xref: /linux/block/blk-settings.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "blk.h"
19 #include "blk-rq-qos.h"
20 #include "blk-wbt.h"
21 
22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 {
24 	q->rq_timeout = timeout;
25 }
26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27 
28 /**
29  * blk_set_stacking_limits - set default limits for stacking devices
30  * @lim:  the queue_limits structure to reset
31  *
32  * Prepare queue limits for applying limits from underlying devices using
33  * blk_stack_limits().
34  */
35 void blk_set_stacking_limits(struct queue_limits *lim)
36 {
37 	memset(lim, 0, sizeof(*lim));
38 	lim->logical_block_size = SECTOR_SIZE;
39 	lim->physical_block_size = SECTOR_SIZE;
40 	lim->io_min = SECTOR_SIZE;
41 	lim->discard_granularity = SECTOR_SIZE;
42 	lim->dma_alignment = SECTOR_SIZE - 1;
43 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44 
45 	/* Inherit limits from component devices */
46 	lim->max_segments = USHRT_MAX;
47 	lim->max_discard_segments = USHRT_MAX;
48 	lim->max_hw_sectors = UINT_MAX;
49 	lim->max_segment_size = UINT_MAX;
50 	lim->max_sectors = UINT_MAX;
51 	lim->max_dev_sectors = UINT_MAX;
52 	lim->max_write_zeroes_sectors = UINT_MAX;
53 	lim->max_zone_append_sectors = UINT_MAX;
54 	lim->max_user_discard_sectors = UINT_MAX;
55 }
56 EXPORT_SYMBOL(blk_set_stacking_limits);
57 
58 static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59 		struct queue_limits *lim)
60 {
61 	/*
62 	 * For read-ahead of large files to be effective, we need to read ahead
63 	 * at least twice the optimal I/O size.
64 	 */
65 	bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66 	bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67 }
68 
69 static int blk_validate_zoned_limits(struct queue_limits *lim)
70 {
71 	if (!lim->zoned) {
72 		if (WARN_ON_ONCE(lim->max_open_zones) ||
73 		    WARN_ON_ONCE(lim->max_active_zones) ||
74 		    WARN_ON_ONCE(lim->zone_write_granularity) ||
75 		    WARN_ON_ONCE(lim->max_zone_append_sectors))
76 			return -EINVAL;
77 		return 0;
78 	}
79 
80 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81 		return -EINVAL;
82 
83 	if (lim->zone_write_granularity < lim->logical_block_size)
84 		lim->zone_write_granularity = lim->logical_block_size;
85 
86 	if (lim->max_zone_append_sectors) {
87 		/*
88 		 * The Zone Append size is limited by the maximum I/O size
89 		 * and the zone size given that it can't span zones.
90 		 */
91 		lim->max_zone_append_sectors =
92 			min3(lim->max_hw_sectors,
93 			     lim->max_zone_append_sectors,
94 			     lim->chunk_sectors);
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * Check that the limits in lim are valid, initialize defaults for unset
102  * values, and cap values based on others where needed.
103  */
104 static int blk_validate_limits(struct queue_limits *lim)
105 {
106 	unsigned int max_hw_sectors;
107 
108 	/*
109 	 * Unless otherwise specified, default to 512 byte logical blocks and a
110 	 * physical block size equal to the logical block size.
111 	 */
112 	if (!lim->logical_block_size)
113 		lim->logical_block_size = SECTOR_SIZE;
114 	if (lim->physical_block_size < lim->logical_block_size)
115 		lim->physical_block_size = lim->logical_block_size;
116 
117 	/*
118 	 * The minimum I/O size defaults to the physical block size unless
119 	 * explicitly overridden.
120 	 */
121 	if (lim->io_min < lim->physical_block_size)
122 		lim->io_min = lim->physical_block_size;
123 
124 	/*
125 	 * max_hw_sectors has a somewhat weird default for historical reason,
126 	 * but driver really should set their own instead of relying on this
127 	 * value.
128 	 *
129 	 * The block layer relies on the fact that every driver can
130 	 * handle at lest a page worth of data per I/O, and needs the value
131 	 * aligned to the logical block size.
132 	 */
133 	if (!lim->max_hw_sectors)
134 		lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
135 	if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
136 		return -EINVAL;
137 	lim->max_hw_sectors = round_down(lim->max_hw_sectors,
138 			lim->logical_block_size >> SECTOR_SHIFT);
139 
140 	/*
141 	 * The actual max_sectors value is a complex beast and also takes the
142 	 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
143 	 * value into account.  The ->max_sectors value is always calculated
144 	 * from these, so directly setting it won't have any effect.
