1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/gcd.h> 11 #include <linux/lcm.h> 12 #include <linux/jiffies.h> 13 #include <linux/gfp.h> 14 15 #include "blk.h" 16 17 unsigned long blk_max_low_pfn; 18 EXPORT_SYMBOL(blk_max_low_pfn); 19 20 unsigned long blk_max_pfn; 21 22 /** 23 * blk_queue_prep_rq - set a prepare_request function for queue 24 * @q: queue 25 * @pfn: prepare_request function 26 * 27 * It's possible for a queue to register a prepare_request callback which 28 * is invoked before the request is handed to the request_fn. The goal of 29 * the function is to prepare a request for I/O, it can be used to build a 30 * cdb from the request data for instance. 31 * 32 */ 33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 34 { 35 q->prep_rq_fn = pfn; 36 } 37 EXPORT_SYMBOL(blk_queue_prep_rq); 38 39 /** 40 * blk_queue_unprep_rq - set an unprepare_request function for queue 41 * @q: queue 42 * @ufn: unprepare_request function 43 * 44 * It's possible for a queue to register an unprepare_request callback 45 * which is invoked before the request is finally completed. The goal 46 * of the function is to deallocate any data that was allocated in the 47 * prepare_request callback. 48 * 49 */ 50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn) 51 { 52 q->unprep_rq_fn = ufn; 53 } 54 EXPORT_SYMBOL(blk_queue_unprep_rq); 55 56 /** 57 * blk_queue_merge_bvec - set a merge_bvec function for queue 58 * @q: queue 59 * @mbfn: merge_bvec_fn 60 * 61 * Usually queues have static limitations on the max sectors or segments that 62 * we can put in a request. Stacking drivers may have some settings that 63 * are dynamic, and thus we have to query the queue whether it is ok to 64 * add a new bio_vec to a bio at a given offset or not. If the block device 65 * has such limitations, it needs to register a merge_bvec_fn to control 66 * the size of bio's sent to it. Note that a block device *must* allow a 67 * single page to be added to an empty bio. The block device driver may want 68 * to use the bio_split() function to deal with these bio's. By default 69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 70 * honored. 71 */ 72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 73 { 74 q->merge_bvec_fn = mbfn; 75 } 76 EXPORT_SYMBOL(blk_queue_merge_bvec); 77 78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 79 { 80 q->softirq_done_fn = fn; 81 } 82 EXPORT_SYMBOL(blk_queue_softirq_done); 83 84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 85 { 86 q->rq_timeout = timeout; 87 } 88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 89 90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 91 { 92 q->rq_timed_out_fn = fn; 93 } 94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 95 96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 97 { 98 q->lld_busy_fn = fn; 99 } 100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 101 102 /** 103 * blk_set_default_limits - reset limits to default values 104 * @lim: the queue_limits structure to reset 105 * 106 * Description: 107 * Returns a queue_limit struct to its default state. Can be used by 108 * stacking drivers like DM that stage table swaps and reuse an 109 * existing device queue. 110 */ 111 void blk_set_default_limits(struct queue_limits *lim) 112 { 113 lim->max_segments = BLK_MAX_SEGMENTS; 114 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 115 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 116 lim->max_sectors = BLK_DEF_MAX_SECTORS; 117 lim->max_hw_sectors = INT_MAX; 118 lim->max_discard_sectors = 0; 119 lim->discard_granularity = 0; 120 lim->discard_alignment = 0; 121 lim->discard_misaligned = 0; 122 lim->discard_zeroes_data = -1; 123 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 124 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 125 lim->alignment_offset = 0; 126 lim->io_opt = 0; 127 lim->misaligned = 0; 128 lim->no_cluster = 0; 129 } 130 EXPORT_SYMBOL(blk_set_default_limits); 131 132 /** 133 * blk_queue_make_request - define an alternate make_request function for a device 134 * @q: the request queue for the device to be affected 135 * @mfn: the alternate make_request function 136 * 137 * Description: 138 * The normal way for &struct bios to be passed to a device 139 * driver is for them to be collected into requests on a request 140 * queue, and then to allow the device driver to select requests 141 * off that queue when it is ready. This works well for many block 142 * devices. However some block devices (typically virtual devices 143 * such as md or lvm) do not benefit from the processing on the 144 * request queue, and are served best by having the requests passed 145 * directly to them. This can be achieved by providing a function 146 * to blk_queue_make_request(). 