xref: /linux/block/blk-settings.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14 
15 #include "blk.h"
16 
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19 
20 unsigned long blk_max_pfn;
21 
22 /**
23  * blk_queue_prep_rq - set a prepare_request function for queue
24  * @q:		queue
25  * @pfn:	prepare_request function
26  *
27  * It's possible for a queue to register a prepare_request callback which
28  * is invoked before the request is handed to the request_fn. The goal of
29  * the function is to prepare a request for I/O, it can be used to build a
30  * cdb from the request data for instance.
31  *
32  */
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 	q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38 
39 /**
40  * blk_queue_unprep_rq - set an unprepare_request function for queue
41  * @q:		queue
42  * @ufn:	unprepare_request function
43  *
44  * It's possible for a queue to register an unprepare_request callback
45  * which is invoked before the request is finally completed. The goal
46  * of the function is to deallocate any data that was allocated in the
47  * prepare_request callback.
48  *
49  */
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 	q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55 
56 /**
57  * blk_queue_merge_bvec - set a merge_bvec function for queue
58  * @q:		queue
59  * @mbfn:	merge_bvec_fn
60  *
61  * Usually queues have static limitations on the max sectors or segments that
62  * we can put in a request. Stacking drivers may have some settings that
63  * are dynamic, and thus we have to query the queue whether it is ok to
64  * add a new bio_vec to a bio at a given offset or not. If the block device
65  * has such limitations, it needs to register a merge_bvec_fn to control
66  * the size of bio's sent to it. Note that a block device *must* allow a
67  * single page to be added to an empty bio. The block device driver may want
68  * to use the bio_split() function to deal with these bio's. By default
69  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70  * honored.
71  */
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74 	q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77 
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80 	q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83 
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86 	q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89 
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92 	q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95 
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98 	q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101 
102 /**
103  * blk_set_default_limits - reset limits to default values
104  * @lim:  the queue_limits structure to reset
105  *
106  * Description:
107  *   Returns a queue_limit struct to its default state.  Can be used by
108  *   stacking drivers like DM that stage table swaps and reuse an
109  *   existing device queue.
110  */
111 void blk_set_default_limits(struct queue_limits *lim)
112 {
113 	lim->max_segments = BLK_MAX_SEGMENTS;
114 	lim->max_integrity_segments = 0;
115 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
116 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
117 	lim->max_sectors = BLK_DEF_MAX_SECTORS;
118 	lim->max_hw_sectors = INT_MAX;
119 	lim->max_discard_sectors = 0;
120 	lim->discard_granularity = 0;
121 	lim->discard_alignment = 0;
122 	lim->discard_misaligned = 0;
123 	lim->discard_zeroes_data = -1;
124 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
125 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
126 	lim->alignment_offset = 0;
127 	lim->io_opt = 0;
128 	lim->misaligned = 0;
129 	lim->no_cluster = 0;
130 }
131 EXPORT_SYMBOL(blk_set_default_limits);
132 
133 /**
134  * blk_queue_make_request - define an alternate make_request function for a device
135  * @q:  the request queue for the device to be affected
136  * @mfn: the alternate make_request function
137  *
138  * Description:
139  *    The normal way for &struct bios to be passed to a device
140  *    driver is for them to be collected into requests on a request
141  *    queue, and then to allow the device driver to select requests
142  *    off that queue when it is ready.  This works well for many block
143  *    devices. However some block devices (typically virtual devices
144  *    such as md or lvm) do not benefit from the processing on the
145  *    request queue, and are served best by having the requests passed
146  *    directly to them.  This can be achieved by providing a function
147  *    to blk_queue_make_request().
148  *
149  * Caveat:
150  *    The driver that does this *must* be able to deal appropriately
151  *    with buffers in "highmemory". This can be accomplished by either calling
152  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
153  *    blk_queue_bounce() to create a buffer in normal memory.
