1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 18 #include "blk.h" 19 #include "blk-rq-qos.h" 20 #include "blk-wbt.h" 21 22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 23 { 24 q->rq_timeout = timeout; 25 } 26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 27 28 /** 29 * blk_set_stacking_limits - set default limits for stacking devices 30 * @lim: the queue_limits structure to reset 31 * 32 * Prepare queue limits for applying limits from underlying devices using 33 * blk_stack_limits(). 34 */ 35 void blk_set_stacking_limits(struct queue_limits *lim) 36 { 37 memset(lim, 0, sizeof(*lim)); 38 lim->logical_block_size = SECTOR_SIZE; 39 lim->physical_block_size = SECTOR_SIZE; 40 lim->io_min = SECTOR_SIZE; 41 lim->discard_granularity = SECTOR_SIZE; 42 lim->dma_alignment = SECTOR_SIZE - 1; 43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 44 45 /* Inherit limits from component devices */ 46 lim->max_segments = USHRT_MAX; 47 lim->max_discard_segments = USHRT_MAX; 48 lim->max_hw_sectors = UINT_MAX; 49 lim->max_segment_size = UINT_MAX; 50 lim->max_sectors = UINT_MAX; 51 lim->max_dev_sectors = UINT_MAX; 52 lim->max_write_zeroes_sectors = UINT_MAX; 53 lim->max_zone_append_sectors = UINT_MAX; 54 lim->max_user_discard_sectors = UINT_MAX; 55 } 56 EXPORT_SYMBOL(blk_set_stacking_limits); 57 58 void blk_apply_bdi_limits(struct backing_dev_info *bdi, 59 struct queue_limits *lim) 60 { 61 /* 62 * For read-ahead of large files to be effective, we need to read ahead 63 * at least twice the optimal I/O size. 64 */ 65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; 67 } 68 69 static int blk_validate_zoned_limits(struct queue_limits *lim) 70 { 71 if (!(lim->features & BLK_FEAT_ZONED)) { 72 if (WARN_ON_ONCE(lim->max_open_zones) || 73 WARN_ON_ONCE(lim->max_active_zones) || 74 WARN_ON_ONCE(lim->zone_write_granularity) || 75 WARN_ON_ONCE(lim->max_zone_append_sectors)) 76 return -EINVAL; 77 return 0; 78 } 79 80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) 81 return -EINVAL; 82 83 /* 84 * Given that active zones include open zones, the maximum number of 85 * open zones cannot be larger than the maximum number of active zones. 86 */ 87 if (lim->max_active_zones && 88 lim->max_open_zones > lim->max_active_zones) 89 return -EINVAL; 90 91 if (lim->zone_write_granularity < lim->logical_block_size) 92 lim->zone_write_granularity = lim->logical_block_size; 93 94 if (lim->max_zone_append_sectors) { 95 /* 96 * The Zone Append size is limited by the maximum I/O size 97 * and the zone size given that it can't span zones. 98 */ 99 lim->max_zone_append_sectors = 100 min3(lim->max_hw_sectors, 101 lim->max_zone_append_sectors, 102 lim->chunk_sectors); 103 } 104 105 return 0; 106 } 107 108 static int blk_validate_integrity_limits(struct queue_limits *lim) 109 { 110 struct blk_integrity *bi = &lim->integrity; 111 112 if (!bi->tuple_size) { 113 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE || 114 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) { 115 pr_warn("invalid PI settings.\n"); 116 return -EINVAL; 117 } 118 return 0; 119 } 120 121 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) { 122 pr_warn("integrity support disabled.\n"); 123 return -EINVAL; 124 } 125 126 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE && 127 (bi->flags & BLK_INTEGRITY_REF_TAG)) { 128 pr_warn("ref tag not support without checksum.\n"); 129 return -EINVAL; 130 } 131 132 if (!bi->interval_exp) 133 bi->interval_exp = ilog2(lim->logical_block_size); 134 135 return 0; 136 } 137 138 /* 139 * Returns max guaranteed bytes which we can fit in a bio. 140 * 141 * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector), 142 * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from 143 * the first and last segments. 144 */ 145 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim) 146 { 147 unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments); 148 unsigned int length; 149 150 length = min(max_segments, 2) * lim->logical_block_size; 151 if (max_segments > 2) 152 length += (max_segments - 2) * PAGE_SIZE; 153 154 return length; 155 } 156 157 static void blk_atomic_writes_update_limits(struct queue_limits *lim) 158 { 159 unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT, 160 blk_queue_max_guaranteed_bio(lim)); 161 162 unit_limit = rounddown_pow_of_two(unit_limit); 163 164 lim->atomic_write_max_sectors = 165 min(lim->atomic_write_hw_max >> SECTOR_SHIFT, 166 