147 * 148 * Caveat: 149 * The driver that does this *must* be able to deal appropriately 150 * with buffers in "highmemory". This can be accomplished by either calling 151 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 152 * blk_queue_bounce() to create a buffer in normal memory. 153 **/ 154 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 155 { 156 /* 157 * set defaults 158 */ 159 q->nr_requests = BLKDEV_MAX_RQ; 160 161 q->make_request_fn = mfn; 162 blk_queue_dma_alignment(q, 511); 163 blk_queue_congestion_threshold(q); 164 q->nr_batching = BLK_BATCH_REQ; 165 166 q->unplug_thresh = 4; /* hmm */ 167 q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */ 168 if (q->unplug_delay == 0) 169 q->unplug_delay = 1; 170 171 q->unplug_timer.function = blk_unplug_timeout; 172 q->unplug_timer.data = (unsigned long)q; 173 174 blk_set_default_limits(&q->limits); 175 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS); 176 177 /* 178 * If the caller didn't supply a lock, fall back to our embedded 179 * per-queue locks 180 */ 181 if (!q->queue_lock) 182 q->queue_lock = &q->__queue_lock; 183 184 /* 185 * by default assume old behaviour and bounce for any highmem page 186 */ 187 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 188 } 189 EXPORT_SYMBOL(blk_queue_make_request); 190 191 /** 192 * blk_queue_bounce_limit - set bounce buffer limit for queue 193 * @q: the request queue for the device 194 * @dma_mask: the maximum address the device can handle 195 * 196 * Description: 197 * Different hardware can have different requirements as to what pages 198 * it can do I/O directly to. A low level driver can call 199 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 200 * buffers for doing I/O to pages residing above @dma_mask. 201 **/ 202 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask) 203 { 204 unsigned long b_pfn = dma_mask >> PAGE_SHIFT; 205 int dma = 0; 206 207 q->bounce_gfp = GFP_NOIO; 208 #if BITS_PER_LONG == 64 209 /* 210 * Assume anything <= 4GB can be handled by IOMMU. Actually 211 * some IOMMUs can handle everything, but I don't know of a 212 * way to test this here. 213 */ 214 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 215 dma = 1; 216 q->limits.bounce_pfn = max_low_pfn; 217 #else 218 if (b_pfn < blk_max_low_pfn) 219 dma = 1; 220 q->limits.bounce_pfn = b_pfn; 221 #endif 222 if (dma) { 223 init_emergency_isa_pool(); 224 q->bounce_gfp = GFP_NOIO | GFP_DMA; 225 q->limits.bounce_pfn = b_pfn; 226 } 227 } 228 EXPORT_SYMBOL(blk_queue_bounce_limit); 229 230 /** 231 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 232 * @q: the request queue for the device 233 * @max_hw_sectors: max hardware sectors in the usual 512b unit 234 * 235 * Description: 236 * Enables a low level driver to set a hard upper limit, 237 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 238 * the device driver based upon the combined capabilities of I/O 239 * controller and storage device. 240 * 241 * max_sectors is a soft limit imposed by the block layer for 242 * filesystem type requests. This value can be overridden on a 243 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 244 * The soft limit can not exceed max_hw_sectors. 245 **/ 246 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 247 { 248 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) { 249 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 250 printk(KERN_INFO "%s: set to minimum %d\n", 251 __func__, max_hw_sectors); 252 } 253 254 q->limits.max_hw_sectors = max_hw_sectors; 255 q->limits.max_sectors = min_t(unsigned int, max_hw_sectors, 256 BLK_DEF_MAX_SECTORS); 257 } 258 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 259 260 /** 261 * blk_queue_max_discard_sectors - set max sectors for a single discard 262 * @q: the request queue for the device 263 * @max_discard_sectors: maximum number of sectors to discard 264 **/ 265 void blk_queue_max_discard_sectors(struct request_queue *q, 266 unsigned int max_discard_sectors) 267 { 268 q->limits.max_discard_sectors = max_discard_sectors; 269 } 270 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 271 272 /** 273 * blk_queue_max_segments - set max hw segments for a request for this queue 274 * @q: the request queue for the device 275 * @max_segments: max number of segments 276 * 277 * Description: 278 * Enables a low level driver to set an upper limit on the number of 279 * hw data segments in a request. 