1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 18 #include "blk.h" 19 #include "blk-rq-qos.h" 20 #include "blk-wbt.h" 21 22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 23 { 24 q->rq_timeout = timeout; 25 } 26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 27 28 /** 29 * blk_set_stacking_limits - set default limits for stacking devices 30 * @lim: the queue_limits structure to reset 31 * 32 * Prepare queue limits for applying limits from underlying devices using 33 * blk_stack_limits(). 34 */ 35 void blk_set_stacking_limits(struct queue_limits *lim) 36 { 37 memset(lim, 0, sizeof(*lim)); 38 lim->logical_block_size = SECTOR_SIZE; 39 lim->physical_block_size = SECTOR_SIZE; 40 lim->io_min = SECTOR_SIZE; 41 lim->discard_granularity = SECTOR_SIZE; 42 lim->dma_alignment = SECTOR_SIZE - 1; 43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 44 45 /* Inherit limits from component devices */ 46 lim->max_segments = USHRT_MAX; 47 lim->max_discard_segments = USHRT_MAX; 48 lim->max_hw_sectors = UINT_MAX; 49 lim->max_segment_size = UINT_MAX; 50 lim->max_sectors = UINT_MAX; 51 lim->max_dev_sectors = UINT_MAX; 52 lim->max_write_zeroes_sectors = UINT_MAX; 53 lim->max_zone_append_sectors = UINT_MAX; 54 lim->max_user_discard_sectors = UINT_MAX; 55 } 56 EXPORT_SYMBOL(blk_set_stacking_limits); 57 58 static void blk_apply_bdi_limits(struct backing_dev_info *bdi, 59 struct queue_limits *lim) 60 { 61 /* 62 * For read-ahead of large files to be effective, we need to read ahead 63 * at least twice the optimal I/O size. 64 */ 65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; 67 } 68 69 static int blk_validate_zoned_limits(struct queue_limits *lim) 70 { 71 if (!lim->zoned) { 72 if (WARN_ON_ONCE(lim->max_open_zones) || 73 WARN_ON_ONCE(lim->max_active_zones) || 74 WARN_ON_ONCE(lim->zone_write_granularity) || 75 WARN_ON_ONCE(lim->max_zone_append_sectors)) 76 return -EINVAL; 77 return 0; 78 } 79 80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) 81 return -EINVAL; 82 83 if (lim->zone_write_granularity < lim->logical_block_size) 84 lim->zone_write_granularity = lim->logical_block_size; 85 86 if (lim->max_zone_append_sectors) { 87 /* 88 * The Zone Append size is limited by the maximum I/O size 89 * and the zone size given that it can't span zones. 90 */ 91 lim->max_zone_append_sectors = 92 min3(lim->max_hw_sectors, 93 lim->max_zone_append_sectors, 94 lim->chunk_sectors); 95 } 96 97 return 0; 98 } 99 100 /* 101 * Check that the limits in lim are valid, initialize defaults for unset 102 * values, and cap values based on others where needed. 103 */ 104 static int blk_validate_limits(struct queue_limits *lim) 105 { 106 unsigned int max_hw_sectors; 107 108 /* 109 * Unless otherwise specified, default to 512 byte logical blocks and a 110 * physical block size equal to the logical block size. 111 */ 112 if (!lim->logical_block_size) 113 lim->logical_block_size = SECTOR_SIZE; 114 if (lim->physical_block_size < lim->logical_block_size) 115 lim->physical_block_size = lim->logical_block_size; 116 117 /* 118 * The minimum I/O size defaults to the physical block size unless 119 * explicitly overridden. 120 */ 121 if (lim->io_min < lim->physical_block_size) 122 lim->io_min = lim->physical_block_size; 123 124 /* 125 * max_hw_sectors has a somewhat weird default for historical reason, 126 * but driver really should set their own instead of relying on this 127 * value. 128 * 129 * The block layer relies on the fact that every driver can 130 * handle at lest a page worth of data per I/O, and needs the value 131 * aligned to the logical block size. 132 */ 133 if (!lim->max_hw_sectors) 134 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 135 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) 136 return -EINVAL; 137 lim->max_hw_sectors = round_down(lim->max_hw_sectors, 138 lim->logical_block_size >> SECTOR_SHIFT); 139 140 /* 141 * The actual max_sectors value is a complex beast and also takes the 142 * max_dev_sectors value (set by SCSI ULPs) and a user configurable 143 * value into account. The ->max_sectors value is always calculated 144 * from these, so directly setting it won't have any effect. 