787 tg->slice_start[rw] += time_elapsed; 788 789 throtl_log(&tg->service_queue, 790 "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu", 791 rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice, 792 bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw], 793 jiffies); 794 } 795 796 static void __tg_update_carryover(struct throtl_grp *tg, bool rw) 797 { 798 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw]; 799 u64 bps_limit = tg_bps_limit(tg, rw); 800 u32 iops_limit = tg_iops_limit(tg, rw); 801 802 /* 803 * If config is updated while bios are still throttled, calculate and 804 * accumulate how many bytes/ios are waited across changes. And 805 * carryover_bytes/ios will be used to calculate new wait time under new 806 * configuration. 807 */ 808 if (bps_limit != U64_MAX) 809 tg->carryover_bytes[rw] += 810 calculate_bytes_allowed(bps_limit, jiffy_elapsed) - 811 tg->bytes_disp[rw]; 812 if (iops_limit != UINT_MAX) 813 tg->carryover_ios[rw] += 814 calculate_io_allowed(iops_limit, jiffy_elapsed) - 815 tg->io_disp[rw]; 816 } 817 818 static void tg_update_carryover(struct throtl_grp *tg) 819 { 820 if (tg->service_queue.nr_queued[READ]) 821 __tg_update_carryover(tg, READ); 822 if (tg->service_queue.nr_queued[WRITE]) 823 __tg_update_carryover(tg, WRITE); 824 825 /* see comments in struct throtl_grp for meaning of these fields. */ 826 throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__, 827 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE], 828 tg->carryover_ios[READ], tg->carryover_ios[WRITE]); 829 } 830 831 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio, 832 u32 iops_limit) 833 { 834 bool rw = bio_data_dir(bio); 835 int io_allowed; 836 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 837 838 if (iops_limit == UINT_MAX) { 839 return 0; 840 } 841 842 jiffy_elapsed = jiffies - tg->slice_start[rw]; 843 844 /* Round up to the next throttle slice, wait time must be nonzero */ 845 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); 846 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) + 847 tg->carryover_ios[rw]; 848 if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed) 849 return 0; 850 851 /* Calc approx time to dispatch */ 852 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; 853 return jiffy_wait; 854 } 855 856 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio, 857 u64 bps_limit) 858 { 859 bool rw = bio_data_dir(bio); 860 long long bytes_allowed; 861 u64 extra_bytes; 862 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; 863 unsigned int bio_size = throtl_bio_data_size(bio); 864 865 /* no need to throttle if this bio's bytes have been accounted */ 866 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) { 867 return 0; 868 } 869 870 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; 871 872 /* Slice has just started. Consider one slice interval */ 873 if (!jiffy_elapsed) 874 jiffy_elapsed_rnd = tg->td->throtl_slice; 875 876 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); 877 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) + 878 tg->carryover_bytes[rw]; 879 if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed) 880 return 0; 881 882 /* Calc approx time to dispatch */ 883 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; 884 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); 885 886 if (!jiffy_wait) 887 jiffy_wait = 1; 888 889 /* 890 * This wait time is without taking into consideration the rounding 891 * up we did. Add that time also. 892 */ 893 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); 894 return jiffy_wait; 895 } 896 897 /* 898 * Returns whether one can dispatch a bio or not. Also returns approx number 899 * of jiffies to wait before this bio is with-in IO rate and can be dispatched 900 */ 901 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, 902 unsigned long *wait) 903 { 904 bool rw = bio_data_dir(bio); 905 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; 906 u64 bps_limit = tg_bps_limit(tg, rw); 907 u32 iops_limit = tg_iops_limit(tg, rw); 908 909 /* 910 * Currently whole state machine of group depends on first bio 911 * queued in the group bio list. So one should not be calling 912 * this function with a different bio if there are other bios 913 * queued. 914 */ 915 BUG_ON(tg->service_queue.nr_queued[rw] && 916 bio != throtl_peek_queued(&tg->service_queue.queued[rw])); 917 918 /* If tg->bps = -1, then BW is unlimited */ 919 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) || 920 tg->flags & THROTL_TG_CANCELING) { 921 if (wait) 922 *wait = 0; 923 return true; 924 } 925 926 /* 927 * If previous slice expired, start a new one otherwise renew/extend 928 * existing slice to make sure it is at least throtl_slice interval 929 * long since now. New slice is started only for empty throttle group. 930 * If there is queued bio, that means there should be an active 931 * slice and it should be extended instead. 932 */ 933 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) 934 throtl_start_new_slice(tg, rw, true); 935 else { 936 if (time_before(tg->slice_end[rw], 937 jiffies + tg->td->throtl_slice)) 938 throtl_extend_slice(tg, rw, 939 jiffies + tg->td->throtl_slice); 940 } 941 942 bps_wait = tg_within_bps_limit(tg, bio, bps_limit); 943 iops_wait = tg_within_iops_limit(tg, bio, iops_limit); 944 if (bps_wait + iops_wait == 0) { 945 if (wait) 946 *wait = 0; 947 return true; 948 } 949 950 max_wait = max(bps_wait, iops_wait); 951 952 if (wait) 953 *wait = max_wait; 954 955 if (time_before(tg->slice_end[rw], jiffies + max_wait)) 956 throtl_extend_slice(tg, rw, jiffies + max_wait); 957 958 return false; 959 } 960 961 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) 962 { 963 bool rw = bio_data_dir(bio); 964 unsigned int bio_size = throtl_bio_data_size(bio); 965 966 /* Charge the bio to the group */ 967 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) { 968 tg->bytes_disp[rw] += bio_size; 969 tg->last_bytes_disp[rw] += bio_size; 970 } 971 972 tg->io_disp[rw]++; 973 tg->last_io_disp[rw]++; 974 } 975 976 /** 977 * throtl_add_bio_tg - add a bio to the specified throtl_grp 978 * @bio: bio to add 979 * @qn: qnode to use 980 * @tg: the target throtl_grp 981 * 982 * Add @bio to @tg's service_queue using @qn. If @qn is not specified, 983 * tg->qnode_on_self[] is used. 984 */ 985 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, 986 struct throtl_grp *tg) 987 { 988 struct throtl_service_queue *sq = &tg->service_queue; 989 bool rw = bio_data_dir(bio); 990 991 if (!qn) 992 qn = &tg->qnode_on_self[rw]; 993 994 /* 995 * If @tg doesn't currently have any bios queued in the same 996 * direction, queueing @bio can change when @tg should be 997 * dispatched. Mark that @tg was empty. This is automatically 998 * cleared on the next tg_update_disptime(). 