xref: /linux/block/blk-settings.c (revision eed4edda910fe34dfae8c6bfbcf57f4593a54295)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "blk.h"
19 #include "blk-rq-qos.h"
20 #include "blk-wbt.h"
21 
22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 {
24 	q->rq_timeout = timeout;
25 }
26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27 
28 /**
29  * blk_set_default_limits - reset limits to default values
30  * @lim:  the queue_limits structure to reset
31  *
32  * Description:
33  *   Returns a queue_limit struct to its default state.
34  */
35 void blk_set_default_limits(struct queue_limits *lim)
36 {
37 	lim->max_segments = BLK_MAX_SEGMENTS;
38 	lim->max_discard_segments = 1;
39 	lim->max_integrity_segments = 0;
40 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
41 	lim->virt_boundary_mask = 0;
42 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
43 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
44 	lim->max_user_sectors = lim->max_dev_sectors = 0;
45 	lim->chunk_sectors = 0;
46 	lim->max_write_zeroes_sectors = 0;
47 	lim->max_zone_append_sectors = 0;
48 	lim->max_discard_sectors = 0;
49 	lim->max_hw_discard_sectors = 0;
50 	lim->max_secure_erase_sectors = 0;
51 	lim->discard_granularity = 512;
52 	lim->discard_alignment = 0;
53 	lim->discard_misaligned = 0;
54 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
55 	lim->bounce = BLK_BOUNCE_NONE;
56 	lim->alignment_offset = 0;
57 	lim->io_opt = 0;
58 	lim->misaligned = 0;
59 	lim->zoned = false;
60 	lim->zone_write_granularity = 0;
61 	lim->dma_alignment = 511;
62 }
63 
64 /**
65  * blk_set_stacking_limits - set default limits for stacking devices
66  * @lim:  the queue_limits structure to reset
67  *
68  * Description:
69  *   Returns a queue_limit struct to its default state. Should be used
70  *   by stacking drivers like DM that have no internal limits.
71  */
72 void blk_set_stacking_limits(struct queue_limits *lim)
73 {
74 	blk_set_default_limits(lim);
75 
76 	/* Inherit limits from component devices */
77 	lim->max_segments = USHRT_MAX;
78 	lim->max_discard_segments = USHRT_MAX;
79 	lim->max_hw_sectors = UINT_MAX;
80 	lim->max_segment_size = UINT_MAX;
81 	lim->max_sectors = UINT_MAX;
82 	lim->max_dev_sectors = UINT_MAX;
83 	lim->max_write_zeroes_sectors = UINT_MAX;
84 	lim->max_zone_append_sectors = UINT_MAX;
85 }
86 EXPORT_SYMBOL(blk_set_stacking_limits);
87 
88 /**
89  * blk_queue_bounce_limit - set bounce buffer limit for queue
90  * @q: the request queue for the device
91  * @bounce: bounce limit to enforce
92  *
93  * Description:
94  *    Force bouncing for ISA DMA ranges or highmem.
95  *
96  *    DEPRECATED, don't use in new code.
97  **/
98 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
99 {
100 	q->limits.bounce = bounce;
101 }
102 EXPORT_SYMBOL(blk_queue_bounce_limit);
103 
104 /**
105  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
106  * @q:  the request queue for the device
107  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
108  *
109  * Description:
110  *    Enables a low level driver to set a hard upper limit,
111  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
112  *    the device driver based upon the capabilities of the I/O
113  *    controller.
114  *
115  *    max_dev_sectors is a hard limit imposed by the storage device for
116  *    READ/WRITE requests. It is set by the disk driver.
117  *
118  *    max_sectors is a soft limit imposed by the block layer for
119  *    filesystem type requests.  This value can be overridden on a
120  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
121  *    The soft limit can not exceed max_hw_sectors.