145 */ 146 max_hw_sectors = min_not_zero(lim->max_hw_sectors, 147 lim->max_dev_sectors); 148 if (lim->max_user_sectors) { 149 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE) 150 return -EINVAL; 151 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); 152 } else { 153 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); 154 } 155 lim->max_sectors = round_down(lim->max_sectors, 156 lim->logical_block_size >> SECTOR_SHIFT); 157 158 /* 159 * Random default for the maximum number of segments. Driver should not 160 * rely on this and set their own. 161 */ 162 if (!lim->max_segments) 163 lim->max_segments = BLK_MAX_SEGMENTS; 164 165 lim->max_discard_sectors = 166 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); 167 168 if (!lim->max_discard_segments) 169 lim->max_discard_segments = 1; 170 171 if (lim->discard_granularity < lim->physical_block_size) 172 lim->discard_granularity = lim->physical_block_size; 173 174 /* 175 * By default there is no limit on the segment boundary alignment, 176 * but if there is one it can't be smaller than the page size as 177 * that would break all the normal I/O patterns. 178 */ 179 if (!lim->seg_boundary_mask) 180 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 181 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1)) 182 return -EINVAL; 183 184 /* 185 * Stacking device may have both virtual boundary and max segment 186 * size limit, so allow this setting now, and long-term the two 187 * might need to move out of stacking limits since we have immutable 188 * bvec and lower layer bio splitting is supposed to handle the two 189 * correctly. 190 */ 191 if (!lim->virt_boundary_mask) { 192 /* 193 * The maximum segment size has an odd historic 64k default that 194 * drivers probably should override. Just like the I/O size we 195 * require drivers to at least handle a full page per segment. 196 */ 197 if (!lim->max_segment_size) 198 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 199 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE)) 200 return -EINVAL; 201 } 202 203 /* 204 * We require drivers to at least do logical block aligned I/O, but 205 * historically could not check for that due to the separate calls 206 * to set the limits. Once the transition is finished the check 207 * below should be narrowed down to check the logical block size. 208 */ 209 if (!lim->dma_alignment) 210 lim->dma_alignment = SECTOR_SIZE - 1; 211 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) 212 return -EINVAL; 213 214 if (lim->alignment_offset) { 215 lim->alignment_offset &= (lim->physical_block_size - 1); 216 lim->misaligned = 0; 217 } 218 219 return blk_validate_zoned_limits(lim); 220 } 221 222 /* 223 * Set the default limits for a newly allocated queue. @lim contains the 224 * initial limits set by the driver, which could be no limit in which case 225 * all fields are cleared to zero. 226 */ 227 int blk_set_default_limits(struct queue_limits *lim) 228 { 229 /* 230 * Most defaults are set by capping the bounds in blk_validate_limits, 231 * but max_user_discard_sectors is special and needs an explicit 232 * initialization to the max value here. 233 */ 234 lim->max_user_discard_sectors = UINT_MAX; 235 return blk_validate_limits(lim); 236 } 237 238 /** 239 * queue_limits_commit_update - commit an atomic update of queue limits 240 * @q: queue to update 241 * @lim: limits to apply 242 * 243 * Apply the limits in @lim that were obtained from queue_limits_start_update() 244 * and updated by the caller to @q. 245 * 246 * Returns 0 if successful, else a negative error code. 247 */ 248 int queue_limits_commit_update(struct request_queue *q, 249 struct queue_limits *lim) 250 __releases(q->limits_lock) 251 { 252 int error = blk_validate_limits(lim); 253 254 if (!error) { 255 q->limits = *lim; 256 if (q->disk) 257 blk_apply_bdi_limits(q->disk->bdi, lim); 258 } 259 mutex_unlock(&q->limits_lock); 260 return error; 261 } 262 EXPORT_SYMBOL_GPL(queue_limits_commit_update); 263 264 /** 265 * queue_limits_set - apply queue limits to queue 266 * @q: queue to update 267 * @lim: limits to apply 268 * 269 * Apply the limits in @lim that were freshly initialized to @q. 270 * To update existing limits use queue_limits_start_update() and 271 * queue_limits_commit_update() instead. 272 * 273 * Returns 0 if successful, else a negative error code. 274 */ 275 int queue_limits_set(struct request_queue *q, struct queue_limits *lim) 276 { 277 mutex_lock(&q->limits_lock); 278 return queue_limits_commit_update(q, lim); 279 } 280 EXPORT_SYMBOL_GPL(queue_limits_set); 281 282 /** 283 * blk_queue_bounce_limit - set bounce buffer limit for queue 284 * @q: the request queue for the device 285 * @bounce: bounce limit to enforce 286 * 287 * Description: 288 * Force bouncing for ISA DMA ranges or highmem. 289 * 290 * DEPRECATED, don't use in new code. 291 **/ 292 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce) 293 { 294 q->limits.bounce = bounce; 295 } 296 EXPORT_SYMBOL(blk_queue_bounce_limit); 297 298 /** 299 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 300 * @q: the request queue for the device 301 * @max_hw_sectors: max hardware sectors in the usual 512b unit 302 * 303 * Description: 304 * Enables a low level driver to set a hard upper limit, 305 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 306 * the device driver based upon the capabilities of the I/O 307 * controller. 