lim->max_hw_sectors); 167 lim->atomic_write_unit_min = 168 min(lim->atomic_write_hw_unit_min, unit_limit); 169 lim->atomic_write_unit_max = 170 min(lim->atomic_write_hw_unit_max, unit_limit); 171 lim->atomic_write_boundary_sectors = 172 lim->atomic_write_hw_boundary >> SECTOR_SHIFT; 173 } 174 175 static void blk_validate_atomic_write_limits(struct queue_limits *lim) 176 { 177 unsigned int boundary_sectors; 178 179 if (!lim->atomic_write_hw_max) 180 goto unsupported; 181 182 boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT; 183 184 if (boundary_sectors) { 185 /* 186 * A feature of boundary support is that it disallows bios to 187 * be merged which would result in a merged request which 188 * crosses either a chunk sector or atomic write HW boundary, 189 * even though chunk sectors may be just set for performance. 190 * For simplicity, disallow atomic writes for a chunk sector 191 * which is non-zero and smaller than atomic write HW boundary. 192 * Furthermore, chunk sectors must be a multiple of atomic 193 * write HW boundary. Otherwise boundary support becomes 194 * complicated. 195 * Devices which do not conform to these rules can be dealt 196 * with if and when they show up. 197 */ 198 if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors)) 199 goto unsupported; 200 201 /* 202 * The boundary size just needs to be a multiple of unit_max 203 * (and not necessarily a power-of-2), so this following check 204 * could be relaxed in future. 205 * Furthermore, if needed, unit_max could even be reduced so 206 * that it is compliant with a !power-of-2 boundary. 207 */ 208 if (!is_power_of_2(boundary_sectors)) 209 goto unsupported; 210 } 211 212 blk_atomic_writes_update_limits(lim); 213 return; 214 215 unsupported: 216 lim->atomic_write_max_sectors = 0; 217 lim->atomic_write_boundary_sectors = 0; 218 lim->atomic_write_unit_min = 0; 219 lim->atomic_write_unit_max = 0; 220 } 221 222 /* 223 * Check that the limits in lim are valid, initialize defaults for unset 224 * values, and cap values based on others where needed. 225 */ 226 static int blk_validate_limits(struct queue_limits *lim) 227 { 228 unsigned int max_hw_sectors; 229 unsigned int logical_block_sectors; 230 int err; 231 232 /* 233 * Unless otherwise specified, default to 512 byte logical blocks and a 234 * physical block size equal to the logical block size. 235 */ 236 if (!lim->logical_block_size) 237 lim->logical_block_size = SECTOR_SIZE; 238 else if (blk_validate_block_size(lim->logical_block_size)) { 239 pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size); 240 return -EINVAL; 241 } 242 if (lim->physical_block_size < lim->logical_block_size) 243 lim->physical_block_size = lim->logical_block_size; 244 245 /* 246 * The minimum I/O size defaults to the physical block size unless 247 * explicitly overridden. 248 */ 249 if (lim->io_min < lim->physical_block_size) 250 lim->io_min = lim->physical_block_size; 251 252 /* 253 * max_hw_sectors has a somewhat weird default for historical reason, 254 * but driver really should set their own instead of relying on this 255 * value. 256 * 257 * The block layer relies on the fact that every driver can 258 * handle at lest a page worth of data per I/O, and needs the value 259 * aligned to the logical block size. 260 */ 261 if (!lim->max_hw_sectors) 262 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 263 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) 264 return -EINVAL; 265 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT; 266 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors)) 267 return -EINVAL; 268 lim->max_hw_sectors = round_down(lim->max_hw_sectors, 269 logical_block_sectors); 270 271 /* 272 * The actual max_sectors value is a complex beast and also takes the 273 * max_dev_sectors value (set by SCSI ULPs) and a user configurable 274 * value into account. The ->max_sectors value is always calculated 275 * from these, so directly setting it won't have any effect. 