1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/t10-pi.h> 18 #include <linux/crc64.h> 19 20 #include "blk.h" 21 #include "blk-rq-qos.h" 22 #include "blk-wbt.h" 23 24 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 25 { 26 WRITE_ONCE(q->rq_timeout, timeout); 27 } 28 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 29 30 /** 31 * blk_set_stacking_limits - set default limits for stacking devices 32 * @lim: the queue_limits structure to reset 33 * 34 * Prepare queue limits for applying limits from underlying devices using 35 * blk_stack_limits(). 36 */ 37 void blk_set_stacking_limits(struct queue_limits *lim) 38 { 39 memset(lim, 0, sizeof(*lim)); 40 lim->logical_block_size = SECTOR_SIZE; 41 lim->physical_block_size = SECTOR_SIZE; 42 lim->io_min = SECTOR_SIZE; 43 lim->discard_granularity = SECTOR_SIZE; 44 lim->dma_alignment = SECTOR_SIZE - 1; 45 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 46 47 /* Inherit limits from component devices */ 48 lim->max_segments = USHRT_MAX; 49 lim->max_discard_segments = USHRT_MAX; 50 lim->max_hw_sectors = UINT_MAX; 51 lim->max_segment_size = UINT_MAX; 52 lim->max_sectors = UINT_MAX; 53 lim->max_dev_sectors = UINT_MAX; 54 lim->max_write_zeroes_sectors = UINT_MAX; 55 lim->max_hw_wzeroes_unmap_sectors = UINT_MAX; 56 lim->max_user_wzeroes_unmap_sectors = UINT_MAX; 57 lim->max_hw_zone_append_sectors = UINT_MAX; 58 lim->max_user_discard_sectors = UINT_MAX; 59 lim->atomic_write_hw_max = UINT_MAX; 60 } 61 EXPORT_SYMBOL(blk_set_stacking_limits); 62 63 void blk_apply_bdi_limits(struct backing_dev_info *bdi, 64 struct queue_limits *lim) 65 { 66 u64 io_opt = lim->io_opt; 67 68 /* 69 * For read-ahead of large files to be effective, we need to read ahead 70 * at least twice the optimal I/O size. For rotational devices that do 71 * not report an optimal I/O size (e.g. ATA HDDs), use the maximum I/O 72 * size to avoid falling back to the (rather inefficient) small default 73 * read-ahead size. 74 * 75 * There is no hardware limitation for the read-ahead size and the user 76 * might have increased the read-ahead size through sysfs, so don't ever 77 * decrease it. 78 */ 79 if (!io_opt && (lim->features & BLK_FEAT_ROTATIONAL)) 80 io_opt = (u64)lim->max_sectors << SECTOR_SHIFT; 81 82 bdi->ra_pages = max3(bdi->ra_pages, 83 io_opt * 2 >> PAGE_SHIFT, 84 VM_READAHEAD_PAGES); 85 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; 86 } 87 88 static int blk_validate_zoned_limits(struct queue_limits *lim) 89 { 90 if (!(lim->features & BLK_FEAT_ZONED)) { 91 if (WARN_ON_ONCE(lim->max_open_zones) || 92 WARN_ON_ONCE(lim->max_active_zones) || 93 WARN_ON_ONCE(lim->zone_write_granularity) || 94 WARN_ON_ONCE(lim->max_zone_append_sectors)) 95 return -EINVAL; 96 return 0; 97 } 98 99 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) 100 return -EINVAL; 101 102 /* 103 * Given that active zones include open zones, the maximum number of 104 * open zones cannot be larger than the maximum number of active zones. 105 */ 106 if (lim->max_active_zones && 107 lim->max_open_zones > lim->max_active_zones) 108 return -EINVAL; 109 110 if (lim->zone_write_granularity < lim->logical_block_size) 111 lim->zone_write_granularity = lim->logical_block_size; 112 113 /* 114 * The Zone Append size is limited by the maximum I/O size and the zone 115 * size given that it can't span zones. 116 * 117 * If no max_hw_zone_append_sectors limit is provided, the block layer 118 * will emulated it, else we're also bound by the hardware limit. 