280 **/ 281 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 282 { 283 if (!max_segments) { 284 max_segments = 1; 285 printk(KERN_INFO "%s: set to minimum %d\n", 286 __func__, max_segments); 287 } 288 289 q->limits.max_segments = max_segments; 290 } 291 EXPORT_SYMBOL(blk_queue_max_segments); 292 293 /** 294 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 295 * @q: the request queue for the device 296 * @max_size: max size of segment in bytes 297 * 298 * Description: 299 * Enables a low level driver to set an upper limit on the size of a 300 * coalesced segment 301 **/ 302 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 303 { 304 if (max_size < PAGE_CACHE_SIZE) { 305 max_size = PAGE_CACHE_SIZE; 306 printk(KERN_INFO "%s: set to minimum %d\n", 307 __func__, max_size); 308 } 309 310 q->limits.max_segment_size = max_size; 311 } 312 EXPORT_SYMBOL(blk_queue_max_segment_size); 313 314 /** 315 * blk_queue_logical_block_size - set logical block size for the queue 316 * @q: the request queue for the device 317 * @size: the logical block size, in bytes 318 * 319 * Description: 320 * This should be set to the lowest possible block size that the 321 * storage device can address. The default of 512 covers most 322 * hardware. 323 **/ 324 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 325 { 326 q->limits.logical_block_size = size; 327 328 if (q->limits.physical_block_size < size) 329 q->limits.physical_block_size = size; 330 331 if (q->limits.io_min < q->limits.physical_block_size) 332 q->limits.io_min = q->limits.physical_block_size; 333 } 334 EXPORT_SYMBOL(blk_queue_logical_block_size); 335 336 /** 337 * blk_queue_physical_block_size - set physical block size for the queue 338 * @q: the request queue for the device 339 * @size: the physical block size, in bytes 340 * 341 * Description: 342 * This should be set to the lowest possible sector size that the 343 * hardware can operate on without reverting to read-modify-write 344 * operations. 345 */ 346 void blk_queue_physical_block_size(struct request_queue *q, unsigned short size) 347 { 348 q->limits.physical_block_size = size; 349 350 if (q->limits.physical_block_size < q->limits.logical_block_size) 351 q->limits.physical_block_size = q->limits.logical_block_size; 352 353 if (q->limits.io_min < q->limits.physical_block_size) 354 q->limits.io_min = q->limits.physical_block_size; 355 } 356 EXPORT_SYMBOL(blk_queue_physical_block_size); 357 358 /** 359 * blk_queue_alignment_offset - set physical block alignment offset 360 * @q: the request queue for the device 361 * @offset: alignment offset in bytes 362 * 363 * Description: 364 * Some devices are naturally misaligned to compensate for things like 365 * the legacy DOS partition table 63-sector offset. Low-level drivers 366 * should call this function for devices whose first sector is not 367 * naturally aligned. 368 */ 369 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 370 { 371 q->limits.alignment_offset = 372 offset & (q->limits.physical_block_size - 1); 373 q->limits.misaligned = 0; 374 } 375 EXPORT_SYMBOL(blk_queue_alignment_offset); 376 377 /** 378 * blk_limits_io_min - set minimum request size for a device 379 * @limits: the queue limits 380 * @min: smallest I/O size in bytes 381 * 382 * Description: 383 * Some devices have an internal block size bigger than the reported 384 * hardware sector size. This function can be used to signal the 385 * smallest I/O the device can perform without incurring a performance 386 * penalty. 387 */ 388 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 389 { 390 limits->io_min = min; 391 392 if (limits->io_min < limits->logical_block_size) 393 limits->io_min = limits->logical_block_size; 394 395 if (limits->io_min < limits->physical_block_size) 396 limits->io_min = limits->physical_block_size; 397 } 398 EXPORT_SYMBOL(blk_limits_io_min); 399 400 /** 401 * blk_queue_io_min - set minimum request size for the queue 402 * @q: the request queue for the device 403 * @min: smallest I/O size in bytes 404 * 405 * Description: 406 * Storage devices may report a granularity or preferred minimum I/O 407 * size which is the smallest request the device can perform without 408 * incurring a performance penalty. For disk drives this is often the 409 * physical block size. For RAID arrays it is often the stripe chunk 410 * size. A properly aligned multiple of minimum_io_size is the 411 * preferred request size for workloads where a high number of I/O 412 * operations is desired. 