308 * 309 * max_dev_sectors is a hard limit imposed by the storage device for 310 * READ/WRITE requests. It is set by the disk driver. 311 * 312 * max_sectors is a soft limit imposed by the block layer for 313 * filesystem type requests. This value can be overridden on a 314 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 315 * The soft limit can not exceed max_hw_sectors. 316 **/ 317 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 318 { 319 struct queue_limits *limits = &q->limits; 320 unsigned int max_sectors; 321 322 if ((max_hw_sectors << 9) < PAGE_SIZE) { 323 max_hw_sectors = 1 << (PAGE_SHIFT - 9); 324 pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors); 325 } 326 327 max_hw_sectors = round_down(max_hw_sectors, 328 limits->logical_block_size >> SECTOR_SHIFT); 329 limits->max_hw_sectors = max_hw_sectors; 330 331 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors); 332 333 if (limits->max_user_sectors) 334 max_sectors = min(max_sectors, limits->max_user_sectors); 335 else 336 max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP); 337 338 max_sectors = round_down(max_sectors, 339 limits->logical_block_size >> SECTOR_SHIFT); 340 limits->max_sectors = max_sectors; 341 342 if (!q->disk) 343 return; 344 q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9); 345 } 346 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 347 348 /** 349 * blk_queue_chunk_sectors - set size of the chunk for this queue 350 * @q: the request queue for the device 351 * @chunk_sectors: chunk sectors in the usual 512b unit 352 * 353 * Description: 354 * If a driver doesn't want IOs to cross a given chunk size, it can set 355 * this limit and prevent merging across chunks. Note that the block layer 356 * must accept a page worth of data at any offset. So if the crossing of 357 * chunks is a hard limitation in the driver, it must still be prepared 358 * to split single page bios. 359 **/ 360 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) 361 { 362 q->limits.chunk_sectors = chunk_sectors; 363 } 364 EXPORT_SYMBOL(blk_queue_chunk_sectors); 365 366 /** 367 * blk_queue_max_discard_sectors - set max sectors for a single discard 368 * @q: the request queue for the device 369 * @max_discard_sectors: maximum number of sectors to discard 370 **/ 371 void blk_queue_max_discard_sectors(struct request_queue *q, 372 unsigned int max_discard_sectors) 373 { 374 struct queue_limits *lim = &q->limits; 375 376 lim->max_hw_discard_sectors = max_discard_sectors; 377 lim->max_discard_sectors = 378 min(max_discard_sectors, lim->max_user_discard_sectors); 379 } 380 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 381 382 /** 383 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase 384 * @q: the request queue for the device 385 * @max_sectors: maximum number of sectors to secure_erase 386 **/ 387 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 388 unsigned int max_sectors) 389 { 390 q->limits.max_secure_erase_sectors = max_sectors; 391 } 392 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors); 393 394 /** 395 * blk_queue_max_write_zeroes_sectors - set max sectors for a single 396 * write zeroes 397 * @q: the request queue for the device 398 * @max_write_zeroes_sectors: maximum number of sectors to write per command 399 **/ 400 void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 401 unsigned int max_write_zeroes_sectors) 402 { 403 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors; 404 } 405 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors); 406 407 /** 408 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append 409 * @q: the request queue for the device 410 * @max_zone_append_sectors: maximum number of sectors to write per command 411 **/ 412 void blk_queue_max_zone_append_sectors(struct request_queue *q, 413 unsigned int max_zone_append_sectors) 414 { 415 unsigned int max_sectors; 416 417 if (WARN_ON(!blk_queue_is_zoned(q))) 418 return; 419 420 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors); 421 max_sectors = min(q->limits.chunk_sectors, max_sectors); 422 423 /* 424 * Signal eventual driver bugs resulting in the max_zone_append sectors limit 425 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set, 426 * or the max_hw_sectors limit not set. 427 */ 428 WARN_ON(!max_sectors); 429 430 q->limits.max_zone_append_sectors = max_sectors; 431 } 432 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors); 433 434 /** 435 * blk_queue_max_segments - set max hw segments for a request for this queue 436 * @q: the request queue for the device 437 * @max_segments: max number of segments 438 * 439 * Description: 440 * Enables a low level driver to set an upper limit on the number of 441 * hw data segments in a request. 