119 */ 120 lim->max_zone_append_sectors = 121 min_not_zero(lim->max_hw_zone_append_sectors, 122 min(lim->chunk_sectors, lim->max_hw_sectors)); 123 return 0; 124 } 125 126 /* 127 * Maximum size of I/O that needs a block layer integrity buffer. Limited 128 * by the number of intervals for which we can fit the integrity buffer into 129 * the buffer size. Because the buffer is a single segment it is also limited 130 * by the maximum segment size. 131 */ 132 static inline unsigned int max_integrity_io_size(struct queue_limits *lim) 133 { 134 return min_t(unsigned int, lim->max_segment_size, 135 (BLK_INTEGRITY_MAX_SIZE / lim->integrity.metadata_size) << 136 lim->integrity.interval_exp); 137 } 138 139 static int blk_validate_integrity_limits(struct queue_limits *lim) 140 { 141 struct blk_integrity *bi = &lim->integrity; 142 143 if (!bi->metadata_size) { 144 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE || 145 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) { 146 pr_warn("invalid PI settings.\n"); 147 return -EINVAL; 148 } 149 bi->flags |= BLK_INTEGRITY_NOGENERATE | BLK_INTEGRITY_NOVERIFY; 150 return 0; 151 } 152 153 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) { 154 pr_warn("integrity support disabled.\n"); 155 return -EINVAL; 156 } 157 158 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE && 159 (bi->flags & BLK_INTEGRITY_REF_TAG)) { 160 pr_warn("ref tag not support without checksum.\n"); 161 return -EINVAL; 162 } 163 164 if (bi->pi_offset + bi->pi_tuple_size > bi->metadata_size) { 165 pr_warn("pi_offset (%u) + pi_tuple_size (%u) exceeds metadata_size (%u)\n", 166 bi->pi_offset, bi->pi_tuple_size, bi->metadata_size); 167 return -EINVAL; 168 } 169 170 switch (bi->csum_type) { 171 case BLK_INTEGRITY_CSUM_NONE: 172 if (bi->pi_tuple_size) { 173 pr_warn("pi_tuple_size must be 0 when checksum type is none\n"); 174 return -EINVAL; 175 } 176 break; 177 case BLK_INTEGRITY_CSUM_CRC: 178 case BLK_INTEGRITY_CSUM_IP: 179 if (bi->pi_tuple_size != sizeof(struct t10_pi_tuple)) { 180 pr_warn("pi_tuple_size mismatch for T10 PI: expected %zu, got %u\n", 181 sizeof(struct t10_pi_tuple), 182 bi->pi_tuple_size); 183 return -EINVAL; 184 } 185 break; 186 case BLK_INTEGRITY_CSUM_CRC64: 187 if (bi->pi_tuple_size != sizeof(struct crc64_pi_tuple)) { 188 pr_warn("pi_tuple_size mismatch for CRC64 PI: expected %zu, got %u\n", 189 sizeof(struct crc64_pi_tuple), 190 bi->pi_tuple_size); 191 return -EINVAL; 192 } 193 break; 194 } 195 196 if (!bi->interval_exp) { 197 bi->interval_exp = ilog2(lim->logical_block_size); 198 } else if (bi->interval_exp < SECTOR_SHIFT || 199 bi->interval_exp > ilog2(lim->logical_block_size)) { 200 pr_warn("invalid interval_exp %u\n", bi->interval_exp); 201 return -EINVAL; 202 } 203 204 /* 205 * The PI generation / validation helpers do not expect intervals to 206 * straddle multiple bio_vecs. Enforce alignment so that those are 207 * never generated, and that each buffer is aligned as expected. 208 */ 209 if (bi->csum_type) { 210 lim->dma_alignment = max(lim->dma_alignment, 211 (1U << bi->interval_exp) - 1); 212 } 213 214 /* 215 * The block layer automatically adds integrity data for bios that don't 216 * already have it. Limit the I/O size so that a single maximum size 217 * metadata segment can cover the integrity data for the entire I/O. 218 */ 219 lim->max_sectors = min(lim->max_sectors, 220 max_integrity_io_size(lim) >> SECTOR_SHIFT); 221 222 return 0; 223 } 224 225 /* 226 * Returns max guaranteed bytes which we can fit in a bio. 227 * 228 * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector), 229 * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from 230 * the first and last segments. 