154  **/
155 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
156 {
157 	/*
158 	 * set defaults
159 	 */
160 	q->nr_requests = BLKDEV_MAX_RQ;
161 
162 	q->make_request_fn = mfn;
163 	blk_queue_dma_alignment(q, 511);
164 	blk_queue_congestion_threshold(q);
165 	q->nr_batching = BLK_BATCH_REQ;
166 
167 	q->unplug_thresh = 4;		/* hmm */
168 	q->unplug_delay = msecs_to_jiffies(3);	/* 3 milliseconds */
169 	if (q->unplug_delay == 0)
170 		q->unplug_delay = 1;
171 
172 	q->unplug_timer.function = blk_unplug_timeout;
173 	q->unplug_timer.data = (unsigned long)q;
174 
175 	blk_set_default_limits(&q->limits);
176 	blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
177 
178 	/*
179 	 * If the caller didn't supply a lock, fall back to our embedded
180 	 * per-queue locks
181 	 */
182 	if (!q->queue_lock)
183 		q->queue_lock = &q->__queue_lock;
184 
185 	/*
186 	 * by default assume old behaviour and bounce for any highmem page
187 	 */
188 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
189 }
190 EXPORT_SYMBOL(blk_queue_make_request);
191 
192 /**
193  * blk_queue_bounce_limit - set bounce buffer limit for queue
194  * @q: the request queue for the device
195  * @dma_mask: the maximum address the device can handle
196  *
197  * Description:
198  *    Different hardware can have different requirements as to what pages
199  *    it can do I/O directly to. A low level driver can call
200  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
201  *    buffers for doing I/O to pages residing above @dma_mask.
202  **/
203 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
204 {
205 	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
206 	int dma = 0;
207 
208 	q->bounce_gfp = GFP_NOIO;
209 #if BITS_PER_LONG == 64
210 	/*
211 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
212 	 * some IOMMUs can handle everything, but I don't know of a
213 	 * way to test this here.
214 	 */
215 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
216 		dma = 1;
217 	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
218 #else
219 	if (b_pfn < blk_max_low_pfn)
220 		dma = 1;
221 	q->limits.bounce_pfn = b_pfn;
222 #endif
223 	if (dma) {
224 		init_emergency_isa_pool();
225 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
226 		q->limits.bounce_pfn = b_pfn;
227 	}
228 }
229 EXPORT_SYMBOL(blk_queue_bounce_limit);
230 
231 /**
232  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
233  * @q:  the request queue for the device
234  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
235  *
236  * Description:
237  *    Enables a low level driver to set a hard upper limit,
238  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
239  *    the device driver based upon the combined capabilities of I/O
240  *    controller and storage device.
241  *
242  *    max_sectors is a soft limit imposed by the block layer for
243  *    filesystem type requests.  This value can be overridden on a
244  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
245  *    The soft limit can not exceed max_hw_sectors.
246  **/
247 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
248 {
249 	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
250 		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
251 		printk(KERN_INFO "%s: set to minimum %d\n",
252 		       __func__, max_hw_sectors);
253 	}
254 
255 	q->limits.max_hw_sectors = max_hw_sectors;
256 	q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
257 				      BLK_DEF_MAX_SECTORS);
258 }
259 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
260 
261 /**
262  * blk_queue_max_discard_sectors - set max sectors for a single discard
263  * @q:  the request queue for the device
264  * @max_discard_sectors: maximum number of sectors to discard
265  **/
266 void blk_queue_max_discard_sectors(struct request_queue *q,
267 		unsigned int max_discard_sectors)
268 {
269 	q->limits.max_discard_sectors = max_discard_sectors;
270 }
271 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
272 
273 /**
274  * blk_queue_max_segments - set max hw segments for a request for this queue
275  * @q:  the request queue for the device
276  * @max_segments:  max number of segments
277  *
278  * Description:
279  *    Enables a low level driver to set an upper limit on the number of
280  *    hw data segments in a request.
281  **/
282 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
283 {
284 	if (!max_segments) {
285 		max_segments = 1;
286 		printk(KERN_INFO "%s: set to minimum %d\n",
287 		       __func__, max_segments);
288 	}
289 
290 	q->limits.max_segments = max_segments;
291 }
292 EXPORT_SYMBOL(blk_queue_max_segments);
293 
294 /**
295  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
296  * @q:  the request queue for the device
297  * @max_size:  max size of segment in bytes
298  *
299  * Description:
300  *    Enables a low level driver to set an upper limit on the size of a
301  *    coalesced segment
302  **/
303 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
304 {
305 	if (max_size < PAGE_CACHE_SIZE) {
306 		max_size = PAGE_CACHE_SIZE;
307 		printk(KERN_INFO "%s: set to minimum %d\n",
308 		       __func__, max_size);
309 	}
310 
311 	q->limits.max_segment_size = max_size;
312 }
313 EXPORT_SYMBOL(blk_queue_max_segment_size);
314 
315 /**
316  * blk_queue_logical_block_size - set logical block size for the queue
317  * @q:  the request queue for the device
318  * @size:  the logical block size, in bytes
319  *
320  * Description:
321  *   This should be set to the lowest possible block size that the
322  *   storage device can address.  The default of 512 covers most
323  *   hardware.