999 */ 1000 if (!sq->nr_queued[rw]) 1001 tg->flags |= THROTL_TG_WAS_EMPTY; 1002 1003 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); 1004 1005 sq->nr_queued[rw]++; 1006 throtl_enqueue_tg(tg); 1007 } 1008 1009 static void tg_update_disptime(struct throtl_grp *tg) 1010 { 1011 struct throtl_service_queue *sq = &tg->service_queue; 1012 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; 1013 struct bio *bio; 1014 1015 bio = throtl_peek_queued(&sq->queued[READ]); 1016 if (bio) 1017 tg_may_dispatch(tg, bio, &read_wait); 1018 1019 bio = throtl_peek_queued(&sq->queued[WRITE]); 1020 if (bio) 1021 tg_may_dispatch(tg, bio, &write_wait); 1022 1023 min_wait = min(read_wait, write_wait); 1024 disptime = jiffies + min_wait; 1025 1026 /* Update dispatch time */ 1027 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); 1028 tg->disptime = disptime; 1029 tg_service_queue_add(tg); 1030 1031 /* see throtl_add_bio_tg() */ 1032 tg->flags &= ~THROTL_TG_WAS_EMPTY; 1033 } 1034 1035 static void start_parent_slice_with_credit(struct throtl_grp *child_tg, 1036 struct throtl_grp *parent_tg, bool rw) 1037 { 1038 if (throtl_slice_used(parent_tg, rw)) { 1039 throtl_start_new_slice_with_credit(parent_tg, rw, 1040 child_tg->slice_start[rw]); 1041 } 1042 1043 } 1044 1045 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) 1046 { 1047 struct throtl_service_queue *sq = &tg->service_queue; 1048 struct throtl_service_queue *parent_sq = sq->parent_sq; 1049 struct throtl_grp *parent_tg = sq_to_tg(parent_sq); 1050 struct throtl_grp *tg_to_put = NULL; 1051 struct bio *bio; 1052 1053 /* 1054 * @bio is being transferred from @tg to @parent_sq. Popping a bio 1055 * from @tg may put its reference and @parent_sq might end up 1056 * getting released prematurely. Remember the tg to put and put it 1057 * after @bio is transferred to @parent_sq. 1058 */ 1059 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); 1060 sq->nr_queued[rw]--; 1061 1062 throtl_charge_bio(tg, bio); 1063 1064 /* 1065 * If our parent is another tg, we just need to transfer @bio to 1066 * the parent using throtl_add_bio_tg(). If our parent is 1067 * @td->service_queue, @bio is ready to be issued. Put it on its 1068 * bio_lists[] and decrease total number queued. The caller is 1069 * responsible for issuing these bios. 1070 */ 1071 if (parent_tg) { 1072 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); 1073 start_parent_slice_with_credit(tg, parent_tg, rw); 1074 } else { 1075 bio_set_flag(bio, BIO_BPS_THROTTLED); 1076 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], 1077 &parent_sq->queued[rw]); 1078 BUG_ON(tg->td->nr_queued[rw] <= 0); 1079 tg->td->nr_queued[rw]--; 1080 } 1081 1082 throtl_trim_slice(tg, rw); 1083 1084 if (tg_to_put) 1085 blkg_put(tg_to_blkg(tg_to_put)); 1086 } 1087 1088 static int throtl_dispatch_tg(struct throtl_grp *tg) 1089 { 1090 struct throtl_service_queue *sq = &tg->service_queue; 1091 unsigned int nr_reads = 0, nr_writes = 0; 1092 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; 1093 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; 1094 struct bio *bio; 1095 1096 /* Try to dispatch 75% READS and 25% WRITES */ 1097 1098 while ((bio = throtl_peek_queued(&sq->queued[READ])) && 1099 tg_may_dispatch(tg, bio, NULL)) { 1100 1101 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1102 nr_reads++; 1103 1104 if (nr_reads >= max_nr_reads) 1105 break; 1106 } 1107 1108 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && 1109 tg_may_dispatch(tg, bio, NULL)) { 1110 1111 tg_dispatch_one_bio(tg, bio_data_dir(bio)); 1112 nr_writes++; 1113 1114 if (nr_writes >= max_nr_writes) 1115 break; 1116 } 1117 1118 return nr_reads + nr_writes; 1119 } 1120 1121 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) 1122 { 1123 unsigned int nr_disp = 0; 1124 1125 while (1) { 1126 struct throtl_grp *tg; 1127 struct throtl_service_queue *sq; 1128 1129 if (!parent_sq->nr_pending) 1130 break; 1131 1132 tg = throtl_rb_first(parent_sq); 1133 if (!tg) 1134 break; 1135 1136 if (time_before(jiffies, tg->disptime)) 1137 break; 1138 1139 nr_disp += throtl_dispatch_tg(tg); 1140 1141 sq = &tg->service_queue; 1142 if (sq->nr_queued[READ] || sq->nr_queued[WRITE]) 1143 tg_update_disptime(tg); 1144 else 1145 throtl_dequeue_tg(tg); 1146 1147 if (nr_disp >= THROTL_QUANTUM) 1148 break; 1149 } 1150 1151 return nr_disp; 1152 } 1153 1154 static bool throtl_can_upgrade(struct throtl_data *td, 1155 struct throtl_grp *this_tg); 1156 /** 1157 * throtl_pending_timer_fn - timer function for service_queue->pending_timer 1158 * @t: the pending_timer member of the throtl_service_queue being serviced 1159 * 1160 * This timer is armed when a child throtl_grp with active bio's become 1161 * pending and queued on the service_queue's pending_tree and expires when 1162 * the first child throtl_grp should be dispatched. This function 1163 * dispatches bio's from the children throtl_grps to the parent 1164 * service_queue. 1165 * 1166 * If the parent's parent is another throtl_grp, dispatching is propagated 1167 * by either arming its pending_timer or repeating dispatch directly. If 1168 * the top-level service_tree is reached, throtl_data->dispatch_work is 1169 * kicked so that the ready bio's are issued. 