231 */ 232 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim) 233 { 234 unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments); 235 unsigned int length; 236 237 length = min(max_segments, 2) * lim->logical_block_size; 238 if (max_segments > 2) 239 length += (max_segments - 2) * PAGE_SIZE; 240 241 return length; 242 } 243 244 static void blk_atomic_writes_update_limits(struct queue_limits *lim) 245 { 246 unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT, 247 blk_queue_max_guaranteed_bio(lim)); 248 249 unit_limit = rounddown_pow_of_two(unit_limit); 250 251 lim->atomic_write_max_sectors = 252 min(lim->atomic_write_hw_max >> SECTOR_SHIFT, 253 lim->max_hw_sectors); 254 lim->atomic_write_unit_min = 255 min(lim->atomic_write_hw_unit_min, unit_limit); 256 lim->atomic_write_unit_max = 257 min(lim->atomic_write_hw_unit_max, unit_limit); 258 lim->atomic_write_boundary_sectors = 259 lim->atomic_write_hw_boundary >> SECTOR_SHIFT; 260 } 261 262 /* 263 * Test whether any boundary is aligned with any chunk size. Stacked 264 * devices store any stripe size in t->chunk_sectors. 265 */ 266 static bool blk_valid_atomic_writes_boundary(unsigned int chunk_sectors, 267 unsigned int boundary_sectors) 268 { 269 if (!chunk_sectors || !boundary_sectors) 270 return true; 271 272 if (boundary_sectors > chunk_sectors && 273 boundary_sectors % chunk_sectors) 274 return false; 275 276 if (chunk_sectors > boundary_sectors && 277 chunk_sectors % boundary_sectors) 278 return false; 279 280 return true; 281 } 282 283 static void blk_validate_atomic_write_limits(struct queue_limits *lim) 284 { 285 unsigned int boundary_sectors; 286 unsigned int atomic_write_hw_max_sectors = 287 lim->atomic_write_hw_max >> SECTOR_SHIFT; 288 289 if (!(lim->features & BLK_FEAT_ATOMIC_WRITES)) 290 goto unsupported; 291 292 /* UINT_MAX indicates stacked limits in initial state */ 293 if (lim->atomic_write_hw_max == UINT_MAX) 294 goto unsupported; 295 296 if (!lim->atomic_write_hw_max) 297 goto unsupported; 298 299 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min))) 300 goto unsupported; 301 302 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max))) 303 goto unsupported; 304 305 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min > 306 lim->atomic_write_hw_unit_max)) 307 goto unsupported; 308 309 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max > 310 lim->atomic_write_hw_max)) 311 goto unsupported; 312 313 if (WARN_ON_ONCE(lim->chunk_sectors && 314 atomic_write_hw_max_sectors > lim->chunk_sectors)) 315 goto unsupported; 316 317 boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT; 318 319 if (boundary_sectors) { 320 if (WARN_ON_ONCE(lim->atomic_write_hw_max > 321 lim->atomic_write_hw_boundary)) 322 goto unsupported; 323 324 if (WARN_ON_ONCE(!blk_valid_atomic_writes_boundary( 325 lim->chunk_sectors, boundary_sectors))) 326 goto unsupported; 327 328 /* 329 * The boundary size just needs to be a multiple of unit_max 330 * (and not necessarily a power-of-2), so this following check 331 * could be relaxed in future. 332 * Furthermore, if needed, unit_max could even be reduced so 333 * that it is compliant with a !power-of-2 boundary. 334 */ 335 if (!is_power_of_2(boundary_sectors)) 336 goto unsupported; 337 } 338 339 blk_atomic_writes_update_limits(lim); 340 return; 341 342 unsupported: 343 lim->atomic_write_max_sectors = 0; 344 lim->atomic_write_boundary_sectors = 0; 345 lim->atomic_write_unit_min = 0; 346 lim->atomic_write_unit_max = 0; 347 } 348 349 /* 350 * Check that the limits in lim are valid, initialize defaults for unset 351 * values, and cap values based on others where needed. 