145 	 */
146 	max_hw_sectors = min_not_zero(lim->max_hw_sectors,
147 				lim->max_dev_sectors);
148 	if (lim->max_user_sectors) {
149 		if (lim->max_user_sectors > max_hw_sectors ||
150 		    lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
151 			return -EINVAL;
152 		lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
153 	} else {
154 		lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
155 	}
156 	lim->max_sectors = round_down(lim->max_sectors,
157 			lim->logical_block_size >> SECTOR_SHIFT);
158 
159 	/*
160 	 * Random default for the maximum number of segments.  Driver should not
161 	 * rely on this and set their own.
162 	 */
163 	if (!lim->max_segments)
164 		lim->max_segments = BLK_MAX_SEGMENTS;
165 
166 	lim->max_discard_sectors =
167 		min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
168 
169 	if (!lim->max_discard_segments)
170 		lim->max_discard_segments = 1;
171 
172 	if (lim->discard_granularity < lim->physical_block_size)
173 		lim->discard_granularity = lim->physical_block_size;
174 
175 	/*
176 	 * By default there is no limit on the segment boundary alignment,
177 	 * but if there is one it can't be smaller than the page size as
178 	 * that would break all the normal I/O patterns.
179 	 */
180 	if (!lim->seg_boundary_mask)
181 		lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
182 	if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
183 		return -EINVAL;
184 
185 	/*
186 	 * Devices that require a virtual boundary do not support scatter/gather
187 	 * I/O natively, but instead require a descriptor list entry for each
188 	 * page (which might not be identical to the Linux PAGE_SIZE).  Because
189 	 * of that they are not limited by our notion of "segment size".
190 	 */
191 	if (lim->virt_boundary_mask) {
192 		if (WARN_ON_ONCE(lim->max_segment_size &&
193 				 lim->max_segment_size != UINT_MAX))
194 			return -EINVAL;
195 		lim->max_segment_size = UINT_MAX;
196 	} else {
197 		/*
198 		 * The maximum segment size has an odd historic 64k default that
199 		 * drivers probably should override.  Just like the I/O size we
200 		 * require drivers to at least handle a full page per segment.
201 		 */
202 		if (!lim->max_segment_size)
203 			lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
204 		if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
205 			return -EINVAL;
206 	}
207 
208 	/*
209 	 * We require drivers to at least do logical block aligned I/O, but
210 	 * historically could not check for that due to the separate calls
211 	 * to set the limits.  Once the transition is finished the check
212 	 * below should be narrowed down to check the logical block size.
213 	 */
214 	if (!lim->dma_alignment)
215 		lim->dma_alignment = SECTOR_SIZE - 1;
216 	if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
217 		return -EINVAL;
218 
219 	if (lim->alignment_offset) {
220 		lim->alignment_offset &= (lim->physical_block_size - 1);
221 		lim->misaligned = 0;
222 	}
223 
224 	return blk_validate_zoned_limits(lim);
225 }
226 
227 /*
228  * Set the default limits for a newly allocated queue.  @lim contains the
229  * initial limits set by the driver, which could be no limit in which case
230  * all fields are cleared to zero.
231  */
232 int blk_set_default_limits(struct queue_limits *lim)
233 {
234 	/*
235 	 * Most defaults are set by capping the bounds in blk_validate_limits,
236 	 * but max_user_discard_sectors is special and needs an explicit
237 	 * initialization to the max value here.
238 	 */
239 	lim->max_user_discard_sectors = UINT_MAX;
240 	return blk_validate_limits(lim);
241 }
242 
243 /**
244  * queue_limits_commit_update - commit an atomic update of queue limits
245  * @q:		queue to update
246  * @lim:	limits to apply
247  *
248  * Apply the limits in @lim that were obtained from queue_limits_start_update()
249  * and updated by the caller to @q.
250  *
251  * Returns 0 if successful, else a negative error code.
252  */
253 int queue_limits_commit_update(struct request_queue *q,
254 		struct queue_limits *lim)
255 	__releases(q->limits_lock)
256 {
257 	int error = blk_validate_limits(lim);
258 
259 	if (!error) {
260 		q->limits = *lim;
261 		if (q->disk)
262 			blk_apply_bdi_limits(q->disk->bdi, lim);
263 	}
264 	mutex_unlock(&q->limits_lock);
265 	return error;
266 }
267 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
268 
269 /**
270  * queue_limits_set - apply queue limits to queue
271  * @q:		queue to update
272  * @lim:	limits to apply
273  *
274  * Apply the limits in @lim that were freshly initialized to @q.