413 */ 414 void blk_queue_io_min(struct request_queue *q, unsigned int min) 415 { 416 blk_limits_io_min(&q->limits, min); 417 } 418 EXPORT_SYMBOL(blk_queue_io_min); 419 420 /** 421 * blk_limits_io_opt - set optimal request size for a device 422 * @limits: the queue limits 423 * @opt: smallest I/O size in bytes 424 * 425 * Description: 426 * Storage devices may report an optimal I/O size, which is the 427 * device's preferred unit for sustained I/O. This is rarely reported 428 * for disk drives. For RAID arrays it is usually the stripe width or 429 * the internal track size. A properly aligned multiple of 430 * optimal_io_size is the preferred request size for workloads where 431 * sustained throughput is desired. 432 */ 433 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 434 { 435 limits->io_opt = opt; 436 } 437 EXPORT_SYMBOL(blk_limits_io_opt); 438 439 /** 440 * blk_queue_io_opt - set optimal request size for the queue 441 * @q: the request queue for the device 442 * @opt: optimal request size in bytes 443 * 444 * Description: 445 * Storage devices may report an optimal I/O size, which is the 446 * device's preferred unit for sustained I/O. This is rarely reported 447 * for disk drives. For RAID arrays it is usually the stripe width or 448 * the internal track size. A properly aligned multiple of 449 * optimal_io_size is the preferred request size for workloads where 450 * sustained throughput is desired. 451 */ 452 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 453 { 454 blk_limits_io_opt(&q->limits, opt); 455 } 456 EXPORT_SYMBOL(blk_queue_io_opt); 457 458 /* 459 * Returns the minimum that is _not_ zero, unless both are zero. 460 */ 461 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 462 463 /** 464 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 465 * @t: the stacking driver (top) 466 * @b: the underlying device (bottom) 467 **/ 468 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 469 { 470 blk_stack_limits(&t->limits, &b->limits, 0); 471 472 if (!t->queue_lock) 473 WARN_ON_ONCE(1); 474 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 475 unsigned long flags; 476 spin_lock_irqsave(t->queue_lock, flags); 477 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 478 spin_unlock_irqrestore(t->queue_lock, flags); 479 } 480 } 481 EXPORT_SYMBOL(blk_queue_stack_limits); 482 483 /** 484 * blk_stack_limits - adjust queue_limits for stacked devices 485 * @t: the stacking driver limits (top device) 486 * @b: the underlying queue limits (bottom, component device) 487 * @start: first data sector within component device 488 * 489 * Description: 490 * This function is used by stacking drivers like MD and DM to ensure 491 * that all component devices have compatible block sizes and 492 * alignments. The stacking driver must provide a queue_limits 493 * struct (top) and then iteratively call the stacking function for 494 * all component (bottom) devices. The stacking function will 495 * attempt to combine the values and ensure proper alignment. 496 * 497 * Returns 0 if the top and bottom queue_limits are compatible. The 498 * top device's block sizes and alignment offsets may be adjusted to 499 * ensure alignment with the bottom device. If no compatible sizes 500 * and alignments exist, -1 is returned and the resulting top 501 * queue_limits will have the misaligned flag set to indicate that 502 * the alignment_offset is undefined. 503 */ 504 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 505 sector_t start) 506 { 507 unsigned int top, bottom, alignment, ret = 0; 508 509 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 510 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 511 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 512 513 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 514 b->seg_boundary_mask); 515 516 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 517 518 t->max_segment_size = min_not_zero(t->max_segment_size, 519 b->max_segment_size); 520 521 t->misaligned |= b->misaligned; 522 523 alignment = queue_limit_alignment_offset(b, start); 524 525 /* Bottom device has different alignment. Check that it is 526 * compatible with the current top alignment. 