352 */ 353 int blk_validate_limits(struct queue_limits *lim) 354 { 355 unsigned int max_hw_sectors; 356 unsigned int logical_block_sectors; 357 unsigned long seg_size; 358 int err; 359 360 /* 361 * Unless otherwise specified, default to 512 byte logical blocks and a 362 * physical block size equal to the logical block size. 363 */ 364 if (!lim->logical_block_size) 365 lim->logical_block_size = SECTOR_SIZE; 366 else if (blk_validate_block_size(lim->logical_block_size)) { 367 pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size); 368 return -EINVAL; 369 } 370 if (lim->physical_block_size < lim->logical_block_size) { 371 lim->physical_block_size = lim->logical_block_size; 372 } else if (!is_power_of_2(lim->physical_block_size)) { 373 pr_warn("Invalid physical block size (%d)\n", lim->physical_block_size); 374 return -EINVAL; 375 } 376 377 /* 378 * The minimum I/O size defaults to the physical block size unless 379 * explicitly overridden. 380 */ 381 if (lim->io_min < lim->physical_block_size) 382 lim->io_min = lim->physical_block_size; 383 384 /* 385 * The optimal I/O size may not be aligned to physical block size 386 * (because it may be limited by dma engines which have no clue about 387 * block size of the disks attached to them), so we round it down here. 388 */ 389 lim->io_opt = round_down(lim->io_opt, lim->physical_block_size); 390 391 /* 392 * max_hw_sectors has a somewhat weird default for historical reason, 393 * but driver really should set their own instead of relying on this 394 * value. 395 * 396 * The block layer relies on the fact that every driver can 397 * handle at lest a page worth of data per I/O, and needs the value 398 * aligned to the logical block size. 399 */ 400 if (!lim->max_hw_sectors) 401 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 402 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) 403 return -EINVAL; 404 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT; 405 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors)) 406 return -EINVAL; 407 lim->max_hw_sectors = round_down(lim->max_hw_sectors, 408 logical_block_sectors); 409 410 /* 411 * The actual max_sectors value is a complex beast and also takes the 412 * max_dev_sectors value (set by SCSI ULPs) and a user configurable 413 * value into account. The ->max_sectors value is always calculated 414 * from these, so directly setting it won't have any effect. 415 */ 416 max_hw_sectors = min_not_zero(lim->max_hw_sectors, 417 lim->max_dev_sectors); 418 if (lim->max_user_sectors) { 419 if (lim->max_user_sectors < BLK_MIN_SEGMENT_SIZE / SECTOR_SIZE) 420 return -EINVAL; 421 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); 422 } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 423 lim->max_sectors = 424 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT); 425 } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 426 lim->max_sectors = 427 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT); 428 } else { 429 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); 430 } 431 lim->max_sectors = round_down(lim->max_sectors, 432 logical_block_sectors); 433 434 /* 435 * Random default for the maximum number of segments. Driver should not 436 * rely on this and set their own. 437 */ 438 if (!lim->max_segments) 439 lim->max_segments = BLK_MAX_SEGMENTS; 440 441 if (lim->max_hw_wzeroes_unmap_sectors && 442 lim->max_hw_wzeroes_unmap_sectors != lim->max_write_zeroes_sectors) 443 return -EINVAL; 444 lim->max_wzeroes_unmap_sectors = min(lim->max_hw_wzeroes_unmap_sectors, 445 lim->max_user_wzeroes_unmap_sectors); 446 447 lim->max_discard_sectors = 448 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); 449 450 /* 451 * When discard is not supported, discard_granularity should be reported 452 * as 0 to userspace. 453 */ 454 if (lim->max_discard_sectors) 455 lim->discard_granularity = 456 max(lim->discard_granularity, lim->physical_block_size); 457 else 458 lim->discard_granularity = 0; 459 460 if (!lim->max_discard_segments) 461 lim->max_discard_segments = 1; 462 463 /* 464 * By default there is no limit on the segment boundary alignment, 465 * but if there is one it can't be smaller than the page size as 466 * that would break all the normal I/O patterns. 