275  * To update existing limits use queue_limits_start_update() and
276  * queue_limits_commit_update() instead.
277  *
278  * Returns 0 if successful, else a negative error code.
279  */
280 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
281 {
282 	mutex_lock(&q->limits_lock);
283 	return queue_limits_commit_update(q, lim);
284 }
285 EXPORT_SYMBOL_GPL(queue_limits_set);
286 
287 /**
288  * blk_queue_bounce_limit - set bounce buffer limit for queue
289  * @q: the request queue for the device
290  * @bounce: bounce limit to enforce
291  *
292  * Description:
293  *    Force bouncing for ISA DMA ranges or highmem.
294  *
295  *    DEPRECATED, don't use in new code.
296  **/
297 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
298 {
299 	q->limits.bounce = bounce;
300 }
301 EXPORT_SYMBOL(blk_queue_bounce_limit);
302 
303 /**
304  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
305  * @q:  the request queue for the device
306  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
307  *
308  * Description:
309  *    Enables a low level driver to set a hard upper limit,
310  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
311  *    the device driver based upon the capabilities of the I/O
312  *    controller.
313  *
314  *    max_dev_sectors is a hard limit imposed by the storage device for
315  *    READ/WRITE requests. It is set by the disk driver.
316  *
317  *    max_sectors is a soft limit imposed by the block layer for
318  *    filesystem type requests.  This value can be overridden on a
319  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
320  *    The soft limit can not exceed max_hw_sectors.
321  **/
322 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
323 {
324 	struct queue_limits *limits = &q->limits;
325 	unsigned int max_sectors;
326 
327 	if ((max_hw_sectors << 9) < PAGE_SIZE) {
328 		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
329 		pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors);
330 	}
331 
332 	max_hw_sectors = round_down(max_hw_sectors,
333 				    limits->logical_block_size >> SECTOR_SHIFT);
334 	limits->max_hw_sectors = max_hw_sectors;
335 
336 	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
337 
338 	if (limits->max_user_sectors)
339 		max_sectors = min(max_sectors, limits->max_user_sectors);
340 	else
341 		max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP);
342 
343 	max_sectors = round_down(max_sectors,
344 				 limits->logical_block_size >> SECTOR_SHIFT);
345 	limits->max_sectors = max_sectors;
346 
347 	if (!q->disk)
348 		return;
349 	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
350 }
351 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
352 
353 /**
354  * blk_queue_chunk_sectors - set size of the chunk for this queue
355  * @q:  the request queue for the device
356  * @chunk_sectors:  chunk sectors in the usual 512b unit
357  *
358  * Description:
359  *    If a driver doesn't want IOs to cross a given chunk size, it can set
360  *    this limit and prevent merging across chunks. Note that the block layer
361  *    must accept a page worth of data at any offset. So if the crossing of
362  *    chunks is a hard limitation in the driver, it must still be prepared
363  *    to split single page bios.
364  **/
365 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
366 {
367 	q->limits.chunk_sectors = chunk_sectors;
368 }
369 EXPORT_SYMBOL(blk_queue_chunk_sectors);
370 
371 /**
372  * blk_queue_max_discard_sectors - set max sectors for a single discard
373  * @q:  the request queue for the device
374  * @max_discard_sectors: maximum number of sectors to discard
375  **/
376 void blk_queue_max_discard_sectors(struct request_queue *q,
377 		unsigned int max_discard_sectors)
378 {
379 	struct queue_limits *lim = &q->limits;
380 
381 	lim->max_hw_discard_sectors = max_discard_sectors;
382 	lim->max_discard_sectors =
383 		min(max_discard_sectors, lim->max_user_discard_sectors);
384 }
385 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
386 
387 /**
388  * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
389  * @q:  the request queue for the device
390  * @max_sectors: maximum number of sectors to secure_erase
391  **/
392 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
393 		unsigned int max_sectors)
394 {
395 	q->limits.max_secure_erase_sectors = max_sectors;
396 }
397 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
398 
399 /**
400  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
401  *                                      write zeroes
402  * @q:  the request queue for the device
403  * @max_write_zeroes_sectors: maximum number of sectors to write per command
404  **/
405 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
406 		unsigned int max_write_zeroes_sectors)
407 {
408 	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
409 }
410 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
411 
412 /**
413  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
414  * @q:  the request queue for the device
415  * @max_zone_append_sectors: maximum number of sectors to write per command
416  **/
417 void blk_queue_max_zone_append_sectors(struct request_queue *q,
418 		unsigned int max_zone_append_sectors)
419 {
420 	unsigned int max_sectors;
421 
422 	if (WARN_ON(!blk_queue_is_zoned(q)))
423 		return;
424 
425 	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
426 	max_sectors = min(q->limits.chunk_sectors, max_sectors);
427 
428 	/*
429 	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
430 	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
431 	 * or the max_hw_sectors limit not set.