527 */ 528 if (t->alignment_offset != alignment) { 529 530 top = max(t->physical_block_size, t->io_min) 531 + t->alignment_offset; 532 bottom = max(b->physical_block_size, b->io_min) + alignment; 533 534 /* Verify that top and bottom intervals line up */ 535 if (max(top, bottom) & (min(top, bottom) - 1)) { 536 t->misaligned = 1; 537 ret = -1; 538 } 539 } 540 541 t->logical_block_size = max(t->logical_block_size, 542 b->logical_block_size); 543 544 t->physical_block_size = max(t->physical_block_size, 545 b->physical_block_size); 546 547 t->io_min = max(t->io_min, b->io_min); 548 t->io_opt = lcm(t->io_opt, b->io_opt); 549 550 t->no_cluster |= b->no_cluster; 551 t->discard_zeroes_data &= b->discard_zeroes_data; 552 553 /* Physical block size a multiple of the logical block size? */ 554 if (t->physical_block_size & (t->logical_block_size - 1)) { 555 t->physical_block_size = t->logical_block_size; 556 t->misaligned = 1; 557 ret = -1; 558 } 559 560 /* Minimum I/O a multiple of the physical block size? */ 561 if (t->io_min & (t->physical_block_size - 1)) { 562 t->io_min = t->physical_block_size; 563 t->misaligned = 1; 564 ret = -1; 565 } 566 567 /* Optimal I/O a multiple of the physical block size? */ 568 if (t->io_opt & (t->physical_block_size - 1)) { 569 t->io_opt = 0; 570 t->misaligned = 1; 571 ret = -1; 572 } 573 574 /* Find lowest common alignment_offset */ 575 t->alignment_offset = lcm(t->alignment_offset, alignment) 576 & (max(t->physical_block_size, t->io_min) - 1); 577 578 /* Verify that new alignment_offset is on a logical block boundary */ 579 if (t->alignment_offset & (t->logical_block_size - 1)) { 580 t->misaligned = 1; 581 ret = -1; 582 } 583 584 /* Discard alignment and granularity */ 585 if (b->discard_granularity) { 586 alignment = queue_limit_discard_alignment(b, start); 587 588 if (t->discard_granularity != 0 && 589 t->discard_alignment != alignment) { 590 top = t->discard_granularity + t->discard_alignment; 591 bottom = b->discard_granularity + alignment; 592 593 /* Verify that top and bottom intervals line up */ 594 if (max(top, bottom) & (min(top, bottom) - 1)) 595 t->discard_misaligned = 1; 596 } 597 598 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 599 b->max_discard_sectors); 600 t->discard_granularity = max(t->discard_granularity, 601 b->discard_granularity); 602 t->discard_alignment = lcm(t->discard_alignment, alignment) & 603 (t->discard_granularity - 1); 604 } 605 606 return ret; 607 } 608 EXPORT_SYMBOL(blk_stack_limits); 609 610 /** 611 * bdev_stack_limits - adjust queue limits for stacked drivers 612 * @t: the stacking driver limits (top device) 613 * @bdev: the component block_device (bottom) 614 * @start: first data sector within component device 615 * 616 * Description: 617 * Merges queue limits for a top device and a block_device. Returns 618 * 0 if alignment didn't change. Returns -1 if adding the bottom 619 * device caused misalignment. 620 */ 621 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 622 sector_t start) 623 { 624 struct request_queue *bq = bdev_get_queue(bdev); 625 626 start += get_start_sect(bdev); 627 628 return blk_stack_limits(t, &bq->limits, start); 629 } 630 EXPORT_SYMBOL(bdev_stack_limits); 631 632 /** 633 * disk_stack_limits - adjust queue limits for stacked drivers 634 * @disk: MD/DM gendisk (top) 635 * @bdev: the underlying block device (bottom) 636 * @offset: offset to beginning of data within component device 637 * 638 * Description: 639 * Merges the limits for a top level gendisk and a bottom level 640 * block_device. 641 */ 642 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 643 sector_t offset) 644 { 645 struct request_queue *t = disk->queue; 646 struct request_queue *b = bdev_get_queue(bdev); 647 648 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) { 649 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 650 651 disk_name(disk, 0, top); 652 bdevname(bdev, bottom); 653 654 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 655 top, bottom); 656 } 657 658 if (!t->queue_lock) 659 WARN_ON_ONCE(1); 660 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 661 unsigned long flags; 662 663 spin_lock_irqsave(t->queue_lock, flags); 664 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) 665 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 666 spin_unlock_irqrestore(t->queue_lock, flags); 667 } 668 } 669 EXPORT_SYMBOL(disk_stack_limits); 670 671 /** 672 * blk_queue_dma_pad - set pad mask 673 * @q: the request queue for the device 674 * @mask: pad mask 675 * 676 * Set dma pad mask. 677 * 678 * Appending pad buffer to a request modifies the last entry of a 679 * scatter list such that it includes the pad buffer. 