1170 */ 1171 static void throtl_pending_timer_fn(struct timer_list *t) 1172 { 1173 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); 1174 struct throtl_grp *tg = sq_to_tg(sq); 1175 struct throtl_data *td = sq_to_td(sq); 1176 struct throtl_service_queue *parent_sq; 1177 struct request_queue *q; 1178 bool dispatched; 1179 int ret; 1180 1181 /* throtl_data may be gone, so figure out request queue by blkg */ 1182 if (tg) 1183 q = tg->pd.blkg->q; 1184 else 1185 q = td->queue; 1186 1187 spin_lock_irq(&q->queue_lock); 1188 1189 if (!q->root_blkg) 1190 goto out_unlock; 1191 1192 if (throtl_can_upgrade(td, NULL)) 1193 throtl_upgrade_state(td); 1194 1195 again: 1196 parent_sq = sq->parent_sq; 1197 dispatched = false; 1198 1199 while (true) { 1200 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", 1201 sq->nr_queued[READ] + sq->nr_queued[WRITE], 1202 sq->nr_queued[READ], sq->nr_queued[WRITE]); 1203 1204 ret = throtl_select_dispatch(sq); 1205 if (ret) { 1206 throtl_log(sq, "bios disp=%u", ret); 1207 dispatched = true; 1208 } 1209 1210 if (throtl_schedule_next_dispatch(sq, false)) 1211 break; 1212 1213 /* this dispatch windows is still open, relax and repeat */ 1214 spin_unlock_irq(&q->queue_lock); 1215 cpu_relax(); 1216 spin_lock_irq(&q->queue_lock); 1217 } 1218 1219 if (!dispatched) 1220 goto out_unlock; 1221 1222 if (parent_sq) { 1223 /* @parent_sq is another throl_grp, propagate dispatch */ 1224 if (tg->flags & THROTL_TG_WAS_EMPTY) { 1225 tg_update_disptime(tg); 1226 if (!throtl_schedule_next_dispatch(parent_sq, false)) { 1227 /* window is already open, repeat dispatching */ 1228 sq = parent_sq; 1229 tg = sq_to_tg(sq); 1230 goto again; 1231 } 1232 } 1233 } else { 1234 /* reached the top-level, queue issuing */ 1235 queue_work(kthrotld_workqueue, &td->dispatch_work); 1236 } 1237 out_unlock: 1238 spin_unlock_irq(&q->queue_lock); 1239 } 1240 1241 /** 1242 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work 1243 * @work: work item being executed 1244 * 1245 * This function is queued for execution when bios reach the bio_lists[] 1246 * of throtl_data->service_queue. Those bios are ready and issued by this 1247 * function. 1248 */ 1249 static void blk_throtl_dispatch_work_fn(struct work_struct *work) 1250 { 1251 struct throtl_data *td = container_of(work, struct throtl_data, 1252 dispatch_work); 1253 struct throtl_service_queue *td_sq = &td->service_queue; 1254 struct request_queue *q = td->queue; 1255 struct bio_list bio_list_on_stack; 1256 struct bio *bio; 1257 struct blk_plug plug; 1258 int rw; 1259 1260 bio_list_init(&bio_list_on_stack); 1261 1262 spin_lock_irq(&q->queue_lock); 1263 for (rw = READ; rw <= WRITE; rw++) 1264 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) 1265 bio_list_add(&bio_list_on_stack, bio); 1266 spin_unlock_irq(&q->queue_lock); 1267 1268 if (!bio_list_empty(&bio_list_on_stack)) { 1269 blk_start_plug(&plug); 1270 while ((bio = bio_list_pop(&bio_list_on_stack))) 1271 submit_bio_noacct_nocheck(bio); 1272 blk_finish_plug(&plug); 1273 } 1274 } 1275 1276 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, 1277 int off) 1278 { 1279 struct throtl_grp *tg = pd_to_tg(pd); 1280 u64 v = *(u64 *)((void *)tg + off); 1281 1282 if (v == U64_MAX) 1283 return 0; 1284 return __blkg_prfill_u64(sf, pd, v); 1285 } 1286 1287 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, 1288 int off) 1289 { 1290 struct throtl_grp *tg = pd_to_tg(pd); 1291 unsigned int v = *(unsigned int *)((void *)tg + off); 1292 1293 if (v == UINT_MAX) 1294 return 0; 1295 return __blkg_prfill_u64(sf, pd, v); 1296 } 1297 1298 static int tg_print_conf_u64(struct seq_file *sf, void *v) 1299 { 1300 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, 1301 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1302 return 0; 1303 } 1304 1305 static int tg_print_conf_uint(struct seq_file *sf, void *v) 1306 { 1307 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, 1308 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1309 return 0; 1310 } 1311 1312 static void tg_conf_updated(struct throtl_grp *tg, bool global) 1313 { 1314 struct throtl_service_queue *sq = &tg->service_queue; 1315 struct cgroup_subsys_state *pos_css; 1316 struct blkcg_gq *blkg; 1317 1318 throtl_log(&tg->service_queue, 1319 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", 1320 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), 1321 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); 1322 1323 /* 1324 * Update has_rules[] flags for the updated tg's subtree. A tg is 1325 * considered to have rules if either the tg itself or any of its 1326 * ancestors has rules. This identifies groups without any 1327 * restrictions in the whole hierarchy and allows them to bypass 1328 * blk-throttle. 1329 */ 1330 blkg_for_each_descendant_pre(blkg, pos_css, 1331 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { 1332 struct throtl_grp *this_tg = blkg_to_tg(blkg); 1333 struct throtl_grp *parent_tg; 1334 1335 tg_update_has_rules(this_tg); 1336 /* ignore root/second level */ 1337 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || 1338 !blkg->parent->parent) 1339 continue; 1340 parent_tg = blkg_to_tg(blkg->parent); 1341 /* 1342 * make sure all children has lower idle time threshold and 1343 * higher latency target 1344 */ 1345 this_tg->idletime_threshold = min(this_tg->idletime_threshold, 1346 parent_tg->idletime_threshold); 1347 this_tg->latency_target = max(this_tg->latency_target, 1348 parent_tg->latency_target); 1349 } 1350 1351 /* 1352 * We're already holding queue_lock and know @tg is valid. Let's 1353 * apply the new config directly. 1354 * 1355 * Restart the slices for both READ and WRITES. It might happen 1356 * that a group's limit are dropped suddenly and we don't want to 1357 * account recently dispatched IO with new low rate. 1358 */ 1359 throtl_start_new_slice(tg, READ, false); 1360 throtl_start_new_slice(tg, WRITE, false); 1361 1362 if (tg->flags & THROTL_TG_PENDING) { 1363 tg_update_disptime(tg); 1364 throtl_schedule_next_dispatch(sq->parent_sq, true); 1365 } 1366 } 1367 1368 static ssize_t tg_set_conf(struct kernfs_open_file *of, 1369 char *buf, size_t nbytes, loff_t off, bool is_u64) 1370 { 1371 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1372 struct blkg_conf_ctx ctx; 1373 struct throtl_grp *tg; 1374 int ret; 1375 u64 v; 1376 1377 blkg_conf_init(&ctx, buf); 1378 1379 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx); 1380 if (ret) 1381 goto out_finish; 1382 1383 ret = -EINVAL; 1384 if (sscanf(ctx.body, "%llu", &v) != 1) 1385 goto out_finish; 1386 if (!v) 1387 v = U64_MAX; 1388 1389 tg = blkg_to_tg(ctx.blkg); 1390 tg_update_carryover(tg); 1391 1392 if (is_u64) 1393 *(u64 *)((void *)tg + of_cft(of)->private) = v; 1394 else 1395 *(unsigned int *)((void *)tg + of_cft(of)->private) = v; 1396 1397 tg_conf_updated(tg, false); 1398 ret = 0; 1399 out_finish: 1400 blkg_conf_exit(&ctx); 1401 return ret ?: nbytes; 1402 } 1403 1404 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, 1405 char *buf, size_t nbytes, loff_t off) 1406 { 1407 return tg_set_conf(of, buf, nbytes, off, true); 1408 } 1409 1410 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, 