432 	 */
433 	WARN_ON(!max_sectors);
434 
435 	q->limits.max_zone_append_sectors = max_sectors;
436 }
437 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
438 
439 /**
440  * blk_queue_max_segments - set max hw segments for a request for this queue
441  * @q:  the request queue for the device
442  * @max_segments:  max number of segments
443  *
444  * Description:
445  *    Enables a low level driver to set an upper limit on the number of
446  *    hw data segments in a request.
447  **/
448 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
449 {
450 	if (!max_segments) {
451 		max_segments = 1;
452 		pr_info("%s: set to minimum %u\n", __func__, max_segments);
453 	}
454 
455 	q->limits.max_segments = max_segments;
456 }
457 EXPORT_SYMBOL(blk_queue_max_segments);
458 
459 /**
460  * blk_queue_max_discard_segments - set max segments for discard requests
461  * @q:  the request queue for the device
462  * @max_segments:  max number of segments
463  *
464  * Description:
465  *    Enables a low level driver to set an upper limit on the number of
466  *    segments in a discard request.
467  **/
468 void blk_queue_max_discard_segments(struct request_queue *q,
469 		unsigned short max_segments)
470 {
471 	q->limits.max_discard_segments = max_segments;
472 }
473 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
474 
475 /**
476  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
477  * @q:  the request queue for the device
478  * @max_size:  max size of segment in bytes
479  *
480  * Description:
481  *    Enables a low level driver to set an upper limit on the size of a
482  *    coalesced segment
483  **/
484 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
485 {
486 	if (max_size < PAGE_SIZE) {
487 		max_size = PAGE_SIZE;
488 		pr_info("%s: set to minimum %u\n", __func__, max_size);
489 	}
490 
491 	/* see blk_queue_virt_boundary() for the explanation */
492 	WARN_ON_ONCE(q->limits.virt_boundary_mask);
493 
494 	q->limits.max_segment_size = max_size;
495 }
496 EXPORT_SYMBOL(blk_queue_max_segment_size);
497 
498 /**
499  * blk_queue_logical_block_size - set logical block size for the queue
500  * @q:  the request queue for the device
501  * @size:  the logical block size, in bytes
502  *
503  * Description:
504  *   This should be set to the lowest possible block size that the
505  *   storage device can address.  The default of 512 covers most
506  *   hardware.
507  **/
508 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
509 {
510 	struct queue_limits *limits = &q->limits;
511 
512 	limits->logical_block_size = size;
513 
514 	if (limits->discard_granularity < limits->logical_block_size)
515 		limits->discard_granularity = limits->logical_block_size;
516 
517 	if (limits->physical_block_size < size)
518 		limits->physical_block_size = size;
519 
520 	if (limits->io_min < limits->physical_block_size)
521 		limits->io_min = limits->physical_block_size;
522 
523 	limits->max_hw_sectors =
524 		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
525 	limits->max_sectors =
526 		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
527 }
528 EXPORT_SYMBOL(blk_queue_logical_block_size);
529 
530 /**
531  * blk_queue_physical_block_size - set physical block size for the queue
532  * @q:  the request queue for the device
533  * @size:  the physical block size, in bytes
534  *
535  * Description:
536  *   This should be set to the lowest possible sector size that the
537  *   hardware can operate on without reverting to read-modify-write
538  *   operations.
539  */
540 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
541 {
542 	q->limits.physical_block_size = size;
543 
544 	if (q->limits.physical_block_size < q->limits.logical_block_size)
545 		q->limits.physical_block_size = q->limits.logical_block_size;
546 
547 	if (q->limits.discard_granularity < q->limits.physical_block_size)
548 		q->limits.discard_granularity = q->limits.physical_block_size;
549 
550 	if (q->limits.io_min < q->limits.physical_block_size)
551 		q->limits.io_min = q->limits.physical_block_size;
552 }
553 EXPORT_SYMBOL(blk_queue_physical_block_size);
554 
555 /**
556  * blk_queue_zone_write_granularity - set zone write granularity for the queue
557  * @q:  the request queue for the zoned device
558  * @size:  the zone write granularity size, in bytes
559  *
560  * Description:
561  *   This should be set to the lowest possible size allowing to write in
562  *   sequential zones of a zoned block device.