442 **/ 443 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 444 { 445 if (!max_segments) { 446 max_segments = 1; 447 pr_info("%s: set to minimum %u\n", __func__, max_segments); 448 } 449 450 q->limits.max_segments = max_segments; 451 } 452 EXPORT_SYMBOL(blk_queue_max_segments); 453 454 /** 455 * blk_queue_max_discard_segments - set max segments for discard requests 456 * @q: the request queue for the device 457 * @max_segments: max number of segments 458 * 459 * Description: 460 * Enables a low level driver to set an upper limit on the number of 461 * segments in a discard request. 462 **/ 463 void blk_queue_max_discard_segments(struct request_queue *q, 464 unsigned short max_segments) 465 { 466 q->limits.max_discard_segments = max_segments; 467 } 468 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments); 469 470 /** 471 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 472 * @q: the request queue for the device 473 * @max_size: max size of segment in bytes 474 * 475 * Description: 476 * Enables a low level driver to set an upper limit on the size of a 477 * coalesced segment 478 **/ 479 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 480 { 481 if (max_size < PAGE_SIZE) { 482 max_size = PAGE_SIZE; 483 pr_info("%s: set to minimum %u\n", __func__, max_size); 484 } 485 486 /* see blk_queue_virt_boundary() for the explanation */ 487 WARN_ON_ONCE(q->limits.virt_boundary_mask); 488 489 q->limits.max_segment_size = max_size; 490 } 491 EXPORT_SYMBOL(blk_queue_max_segment_size); 492 493 /** 494 * blk_queue_logical_block_size - set logical block size for the queue 495 * @q: the request queue for the device 496 * @size: the logical block size, in bytes 497 * 498 * Description: 499 * This should be set to the lowest possible block size that the 500 * storage device can address. The default of 512 covers most 501 * hardware. 502 **/ 503 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size) 504 { 505 struct queue_limits *limits = &q->limits; 506 507 limits->logical_block_size = size; 508 509 if (limits->discard_granularity < limits->logical_block_size) 510 limits->discard_granularity = limits->logical_block_size; 511 512 if (limits->physical_block_size < size) 513 limits->physical_block_size = size; 514 515 if (limits->io_min < limits->physical_block_size) 516 limits->io_min = limits->physical_block_size; 517 518 limits->max_hw_sectors = 519 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT); 520 limits->max_sectors = 521 round_down(limits->max_sectors, size >> SECTOR_SHIFT); 522 } 523 EXPORT_SYMBOL(blk_queue_logical_block_size); 524 525 /** 526 * blk_queue_physical_block_size - set physical block size for the queue 527 * @q: the request queue for the device 528 * @size: the physical block size, in bytes 529 * 530 * Description: 531 * This should be set to the lowest possible sector size that the 532 * hardware can operate on without reverting to read-modify-write 533 * operations. 534 */ 535 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 536 { 537 q->limits.physical_block_size = size; 538 539 if (q->limits.physical_block_size < q->limits.logical_block_size) 540 q->limits.physical_block_size = q->limits.logical_block_size; 541 542 if (q->limits.discard_granularity < q->limits.physical_block_size) 543 q->limits.discard_granularity = q->limits.physical_block_size; 544 545 if (q->limits.io_min < q->limits.physical_block_size) 546 q->limits.io_min = q->limits.physical_block_size; 547 } 548 EXPORT_SYMBOL(blk_queue_physical_block_size); 549 550 /** 551 * blk_queue_zone_write_granularity - set zone write granularity for the queue 552 * @q: the request queue for the zoned device 553 * @size: the zone write granularity size, in bytes 554 * 555 * Description: 556 * This should be set to the lowest possible size allowing to write in 557 * sequential zones of a zoned block device. 558 */ 559 void blk_queue_zone_write_granularity(struct request_queue *q, 560 unsigned int size) 561 { 562 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 563 return; 564 565 q->limits.zone_write_granularity = size; 566 567 if (q->limits.zone_write_granularity < q->limits.logical_block_size) 568 q->limits.zone_write_granularity = q->limits.logical_block_size; 569 } 570 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity); 571 572 /** 573 * blk_queue_alignment_offset - set physical block alignment offset 574 * @q: the request queue for the device 575 * @offset: alignment offset in bytes 576 * 577 * Description: 578 * Some devices are naturally misaligned to compensate for things like 579 * the legacy DOS partition table 63-sector offset. Low-level drivers 580 * should call this function for devices whose first sector is not 581 * naturally aligned. 