1411 char *buf, size_t nbytes, loff_t off) 1412 { 1413 return tg_set_conf(of, buf, nbytes, off, false); 1414 } 1415 1416 static int tg_print_rwstat(struct seq_file *sf, void *v) 1417 { 1418 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1419 blkg_prfill_rwstat, &blkcg_policy_throtl, 1420 seq_cft(sf)->private, true); 1421 return 0; 1422 } 1423 1424 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, 1425 struct blkg_policy_data *pd, int off) 1426 { 1427 struct blkg_rwstat_sample sum; 1428 1429 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, 1430 &sum); 1431 return __blkg_prfill_rwstat(sf, pd, &sum); 1432 } 1433 1434 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) 1435 { 1436 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), 1437 tg_prfill_rwstat_recursive, &blkcg_policy_throtl, 1438 seq_cft(sf)->private, true); 1439 return 0; 1440 } 1441 1442 static struct cftype throtl_legacy_files[] = { 1443 { 1444 .name = "throttle.read_bps_device", 1445 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), 1446 .seq_show = tg_print_conf_u64, 1447 .write = tg_set_conf_u64, 1448 }, 1449 { 1450 .name = "throttle.write_bps_device", 1451 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), 1452 .seq_show = tg_print_conf_u64, 1453 .write = tg_set_conf_u64, 1454 }, 1455 { 1456 .name = "throttle.read_iops_device", 1457 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), 1458 .seq_show = tg_print_conf_uint, 1459 .write = tg_set_conf_uint, 1460 }, 1461 { 1462 .name = "throttle.write_iops_device", 1463 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), 1464 .seq_show = tg_print_conf_uint, 1465 .write = tg_set_conf_uint, 1466 }, 1467 { 1468 .name = "throttle.io_service_bytes", 1469 .private = offsetof(struct throtl_grp, stat_bytes), 1470 .seq_show = tg_print_rwstat, 1471 }, 1472 { 1473 .name = "throttle.io_service_bytes_recursive", 1474 .private = offsetof(struct throtl_grp, stat_bytes), 1475 .seq_show = tg_print_rwstat_recursive, 1476 }, 1477 { 1478 .name = "throttle.io_serviced", 1479 .private = offsetof(struct throtl_grp, stat_ios), 1480 .seq_show = tg_print_rwstat, 1481 }, 1482 { 1483 .name = "throttle.io_serviced_recursive", 1484 .private = offsetof(struct throtl_grp, stat_ios), 1485 .seq_show = tg_print_rwstat_recursive, 1486 }, 1487 { } /* terminate */ 1488 }; 1489 1490 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, 1491 int off) 1492 { 1493 struct throtl_grp *tg = pd_to_tg(pd); 1494 const char *dname = blkg_dev_name(pd->blkg); 1495 char bufs[4][21] = { "max", "max", "max", "max" }; 1496 u64 bps_dft; 1497 unsigned int iops_dft; 1498 char idle_time[26] = ""; 1499 char latency_time[26] = ""; 1500 1501 if (!dname) 1502 return 0; 1503 1504 if (off == LIMIT_LOW) { 1505 bps_dft = 0; 1506 iops_dft = 0; 1507 } else { 1508 bps_dft = U64_MAX; 1509 iops_dft = UINT_MAX; 1510 } 1511 1512 if (tg->bps_conf[READ][off] == bps_dft && 1513 tg->bps_conf[WRITE][off] == bps_dft && 1514 tg->iops_conf[READ][off] == iops_dft && 1515 tg->iops_conf[WRITE][off] == iops_dft && 1516 (off != LIMIT_LOW || 1517 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && 1518 tg->latency_target_conf == DFL_LATENCY_TARGET))) 1519 return 0; 1520 1521 if (tg->bps_conf[READ][off] != U64_MAX) 1522 snprintf(bufs[0], sizeof(bufs[0]), "%llu", 1523 tg->bps_conf[READ][off]); 1524 if (tg->bps_conf[WRITE][off] != U64_MAX) 1525 snprintf(bufs[1], sizeof(bufs[1]), "%llu", 1526 tg->bps_conf[WRITE][off]); 1527 if (tg->iops_conf[READ][off] != UINT_MAX) 1528 snprintf(bufs[2], sizeof(bufs[2]), "%u", 1529 tg->iops_conf[READ][off]); 1530 if (tg->iops_conf[WRITE][off] != UINT_MAX) 1531 snprintf(bufs[3], sizeof(bufs[3]), "%u", 1532 tg->iops_conf[WRITE][off]); 1533 if (off == LIMIT_LOW) { 1534 if (tg->idletime_threshold_conf == ULONG_MAX) 1535 strcpy(idle_time, " idle=max"); 1536 else 1537 snprintf(idle_time, sizeof(idle_time), " idle=%lu", 1538 tg->idletime_threshold_conf); 1539 1540 if (tg->latency_target_conf == ULONG_MAX) 1541 strcpy(latency_time, " latency=max"); 1542 else 1543 snprintf(latency_time, sizeof(latency_time), 1544 " latency=%lu", tg->latency_target_conf); 1545 } 1546 1547 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", 1548 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, 1549 latency_time); 1550 return 0; 1551 } 1552 1553 static int tg_print_limit(struct seq_file *sf, void *v) 1554 { 1555 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, 1556 &blkcg_policy_throtl, seq_cft(sf)->private, false); 1557 return 0; 1558 } 1559 1560 static ssize_t tg_set_limit(struct kernfs_open_file *of, 1561 char *buf, size_t nbytes, loff_t off) 1562 { 1563 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 1564 struct blkg_conf_ctx ctx; 1565 struct throtl_grp *tg; 1566 u64 v[4]; 1567 unsigned long idle_time; 1568 unsigned long latency_time; 1569 int ret; 1570 int index = of_cft(of)->private; 1571 1572 blkg_conf_init(&ctx, buf); 1573 1574 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx); 1575 if (ret) 1576 goto out_finish; 1577 1578 tg = blkg_to_tg(ctx.blkg); 1579 tg_update_carryover(tg); 1580 1581 v[0] = tg->bps_conf[READ][index]; 1582 v[1] = tg->bps_conf[WRITE][index]; 1583 v[2] = tg->iops_conf[READ][index]; 1584 v[3] = tg->iops_conf[WRITE][index]; 1585 1586 idle_time = tg->idletime_threshold_conf; 1587 latency_time = tg->latency_target_conf; 1588 while (true) { 1589 char tok[27]; /* wiops=18446744073709551616 */ 1590 char *p; 1591 u64 val = U64_MAX; 1592 int len; 1593 1594 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) 1595 break; 1596 if (tok[0] == '\0') 1597 break; 1598 ctx.body += len; 1599 1600 ret = -EINVAL; 1601 p = tok; 1602 strsep(&p, "="); 1603 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) 1604 goto out_finish; 1605 1606 ret = -ERANGE; 1607 if (!val) 1608 goto out_finish; 1609 1610 ret = -EINVAL; 1611 if (!strcmp(tok, "rbps") && val > 1) 1612 v[0] = val; 1613 else if (!strcmp(tok, "wbps") && val > 1) 1614 v[1] = val; 1615 else if (!strcmp(tok, "riops") && val > 1) 1616 v[2] = min_t(u64, val, UINT_MAX); 1617 else if (!strcmp(tok, "wiops") && val > 1) 1618 v[3] = min_t(u64, val, UINT_MAX); 1619 else if (off == LIMIT_LOW && !strcmp(tok, "idle")) 1620 idle_time = val; 1621 else if (off == LIMIT_LOW && !strcmp(tok, "latency")) 1622 latency_time = val; 1623 else 1624 goto out_finish; 1625 } 1626 1627 tg->bps_conf[READ][index] = v[0]; 1628 