324  **/
325 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
326 {
327 	q->limits.logical_block_size = size;
328 
329 	if (q->limits.physical_block_size < size)
330 		q->limits.physical_block_size = size;
331 
332 	if (q->limits.io_min < q->limits.physical_block_size)
333 		q->limits.io_min = q->limits.physical_block_size;
334 }
335 EXPORT_SYMBOL(blk_queue_logical_block_size);
336 
337 /**
338  * blk_queue_physical_block_size - set physical block size for the queue
339  * @q:  the request queue for the device
340  * @size:  the physical block size, in bytes
341  *
342  * Description:
343  *   This should be set to the lowest possible sector size that the
344  *   hardware can operate on without reverting to read-modify-write
345  *   operations.
346  */
347 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
348 {
349 	q->limits.physical_block_size = size;
350 
351 	if (q->limits.physical_block_size < q->limits.logical_block_size)
352 		q->limits.physical_block_size = q->limits.logical_block_size;
353 
354 	if (q->limits.io_min < q->limits.physical_block_size)
355 		q->limits.io_min = q->limits.physical_block_size;
356 }
357 EXPORT_SYMBOL(blk_queue_physical_block_size);
358 
359 /**
360  * blk_queue_alignment_offset - set physical block alignment offset
361  * @q:	the request queue for the device
362  * @offset: alignment offset in bytes
363  *
364  * Description:
365  *   Some devices are naturally misaligned to compensate for things like
366  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
367  *   should call this function for devices whose first sector is not
368  *   naturally aligned.
369  */
370 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
371 {
372 	q->limits.alignment_offset =
373 		offset & (q->limits.physical_block_size - 1);
374 	q->limits.misaligned = 0;
375 }
376 EXPORT_SYMBOL(blk_queue_alignment_offset);
377 
378 /**
379  * blk_limits_io_min - set minimum request size for a device
380  * @limits: the queue limits
381  * @min:  smallest I/O size in bytes
382  *
383  * Description:
384  *   Some devices have an internal block size bigger than the reported
385  *   hardware sector size.  This function can be used to signal the
386  *   smallest I/O the device can perform without incurring a performance
387  *   penalty.
388  */
389 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
390 {
391 	limits->io_min = min;
392 
393 	if (limits->io_min < limits->logical_block_size)
394 		limits->io_min = limits->logical_block_size;
395 
396 	if (limits->io_min < limits->physical_block_size)
397 		limits->io_min = limits->physical_block_size;
398 }
399 EXPORT_SYMBOL(blk_limits_io_min);
400 
401 /**
402  * blk_queue_io_min - set minimum request size for the queue
403  * @q:	the request queue for the device
404  * @min:  smallest I/O size in bytes
405  *
406  * Description:
407  *   Storage devices may report a granularity or preferred minimum I/O
408  *   size which is the smallest request the device can perform without
409  *   incurring a performance penalty.  For disk drives this is often the
410  *   physical block size.  For RAID arrays it is often the stripe chunk
411  *   size.  A properly aligned multiple of minimum_io_size is the
412  *   preferred request size for workloads where a high number of I/O
413  *   operations is desired.
414  */
415 void blk_queue_io_min(struct request_queue *q, unsigned int min)
416 {
417 	blk_limits_io_min(&q->limits, min);
418 }
419 EXPORT_SYMBOL(blk_queue_io_min);
420 
421 /**
422  * blk_limits_io_opt - set optimal request size for a device
423  * @limits: the queue limits
424  * @opt:  smallest I/O size in bytes
425  *
426  * Description:
427  *   Storage devices may report an optimal I/O size, which is the
428  *   device's preferred unit for sustained I/O.  This is rarely reported
429  *   for disk drives.  For RAID arrays it is usually the stripe width or
430  *   the internal track size.  A properly aligned multiple of
431  *   optimal_io_size is the preferred request size for workloads where
432  *   sustained throughput is desired.