276 */ 277 max_hw_sectors = min_not_zero(lim->max_hw_sectors, 278 lim->max_dev_sectors); 279 if (lim->max_user_sectors) { 280 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE) 281 return -EINVAL; 282 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); 283 } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 284 lim->max_sectors = 285 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT); 286 } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 287 lim->max_sectors = 288 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT); 289 } else { 290 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); 291 } 292 lim->max_sectors = round_down(lim->max_sectors, 293 logical_block_sectors); 294 295 /* 296 * Random default for the maximum number of segments. Driver should not 297 * rely on this and set their own. 298 */ 299 if (!lim->max_segments) 300 lim->max_segments = BLK_MAX_SEGMENTS; 301 302 lim->max_discard_sectors = 303 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); 304 305 if (!lim->max_discard_segments) 306 lim->max_discard_segments = 1; 307 308 if (lim->discard_granularity < lim->physical_block_size) 309 lim->discard_granularity = lim->physical_block_size; 310 311 /* 312 * By default there is no limit on the segment boundary alignment, 313 * but if there is one it can't be smaller than the page size as 314 * that would break all the normal I/O patterns. 315 */ 316 if (!lim->seg_boundary_mask) 317 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 318 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1)) 319 return -EINVAL; 320 321 /* 322 * Stacking device may have both virtual boundary and max segment 323 * size limit, so allow this setting now, and long-term the two 324 * might need to move out of stacking limits since we have immutable 325 * bvec and lower layer bio splitting is supposed to handle the two 326 * correctly. 327 */ 328 if (lim->virt_boundary_mask) { 329 if (!lim->max_segment_size) 330 lim->max_segment_size = UINT_MAX; 331 } else { 332 /* 333 * The maximum segment size has an odd historic 64k default that 334 * drivers probably should override. Just like the I/O size we 335 * require drivers to at least handle a full page per segment. 336 */ 337 if (!lim->max_segment_size) 338 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 339 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE)) 340 return -EINVAL; 341 } 342 343 /* 344 * We require drivers to at least do logical block aligned I/O, but 345 * historically could not check for that due to the separate calls 346 * to set the limits. Once the transition is finished the check 347 * below should be narrowed down to check the logical block size. 348 */ 349 if (!lim->dma_alignment) 350 lim->dma_alignment = SECTOR_SIZE - 1; 351 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) 352 return -EINVAL; 353 354 if (lim->alignment_offset) { 355 lim->alignment_offset &= (lim->physical_block_size - 1); 356 lim->flags &= ~BLK_FLAG_MISALIGNED; 357 } 358 359 if (!(lim->features & BLK_FEAT_WRITE_CACHE)) 360 lim->features &= ~BLK_FEAT_FUA; 361 362 blk_validate_atomic_write_limits(lim); 363 364 err = blk_validate_integrity_limits(lim); 365 if (err) 366 return err; 367 return blk_validate_zoned_limits(lim); 368 } 369 370 /* 371 * Set the default limits for a newly allocated queue. @lim contains the 372 * initial limits set by the driver, which could be no limit in which case 373 * all fields are cleared to zero. 374 */ 375 int blk_set_default_limits(struct queue_limits *lim) 376 { 377 /* 378 * Most defaults are set by capping the bounds in blk_validate_limits, 379 * but max_user_discard_sectors is special and needs an explicit 380 * initialization to the max value here. 381 */ 382 lim->max_user_discard_sectors = UINT_MAX; 383 return blk_validate_limits(lim); 384 } 385 386 /** 387 * queue_limits_commit_update - commit an atomic update of queue limits 388 * @q: queue to update 389 * @lim: limits to apply 390 * 391 * Apply the limits in @lim that were obtained from queue_limits_start_update() 392 * and updated by the caller to @q. 393 * 394 * Returns 0 if successful, else a negative error code. 395 */ 396 int queue_limits_commit_update(struct request_queue *q, 397 struct queue_limits *lim) 398 { 399 int error; 400 401 error = blk_validate_limits(lim); 402 if (error) 403 goto out_unlock; 404 405 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 406 if (q->crypto_profile && lim->integrity.tag_size) { 407 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n"); 408 error = -EINVAL; 409 goto out_unlock; 410 } 411 #endif 412 413 q->limits = *lim; 414 if (q->disk) 415 blk_apply_bdi_limits(q->disk->bdi, lim); 416 out_unlock: 417 mutex_unlock(&q->limits_lock); 418 return error; 419 } 420 EXPORT_SYMBOL_GPL(queue_limits_commit_update); 421 422 /** 423 * queue_limits_set - apply queue limits to queue 424 * @q: queue to update 425 * @lim: limits to apply 426 * 427 * Apply the limits in @lim that were freshly initialized to @q. 428 * To update existing limits use queue_limits_start_update() and 429 * queue_limits_commit_update() instead. 