tg->bps_conf[WRITE][index] = v[1]; 1629 tg->iops_conf[READ][index] = v[2]; 1630 tg->iops_conf[WRITE][index] = v[3]; 1631 1632 if (index == LIMIT_MAX) { 1633 tg->bps[READ][index] = v[0]; 1634 tg->bps[WRITE][index] = v[1]; 1635 tg->iops[READ][index] = v[2]; 1636 tg->iops[WRITE][index] = v[3]; 1637 } 1638 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], 1639 tg->bps_conf[READ][LIMIT_MAX]); 1640 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], 1641 tg->bps_conf[WRITE][LIMIT_MAX]); 1642 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], 1643 tg->iops_conf[READ][LIMIT_MAX]); 1644 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], 1645 tg->iops_conf[WRITE][LIMIT_MAX]); 1646 tg->idletime_threshold_conf = idle_time; 1647 tg->latency_target_conf = latency_time; 1648 1649 /* force user to configure all settings for low limit */ 1650 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || 1651 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || 1652 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || 1653 tg->latency_target_conf == DFL_LATENCY_TARGET) { 1654 tg->bps[READ][LIMIT_LOW] = 0; 1655 tg->bps[WRITE][LIMIT_LOW] = 0; 1656 tg->iops[READ][LIMIT_LOW] = 0; 1657 tg->iops[WRITE][LIMIT_LOW] = 0; 1658 tg->idletime_threshold = DFL_IDLE_THRESHOLD; 1659 tg->latency_target = DFL_LATENCY_TARGET; 1660 } else if (index == LIMIT_LOW) { 1661 tg->idletime_threshold = tg->idletime_threshold_conf; 1662 tg->latency_target = tg->latency_target_conf; 1663 } 1664 1665 blk_throtl_update_limit_valid(tg->td); 1666 if (tg->td->limit_valid[LIMIT_LOW]) { 1667 if (index == LIMIT_LOW) 1668 tg->td->limit_index = LIMIT_LOW; 1669 } else 1670 tg->td->limit_index = LIMIT_MAX; 1671 tg_conf_updated(tg, index == LIMIT_LOW && 1672 tg->td->limit_valid[LIMIT_LOW]); 1673 ret = 0; 1674 out_finish: 1675 blkg_conf_exit(&ctx); 1676 return ret ?: nbytes; 1677 } 1678 1679 static struct cftype throtl_files[] = { 1680 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1681 { 1682 .name = "low", 1683 .flags = CFTYPE_NOT_ON_ROOT, 1684 .seq_show = tg_print_limit, 1685 .write = tg_set_limit, 1686 .private = LIMIT_LOW, 1687 }, 1688 #endif 1689 { 1690 .name = "max", 1691 .flags = CFTYPE_NOT_ON_ROOT, 1692 .seq_show = tg_print_limit, 1693 .write = tg_set_limit, 1694 .private = LIMIT_MAX, 1695 }, 1696 { } /* terminate */ 1697 }; 1698 1699 static void throtl_shutdown_wq(struct request_queue *q) 1700 { 1701 struct throtl_data *td = q->td; 1702 1703 cancel_work_sync(&td->dispatch_work); 1704 } 1705 1706 struct blkcg_policy blkcg_policy_throtl = { 1707 .dfl_cftypes = throtl_files, 1708 .legacy_cftypes = throtl_legacy_files, 1709 1710 .pd_alloc_fn = throtl_pd_alloc, 1711 .pd_init_fn = throtl_pd_init, 1712 .pd_online_fn = throtl_pd_online, 1713 .pd_offline_fn = throtl_pd_offline, 1714 .pd_free_fn = throtl_pd_free, 1715 }; 1716 1717 void blk_throtl_cancel_bios(struct gendisk *disk) 1718 { 1719 struct request_queue *q = disk->queue; 1720 struct cgroup_subsys_state *pos_css; 1721 struct blkcg_gq *blkg; 1722 1723 spin_lock_irq(&q->queue_lock); 1724 /* 1725 * queue_lock is held, rcu lock is not needed here technically. 1726 * However, rcu lock is still held to emphasize that following 1727 * path need RCU protection and to prevent warning from lockdep. 1728 */ 1729 rcu_read_lock(); 1730 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) { 1731 struct throtl_grp *tg = blkg_to_tg(blkg); 1732 struct throtl_service_queue *sq = &tg->service_queue; 1733 1734 /* 1735 * Set the flag to make sure throtl_pending_timer_fn() won't 1736 * stop until all throttled bios are dispatched. 1737 */ 1738 tg->flags |= THROTL_TG_CANCELING; 1739 1740 /* 1741 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup 1742 * will be inserted to service queue without THROTL_TG_PENDING 1743 * set in tg_update_disptime below. Then IO dispatched from 1744 * child in tg_dispatch_one_bio will trigger double insertion 1745 * and corrupt the tree. 1746 */ 1747 if (!(tg->flags & THROTL_TG_PENDING)) 1748 continue; 1749 1750 /* 1751 * Update disptime after setting the above flag to make sure 1752 * throtl_select_dispatch() won't exit without dispatching. 1753 */ 1754 tg_update_disptime(tg); 1755 1756 throtl_schedule_pending_timer(sq, jiffies + 1); 1757 } 1758 rcu_read_unlock(); 1759 spin_unlock_irq(&q->queue_lock); 1760 } 1761 1762 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 1763 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) 1764 { 1765 unsigned long rtime = jiffies, wtime = jiffies; 1766 1767 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) 1768 rtime = tg->last_low_overflow_time[READ]; 1769 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) 1770 wtime = tg->last_low_overflow_time[WRITE]; 1771 return min(rtime, wtime); 1772 } 1773 1774 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) 1775 { 1776 struct throtl_service_queue *parent_sq; 1777 struct throtl_grp *parent = tg; 1778 unsigned long ret = __tg_last_low_overflow_time(tg); 1779 1780 while (true) { 1781 parent_sq = parent->service_queue.parent_sq; 1782 parent = sq_to_tg(parent_sq); 1783 if (!parent) 1784 break; 1785 1786 /* 1787 * The parent doesn't have low limit, it always reaches low 1788 * limit. Its overflow time is useless for children 1789 */ 1790 if (!parent->bps[READ][LIMIT_LOW] && 1791 !parent->iops[READ][LIMIT_LOW] && 1792 !parent->bps[WRITE][LIMIT_LOW] && 1793 !parent->iops[WRITE][LIMIT_LOW]) 1794 continue; 1795 if (time_after(__tg_last_low_overflow_time(parent), ret)) 1796 ret = __tg_last_low_overflow_time(parent); 1797 } 1798 return ret; 1799 } 1800 1801 static bool throtl_tg_is_idle(struct throtl_grp *tg) 1802 { 1803 /* 1804 * cgroup is idle if: 1805 * - single idle is too long, longer than a fixed value (in case user 1806 * configure a too big threshold) or 4 times of idletime threshold 1807 * - average think time is more than threshold 1808 * - IO latency is largely below threshold 1809 */ 1810 unsigned long time; 1811 bool ret; 1812 1813 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); 1814 ret = tg->latency_target == DFL_LATENCY_TARGET || 1815 tg->idletime_threshold == DFL_IDLE_THRESHOLD || 1816 (ktime_get_ns() >> 10) - tg->last_finish_time > time || 1817 tg->avg_idletime > tg->idletime_threshold || 1818 (tg->latency_target && tg->bio_cnt && 1819 tg->bad_bio_cnt * 5 < tg->bio_cnt); 1820 throtl_log(&tg->service_queue, 1821 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", 1822 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, 1823 tg->bio_cnt, ret, tg->td->scale); 1824 return ret; 1825 } 1826 1827 static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw) 1828 { 1829 struct throtl_service_queue *sq = &tg->service_queue; 1830 bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW]; 1831 1832 /* 1833 * if low limit is zero, low limit is always reached. 