122  **/
123 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
124 {
125 	struct queue_limits *limits = &q->limits;
126 	unsigned int max_sectors;
127 
128 	if ((max_hw_sectors << 9) < PAGE_SIZE) {
129 		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
130 		pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors);
131 	}
132 
133 	max_hw_sectors = round_down(max_hw_sectors,
134 				    limits->logical_block_size >> SECTOR_SHIFT);
135 	limits->max_hw_sectors = max_hw_sectors;
136 
137 	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
138 
139 	if (limits->max_user_sectors)
140 		max_sectors = min(max_sectors, limits->max_user_sectors);
141 	else
142 		max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP);
143 
144 	max_sectors = round_down(max_sectors,
145 				 limits->logical_block_size >> SECTOR_SHIFT);
146 	limits->max_sectors = max_sectors;
147 
148 	if (!q->disk)
149 		return;
150 	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
151 }
152 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
153 
154 /**
155  * blk_queue_chunk_sectors - set size of the chunk for this queue
156  * @q:  the request queue for the device
157  * @chunk_sectors:  chunk sectors in the usual 512b unit
158  *
159  * Description:
160  *    If a driver doesn't want IOs to cross a given chunk size, it can set
161  *    this limit and prevent merging across chunks. Note that the block layer
162  *    must accept a page worth of data at any offset. So if the crossing of
163  *    chunks is a hard limitation in the driver, it must still be prepared
164  *    to split single page bios.
165  **/
166 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
167 {
168 	q->limits.chunk_sectors = chunk_sectors;
169 }
170 EXPORT_SYMBOL(blk_queue_chunk_sectors);
171 
172 /**
173  * blk_queue_max_discard_sectors - set max sectors for a single discard
174  * @q:  the request queue for the device
175  * @max_discard_sectors: maximum number of sectors to discard
176  **/
177 void blk_queue_max_discard_sectors(struct request_queue *q,
178 		unsigned int max_discard_sectors)
179 {
180 	q->limits.max_hw_discard_sectors = max_discard_sectors;
181 	q->limits.max_discard_sectors = max_discard_sectors;
182 }
183 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
184 
185 /**
186  * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
187  * @q:  the request queue for the device
188  * @max_sectors: maximum number of sectors to secure_erase
189  **/
190 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
191 		unsigned int max_sectors)
192 {
193 	q->limits.max_secure_erase_sectors = max_sectors;
194 }
195 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
196 
197 /**
198  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
199  *                                      write zeroes
200  * @q:  the request queue for the device
201  * @max_write_zeroes_sectors: maximum number of sectors to write per command
202  **/
203 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
204 		unsigned int max_write_zeroes_sectors)
205 {
206 	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
207 }
208 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
209 
210 /**
211  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
212  * @q:  the request queue for the device
213  * @max_zone_append_sectors: maximum number of sectors to write per command
214  **/
215 void blk_queue_max_zone_append_sectors(struct request_queue *q,
216 		unsigned int max_zone_append_sectors)
217 {
218 	unsigned int max_sectors;
219 
220 	if (WARN_ON(!blk_queue_is_zoned(q)))
221 		return;
222 
223 	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
224 	max_sectors = min(q->limits.chunk_sectors, max_sectors);
225 
226 	/*
227 	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
228 	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
229 	 * or the max_hw_sectors limit not set.
230 	 */
231 	WARN_ON(!max_sectors);
232 
233 	q->limits.max_zone_append_sectors = max_sectors;
234 }
235 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
236 
237 /**
238  * blk_queue_max_segments - set max hw segments for a request for this queue
239  * @q:  the request queue for the device
240  * @max_segments:  max number of segments
241  *
242  * Description:
243  *    Enables a low level driver to set an upper limit on the number of
244  *    hw data segments in a request.
245  **/
246 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
247 {
248 	if (!max_segments) {
249 		max_segments = 1;
250 		pr_info("%s: set to minimum %u\n", __func__, max_segments);
251 	}
252 
253 	q->limits.max_segments = max_segments;
254 }
255 EXPORT_SYMBOL(blk_queue_max_segments);
256 
257 /**
258  * blk_queue_max_discard_segments - set max segments for discard requests
259  * @q:  the request queue for the device
260  * @max_segments:  max number of segments
261  *
262  * Description:
263  *    Enables a low level driver to set an upper limit on the number of
264  *    segments in a discard request.