430 * 431 * Returns 0 if successful, else a negative error code. 432 */ 433 int queue_limits_set(struct request_queue *q, struct queue_limits *lim) 434 { 435 mutex_lock(&q->limits_lock); 436 return queue_limits_commit_update(q, lim); 437 } 438 EXPORT_SYMBOL_GPL(queue_limits_set); 439 440 /** 441 * blk_limits_io_min - set minimum request size for a device 442 * @limits: the queue limits 443 * @min: smallest I/O size in bytes 444 * 445 * Description: 446 * Some devices have an internal block size bigger than the reported 447 * hardware sector size. This function can be used to signal the 448 * smallest I/O the device can perform without incurring a performance 449 * penalty. 450 */ 451 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 452 { 453 limits->io_min = min; 454 455 if (limits->io_min < limits->logical_block_size) 456 limits->io_min = limits->logical_block_size; 457 458 if (limits->io_min < limits->physical_block_size) 459 limits->io_min = limits->physical_block_size; 460 } 461 EXPORT_SYMBOL(blk_limits_io_min); 462 463 /** 464 * blk_limits_io_opt - set optimal request size for a device 465 * @limits: the queue limits 466 * @opt: smallest I/O size in bytes 467 * 468 * Description: 469 * Storage devices may report an optimal I/O size, which is the 470 * device's preferred unit for sustained I/O. This is rarely reported 471 * for disk drives. For RAID arrays it is usually the stripe width or 472 * the internal track size. A properly aligned multiple of 473 * optimal_io_size is the preferred request size for workloads where 474 * sustained throughput is desired. 475 */ 476 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 477 { 478 limits->io_opt = opt; 479 } 480 EXPORT_SYMBOL(blk_limits_io_opt); 481 482 static int queue_limit_alignment_offset(const struct queue_limits *lim, 483 sector_t sector) 484 { 485 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 486 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 487 << SECTOR_SHIFT; 488 489 return (granularity + lim->alignment_offset - alignment) % granularity; 490 } 491 492 static unsigned int queue_limit_discard_alignment( 493 const struct queue_limits *lim, sector_t sector) 494 { 495 unsigned int alignment, granularity, offset; 496 497 if (!lim->max_discard_sectors) 498 return 0; 499 500 /* Why are these in bytes, not sectors? */ 501 alignment = lim->discard_alignment >> SECTOR_SHIFT; 502 granularity = lim->discard_granularity >> SECTOR_SHIFT; 503 if (!granularity) 504 return 0; 505 506 /* Offset of the partition start in 'granularity' sectors */ 507 offset = sector_div(sector, granularity); 508 509 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 510 offset = (granularity + alignment - offset) % granularity; 511 512 /* Turn it back into bytes, gaah */ 513 return offset << SECTOR_SHIFT; 514 } 515 516 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 517 { 518 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 519 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 520 sectors = PAGE_SIZE >> SECTOR_SHIFT; 521 return sectors; 522 } 523 524 /** 525 * blk_stack_limits - adjust queue_limits for stacked devices 526 * @t: the stacking driver limits (top device) 527 * @b: the underlying queue limits (bottom, component device) 528 * @start: first data sector within component device 529 * 530 * Description: 531 * This function is used by stacking drivers like MD and DM to ensure 532 * that all component devices have compatible block sizes and 533 * alignments. The stacking driver must provide a queue_limits 534 * struct (top) and then iteratively call the stacking function for 535 * all component (bottom) devices. The stacking function will 536 * attempt to combine the values and ensure proper alignment. 537 * 538 * Returns 0 if the top and bottom queue_limits are compatible. The 539 * top device's block sizes and alignment offsets may be adjusted to 540 * ensure alignment with the bottom device. If no compatible sizes 541 * and alignments exist, -1 is returned and the resulting top 542 * queue_limits will have the misaligned flag set to indicate that 543 * the alignment_offset is undefined. 