1834 * if low limit is non-zero, we can check if there is any request 1835 * is queued to determine if low limit is reached as we throttle 1836 * request according to limit. 1837 */ 1838 return !limit || sq->nr_queued[rw]; 1839 } 1840 1841 static bool throtl_tg_can_upgrade(struct throtl_grp *tg) 1842 { 1843 /* 1844 * cgroup reaches low limit when low limit of READ and WRITE are 1845 * both reached, it's ok to upgrade to next limit if cgroup reaches 1846 * low limit 1847 */ 1848 if (throtl_low_limit_reached(tg, READ) && 1849 throtl_low_limit_reached(tg, WRITE)) 1850 return true; 1851 1852 if (time_after_eq(jiffies, 1853 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && 1854 throtl_tg_is_idle(tg)) 1855 return true; 1856 return false; 1857 } 1858 1859 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) 1860 { 1861 while (true) { 1862 if (throtl_tg_can_upgrade(tg)) 1863 return true; 1864 tg = sq_to_tg(tg->service_queue.parent_sq); 1865 if (!tg || !tg_to_blkg(tg)->parent) 1866 return false; 1867 } 1868 return false; 1869 } 1870 1871 static bool throtl_can_upgrade(struct throtl_data *td, 1872 struct throtl_grp *this_tg) 1873 { 1874 struct cgroup_subsys_state *pos_css; 1875 struct blkcg_gq *blkg; 1876 1877 if (td->limit_index != LIMIT_LOW) 1878 return false; 1879 1880 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) 1881 return false; 1882 1883 rcu_read_lock(); 1884 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1885 struct throtl_grp *tg = blkg_to_tg(blkg); 1886 1887 if (tg == this_tg) 1888 continue; 1889 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 1890 continue; 1891 if (!throtl_hierarchy_can_upgrade(tg)) { 1892 rcu_read_unlock(); 1893 return false; 1894 } 1895 } 1896 rcu_read_unlock(); 1897 return true; 1898 } 1899 1900 static void throtl_upgrade_check(struct throtl_grp *tg) 1901 { 1902 unsigned long now = jiffies; 1903 1904 if (tg->td->limit_index != LIMIT_LOW) 1905 return; 1906 1907 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 1908 return; 1909 1910 tg->last_check_time = now; 1911 1912 if (!time_after_eq(now, 1913 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) 1914 return; 1915 1916 if (throtl_can_upgrade(tg->td, NULL)) 1917 throtl_upgrade_state(tg->td); 1918 } 1919 1920 static void throtl_upgrade_state(struct throtl_data *td) 1921 { 1922 struct cgroup_subsys_state *pos_css; 1923 struct blkcg_gq *blkg; 1924 1925 throtl_log(&td->service_queue, "upgrade to max"); 1926 td->limit_index = LIMIT_MAX; 1927 td->low_upgrade_time = jiffies; 1928 td->scale = 0; 1929 rcu_read_lock(); 1930 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { 1931 struct throtl_grp *tg = blkg_to_tg(blkg); 1932 struct throtl_service_queue *sq = &tg->service_queue; 1933 1934 tg->disptime = jiffies - 1; 1935 throtl_select_dispatch(sq); 1936 throtl_schedule_next_dispatch(sq, true); 1937 } 1938 rcu_read_unlock(); 1939 throtl_select_dispatch(&td->service_queue); 1940 throtl_schedule_next_dispatch(&td->service_queue, true); 1941 queue_work(kthrotld_workqueue, &td->dispatch_work); 1942 } 1943 1944 static void throtl_downgrade_state(struct throtl_data *td) 1945 { 1946 td->scale /= 2; 1947 1948 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); 1949 if (td->scale) { 1950 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; 1951 return; 1952 } 1953 1954 td->limit_index = LIMIT_LOW; 1955 td->low_downgrade_time = jiffies; 1956 } 1957 1958 static bool throtl_tg_can_downgrade(struct throtl_grp *tg) 1959 { 1960 struct throtl_data *td = tg->td; 1961 unsigned long now = jiffies; 1962 1963 /* 1964 * If cgroup is below low limit, consider downgrade and throttle other 1965 * cgroups 1966 */ 1967 if (time_after_eq(now, tg_last_low_overflow_time(tg) + 1968 td->throtl_slice) && 1969 (!throtl_tg_is_idle(tg) || 1970 !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) 1971 return true; 1972 return false; 1973 } 1974 1975 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) 1976 { 1977 struct throtl_data *td = tg->td; 1978 1979 if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice)) 1980 return false; 1981 1982 while (true) { 1983 if (!throtl_tg_can_downgrade(tg)) 1984 return false; 1985 tg = sq_to_tg(tg->service_queue.parent_sq); 1986 if (!tg || !tg_to_blkg(tg)->parent) 1987 break; 1988 } 1989 return true; 1990 } 1991 1992 static void throtl_downgrade_check(struct throtl_grp *tg) 1993 { 1994 uint64_t bps; 1995 unsigned int iops; 1996 unsigned long elapsed_time; 1997 unsigned long now = jiffies; 1998 1999 if (tg->td->limit_index != LIMIT_MAX || 2000 !tg->td->limit_valid[LIMIT_LOW]) 2001 return; 2002 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) 2003 return; 2004 if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) 2005 return; 2006 2007 elapsed_time = now - tg->last_check_time; 2008 tg->last_check_time = now; 2009 2010 if (time_before(now, tg_last_low_overflow_time(tg) + 2011 tg->td->throtl_slice)) 2012 return; 2013 2014 if (tg->bps[READ][LIMIT_LOW]) { 2015 bps = tg->last_bytes_disp[READ] * HZ; 2016 do_div(bps, elapsed_time); 2017 if (bps >= tg->bps[READ][LIMIT_LOW]) 2018 tg->last_low_overflow_time[READ] = now; 2019 } 2020 2021 if (tg->bps[WRITE][LIMIT_LOW]) { 2022 bps = tg->last_bytes_disp[WRITE] * HZ; 2023 do_div(bps, elapsed_time); 2024 if (bps >= tg->bps[WRITE][LIMIT_LOW]) 2025 tg->last_low_overflow_time[WRITE] = now; 2026 } 2027 2028 if (tg->iops[READ][LIMIT_LOW]) { 2029 iops = tg->last_io_disp[READ] * HZ / elapsed_time; 2030 if (iops >= tg->iops[READ][LIMIT_LOW]) 2031 tg->last_low_overflow_time[READ] = now; 2032 } 2033 2034 if (tg->iops[WRITE][LIMIT_LOW]) { 2035 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; 2036 if (iops >= tg->iops[WRITE][LIMIT_LOW]) 2037 tg->last_low_overflow_time[WRITE] = now; 2038 } 2039 2040 /* 2041 * If cgroup is below low limit, consider downgrade and throttle other 2042 * cgroups 2043 */ 2044 if (throtl_hierarchy_can_downgrade(tg)) 2045 throtl_downgrade_state(tg->td); 2046 2047 