433  */
434 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
435 {
436 	limits->io_opt = opt;
437 }
438 EXPORT_SYMBOL(blk_limits_io_opt);
439 
440 /**
441  * blk_queue_io_opt - set optimal request size for the queue
442  * @q:	the request queue for the device
443  * @opt:  optimal request size in bytes
444  *
445  * Description:
446  *   Storage devices may report an optimal I/O size, which is the
447  *   device's preferred unit for sustained I/O.  This is rarely reported
448  *   for disk drives.  For RAID arrays it is usually the stripe width or
449  *   the internal track size.  A properly aligned multiple of
450  *   optimal_io_size is the preferred request size for workloads where
451  *   sustained throughput is desired.
452  */
453 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
454 {
455 	blk_limits_io_opt(&q->limits, opt);
456 }
457 EXPORT_SYMBOL(blk_queue_io_opt);
458 
459 /**
460  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
461  * @t:	the stacking driver (top)
462  * @b:  the underlying device (bottom)
463  **/
464 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
465 {
466 	blk_stack_limits(&t->limits, &b->limits, 0);
467 
468 	if (!t->queue_lock)
469 		WARN_ON_ONCE(1);
470 	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
471 		unsigned long flags;
472 		spin_lock_irqsave(t->queue_lock, flags);
473 		queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
474 		spin_unlock_irqrestore(t->queue_lock, flags);
475 	}
476 }
477 EXPORT_SYMBOL(blk_queue_stack_limits);
478 
479 /**
480  * blk_stack_limits - adjust queue_limits for stacked devices
481  * @t:	the stacking driver limits (top device)
482  * @b:  the underlying queue limits (bottom, component device)
483  * @start:  first data sector within component device
484  *
485  * Description:
486  *    This function is used by stacking drivers like MD and DM to ensure
487  *    that all component devices have compatible block sizes and
488  *    alignments.  The stacking driver must provide a queue_limits
489  *    struct (top) and then iteratively call the stacking function for
490  *    all component (bottom) devices.  The stacking function will
491  *    attempt to combine the values and ensure proper alignment.
492  *
493  *    Returns 0 if the top and bottom queue_limits are compatible.  The
494  *    top device's block sizes and alignment offsets may be adjusted to
495  *    ensure alignment with the bottom device. If no compatible sizes
496  *    and alignments exist, -1 is returned and the resulting top
497  *    queue_limits will have the misaligned flag set to indicate that
498  *    the alignment_offset is undefined.
499  */
500 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
501 		     sector_t start)
502 {
503 	unsigned int top, bottom, alignment, ret = 0;
504 
505 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
506 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
507 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
508 
509 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
510 					    b->seg_boundary_mask);
511 
512 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
513 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
514 						 b->max_integrity_segments);
515 
516 	t->max_segment_size = min_not_zero(t->max_segment_size,
517 					   b->max_segment_size);
518 
519 	t->misaligned |= b->misaligned;
520 
521 	alignment = queue_limit_alignment_offset(b, start);
522 
523 	/* Bottom device has different alignment.  Check that it is
524 	 * compatible with the current top alignment.
525 	 */
526 	if (t->alignment_offset != alignment) {
527 
528 		top = max(t->physical_block_size, t->io_min)
529 			+ t->alignment_offset;
530 		bottom = max(b->physical_block_size, b->io_min) + alignment;
531 
532 		/* Verify that top and bottom intervals line up */
533 		if (max(top, bottom) & (min(top, bottom) - 1)) {
534 			t->misaligned = 1;
535 			ret = -1;
536 		}
537 	}
538 
539 	t->logical_block_size = max(t->logical_block_size,
540 				    b->logical_block_size);
541 
542 	t->physical_block_size = max(t->physical_block_size,
543 				     b->physical_block_size);
544 
545 	t->io_min = max(t->io_min, b->io_min);
546 	t->io_opt = lcm(t->io_opt, b->io_opt);
547 
548 	t->no_cluster |= b->no_cluster;
549 	t->discard_zeroes_data &= b->discard_zeroes_data;
550 
551 	/* Physical block size a multiple of the logical block size? */
552 	if (t->physical_block_size & (t->logical_block_size - 1)) {