544 */ 545 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 546 sector_t start) 547 { 548 unsigned int top, bottom, alignment, ret = 0; 549 550 t->features |= (b->features & BLK_FEAT_INHERIT_MASK); 551 552 /* 553 * BLK_FEAT_NOWAIT and BLK_FEAT_POLL need to be supported both by the 554 * stacking driver and all underlying devices. The stacking driver sets 555 * the flags before stacking the limits, and this will clear the flags 556 * if any of the underlying devices does not support it. 557 */ 558 if (!(b->features & BLK_FEAT_NOWAIT)) 559 t->features &= ~BLK_FEAT_NOWAIT; 560 if (!(b->features & BLK_FEAT_POLL)) 561 t->features &= ~BLK_FEAT_POLL; 562 563 t->flags |= (b->flags & BLK_FLAG_MISALIGNED); 564 565 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 566 t->max_user_sectors = min_not_zero(t->max_user_sectors, 567 b->max_user_sectors); 568 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 569 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 570 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 571 b->max_write_zeroes_sectors); 572 t->max_zone_append_sectors = min(queue_limits_max_zone_append_sectors(t), 573 queue_limits_max_zone_append_sectors(b)); 574 575 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 576 b->seg_boundary_mask); 577 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 578 b->virt_boundary_mask); 579 580 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 581 t->max_discard_segments = min_not_zero(t->max_discard_segments, 582 b->max_discard_segments); 583 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 584 b->max_integrity_segments); 585 586 t->max_segment_size = min_not_zero(t->max_segment_size, 587 b->max_segment_size); 588 589 alignment = queue_limit_alignment_offset(b, start); 590 591 /* Bottom device has different alignment. Check that it is 592 * compatible with the current top alignment. 593 */ 594 if (t->alignment_offset != alignment) { 595 596 top = max(t->physical_block_size, t->io_min) 597 + t->alignment_offset; 598 bottom = max(b->physical_block_size, b->io_min) + alignment; 599 600 /* Verify that top and bottom intervals line up */ 601 if (max(top, bottom) % min(top, bottom)) { 602 t->flags |= BLK_FLAG_MISALIGNED; 603 ret = -1; 604 } 605 } 606 607 t->logical_block_size = max(t->logical_block_size, 608 b->logical_block_size); 609 610 t->physical_block_size = max(t->physical_block_size, 611 b->physical_block_size); 612 613 t->io_min = max(t->io_min, b->io_min); 614 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 615 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 616 617 /* Set non-power-of-2 compatible chunk_sectors boundary */ 618 if (b->chunk_sectors) 619 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 620 621 /* Physical block size a multiple of the logical block size? */ 622 if (t->physical_block_size & (t->logical_block_size - 1)) { 623 t->physical_block_size = t->logical_block_size; 624 t->flags |= BLK_FLAG_MISALIGNED; 625 ret = -1; 626 } 627 628 /* Minimum I/O a multiple of the physical block size? */ 629 if (t->io_min & (t->physical_block_size - 1)) { 630 t->io_min = t->physical_block_size; 631 t->flags |= BLK_FLAG_MISALIGNED; 632 ret = -1; 633 } 634 635 /* Optimal I/O a multiple of the physical block size? */ 636 if (t->io_opt & (t->physical_block_size - 1)) { 637 t->io_opt = 0; 638 t->flags |= BLK_FLAG_MISALIGNED; 639 ret = -1; 640 } 641 642 /* chunk_sectors a multiple of the physical block size? */ 643 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { 644 t->chunk_sectors = 0; 645 t->flags |= BLK_FLAG_MISALIGNED; 646 ret = -1; 647 } 648 649 /* Find lowest common alignment_offset */ 650 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 651 % max(t->physical_block_size, t->io_min); 652 653 /* Verify that new alignment_offset is on a logical block boundary */ 654 if (t->alignment_offset & (t->logical_block_size - 1)) { 655 t->flags |= BLK_FLAG_MISALIGNED; 656 ret = -1; 657 } 658 659 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 660 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 661 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 662 663 /* Discard alignment and granularity */ 664 if (b->discard_granularity) { 665 alignment = queue_limit_discard_alignment(b, start); 666 667 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 668 b->max_discard_sectors); 669 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 670 b->max_hw_discard_sectors); 671 t->discard_granularity = max(t->discard_granularity, 672 b->discard_granularity); 673 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 674 t->discard_granularity; 675 } 676 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 677 b->max_secure_erase_sectors); 678 t->zone_write_granularity = max(t->zone_write_granularity, 679 b->zone_write_granularity); 680 if (!