563  */
564 void blk_queue_zone_write_granularity(struct request_queue *q,
565 				      unsigned int size)
566 {
567 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
568 		return;
569 
570 	q->limits.zone_write_granularity = size;
571 
572 	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
573 		q->limits.zone_write_granularity = q->limits.logical_block_size;
574 }
575 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
576 
577 /**
578  * blk_queue_alignment_offset - set physical block alignment offset
579  * @q:	the request queue for the device
580  * @offset: alignment offset in bytes
581  *
582  * Description:
583  *   Some devices are naturally misaligned to compensate for things like
584  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
585  *   should call this function for devices whose first sector is not
586  *   naturally aligned.
587  */
588 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
589 {
590 	q->limits.alignment_offset =
591 		offset & (q->limits.physical_block_size - 1);
592 	q->limits.misaligned = 0;
593 }
594 EXPORT_SYMBOL(blk_queue_alignment_offset);
595 
596 void disk_update_readahead(struct gendisk *disk)
597 {
598 	blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
599 }
600 EXPORT_SYMBOL_GPL(disk_update_readahead);
601 
602 /**
603  * blk_limits_io_min - set minimum request size for a device
604  * @limits: the queue limits
605  * @min:  smallest I/O size in bytes
606  *
607  * Description:
608  *   Some devices have an internal block size bigger than the reported
609  *   hardware sector size.  This function can be used to signal the
610  *   smallest I/O the device can perform without incurring a performance
611  *   penalty.
612  */
613 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
614 {
615 	limits->io_min = min;
616 
617 	if (limits->io_min < limits->logical_block_size)
618 		limits->io_min = limits->logical_block_size;
619 
620 	if (limits->io_min < limits->physical_block_size)
621 		limits->io_min = limits->physical_block_size;
622 }
623 EXPORT_SYMBOL(blk_limits_io_min);
624 
625 /**
626  * blk_queue_io_min - set minimum request size for the queue
627  * @q:	the request queue for the device
628  * @min:  smallest I/O size in bytes
629  *
630  * Description:
631  *   Storage devices may report a granularity or preferred minimum I/O
632  *   size which is the smallest request the device can perform without
633  *   incurring a performance penalty.  For disk drives this is often the
634  *   physical block size.  For RAID arrays it is often the stripe chunk
635  *   size.  A properly aligned multiple of minimum_io_size is the
636  *   preferred request size for workloads where a high number of I/O
637  *   operations is desired.
638  */
639 void blk_queue_io_min(struct request_queue *q, unsigned int min)
640 {
641 	blk_limits_io_min(&q->limits, min);
642 }
643 EXPORT_SYMBOL(blk_queue_io_min);
644 
645 /**
646  * blk_limits_io_opt - set optimal request size for a device
647  * @limits: the queue limits
648  * @opt:  smallest I/O size in bytes
649  *
650  * Description:
651  *   Storage devices may report an optimal I/O size, which is the
652  *   device's preferred unit for sustained I/O.  This is rarely reported
653  *   for disk drives.  For RAID arrays it is usually the stripe width or
654  *   the internal track size.  A properly aligned multiple of
655  *   optimal_io_size is the preferred request size for workloads where
656  *   sustained throughput is desired.
657  */
658 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
659 {
660 	limits->io_opt = opt;
661 }
662 EXPORT_SYMBOL(blk_limits_io_opt);
663 
664 /**
665  * blk_queue_io_opt - set optimal request size for the queue
666  * @q:	the request queue for the device
667  * @opt:  optimal request size in bytes
668  *
669  * Description:
670  *   Storage devices may report an optimal I/O size, which is the
671  *   device's preferred unit for sustained I/O.  This is rarely reported
672  *   for disk drives.  For RAID arrays it is usually the stripe width or
673  *   the internal track size.  A properly aligned multiple of
674  *   optimal_io_size is the preferred request size for workloads where
675  *   sustained throughput is desired.