553 		t->physical_block_size = t->logical_block_size;
554 		t->misaligned = 1;
555 		ret = -1;
556 	}
557 
558 	/* Minimum I/O a multiple of the physical block size? */
559 	if (t->io_min & (t->physical_block_size - 1)) {
560 		t->io_min = t->physical_block_size;
561 		t->misaligned = 1;
562 		ret = -1;
563 	}
564 
565 	/* Optimal I/O a multiple of the physical block size? */
566 	if (t->io_opt & (t->physical_block_size - 1)) {
567 		t->io_opt = 0;
568 		t->misaligned = 1;
569 		ret = -1;
570 	}
571 
572 	/* Find lowest common alignment_offset */
573 	t->alignment_offset = lcm(t->alignment_offset, alignment)
574 		& (max(t->physical_block_size, t->io_min) - 1);
575 
576 	/* Verify that new alignment_offset is on a logical block boundary */
577 	if (t->alignment_offset & (t->logical_block_size - 1)) {
578 		t->misaligned = 1;
579 		ret = -1;
580 	}
581 
582 	/* Discard alignment and granularity */
583 	if (b->discard_granularity) {
584 		alignment = queue_limit_discard_alignment(b, start);
585 
586 		if (t->discard_granularity != 0 &&
587 		    t->discard_alignment != alignment) {
588 			top = t->discard_granularity + t->discard_alignment;
589 			bottom = b->discard_granularity + alignment;
590 
591 			/* Verify that top and bottom intervals line up */
592 			if (max(top, bottom) & (min(top, bottom) - 1))
593 				t->discard_misaligned = 1;
594 		}
595 
596 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
597 						      b->max_discard_sectors);
598 		t->discard_granularity = max(t->discard_granularity,
599 					     b->discard_granularity);
600 		t->discard_alignment = lcm(t->discard_alignment, alignment) &
601 			(t->discard_granularity - 1);
602 	}
603 
604 	return ret;
605 }
606 EXPORT_SYMBOL(blk_stack_limits);
607 
608 /**
609  * bdev_stack_limits - adjust queue limits for stacked drivers
610  * @t:	the stacking driver limits (top device)
611  * @bdev:  the component block_device (bottom)
612  * @start:  first data sector within component device
613  *
614  * Description:
615  *    Merges queue limits for a top device and a block_device.  Returns
616  *    0 if alignment didn't change.  Returns -1 if adding the bottom
617  *    device caused misalignment.
618  */
619 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
620 		      sector_t start)
621 {
622 	struct request_queue *bq = bdev_get_queue(bdev);
623 
624 	start += get_start_sect(bdev);
625 
626 	return blk_stack_limits(t, &bq->limits, start);
627 }
628 EXPORT_SYMBOL(bdev_stack_limits);
629 
630 /**
631  * disk_stack_limits - adjust queue limits for stacked drivers
632  * @disk:  MD/DM gendisk (top)
633  * @bdev:  the underlying block device (bottom)
634  * @offset:  offset to beginning of data within component device
635  *
636  * Description:
637  *    Merges the limits for a top level gendisk and a bottom level
638  *    block_device.
639  */
640 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
641 		       sector_t offset)
642 {
643 	struct request_queue *t = disk->queue;
644 	struct request_queue *b = bdev_get_queue(bdev);
645 
646 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
647 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
648 
649 		disk_name(disk, 0, top);
650 		bdevname(bdev, bottom);
651 
652 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
653 		       top, bottom);
654 	}
655 
656 	if (!t->queue_lock)
657 		WARN_ON_ONCE(1);
658 	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
659 		unsigned long flags;
660 
661 		spin_lock_irqsave(t->queue_lock, flags);
662 		if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
663 			queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
664 		spin_unlock_irqrestore(t->queue_lock, flags);
665 	}
666 }
667 EXPORT_SYMBOL(disk_stack_limits);
668 
669 /**
670  * blk_queue_dma_pad - set pad mask
671  * @q:     the request queue for the device
672  * @mask:  pad mask
673  *
674  * Set dma pad mask.
675  *
676  * Appending pad buffer to a request modifies the last entry of a
677  * scatter list such that it includes the pad buffer.
678  **/
679 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
680 {
681 	q->dma_pad_mask = mask;
682 }
683 EXPORT_SYMBOL(blk_queue_dma_pad);
684 
685 /**
686  * blk_queue_update_dma_pad - update pad mask
687  * @q:     the request queue for the device
688  * @mask:  pad mask
689  *
690  * Update dma pad mask.
691  *
692  * Appending pad buffer to a request modifies the last entry of a
693  * scatter list such that it includes the pad buffer.