582 */ 583 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 584 { 585 q->limits.alignment_offset = 586 offset & (q->limits.physical_block_size - 1); 587 q->limits.misaligned = 0; 588 } 589 EXPORT_SYMBOL(blk_queue_alignment_offset); 590 591 void disk_update_readahead(struct gendisk *disk) 592 { 593 blk_apply_bdi_limits(disk->bdi, &disk->queue->limits); 594 } 595 EXPORT_SYMBOL_GPL(disk_update_readahead); 596 597 /** 598 * blk_limits_io_min - set minimum request size for a device 599 * @limits: the queue limits 600 * @min: smallest I/O size in bytes 601 * 602 * Description: 603 * Some devices have an internal block size bigger than the reported 604 * hardware sector size. This function can be used to signal the 605 * smallest I/O the device can perform without incurring a performance 606 * penalty. 607 */ 608 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 609 { 610 limits->io_min = min; 611 612 if (limits->io_min < limits->logical_block_size) 613 limits->io_min = limits->logical_block_size; 614 615 if (limits->io_min < limits->physical_block_size) 616 limits->io_min = limits->physical_block_size; 617 } 618 EXPORT_SYMBOL(blk_limits_io_min); 619 620 /** 621 * blk_queue_io_min - set minimum request size for the queue 622 * @q: the request queue for the device 623 * @min: smallest I/O size in bytes 624 * 625 * Description: 626 * Storage devices may report a granularity or preferred minimum I/O 627 * size which is the smallest request the device can perform without 628 * incurring a performance penalty. For disk drives this is often the 629 * physical block size. For RAID arrays it is often the stripe chunk 630 * size. A properly aligned multiple of minimum_io_size is the 631 * preferred request size for workloads where a high number of I/O 632 * operations is desired. 633 */ 634 void blk_queue_io_min(struct request_queue *q, unsigned int min) 635 { 636 blk_limits_io_min(&q->limits, min); 637 } 638 EXPORT_SYMBOL(blk_queue_io_min); 639 640 /** 641 * blk_limits_io_opt - set optimal request size for a device 642 * @limits: the queue limits 643 * @opt: smallest I/O size in bytes 644 * 645 * Description: 646 * Storage devices may report an optimal I/O size, which is the 647 * device's preferred unit for sustained I/O. This is rarely reported 648 * for disk drives. For RAID arrays it is usually the stripe width or 649 * the internal track size. A properly aligned multiple of 650 * optimal_io_size is the preferred request size for workloads where 651 * sustained throughput is desired. 652 */ 653 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 654 { 655 limits->io_opt = opt; 656 } 657 EXPORT_SYMBOL(blk_limits_io_opt); 658 659 /** 660 * blk_queue_io_opt - set optimal request size for the queue 661 * @q: the request queue for the device 662 * @opt: optimal request size in bytes 663 * 664 * Description: 665 * Storage devices may report an optimal I/O size, which is the 666 * device's preferred unit for sustained I/O. This is rarely reported 667 * for disk drives. For RAID arrays it is usually the stripe width or 668 * the internal track size. A properly aligned multiple of 669 * optimal_io_size is the preferred request size for workloads where 670 * sustained throughput is desired. 671 */ 672 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 673 { 674 blk_limits_io_opt(&q->limits, opt); 675 if (!q->disk) 676 return; 677 q->disk->bdi->ra_pages = 678 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 679 } 680 EXPORT_SYMBOL(blk_queue_io_opt); 681 682 static int queue_limit_alignment_offset(const struct queue_limits *lim, 683 sector_t sector) 684 { 685 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 686 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 687 << SECTOR_SHIFT; 688 689 return (granularity + lim->alignment_offset - alignment) % granularity; 690 } 691 692 static unsigned int queue_limit_discard_alignment( 693 const struct queue_limits *lim, sector_t sector) 694 { 695 unsigned int alignment, granularity, offset; 696 697 if (!lim->max_discard_sectors) 698 return 0; 699 700 /* Why are these in bytes, not sectors? */ 701 alignment = lim->discard_alignment >> SECTOR_SHIFT; 702 granularity = lim->discard_granularity >> SECTOR_SHIFT; 703 if (!granularity) 704 return 0; 705 706 /* Offset of the partition start in 'granularity' sectors */ 707 offset = sector_div(sector, granularity); 708 709 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 