265  **/
266 void blk_queue_max_discard_segments(struct request_queue *q,
267 		unsigned short max_segments)
268 {
269 	q->limits.max_discard_segments = max_segments;
270 }
271 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
272 
273 /**
274  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
275  * @q:  the request queue for the device
276  * @max_size:  max size of segment in bytes
277  *
278  * Description:
279  *    Enables a low level driver to set an upper limit on the size of a
280  *    coalesced segment
281  **/
282 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
283 {
284 	if (max_size < PAGE_SIZE) {
285 		max_size = PAGE_SIZE;
286 		pr_info("%s: set to minimum %u\n", __func__, max_size);
287 	}
288 
289 	/* see blk_queue_virt_boundary() for the explanation */
290 	WARN_ON_ONCE(q->limits.virt_boundary_mask);
291 
292 	q->limits.max_segment_size = max_size;
293 }
294 EXPORT_SYMBOL(blk_queue_max_segment_size);
295 
296 /**
297  * blk_queue_logical_block_size - set logical block size for the queue
298  * @q:  the request queue for the device
299  * @size:  the logical block size, in bytes
300  *
301  * Description:
302  *   This should be set to the lowest possible block size that the
303  *   storage device can address.  The default of 512 covers most
304  *   hardware.
305  **/
306 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
307 {
308 	struct queue_limits *limits = &q->limits;
309 
310 	limits->logical_block_size = size;
311 
312 	if (limits->discard_granularity < limits->logical_block_size)
313 		limits->discard_granularity = limits->logical_block_size;
314 
315 	if (limits->physical_block_size < size)
316 		limits->physical_block_size = size;
317 
318 	if (limits->io_min < limits->physical_block_size)
319 		limits->io_min = limits->physical_block_size;
320 
321 	limits->max_hw_sectors =
322 		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
323 	limits->max_sectors =
324 		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
325 }
326 EXPORT_SYMBOL(blk_queue_logical_block_size);
327 
328 /**
329  * blk_queue_physical_block_size - set physical block size for the queue
330  * @q:  the request queue for the device
331  * @size:  the physical block size, in bytes
332  *
333  * Description:
334  *   This should be set to the lowest possible sector size that the
335  *   hardware can operate on without reverting to read-modify-write
336  *   operations.
337  */
338 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
339 {
340 	q->limits.physical_block_size = size;
341 
342 	if (q->limits.physical_block_size < q->limits.logical_block_size)
343 		q->limits.physical_block_size = q->limits.logical_block_size;
344 
345 	if (q->limits.discard_granularity < q->limits.physical_block_size)
346 		q->limits.discard_granularity = q->limits.physical_block_size;
347 
348 	if (q->limits.io_min < q->limits.physical_block_size)
349 		q->limits.io_min = q->limits.physical_block_size;
350 }
351 EXPORT_SYMBOL(blk_queue_physical_block_size);
352 
353 /**
354  * blk_queue_zone_write_granularity - set zone write granularity for the queue
355  * @q:  the request queue for the zoned device
356  * @size:  the zone write granularity size, in bytes
357  *
358  * Description:
359  *   This should be set to the lowest possible size allowing to write in
360  *   sequential zones of a zoned block device.
361  */
362 void blk_queue_zone_write_granularity(struct request_queue *q,
363 				      unsigned int size)
364 {
365 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
366 		return;
367 
368 	q->limits.zone_write_granularity = size;
369 
370 	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
371 		q->limits.zone_write_granularity = q->limits.logical_block_size;
372 }
373 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
374 
375 /**
376  * blk_queue_alignment_offset - set physical block alignment offset
377  * @q:	the request queue for the device
378  * @offset: alignment offset in bytes
379  *
380  * Description:
381  *   Some devices are naturally misaligned to compensate for things like
382  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
383  *   should call this function for devices whose first sector is not
384  *   naturally aligned.
385  */
386 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
387 {
388 	q->limits.alignment_offset =
389 		offset & (q->limits.physical_block_size - 1);
390 	q->limits.misaligned = 0;
391 }
392 EXPORT_SYMBOL(blk_queue_alignment_offset);
393 
394 void disk_update_readahead(struct gendisk *disk)
395 {
396 	struct request_queue *q = disk->queue;
397 
398 	/*
399 	 * For read-ahead of large files to be effective, we need to read ahead
400 	 * at least twice the optimal I/O size.