680 **/ 681 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 682 { 683 q->dma_pad_mask = mask; 684 } 685 EXPORT_SYMBOL(blk_queue_dma_pad); 686 687 /** 688 * blk_queue_update_dma_pad - update pad mask 689 * @q: the request queue for the device 690 * @mask: pad mask 691 * 692 * Update dma pad mask. 693 * 694 * Appending pad buffer to a request modifies the last entry of a 695 * scatter list such that it includes the pad buffer. 696 **/ 697 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 698 { 699 if (mask > q->dma_pad_mask) 700 q->dma_pad_mask = mask; 701 } 702 EXPORT_SYMBOL(blk_queue_update_dma_pad); 703 704 /** 705 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 706 * @q: the request queue for the device 707 * @dma_drain_needed: fn which returns non-zero if drain is necessary 708 * @buf: physically contiguous buffer 709 * @size: size of the buffer in bytes 710 * 711 * Some devices have excess DMA problems and can't simply discard (or 712 * zero fill) the unwanted piece of the transfer. They have to have a 713 * real area of memory to transfer it into. The use case for this is 714 * ATAPI devices in DMA mode. If the packet command causes a transfer 715 * bigger than the transfer size some HBAs will lock up if there 716 * aren't DMA elements to contain the excess transfer. What this API 717 * does is adjust the queue so that the buf is always appended 718 * silently to the scatterlist. 719 * 720 * Note: This routine adjusts max_hw_segments to make room for appending 721 * the drain buffer. If you call blk_queue_max_segments() after calling 722 * this routine, you must set the limit to one fewer than your device 723 * can support otherwise there won't be room for the drain buffer. 724 */ 725 int blk_queue_dma_drain(struct request_queue *q, 726 dma_drain_needed_fn *dma_drain_needed, 727 void *buf, unsigned int size) 728 { 729 if (queue_max_segments(q) < 2) 730 return -EINVAL; 731 /* make room for appending the drain */ 732 blk_queue_max_segments(q, queue_max_segments(q) - 1); 733 q->dma_drain_needed = dma_drain_needed; 734 q->dma_drain_buffer = buf; 735 q->dma_drain_size = size; 736 737 return 0; 738 } 739 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 740 741 /** 742 * blk_queue_segment_boundary - set boundary rules for segment merging 743 * @q: the request queue for the device 744 * @mask: the memory boundary mask 745 **/ 746 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 747 { 748 if (mask < PAGE_CACHE_SIZE - 1) { 749 mask = PAGE_CACHE_SIZE - 1; 750 printk(KERN_INFO "%s: set to minimum %lx\n", 751 __func__, mask); 752 } 753 754 q->limits.seg_boundary_mask = mask; 755 } 756 EXPORT_SYMBOL(blk_queue_segment_boundary); 757 758 /** 759 * blk_queue_dma_alignment - set dma length and memory alignment 760 * @q: the request queue for the device 761 * @mask: alignment mask 762 * 763 * description: 764 * set required memory and length alignment for direct dma transactions. 765 * this is used when building direct io requests for the queue. 766 * 767 **/ 768 void blk_queue_dma_alignment(struct request_queue *q, int mask) 769 { 770 q->dma_alignment = mask; 771 } 772 EXPORT_SYMBOL(blk_queue_dma_alignment); 773 774 /** 775 * blk_queue_update_dma_alignment - update dma length and memory alignment 776 * @q: the request queue for the device 777 * @mask: alignment mask 778 * 779 * description: 780 * update required memory and length alignment for direct dma transactions. 781 * If the requested alignment is larger than the current alignment, then 782 * the current queue alignment is updated to the new value, otherwise it 783 * is left alone. The design of this is to allow multiple objects 784 * (driver, device, transport etc) to set their respective 785 * alignments without having them interfere. 786 * 787 **/ 788 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 789 { 790 BUG_ON(mask > PAGE_SIZE); 791 792 if (mask > q->dma_alignment) 793 q->dma_alignment = mask; 794 } 795 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 796 797 static int __init blk_settings_init(void) 798 { 799 blk_max_low_pfn = max_low_pfn - 1; 800 blk_max_pfn = max_pfn - 1; 801 return 0; 802 } 803 subsys_initcall(blk_settings_init); 804