710 offset = (granularity + alignment - offset) % granularity; 711 712 /* Turn it back into bytes, gaah */ 713 return offset << SECTOR_SHIFT; 714 } 715 716 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 717 { 718 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 719 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 720 sectors = PAGE_SIZE >> SECTOR_SHIFT; 721 return sectors; 722 } 723 724 /** 725 * blk_stack_limits - adjust queue_limits for stacked devices 726 * @t: the stacking driver limits (top device) 727 * @b: the underlying queue limits (bottom, component device) 728 * @start: first data sector within component device 729 * 730 * Description: 731 * This function is used by stacking drivers like MD and DM to ensure 732 * that all component devices have compatible block sizes and 733 * alignments. The stacking driver must provide a queue_limits 734 * struct (top) and then iteratively call the stacking function for 735 * all component (bottom) devices. The stacking function will 736 * attempt to combine the values and ensure proper alignment. 737 * 738 * Returns 0 if the top and bottom queue_limits are compatible. The 739 * top device's block sizes and alignment offsets may be adjusted to 740 * ensure alignment with the bottom device. If no compatible sizes 741 * and alignments exist, -1 is returned and the resulting top 742 * queue_limits will have the misaligned flag set to indicate that 743 * the alignment_offset is undefined. 744 */ 745 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 746 sector_t start) 747 { 748 unsigned int top, bottom, alignment, ret = 0; 749 750 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 751 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 752 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 753 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 754 b->max_write_zeroes_sectors); 755 t->max_zone_append_sectors = min(t->max_zone_append_sectors, 756 b->max_zone_append_sectors); 757 t->bounce = max(t->bounce, b->bounce); 758 759 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 760 b->seg_boundary_mask); 761 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 762 b->virt_boundary_mask); 763 764 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 765 t->max_discard_segments = min_not_zero(t->max_discard_segments, 766 b->max_discard_segments); 767 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 768 b->max_integrity_segments); 769 770 t->max_segment_size = min_not_zero(t->max_segment_size, 771 b->max_segment_size); 772 773 t->misaligned |= b->misaligned; 774 775 alignment = queue_limit_alignment_offset(b, start); 776 777 /* Bottom device has different alignment. Check that it is 778 * compatible with the current top alignment. 779 */ 780 if (t->alignment_offset != alignment) { 781 782 top = max(t->physical_block_size, t->io_min) 783 + t->alignment_offset; 784 bottom = max(b->physical_block_size, b->io_min) + alignment; 785 786 /* Verify that top and bottom intervals line up */ 787 if (max(top, bottom) % min(top, bottom)) { 788 t->misaligned = 1; 789 ret = -1; 790 } 791 } 792 793 t->logical_block_size = max(t->logical_block_size, 794 b->logical_block_size); 795 796 t->physical_block_size = max(t->physical_block_size, 797 b->physical_block_size); 798 799 t->io_min = max(t->io_min, b->io_min); 800 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 801 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 802 803 /* Set non-power-of-2 compatible chunk_sectors boundary */ 804 if (b->chunk_sectors) 805 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 806 807 /* Physical block size a multiple of the logical block size? */ 808 if (t->physical_block_size & (t->logical_block_size - 1)) { 809 t->physical_block_size = t->logical_block_size; 810 t->misaligned = 1; 811 ret = -1; 812 } 813 814 /* Minimum I/O a multiple of the physical block size? */ 815 if (t->io_min & (t->physical_block_size - 1)) { 816 t->io_min = t->physical_block_size; 817 t->misaligned = 1; 818 ret = -1; 819 } 820 821 /* Optimal I/O a multiple of the physical block size? */ 822 if (t->io_opt & (t->physical_block_size - 1)) { 823 t->io_opt = 0; 824 t->misaligned = 1; 825 ret = -1; 826 } 827 828 /* chunk_sectors a multiple of the physical block size? */ 829 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { 830 t->chunk_sectors = 0; 831 t->misaligned = 1; 832 ret = -1; 833 } 834 835 t->raid_partial_stripes_expensive = 836 max(t->raid_partial_stripes_expensive, 837 b->raid_partial_stripes_expensive); 838 839 /* Find lowest common alignment_offset */ 840 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 841 % max(t->physical_block_size, t->io_min); 842 843 /* Verify that new alignment_offset is on a logical block boundary */ 844 if (t->alignment_offset & (t->logical_block_size - 1)) { 845 t->misaligned = 1; 846 ret = -1; 847 } 848 849 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 850 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 851 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 852 853 /* Discard alignment and granularity */ 854 if (b->discard_granularity) { 855 alignment = queue_limit_discard_alignment(b, start); 856 857 if (t->discard_granularity != 0 && 858 t->discard_alignment != alignment) { 859 top = t->discard_granularity + t->discard_alignment; 860 bottom = b->discard_granularity + alignment; 861 862 /* Verify that top and bottom intervals line up */ 863 if ((max(top, bottom) % min(top, bottom)) != 0) 864 t->discard_misaligned = 1; 865 } 866 867 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 868 b->max_discard_sectors); 869 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 870 b->max_hw_discard_sectors); 871 t->discard_granularity = max(t->discard_granularity, 872 b->discard_granularity); 873 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 874 t->discard_granularity; 875 } 876 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 877 b->max_secure_erase_sectors); 878 t->zone_write_granularity = max(t->zone_write_granularity, 879 b->zone_write_granularity); 880 t->zoned = max(t->zoned, b->zoned); 881 if (!t->zoned) { 882 t->zone_write_granularity = 0; 883 t->max_zone_append_sectors = 0; 884 } 885 return ret; 886 } 887 EXPORT_SYMBOL(blk_stack_limits); 888 889 /** 890 * queue_limits_stack_bdev - adjust queue_limits for stacked devices 891 * @t: the stacking driver limits (top device) 892 * @bdev: the underlying block device (bottom) 893 * @offset: offset to beginning of data within component device 894 * @pfx: prefix to use for warnings logged 895 * 896 * Description: 897 * This function is used by stacking drivers like MD and DM to ensure 898 * that all component devices have compatible block sizes and 899 * alignments. The stacking driver must provide a queue_limits 900 * struct (top) and then iteratively call the stacking function for 901 * all component (bottom) devices. The stacking function will 902 * attempt to combine the values and ensure proper alignment. 903 */ 904 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 905 sector_t offset, const char *pfx) 906 { 907 if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits, 908 get_start_sect(bdev) + offset)) 909 pr_notice("%s: Warning: Device %pg is misaligned\n", 910 pfx, bdev); 911 } 912 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); 913 914 /** 915 * blk_queue_update_dma_pad - update pad mask 916 * @q: the request queue for the device 917 * @mask: pad mask 918 * 919 * Update dma pad mask. 920 * 921 * Appending pad buffer to a request modifies the last entry of a 922 * scatter list such that it includes the pad buffer. 923 **/ 924 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 925 { 926 if (mask > q->dma_pad_mask) 927 q->dma_pad_mask = mask; 928 } 929 EXPORT_SYMBOL(blk_queue_update_dma_pad); 930 931 /** 932 * blk_queue_segment_boundary - set boundary rules for segment merging 933 * @q: the request queue for the device 934 * @mask: the memory boundary mask 935 **/ 936 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 937 { 938 if (mask < PAGE_SIZE - 1) { 939 mask = PAGE_SIZE - 1; 940 pr_info("%s: set to minimum %lx\n", __func__, mask); 941 } 942 943 q->limits.seg_boundary_mask = mask; 944 } 945 EXPORT_SYMBOL(blk_queue_segment_boundary); 946 947 /** 948 * blk_queue_virt_boundary - set boundary rules for bio merging 949 * @q: the request queue for the device 950 * @mask: the memory boundary mask 951 **/ 952 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask) 953 { 954 q->limits.virt_boundary_mask = mask; 955 956 /* 957 * Devices that require a virtual boundary do not support scatter/gather 958 * I/O natively, but instead require a descriptor list entry for each 959 * page (which might not be idential to the Linux PAGE_SIZE). Because 960 * of that they are not limited by our notion of "segment size". 961 */ 962 if (mask) 963 q->limits.max_segment_size = UINT_MAX; 964 } 965 EXPORT_SYMBOL(blk_queue_virt_boundary); 966 967 /** 968 * blk_queue_dma_alignment - set dma length and memory alignment 969 * @q: the request queue for the device 970 * @mask: alignment mask 971 * 972 * description: 973 * set required memory and length alignment for direct dma transactions. 974 * this is used when building direct io requests for the queue. 