401 	 */
402 	disk->bdi->ra_pages =
403 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
404 	disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
405 }
406 EXPORT_SYMBOL_GPL(disk_update_readahead);
407 
408 /**
409  * blk_limits_io_min - set minimum request size for a device
410  * @limits: the queue limits
411  * @min:  smallest I/O size in bytes
412  *
413  * Description:
414  *   Some devices have an internal block size bigger than the reported
415  *   hardware sector size.  This function can be used to signal the
416  *   smallest I/O the device can perform without incurring a performance
417  *   penalty.
418  */
419 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
420 {
421 	limits->io_min = min;
422 
423 	if (limits->io_min < limits->logical_block_size)
424 		limits->io_min = limits->logical_block_size;
425 
426 	if (limits->io_min < limits->physical_block_size)
427 		limits->io_min = limits->physical_block_size;
428 }
429 EXPORT_SYMBOL(blk_limits_io_min);
430 
431 /**
432  * blk_queue_io_min - set minimum request size for the queue
433  * @q:	the request queue for the device
434  * @min:  smallest I/O size in bytes
435  *
436  * Description:
437  *   Storage devices may report a granularity or preferred minimum I/O
438  *   size which is the smallest request the device can perform without
439  *   incurring a performance penalty.  For disk drives this is often the
440  *   physical block size.  For RAID arrays it is often the stripe chunk
441  *   size.  A properly aligned multiple of minimum_io_size is the
442  *   preferred request size for workloads where a high number of I/O
443  *   operations is desired.
444  */
445 void blk_queue_io_min(struct request_queue *q, unsigned int min)
446 {
447 	blk_limits_io_min(&q->limits, min);
448 }
449 EXPORT_SYMBOL(blk_queue_io_min);
450 
451 /**
452  * blk_limits_io_opt - set optimal request size for a device
453  * @limits: the queue limits
454  * @opt:  smallest I/O size in bytes
455  *
456  * Description:
457  *   Storage devices may report an optimal I/O size, which is the
458  *   device's preferred unit for sustained I/O.  This is rarely reported
459  *   for disk drives.  For RAID arrays it is usually the stripe width or
460  *   the internal track size.  A properly aligned multiple of
461  *   optimal_io_size is the preferred request size for workloads where
462  *   sustained throughput is desired.
463  */
464 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
465 {
466 	limits->io_opt = opt;
467 }
468 EXPORT_SYMBOL(blk_limits_io_opt);
469 
470 /**
471  * blk_queue_io_opt - set optimal request size for the queue
472  * @q:	the request queue for the device
473  * @opt:  optimal request size in bytes
474  *
475  * Description:
476  *   Storage devices may report an optimal I/O size, which is the
477  *   device's preferred unit for sustained I/O.  This is rarely reported
478  *   for disk drives.  For RAID arrays it is usually the stripe width or
479  *   the internal track size.  A properly aligned multiple of
480  *   optimal_io_size is the preferred request size for workloads where
481  *   sustained throughput is desired.
482  */
483 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
484 {
485 	blk_limits_io_opt(&q->limits, opt);
486 	if (!q->disk)
487 		return;
488 	q->disk->bdi->ra_pages =
489 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
490 }
491 EXPORT_SYMBOL(blk_queue_io_opt);
492 
493 static int queue_limit_alignment_offset(const struct queue_limits *lim,
494 		sector_t sector)
495 {
496 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
497 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
498 		<< SECTOR_SHIFT;
499 
500 	return (granularity + lim->alignment_offset - alignment) % granularity;
501 }
502 
503 static unsigned int queue_limit_discard_alignment(
504 		const struct queue_limits *lim, sector_t sector)
505 {
506 	unsigned int alignment, granularity, offset;
507 
508 	if (!lim->max_discard_sectors)
509 		return 0;
510 
511 	/* Why are these in bytes, not sectors? */
512 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
513 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
514 	if (!granularity)
515 		return 0;
516 
517 	/* Offset of the partition start in 'granularity' sectors */
518 	offset = sector_div(sector, granularity);
519 
520 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
521 	offset = (granularity + alignment - offset) % granularity;
522 
523 	/* Turn it back into bytes, gaah */
524 	return offset << SECTOR_SHIFT;
525 }
526 
527 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
528 {
529 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
530 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
531 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
532 	return sectors;
533 }
534 
535 /**
536  * blk_stack_limits - adjust queue_limits for stacked devices
537  * @t:	the stacking driver limits (top device)
538  * @b:  the underlying queue limits (bottom, component device)
539  * @start:  first data sector within component device
540  *
541  * Description:
542  *    This function is used by stacking drivers like MD and DM to ensure
543  *    that all component devices have compatible block sizes and
544  *    alignments.  The stacking driver must provide a queue_limits
545  *    struct (top) and then iteratively call the stacking function for
546  *    all component (bottom) devices.  The stacking function will
547  *    attempt to combine the values and ensure proper alignment.