(t->features & BLK_FEAT_ZONED)) { 681 t->zone_write_granularity = 0; 682 t->max_zone_append_sectors = 0; 683 } 684 return ret; 685 } 686 EXPORT_SYMBOL(blk_stack_limits); 687 688 /** 689 * queue_limits_stack_bdev - adjust queue_limits for stacked devices 690 * @t: the stacking driver limits (top device) 691 * @bdev: the underlying block device (bottom) 692 * @offset: offset to beginning of data within component device 693 * @pfx: prefix to use for warnings logged 694 * 695 * Description: 696 * This function is used by stacking drivers like MD and DM to ensure 697 * that all component devices have compatible block sizes and 698 * alignments. The stacking driver must provide a queue_limits 699 * struct (top) and then iteratively call the stacking function for 700 * all component (bottom) devices. The stacking function will 701 * attempt to combine the values and ensure proper alignment. 702 */ 703 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 704 sector_t offset, const char *pfx) 705 { 706 if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits, 707 get_start_sect(bdev) + offset)) 708 pr_notice("%s: Warning: Device %pg is misaligned\n", 709 pfx, bdev); 710 } 711 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); 712 713 /** 714 * queue_limits_stack_integrity - stack integrity profile 715 * @t: target queue limits 716 * @b: base queue limits 717 * 718 * Check if the integrity profile in the @b can be stacked into the 719 * target @t. Stacking is possible if either: 720 * 721 * a) does not have any integrity information stacked into it yet 722 * b) the integrity profile in @b is identical to the one in @t 723 * 724 * If @b can be stacked into @t, return %true. Else return %false and clear the 725 * integrity information in @t. 726 */ 727 bool queue_limits_stack_integrity(struct queue_limits *t, 728 struct queue_limits *b) 729 { 730 struct blk_integrity *ti = &t->integrity; 731 struct blk_integrity *bi = &b->integrity; 732 733 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 734 return true; 735 736 if (!ti->tuple_size) { 737 /* inherit the settings from the first underlying device */ 738 if (!(ti->flags & BLK_INTEGRITY_STACKED)) { 739 ti->flags = BLK_INTEGRITY_DEVICE_CAPABLE | 740 (bi->flags & BLK_INTEGRITY_REF_TAG); 741 ti->csum_type = bi->csum_type; 742 ti->tuple_size = bi->tuple_size; 743 ti->pi_offset = bi->pi_offset; 744 ti->interval_exp = bi->interval_exp; 745 ti->tag_size = bi->tag_size; 746 goto done; 747 } 748 if (!bi->tuple_size) 749 goto done; 750 } 751 752 if (ti->tuple_size != bi->tuple_size) 753 goto incompatible; 754 if (ti->interval_exp != bi->interval_exp) 755 goto incompatible; 756 if (ti->tag_size != bi->tag_size) 757 goto incompatible; 758 if (ti->csum_type != bi->csum_type) 759 goto incompatible; 760 if ((ti->flags & BLK_INTEGRITY_REF_TAG) != 761 (bi->flags & BLK_INTEGRITY_REF_TAG)) 762 goto incompatible; 763 764 done: 765 ti->flags |= BLK_INTEGRITY_STACKED; 766 return true; 767 768 incompatible: 769 memset(ti, 0, sizeof(*ti)); 770 return false; 771 } 772 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity); 773 774 /** 775 * blk_set_queue_depth - tell the block layer about the device queue depth 776 * @q: the request queue for the device 777 * @depth: queue depth 778 * 779 */ 780 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 781 { 782 q->queue_depth = depth; 783 rq_qos_queue_depth_changed(q); 784 } 785 EXPORT_SYMBOL(blk_set_queue_depth); 786 787 int bdev_alignment_offset(struct block_device *bdev) 788 { 789 struct request_queue *q = bdev_get_queue(bdev); 790 791 if (q->limits.flags & BLK_FLAG_MISALIGNED) 792 return -1; 793 if (bdev_is_partition(bdev)) 794 return queue_limit_alignment_offset(&q->limits, 795 bdev->bd_start_sect); 796 return q->limits.alignment_offset; 797 } 798 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 799 800 unsigned int bdev_discard_alignment(struct block_device *bdev) 801 { 802 struct request_queue *q = bdev_get_queue(bdev); 803 804 if (bdev_is_partition(bdev)) 805 return queue_limit_discard_alignment(&q->limits, 806 bdev->bd_start_sect); 807 return q->limits.discard_alignment; 808 } 809 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 810