676  */
677 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
678 {
679 	blk_limits_io_opt(&q->limits, opt);
680 	if (!q->disk)
681 		return;
682 	q->disk->bdi->ra_pages =
683 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
684 }
685 EXPORT_SYMBOL(blk_queue_io_opt);
686 
687 static int queue_limit_alignment_offset(const struct queue_limits *lim,
688 		sector_t sector)
689 {
690 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
691 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
692 		<< SECTOR_SHIFT;
693 
694 	return (granularity + lim->alignment_offset - alignment) % granularity;
695 }
696 
697 static unsigned int queue_limit_discard_alignment(
698 		const struct queue_limits *lim, sector_t sector)
699 {
700 	unsigned int alignment, granularity, offset;
701 
702 	if (!lim->max_discard_sectors)
703 		return 0;
704 
705 	/* Why are these in bytes, not sectors? */
706 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
707 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
708 	if (!granularity)
709 		return 0;
710 
711 	/* Offset of the partition start in 'granularity' sectors */
712 	offset = sector_div(sector, granularity);
713 
714 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
715 	offset = (granularity + alignment - offset) % granularity;
716 
717 	/* Turn it back into bytes, gaah */
718 	return offset << SECTOR_SHIFT;
719 }
720 
721 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
722 {
723 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
724 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
725 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
726 	return sectors;
727 }
728 
729 /**
730  * blk_stack_limits - adjust queue_limits for stacked devices
731  * @t:	the stacking driver limits (top device)
732  * @b:  the underlying queue limits (bottom, component device)
733  * @start:  first data sector within component device
734  *
735  * Description:
736  *    This function is used by stacking drivers like MD and DM to ensure
737  *    that all component devices have compatible block sizes and
738  *    alignments.  The stacking driver must provide a queue_limits
739  *    struct (top) and then iteratively call the stacking function for
740  *    all component (bottom) devices.  The stacking function will
741  *    attempt to combine the values and ensure proper alignment.
742  *
743  *    Returns 0 if the top and bottom queue_limits are compatible.  The
744  *    top device's block sizes and alignment offsets may be adjusted to
745  *    ensure alignment with the bottom device. If no compatible sizes
746  *    and alignments exist, -1 is returned and the resulting top
747  *    queue_limits will have the misaligned flag set to indicate that
748  *    the alignment_offset is undefined.
749  */
750 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
751 		     sector_t start)
752 {
753 	unsigned int top, bottom, alignment, ret = 0;
754 
755 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
756 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
757 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
758 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
759 					b->max_write_zeroes_sectors);
760 	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
761 					b->max_zone_append_sectors);
762 	t->bounce = max(t->bounce, b->bounce);
763 
764 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
765 					    b->seg_boundary_mask);
766 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
767 					    b->virt_boundary_mask);
768 
769 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
770 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
771 					       b->max_discard_segments);
772 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
773 						 b->max_integrity_segments);
774 
775 	t->max_segment_size = min_not_zero(t->max_segment_size,
776 					   b->max_segment_size);
777 
778 	t->misaligned |= b->misaligned;
779 
780 	alignment = queue_limit_alignment_offset(b, start);
781 
782 	/* Bottom device has different alignment.  Check that it is
783 	 * compatible with the current top alignment.
784 	 */
785 	if (t->alignment_offset != alignment) {
786 
787 		top = max(t->physical_block_size, t->io_min)
788 			+ t->alignment_offset;
789 		bottom = max(b->physical_block_size, b->io_min) + alignment;
790 
791 		/* Verify that top and bottom intervals line up */
792 		if (max(top, bottom) % min(top, bottom)) {
793 			t->misaligned = 1;
794 			ret = -1;
795 		}
796 	}
797 
798 	t->logical_block_size = max(t->logical_block_size,
799 				    b->logical_block_size);
800 
801 	t->physical_block_size = max(t->physical_block_size,
802 				     b->physical_block_size);
803 
804 	t->io_min = max(t->io_min, b->io_min);
805 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
806 	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
807 
808 	/* Set non-power-of-2 compatible chunk_sectors boundary */
809 	if (b->chunk_sectors)
810 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
811 
812 	/* Physical block size a multiple of the logical block size? */
813 	if (t->physical_block_size & (t->logical_block_size - 1)) {
814 		t->physical_block_size = t->logical_block_size;
815 		t->misaligned = 1;
816 		ret = -1;
817 	}
818 
819 	/* Minimum I/O a multiple of the physical block size? */
820 	if (t->io_min & (t->physical_block_size - 1)) {
821 		t->io_min = t->physical_block_size;
822 		t->misaligned = 1;
823 		ret = -1;
824 	}
825 