548  *
549  *    Returns 0 if the top and bottom queue_limits are compatible.  The
550  *    top device's block sizes and alignment offsets may be adjusted to
551  *    ensure alignment with the bottom device. If no compatible sizes
552  *    and alignments exist, -1 is returned and the resulting top
553  *    queue_limits will have the misaligned flag set to indicate that
554  *    the alignment_offset is undefined.
555  */
556 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
557 		     sector_t start)
558 {
559 	unsigned int top, bottom, alignment, ret = 0;
560 
561 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
562 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
563 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
564 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
565 					b->max_write_zeroes_sectors);
566 	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
567 					b->max_zone_append_sectors);
568 	t->bounce = max(t->bounce, b->bounce);
569 
570 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
571 					    b->seg_boundary_mask);
572 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
573 					    b->virt_boundary_mask);
574 
575 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
576 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
577 					       b->max_discard_segments);
578 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
579 						 b->max_integrity_segments);
580 
581 	t->max_segment_size = min_not_zero(t->max_segment_size,
582 					   b->max_segment_size);
583 
584 	t->misaligned |= b->misaligned;
585 
586 	alignment = queue_limit_alignment_offset(b, start);
587 
588 	/* Bottom device has different alignment.  Check that it is
589 	 * compatible with the current top alignment.
590 	 */
591 	if (t->alignment_offset != alignment) {
592 
593 		top = max(t->physical_block_size, t->io_min)
594 			+ t->alignment_offset;
595 		bottom = max(b->physical_block_size, b->io_min) + alignment;
596 
597 		/* Verify that top and bottom intervals line up */
598 		if (max(top, bottom) % min(top, bottom)) {
599 			t->misaligned = 1;
600 			ret = -1;
601 		}
602 	}
603 
604 	t->logical_block_size = max(t->logical_block_size,
605 				    b->logical_block_size);
606 
607 	t->physical_block_size = max(t->physical_block_size,
608 				     b->physical_block_size);
609 
610 	t->io_min = max(t->io_min, b->io_min);
611 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
612 	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
613 
614 	/* Set non-power-of-2 compatible chunk_sectors boundary */
615 	if (b->chunk_sectors)
616 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
617 
618 	/* Physical block size a multiple of the logical block size? */
619 	if (t->physical_block_size & (t->logical_block_size - 1)) {
620 		t->physical_block_size = t->logical_block_size;
621 		t->misaligned = 1;
622 		ret = -1;
623 	}
624 
625 	/* Minimum I/O a multiple of the physical block size? */
626 	if (t->io_min & (t->physical_block_size - 1)) {
627 		t->io_min = t->physical_block_size;
628 		t->misaligned = 1;
629 		ret = -1;
630 	}
631 
632 	/* Optimal I/O a multiple of the physical block size? */
633 	if (t->io_opt & (t->physical_block_size - 1)) {
634 		t->io_opt = 0;
635 		t->misaligned = 1;
636 		ret = -1;
637 	}
638 
639 	/* chunk_sectors a multiple of the physical block size? */
640 	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
641 		t->chunk_sectors = 0;
642 		t->misaligned = 1;
643 		ret = -1;
644 	}
645 
646 	t->raid_partial_stripes_expensive =
647 		max(t->raid_partial_stripes_expensive,
648 		    b->raid_partial_stripes_expensive);
649 
650 	/* Find lowest common alignment_offset */
651 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
652 		% max(t->physical_block_size, t->io_min);
653 
654 	/* Verify that new alignment_offset is on a logical block boundary */
655 	if (t->alignment_offset & (t->logical_block_size - 1)) {
656 		t->misaligned = 1;
657 		ret = -1;
658 	}
659 
660 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
661 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