tg->last_bytes_disp[READ] = 0; 2048 tg->last_bytes_disp[WRITE] = 0; 2049 tg->last_io_disp[READ] = 0; 2050 tg->last_io_disp[WRITE] = 0; 2051 } 2052 2053 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2054 { 2055 unsigned long now; 2056 unsigned long last_finish_time = tg->last_finish_time; 2057 2058 if (last_finish_time == 0) 2059 return; 2060 2061 now = ktime_get_ns() >> 10; 2062 if (now <= last_finish_time || 2063 last_finish_time == tg->checked_last_finish_time) 2064 return; 2065 2066 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; 2067 tg->checked_last_finish_time = last_finish_time; 2068 } 2069 2070 static void throtl_update_latency_buckets(struct throtl_data *td) 2071 { 2072 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; 2073 int i, cpu, rw; 2074 unsigned long last_latency[2] = { 0 }; 2075 unsigned long latency[2]; 2076 2077 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW]) 2078 return; 2079 if (time_before(jiffies, td->last_calculate_time + HZ)) 2080 return; 2081 td->last_calculate_time = jiffies; 2082 2083 memset(avg_latency, 0, sizeof(avg_latency)); 2084 for (rw = READ; rw <= WRITE; rw++) { 2085 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2086 struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; 2087 2088 for_each_possible_cpu(cpu) { 2089 struct latency_bucket *bucket; 2090 2091 /* this isn't race free, but ok in practice */ 2092 bucket = per_cpu_ptr(td->latency_buckets[rw], 2093 cpu); 2094 tmp->total_latency += bucket[i].total_latency; 2095 tmp->samples += bucket[i].samples; 2096 bucket[i].total_latency = 0; 2097 bucket[i].samples = 0; 2098 } 2099 2100 if (tmp->samples >= 32) { 2101 int samples = tmp->samples; 2102 2103 latency[rw] = tmp->total_latency; 2104 2105 tmp->total_latency = 0; 2106 tmp->samples = 0; 2107 latency[rw] /= samples; 2108 if (latency[rw] == 0) 2109 continue; 2110 avg_latency[rw][i].latency = latency[rw]; 2111 } 2112 } 2113 } 2114 2115 for (rw = READ; rw <= WRITE; rw++) { 2116 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2117 if (!avg_latency[rw][i].latency) { 2118 if (td->avg_buckets[rw][i].latency < last_latency[rw]) 2119 td->avg_buckets[rw][i].latency = 2120 last_latency[rw]; 2121 continue; 2122 } 2123 2124 if (!td->avg_buckets[rw][i].valid) 2125 latency[rw] = avg_latency[rw][i].latency; 2126 else 2127 latency[rw] = (td->avg_buckets[rw][i].latency * 7 + 2128 avg_latency[rw][i].latency) >> 3; 2129 2130 td->avg_buckets[rw][i].latency = max(latency[rw], 2131 last_latency[rw]); 2132 td->avg_buckets[rw][i].valid = true; 2133 last_latency[rw] = td->avg_buckets[rw][i].latency; 2134 } 2135 } 2136 2137 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) 2138 throtl_log(&td->service_queue, 2139 "Latency bucket %d: read latency=%ld, read valid=%d, " 2140 "write latency=%ld, write valid=%d", i, 2141 td->avg_buckets[READ][i].latency, 2142 td->avg_buckets[READ][i].valid, 2143 td->avg_buckets[WRITE][i].latency, 2144 td->avg_buckets[WRITE][i].valid); 2145 } 2146 #else 2147 static inline void throtl_update_latency_buckets(struct throtl_data *td) 2148 { 2149 } 2150 2151 static void blk_throtl_update_idletime(struct throtl_grp *tg) 2152 { 2153 } 2154 2155 static void throtl_downgrade_check(struct throtl_grp *tg) 2156 { 2157 } 2158 2159 static void throtl_upgrade_check(struct throtl_grp *tg) 2160 { 2161 } 2162 2163 static bool throtl_can_upgrade(struct throtl_data *td, 2164 struct throtl_grp *this_tg) 2165 { 2166 return false; 2167 } 2168 2169 static void throtl_upgrade_state(struct throtl_data *td) 2170 { 2171 } 2172 #endif 2173 2174 bool __blk_throtl_bio(struct bio *bio) 2175 { 2176 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2177 struct blkcg_gq *blkg = bio->bi_blkg; 2178 struct throtl_qnode *qn = NULL; 2179 struct throtl_grp *tg = blkg_to_tg(blkg); 2180 struct throtl_service_queue *sq; 2181 bool rw = bio_data_dir(bio); 2182 bool throttled = false; 2183 struct throtl_data *td = tg->td; 2184 2185 rcu_read_lock(); 2186 2187 spin_lock_irq(&q->queue_lock); 2188 2189 throtl_update_latency_buckets(td); 2190 2191 blk_throtl_update_idletime(tg); 2192 2193 sq = &tg->service_queue; 2194 2195 again: 2196 while (true) { 2197 if (tg->last_low_overflow_time[rw] == 0) 2198 tg->last_low_overflow_time[rw] = jiffies; 2199 throtl_downgrade_check(tg); 2200 throtl_upgrade_check(tg); 2201 /* throtl is FIFO - if bios are already queued, should queue */ 2202 if (sq->nr_queued[rw]) 2203 break; 2204 2205 /* if above limits, break to queue */ 2206 if (!tg_may_dispatch(tg, bio, NULL)) { 2207 tg->last_low_overflow_time[rw] = jiffies; 2208 if (throtl_can_upgrade(td, tg)) { 2209 throtl_upgrade_state(td); 2210 goto again; 2211 } 2212 break; 2213 } 2214 2215 /* within limits, let's charge and dispatch directly */ 2216 throtl_charge_bio(tg, bio); 2217 2218 /* 2219 * We need to trim slice even when bios are not being queued 2220 * otherwise it might happen that a bio is not queued for 2221 * a long time and slice keeps on extending and trim is not 2222 * called for a long time. Now if limits are reduced suddenly 2223 * we take into account all the IO dispatched so far at new 2224 * low rate and * newly queued IO gets a really long dispatch 2225 * time. 2226 * 2227 * So keep on trimming slice even if bio is not queued. 2228 */ 2229 throtl_trim_slice(tg, rw); 2230 2231 /* 2232 * @bio passed through this layer without being throttled. 2233 * Climb up the ladder. If we're already at the top, it 2234 * can be executed directly. 2235 */ 2236 qn = &tg->qnode_on_parent[rw]; 2237 sq = sq->parent_sq; 2238 tg = sq_to_tg(sq); 2239 if (!tg) { 2240 bio_set_flag(bio, BIO_BPS_THROTTLED); 2241 goto out_unlock; 2242 } 2243 } 2244 2245 /* out-of-limit, queue to @tg */ 2246 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", 2247 rw == READ ? 'R' : 'W', 2248 tg->bytes_disp[rw], bio->bi_iter.bi_size, 2249 tg_bps_limit(tg, rw), 2250 tg->io_disp[rw], tg_iops_limit(tg, rw), 2251 sq->nr_queued[READ], sq->nr_queued[WRITE]); 2252 2253 tg->last_low_overflow_time[rw] = jiffies; 2254 2255 td->nr_queued[rw]++; 2256 throtl_add_bio_tg(bio, qn, tg); 2257 throttled = true; 2258 2259 /* 2260 * Update @tg's dispatch time and force schedule dispatch if @tg 2261 * was empty before @bio. The forced scheduling isn't likely to 2262 * cause undue delay as @bio is likely to be dispatched directly if 2263 * its @tg's disptime is not in the future. 