826 	/* Optimal I/O a multiple of the physical block size? */
827 	if (t->io_opt & (t->physical_block_size - 1)) {
828 		t->io_opt = 0;
829 		t->misaligned = 1;
830 		ret = -1;
831 	}
832 
833 	/* chunk_sectors a multiple of the physical block size? */
834 	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
835 		t->chunk_sectors = 0;
836 		t->misaligned = 1;
837 		ret = -1;
838 	}
839 
840 	t->raid_partial_stripes_expensive =
841 		max(t->raid_partial_stripes_expensive,
842 		    b->raid_partial_stripes_expensive);
843 
844 	/* Find lowest common alignment_offset */
845 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
846 		% max(t->physical_block_size, t->io_min);
847 
848 	/* Verify that new alignment_offset is on a logical block boundary */
849 	if (t->alignment_offset & (t->logical_block_size - 1)) {
850 		t->misaligned = 1;
851 		ret = -1;
852 	}
853 
854 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
855 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
856 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
857 
858 	/* Discard alignment and granularity */
859 	if (b->discard_granularity) {
860 		alignment = queue_limit_discard_alignment(b, start);
861 
862 		if (t->discard_granularity != 0 &&
863 		    t->discard_alignment != alignment) {
864 			top = t->discard_granularity + t->discard_alignment;
865 			bottom = b->discard_granularity + alignment;
866 
867 			/* Verify that top and bottom intervals line up */
868 			if ((max(top, bottom) % min(top, bottom)) != 0)
869 				t->discard_misaligned = 1;
870 		}
871 
872 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
873 						      b->max_discard_sectors);
874 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
875 							 b->max_hw_discard_sectors);
876 		t->discard_granularity = max(t->discard_granularity,
877 					     b->discard_granularity);
878 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
879 			t->discard_granularity;
880 	}
881 	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
882 						   b->max_secure_erase_sectors);
883 	t->zone_write_granularity = max(t->zone_write_granularity,
884 					b->zone_write_granularity);
885 	t->zoned = max(t->zoned, b->zoned);
886 	if (!t->zoned) {
887 		t->zone_write_granularity = 0;
888 		t->max_zone_append_sectors = 0;
889 	}
890 	return ret;
891 }
892 EXPORT_SYMBOL(blk_stack_limits);
893 
894 /**
895  * queue_limits_stack_bdev - adjust queue_limits for stacked devices
896  * @t:	the stacking driver limits (top device)
897  * @bdev:  the underlying block device (bottom)
898  * @offset:  offset to beginning of data within component device
899  * @pfx: prefix to use for warnings logged
900  *
901  * Description:
902  *    This function is used by stacking drivers like MD and DM to ensure
903  *    that all component devices have compatible block sizes and
904  *    alignments.  The stacking driver must provide a queue_limits
905  *    struct (top) and then iteratively call the stacking function for
906  *    all component (bottom) devices.  The stacking function will
907  *    attempt to combine the values and ensure proper alignment.
908  */
909 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
910 		sector_t offset, const char *pfx)
911 {
912 	if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
913 			get_start_sect(bdev) + offset))
914 		pr_notice("%s: Warning: Device %pg is misaligned\n",
915 			pfx, bdev);
916 }
917 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
918 
919 /**
920  * blk_queue_update_dma_pad - update pad mask
921  * @q:     the request queue for the device
922  * @mask:  pad mask
923  *
924  * Update dma pad mask.
925  *
926  * Appending pad buffer to a request modifies the last entry of a
927  * scatter list such that it includes the pad buffer.
928  **/
929 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
930 {
931 	if (mask > q->dma_pad_mask)
932 		q->dma_pad_mask = mask;
933 }
934 EXPORT_SYMBOL(blk_queue_update_dma_pad);
935 
936 /**
937  * blk_queue_segment_boundary - set boundary rules for segment merging
938  * @q:  the request queue for the device
939  * @mask:  the memory boundary mask
940  **/
941 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
942 {
943 	if (mask < PAGE_SIZE - 1) {
944 		mask = PAGE_SIZE - 1;
945 		pr_info("%s: set to minimum %lx\n", __func__, mask);
946 	}
947 
948 	q->limits.seg_boundary_mask = mask;
949 }
950 EXPORT_SYMBOL(blk_queue_segment_boundary);
951 
952 /**
953  * blk_queue_virt_boundary - set boundary rules for bio merging
954  * @q:  the request queue for the device
955  * @mask:  the memory boundary mask
956  **/
957 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
958 {
959 	q->limits.virt_boundary_mask = mask;
960 
961 	/*
962 	 * Devices that require a virtual boundary do not support scatter/gather
963 	 * I/O natively, but instead require a descriptor list entry for each
964 	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
965 	 * of that they are not limited by our notion of "segment size".
966 	 */
967 	if (mask)
968 		q->limits.max_segment_size = UINT_MAX;
969 }
970 EXPORT_SYMBOL(blk_queue_virt_boundary);
971 
972 /**
973  * blk_queue_dma_alignment - set dma length and memory alignment
974  * @q:     the request queue for the device
975  * @mask:  alignment mask
976  *
977  * description:
978  *    set required memory and length alignment for direct dma transactions.
979  *    this is used when building direct io requests for the queue.