662 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
663 
664 	/* Discard alignment and granularity */
665 	if (b->discard_granularity) {
666 		alignment = queue_limit_discard_alignment(b, start);
667 
668 		if (t->discard_granularity != 0 &&
669 		    t->discard_alignment != alignment) {
670 			top = t->discard_granularity + t->discard_alignment;
671 			bottom = b->discard_granularity + alignment;
672 
673 			/* Verify that top and bottom intervals line up */
674 			if ((max(top, bottom) % min(top, bottom)) != 0)
675 				t->discard_misaligned = 1;
676 		}
677 
678 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
679 						      b->max_discard_sectors);
680 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
681 							 b->max_hw_discard_sectors);
682 		t->discard_granularity = max(t->discard_granularity,
683 					     b->discard_granularity);
684 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
685 			t->discard_granularity;
686 	}
687 	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
688 						   b->max_secure_erase_sectors);
689 	t->zone_write_granularity = max(t->zone_write_granularity,
690 					b->zone_write_granularity);
691 	t->zoned = max(t->zoned, b->zoned);
692 	return ret;
693 }
694 EXPORT_SYMBOL(blk_stack_limits);
695 
696 /**
697  * disk_stack_limits - adjust queue limits for stacked drivers
698  * @disk:  MD/DM gendisk (top)
699  * @bdev:  the underlying block device (bottom)
700  * @offset:  offset to beginning of data within component device
701  *
702  * Description:
703  *    Merges the limits for a top level gendisk and a bottom level
704  *    block_device.
705  */
706 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
707 		       sector_t offset)
708 {
709 	struct request_queue *t = disk->queue;
710 
711 	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
712 			get_start_sect(bdev) + (offset >> 9)) < 0)
713 		pr_notice("%s: Warning: Device %pg is misaligned\n",
714 			disk->disk_name, bdev);
715 
716 	disk_update_readahead(disk);
717 }
718 EXPORT_SYMBOL(disk_stack_limits);
719 
720 /**
721  * blk_queue_update_dma_pad - update pad mask
722  * @q:     the request queue for the device
723  * @mask:  pad mask
724  *
725  * Update dma pad mask.
726  *
727  * Appending pad buffer to a request modifies the last entry of a
728  * scatter list such that it includes the pad buffer.
729  **/
730 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
731 {
732 	if (mask > q->dma_pad_mask)
733 		q->dma_pad_mask = mask;
734 }
735 EXPORT_SYMBOL(blk_queue_update_dma_pad);
736 
737 /**
738  * blk_queue_segment_boundary - set boundary rules for segment merging
739  * @q:  the request queue for the device
740  * @mask:  the memory boundary mask
741  **/
742 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
743 {
744 	if (mask < PAGE_SIZE - 1) {
745 		mask = PAGE_SIZE - 1;
746 		pr_info("%s: set to minimum %lx\n", __func__, mask);
747 	}
748 
749 	q->limits.seg_boundary_mask = mask;
750 }
751 EXPORT_SYMBOL(blk_queue_segment_boundary);
752 
753 /**
754  * blk_queue_virt_boundary - set boundary rules for bio merging
755  * @q:  the request queue for the device
756  * @mask:  the memory boundary mask
757  **/
758 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
759 {
760 	q->limits.virt_boundary_mask = mask;
761 
762 	/*
763 	 * Devices that require a virtual boundary do not support scatter/gather
764 	 * I/O natively, but instead require a descriptor list entry for each
765 	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
766 	 * of that they are not limited by our notion of "segment size".
767 	 */
768 	if (mask)
769 		q->limits.max_segment_size = UINT_MAX;
770 }
771 EXPORT_SYMBOL(blk_queue_virt_boundary);
772 
773 /**
774  * blk_queue_dma_alignment - set dma length and memory alignment
775  * @q:     the request queue for the device
776  * @mask:  alignment mask
777  *
778  * description:
779  *    set required memory and length alignment for direct dma transactions.
780  *    this is used when building direct io requests for the queue.