694  **/
695 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
696 {
697 	if (mask > q->dma_pad_mask)
698 		q->dma_pad_mask = mask;
699 }
700 EXPORT_SYMBOL(blk_queue_update_dma_pad);
701 
702 /**
703  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
704  * @q:  the request queue for the device
705  * @dma_drain_needed: fn which returns non-zero if drain is necessary
706  * @buf:	physically contiguous buffer
707  * @size:	size of the buffer in bytes
708  *
709  * Some devices have excess DMA problems and can't simply discard (or
710  * zero fill) the unwanted piece of the transfer.  They have to have a
711  * real area of memory to transfer it into.  The use case for this is
712  * ATAPI devices in DMA mode.  If the packet command causes a transfer
713  * bigger than the transfer size some HBAs will lock up if there
714  * aren't DMA elements to contain the excess transfer.  What this API
715  * does is adjust the queue so that the buf is always appended
716  * silently to the scatterlist.
717  *
718  * Note: This routine adjusts max_hw_segments to make room for appending
719  * the drain buffer.  If you call blk_queue_max_segments() after calling
720  * this routine, you must set the limit to one fewer than your device
721  * can support otherwise there won't be room for the drain buffer.
722  */
723 int blk_queue_dma_drain(struct request_queue *q,
724 			       dma_drain_needed_fn *dma_drain_needed,
725 			       void *buf, unsigned int size)
726 {
727 	if (queue_max_segments(q) < 2)
728 		return -EINVAL;
729 	/* make room for appending the drain */
730 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
731 	q->dma_drain_needed = dma_drain_needed;
732 	q->dma_drain_buffer = buf;
733 	q->dma_drain_size = size;
734 
735 	return 0;
736 }
737 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
738 
739 /**
740  * blk_queue_segment_boundary - set boundary rules for segment merging
741  * @q:  the request queue for the device
742  * @mask:  the memory boundary mask
743  **/
744 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
745 {
746 	if (mask < PAGE_CACHE_SIZE - 1) {
747 		mask = PAGE_CACHE_SIZE - 1;
748 		printk(KERN_INFO "%s: set to minimum %lx\n",
749 		       __func__, mask);
750 	}
751 
752 	q->limits.seg_boundary_mask = mask;
753 }
754 EXPORT_SYMBOL(blk_queue_segment_boundary);
755 
756 /**
757  * blk_queue_dma_alignment - set dma length and memory alignment
758  * @q:     the request queue for the device
759  * @mask:  alignment mask
760  *
761  * description:
762  *    set required memory and length alignment for direct dma transactions.
763  *    this is used when building direct io requests for the queue.
764  *
765  **/
766 void blk_queue_dma_alignment(struct request_queue *q, int mask)
767 {
768 	q->dma_alignment = mask;
769 }
770 EXPORT_SYMBOL(blk_queue_dma_alignment);
771 
772 /**
773  * blk_queue_update_dma_alignment - update dma length and memory alignment
774  * @q:     the request queue for the device
775  * @mask:  alignment mask
776  *
777  * description:
778  *    update required memory and length alignment for direct dma transactions.
779  *    If the requested alignment is larger than the current alignment, then
780  *    the current queue alignment is updated to the new value, otherwise it
781  *    is left alone.  The design of this is to allow multiple objects
782  *    (driver, device, transport etc) to set their respective
783  *    alignments without having them interfere.
784  *
785  **/
786 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
787 {
788 	BUG_ON(mask > PAGE_SIZE);
789 
790 	if (mask > q->dma_alignment)
791 		q->dma_alignment = mask;
792 }
793 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
794 
795 /**
796  * blk_queue_flush - configure queue's cache flush capability
797  * @q:		the request queue for the device
798  * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
799  *
800  * Tell block layer cache flush capability of @q.  If it supports
801  * flushing, REQ_FLUSH should be set.  If it supports bypassing
802  * write cache for individual writes, REQ_FUA should be set.
803  */
804 void blk_queue_flush(struct request_queue *q, unsigned int flush)
805 {
806 	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
807 
808 	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
809 		flush &= ~REQ_FUA;
810 
811 	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
812 }
813 EXPORT_SYMBOL_GPL(blk_queue_flush);
814 
815 static int __init blk_settings_init(void)
816 {
817 	blk_max_low_pfn = max_low_pfn - 1;
818 	blk_max_pfn = max_pfn - 1;
819 	return 0;
820 }
821 subsys_initcall(blk_settings_init);
822