980  *
981  **/
982 void blk_queue_dma_alignment(struct request_queue *q, int mask)
983 {
984 	q->limits.dma_alignment = mask;
985 }
986 EXPORT_SYMBOL(blk_queue_dma_alignment);
987 
988 /**
989  * blk_queue_update_dma_alignment - update dma length and memory alignment
990  * @q:     the request queue for the device
991  * @mask:  alignment mask
992  *
993  * description:
994  *    update required memory and length alignment for direct dma transactions.
995  *    If the requested alignment is larger than the current alignment, then
996  *    the current queue alignment is updated to the new value, otherwise it
997  *    is left alone.  The design of this is to allow multiple objects
998  *    (driver, device, transport etc) to set their respective
999  *    alignments without having them interfere.
1000  *
1001  **/
1002 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
1003 {
1004 	BUG_ON(mask > PAGE_SIZE);
1005 
1006 	if (mask > q->limits.dma_alignment)
1007 		q->limits.dma_alignment = mask;
1008 }
1009 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
1010 
1011 /**
1012  * blk_set_queue_depth - tell the block layer about the device queue depth
1013  * @q:		the request queue for the device
1014  * @depth:		queue depth
1015  *
1016  */
1017 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1018 {
1019 	q->queue_depth = depth;
1020 	rq_qos_queue_depth_changed(q);
1021 }
1022 EXPORT_SYMBOL(blk_set_queue_depth);
1023 
1024 /**
1025  * blk_queue_write_cache - configure queue's write cache
1026  * @q:		the request queue for the device
1027  * @wc:		write back cache on or off
1028  * @fua:	device supports FUA writes, if true
1029  *
1030  * Tell the block layer about the write cache of @q.
1031  */
1032 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
1033 {
1034 	if (wc) {
1035 		blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
1036 		blk_queue_flag_set(QUEUE_FLAG_WC, q);
1037 	} else {
1038 		blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
1039 		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
1040 	}
1041 	if (fua)
1042 		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
1043 	else
1044 		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
1045 }
1046 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
1047 
1048 /**
1049  * blk_queue_required_elevator_features - Set a queue required elevator features
1050  * @q:		the request queue for the target device
1051  * @features:	Required elevator features OR'ed together
1052  *
1053  * Tell the block layer that for the device controlled through @q, only the
1054  * only elevators that can be used are those that implement at least the set of
1055  * features specified by @features.
1056  */
1057 void blk_queue_required_elevator_features(struct request_queue *q,
1058 					  unsigned int features)
1059 {
1060 	q->required_elevator_features = features;
1061 }
1062 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
1063 
1064 /**
1065  * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
1066  * @q:		the request queue for the device
1067  * @dev:	the device pointer for dma
1068  *
1069  * Tell the block layer about merging the segments by dma map of @q.
1070  */
1071 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1072 				       struct device *dev)
1073 {
1074 	unsigned long boundary = dma_get_merge_boundary(dev);
1075 
1076 	if (!boundary)
1077 		return false;
1078 
1079 	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
1080 	blk_queue_virt_boundary(q, boundary);
1081 
1082 	return true;
1083 }
1084 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
1085 
1086 /**
1087  * disk_set_zoned - inidicate a zoned device
1088  * @disk:	gendisk to configure
1089  */
1090 void disk_set_zoned(struct gendisk *disk)
1091 {
1092 	struct request_queue *q = disk->queue;
1093 
1094 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
1095 
1096 	/*
1097 	 * Set the zone write granularity to the device logical block
1098 	 * size by default. The driver can change this value if needed.
1099 	 */
1100 	q->limits.zoned = true;
1101 	blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
1102 }
1103 EXPORT_SYMBOL_GPL(disk_set_zoned);
1104 
1105 int bdev_alignment_offset(struct block_device *bdev)
1106 {
1107 	struct request_queue *q = bdev_get_queue(bdev);
1108 
1109 	if (q->limits.misaligned)
1110 		return -1;
1111 	if (bdev_is_partition(bdev))
1112 		return queue_limit_alignment_offset(&q->limits,
1113 				bdev->bd_start_sect);
1114 	return q->limits.alignment_offset;
1115 }
1116 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1117 
1118 unsigned int bdev_discard_alignment(struct block_device *bdev)
1119 {
1120 	struct request_queue *q = bdev_get_queue(bdev);
1121 
1122 	if (bdev_is_partition(bdev))
1123 		return queue_limit_discard_alignment(&q->limits,
1124 				bdev->bd_start_sect);
1125 	return q->limits.discard_alignment;
1126 }
1127 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
1128