781  *
782  **/
783 void blk_queue_dma_alignment(struct request_queue *q, int mask)
784 {
785 	q->limits.dma_alignment = mask;
786 }
787 EXPORT_SYMBOL(blk_queue_dma_alignment);
788 
789 /**
790  * blk_queue_update_dma_alignment - update dma length and memory alignment
791  * @q:     the request queue for the device
792  * @mask:  alignment mask
793  *
794  * description:
795  *    update required memory and length alignment for direct dma transactions.
796  *    If the requested alignment is larger than the current alignment, then
797  *    the current queue alignment is updated to the new value, otherwise it
798  *    is left alone.  The design of this is to allow multiple objects
799  *    (driver, device, transport etc) to set their respective
800  *    alignments without having them interfere.
801  *
802  **/
803 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
804 {
805 	BUG_ON(mask > PAGE_SIZE);
806 
807 	if (mask > q->limits.dma_alignment)
808 		q->limits.dma_alignment = mask;
809 }
810 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
811 
812 /**
813  * blk_set_queue_depth - tell the block layer about the device queue depth
814  * @q:		the request queue for the device
815  * @depth:		queue depth
816  *
817  */
818 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
819 {
820 	q->queue_depth = depth;
821 	rq_qos_queue_depth_changed(q);
822 }
823 EXPORT_SYMBOL(blk_set_queue_depth);
824 
825 /**
826  * blk_queue_write_cache - configure queue's write cache
827  * @q:		the request queue for the device
828  * @wc:		write back cache on or off
829  * @fua:	device supports FUA writes, if true
830  *
831  * Tell the block layer about the write cache of @q.
832  */
833 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
834 {
835 	if (wc) {
836 		blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
837 		blk_queue_flag_set(QUEUE_FLAG_WC, q);
838 	} else {
839 		blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
840 		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
841 	}
842 	if (fua)
843 		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
844 	else
845 		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
846 }
847 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
848 
849 /**
850  * blk_queue_required_elevator_features - Set a queue required elevator features
851  * @q:		the request queue for the target device
852  * @features:	Required elevator features OR'ed together
853  *
854  * Tell the block layer that for the device controlled through @q, only the
855  * only elevators that can be used are those that implement at least the set of
856  * features specified by @features.
857  */
858 void blk_queue_required_elevator_features(struct request_queue *q,
859 					  unsigned int features)
860 {
861 	q->required_elevator_features = features;
862 }
863 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
864 
865 /**
866  * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
867  * @q:		the request queue for the device
868  * @dev:	the device pointer for dma
869  *
870  * Tell the block layer about merging the segments by dma map of @q.
871  */
872 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
873 				       struct device *dev)
874 {
875 	unsigned long boundary = dma_get_merge_boundary(dev);
876 
877 	if (!boundary)
878 		return false;
879 
880 	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
881 	blk_queue_virt_boundary(q, boundary);
882 
883 	return true;
884 }
885 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
886 
887 /**
888  * disk_set_zoned - inidicate a zoned device
889  * @disk:	gendisk to configure
890  */
891 void disk_set_zoned(struct gendisk *disk)
892 {
893 	struct request_queue *q = disk->queue;
894 
895 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
896 
897 	/*
898 	 * Set the zone write granularity to the device logical block
899 	 * size by default. The driver can change this value if needed.
900 	 */
901 	q->limits.zoned = true;
902 	blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
903 }
904 EXPORT_SYMBOL_GPL(disk_set_zoned);
905 
906 int bdev_alignment_offset(struct block_device *bdev)
907 {
908 	struct request_queue *q = bdev_get_queue(bdev);
909 
910 	if (q->limits.misaligned)
911 		return -1;
912 	if (bdev_is_partition(bdev))
913 		return queue_limit_alignment_offset(&q->limits,
914 				bdev->bd_start_sect);
915 	return q->limits.alignment_offset;
916 }
917 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
918 
919 unsigned int bdev_discard_alignment(struct block_device *bdev)
920 {
921 	struct request_queue *q = bdev_get_queue(bdev);
922 
923 	if (bdev_is_partition(bdev))
924 		return queue_limit_discard_alignment(&q->limits,
925 				bdev->bd_start_sect);
926 	return q->limits.discard_alignment;
927 }
928 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
929