975 * 976 **/ 977 void blk_queue_dma_alignment(struct request_queue *q, int mask) 978 { 979 q->limits.dma_alignment = mask; 980 } 981 EXPORT_SYMBOL(blk_queue_dma_alignment); 982 983 /** 984 * blk_queue_update_dma_alignment - update dma length and memory alignment 985 * @q: the request queue for the device 986 * @mask: alignment mask 987 * 988 * description: 989 * update required memory and length alignment for direct dma transactions. 990 * If the requested alignment is larger than the current alignment, then 991 * the current queue alignment is updated to the new value, otherwise it 992 * is left alone. The design of this is to allow multiple objects 993 * (driver, device, transport etc) to set their respective 994 * alignments without having them interfere. 995 * 996 **/ 997 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 998 { 999 BUG_ON(mask > PAGE_SIZE); 1000 1001 if (mask > q->limits.dma_alignment) 1002 q->limits.dma_alignment = mask; 1003 } 1004 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 1005 1006 /** 1007 * blk_set_queue_depth - tell the block layer about the device queue depth 1008 * @q: the request queue for the device 1009 * @depth: queue depth 1010 * 1011 */ 1012 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 1013 { 1014 q->queue_depth = depth; 1015 rq_qos_queue_depth_changed(q); 1016 } 1017 EXPORT_SYMBOL(blk_set_queue_depth); 1018 1019 /** 1020 * blk_queue_write_cache - configure queue's write cache 1021 * @q: the request queue for the device 1022 * @wc: write back cache on or off 1023 * @fua: device supports FUA writes, if true 1024 * 1025 * Tell the block layer about the write cache of @q. 1026 */ 1027 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) 1028 { 1029 if (wc) { 1030 blk_queue_flag_set(QUEUE_FLAG_HW_WC, q); 1031 blk_queue_flag_set(QUEUE_FLAG_WC, q); 1032 } else { 1033 blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q); 1034 blk_queue_flag_clear(QUEUE_FLAG_WC, q); 1035 } 1036 if (fua) 1037 blk_queue_flag_set(QUEUE_FLAG_FUA, q); 1038 else 1039 blk_queue_flag_clear(QUEUE_FLAG_FUA, q); 1040 } 1041 EXPORT_SYMBOL_GPL(blk_queue_write_cache); 1042 1043 /** 1044 * blk_queue_required_elevator_features - Set a queue required elevator features 1045 * @q: the request queue for the target device 1046 * @features: Required elevator features OR'ed together 1047 * 1048 * Tell the block layer that for the device controlled through @q, only the 1049 * only elevators that can be used are those that implement at least the set of 1050 * features specified by @features. 1051 */ 1052 void blk_queue_required_elevator_features(struct request_queue *q, 1053 unsigned int features) 1054 { 1055 q->required_elevator_features = features; 1056 } 1057 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features); 1058 1059 /** 1060 * blk_queue_can_use_dma_map_merging - configure queue for merging segments. 1061 * @q: the request queue for the device 1062 * @dev: the device pointer for dma 1063 * 1064 * Tell the block layer about merging the segments by dma map of @q. 1065 */ 1066 bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1067 struct device *dev) 1068 { 1069 unsigned long boundary = dma_get_merge_boundary(dev); 1070 1071 if (!boundary) 1072 return false; 1073 1074 /* No need to update max_segment_size. see blk_queue_virt_boundary() */ 1075 blk_queue_virt_boundary(q, boundary); 1076 1077 return true; 1078 } 1079 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging); 1080 1081 /** 1082 * disk_set_zoned - inidicate a zoned device 1083 * @disk: gendisk to configure 1084 */ 1085 void disk_set_zoned(struct gendisk *disk) 1086 { 1087 struct request_queue *q = disk->queue; 1088 1089 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)); 1090 1091 /* 1092 * Set the zone write granularity to the device logical block 1093 * size by default. The driver can change this value if needed. 1094 */ 1095 q->limits.zoned = true; 1096 blk_queue_zone_write_granularity(q, queue_logical_block_size(q)); 1097 } 1098 EXPORT_SYMBOL_GPL(disk_set_zoned); 1099 1100 int bdev_alignment_offset(struct block_device *bdev) 1101 { 1102 struct request_queue *q = bdev_get_queue(bdev); 1103 1104 if (q->limits.misaligned) 1105 return -1; 1106 if (bdev_is_partition(bdev)) 1107 return queue_limit_alignment_offset(&q->limits, 1108 bdev->bd_start_sect); 1109 return q->limits.alignment_offset; 1110 } 1111 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 1112 1113 unsigned int bdev_discard_alignment(struct block_device *bdev) 1114 { 1115 struct request_queue *q = bdev_get_queue(bdev); 1116 1117 if (bdev_is_partition(bdev)) 1118 return queue_limit_discard_alignment(&q->limits, 1119 bdev->bd_start_sect); 1120 return q->limits.discard_alignment; 1121 } 1122 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 1123