2264 */ 2265 if (tg->flags & THROTL_TG_WAS_EMPTY) { 2266 tg_update_disptime(tg); 2267 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); 2268 } 2269 2270 out_unlock: 2271 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2272 if (throttled || !td->track_bio_latency) 2273 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; 2274 #endif 2275 spin_unlock_irq(&q->queue_lock); 2276 2277 rcu_read_unlock(); 2278 return throttled; 2279 } 2280 2281 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2282 static void throtl_track_latency(struct throtl_data *td, sector_t size, 2283 enum req_op op, unsigned long time) 2284 { 2285 const bool rw = op_is_write(op); 2286 struct latency_bucket *latency; 2287 int index; 2288 2289 if (!td || td->limit_index != LIMIT_LOW || 2290 !(op == REQ_OP_READ || op == REQ_OP_WRITE) || 2291 !blk_queue_nonrot(td->queue)) 2292 return; 2293 2294 index = request_bucket_index(size); 2295 2296 latency = get_cpu_ptr(td->latency_buckets[rw]); 2297 latency[index].total_latency += time; 2298 latency[index].samples++; 2299 put_cpu_ptr(td->latency_buckets[rw]); 2300 } 2301 2302 void blk_throtl_stat_add(struct request *rq, u64 time_ns) 2303 { 2304 struct request_queue *q = rq->q; 2305 struct throtl_data *td = q->td; 2306 2307 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), 2308 time_ns >> 10); 2309 } 2310 2311 void blk_throtl_bio_endio(struct bio *bio) 2312 { 2313 struct blkcg_gq *blkg; 2314 struct throtl_grp *tg; 2315 u64 finish_time_ns; 2316 unsigned long finish_time; 2317 unsigned long start_time; 2318 unsigned long lat; 2319 int rw = bio_data_dir(bio); 2320 2321 blkg = bio->bi_blkg; 2322 if (!blkg) 2323 return; 2324 tg = blkg_to_tg(blkg); 2325 if (!tg->td->limit_valid[LIMIT_LOW]) 2326 return; 2327 2328 finish_time_ns = ktime_get_ns(); 2329 tg->last_finish_time = finish_time_ns >> 10; 2330 2331 start_time = bio_issue_time(&bio->bi_issue) >> 10; 2332 finish_time = __bio_issue_time(finish_time_ns) >> 10; 2333 if (!start_time || finish_time <= start_time) 2334 return; 2335 2336 lat = finish_time - start_time; 2337 /* this is only for bio based driver */ 2338 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) 2339 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), 2340 bio_op(bio), lat); 2341 2342 if (tg->latency_target && lat >= tg->td->filtered_latency) { 2343 int bucket; 2344 unsigned int threshold; 2345 2346 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); 2347 threshold = tg->td->avg_buckets[rw][bucket].latency + 2348 tg->latency_target; 2349 if (lat > threshold) 2350 tg->bad_bio_cnt++; 2351 /* 2352 * Not race free, could get wrong count, which means cgroups 2353 * will be throttled 2354 */ 2355 tg->bio_cnt++; 2356 } 2357 2358 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { 2359 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; 2360 tg->bio_cnt /= 2; 2361 tg->bad_bio_cnt /= 2; 2362 } 2363 } 2364 #endif 2365 2366 int blk_throtl_init(struct gendisk *disk) 2367 { 2368 struct request_queue *q = disk->queue; 2369 struct throtl_data *td; 2370 int ret; 2371 2372 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); 2373 if (!td) 2374 return -ENOMEM; 2375 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * 2376 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2377 if (!td->latency_buckets[READ]) { 2378 kfree(td); 2379 return -ENOMEM; 2380 } 2381 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * 2382 LATENCY_BUCKET_SIZE, __alignof__(u64)); 2383 if (!td->latency_buckets[WRITE]) { 2384 free_percpu(td->latency_buckets[READ]); 2385 kfree(td); 2386 return -ENOMEM; 2387 } 2388 2389 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); 2390 throtl_service_queue_init(&td->service_queue); 2391 2392 q->td = td; 2393 td->queue = q; 2394 2395 td->limit_valid[LIMIT_MAX] = true; 2396 td->limit_index = LIMIT_MAX; 2397 td->low_upgrade_time = jiffies; 2398 td->low_downgrade_time = jiffies; 2399 2400 /* activate policy */ 2401 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl); 2402 if (ret) { 2403 free_percpu(td->latency_buckets[READ]); 2404 free_percpu(td->latency_buckets[WRITE]); 2405 kfree(td); 2406 } 2407 return ret; 2408 } 2409 2410 void blk_throtl_exit(struct gendisk *disk) 2411 { 2412 struct request_queue *q = disk->queue; 2413 2414 BUG_ON(!q->td); 2415 del_timer_sync(&q->td->service_queue.pending_timer); 2416 throtl_shutdown_wq(q); 2417 blkcg_deactivate_policy(disk, &blkcg_policy_throtl); 2418 free_percpu(q->td->latency_buckets[READ]); 2419 free_percpu(q->td->latency_buckets[WRITE]); 2420 kfree(q->td); 2421 } 2422 2423 void blk_throtl_register(struct gendisk *disk) 2424 { 2425 struct request_queue *q = disk->queue; 2426 struct throtl_data *td; 2427 int i; 2428 2429 td = q->td; 2430 BUG_ON(!td); 2431 2432 if (blk_queue_nonrot(q)) { 2433 td->throtl_slice = DFL_THROTL_SLICE_SSD; 2434 td->filtered_latency = LATENCY_FILTERED_SSD; 2435 } else { 2436 td->throtl_slice = DFL_THROTL_SLICE_HD; 2437 td->filtered_latency = LATENCY_FILTERED_HD; 2438 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { 2439 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; 2440 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; 2441 } 2442 } 2443 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW 2444 /* if no low limit, use previous default */ 2445 td->throtl_slice = DFL_THROTL_SLICE_HD; 2446 2447 #else 2448 td->track_bio_latency = !queue_is_mq(q); 2449 if (!td->track_bio_latency) 2450 blk_stat_enable_accounting(q); 2451 #endif 2452 } 2453 2454 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2455 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) 2456 { 2457 if (!q->td) 2458 return -EINVAL; 2459 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); 2460 } 2461 2462 ssize_t blk_throtl_sample_time_store(struct request_queue *q, 2463 const char *page, size_t count) 2464 { 2465 unsigned long v; 2466 unsigned long t; 2467 2468 if (!q->td) 2469 return -EINVAL; 2470 if (kstrtoul(page, 10, &v)) 2471 return -EINVAL; 2472 t = msecs_to_jiffies(v); 2473 if (t == 0 || t > MAX_THROTL_SLICE) 2474 return -EINVAL; 2475 q->td->throtl_slice = t; 2476 return count; 2477 } 2478 #endif 2479 2480 static int __init throtl_init(void) 2481 { 2482 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); 2483 if (!kthrotld_workqueue) 2484 panic("Failed to create kthrotld\n"); 2485 2486 return blkcg_policy_register(&blkcg_policy_throtl); 2487 } 2488 2489 module_init(throtl_init); 2490