467 */ 468 if (!lim->seg_boundary_mask) 469 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 470 if (WARN_ON_ONCE(lim->seg_boundary_mask < BLK_MIN_SEGMENT_SIZE - 1)) 471 return -EINVAL; 472 473 /* 474 * Stacking device may have both virtual boundary and max segment 475 * size limit, so allow this setting now, and long-term the two 476 * might need to move out of stacking limits since we have immutable 477 * bvec and lower layer bio splitting is supposed to handle the two 478 * correctly. 479 */ 480 if (lim->virt_boundary_mask) { 481 if (!lim->max_segment_size) 482 lim->max_segment_size = UINT_MAX; 483 } else { 484 /* 485 * The maximum segment size has an odd historic 64k default that 486 * drivers probably should override. Just like the I/O size we 487 * require drivers to at least handle a full page per segment. 488 */ 489 if (!lim->max_segment_size) 490 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 491 if (WARN_ON_ONCE(lim->max_segment_size < BLK_MIN_SEGMENT_SIZE)) 492 return -EINVAL; 493 } 494 495 /* setup max segment size for building new segment in fast path */ 496 if (lim->seg_boundary_mask > lim->max_segment_size - 1) 497 seg_size = lim->max_segment_size; 498 else 499 seg_size = lim->seg_boundary_mask + 1; 500 lim->max_fast_segment_size = min_t(unsigned int, seg_size, PAGE_SIZE); 501 502 /* 503 * We require drivers to at least do logical block aligned I/O, but 504 * historically could not check for that due to the separate calls 505 * to set the limits. Once the transition is finished the check 506 * below should be narrowed down to check the logical block size. 507 */ 508 if (!lim->dma_alignment) 509 lim->dma_alignment = SECTOR_SIZE - 1; 510 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) 511 return -EINVAL; 512 513 if (lim->alignment_offset) { 514 lim->alignment_offset &= (lim->physical_block_size - 1); 515 lim->flags &= ~BLK_FLAG_MISALIGNED; 516 } 517 518 if (!(lim->features & BLK_FEAT_WRITE_CACHE)) 519 lim->features &= ~BLK_FEAT_FUA; 520 521 blk_validate_atomic_write_limits(lim); 522 523 err = blk_validate_integrity_limits(lim); 524 if (err) 525 return err; 526 return blk_validate_zoned_limits(lim); 527 } 528 EXPORT_SYMBOL_GPL(blk_validate_limits); 529 530 /* 531 * Set the default limits for a newly allocated queue. @lim contains the 532 * initial limits set by the driver, which could be no limit in which case 533 * all fields are cleared to zero. 534 */ 535 int blk_set_default_limits(struct queue_limits *lim) 536 { 537 /* 538 * Most defaults are set by capping the bounds in blk_validate_limits, 539 * but these limits are special and need an explicit initialization to 540 * the max value here. 541 */ 542 lim->max_user_discard_sectors = UINT_MAX; 543 lim->max_user_wzeroes_unmap_sectors = UINT_MAX; 544 return blk_validate_limits(lim); 545 } 546 547 /** 548 * queue_limits_commit_update - commit an atomic update of queue limits 549 * @q: queue to update 550 * @lim: limits to apply 551 * 552 * Apply the limits in @lim that were obtained from queue_limits_start_update() 553 * and updated by the caller to @q. The caller must have frozen the queue or 554 * ensure that there are no outstanding I/Os by other means. 555 * 556 * Returns 0 if successful, else a negative error code. 557 */ 558 int queue_limits_commit_update(struct request_queue *q, 559 struct queue_limits *lim) 560 { 561 int error; 562 563 lockdep_assert_held(&q->limits_lock); 564 565 error = blk_validate_limits(lim); 566 if (error) 567 goto out_unlock; 568 569 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 570 if (q->crypto_profile && lim->integrity.tag_size) { 571 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n"); 572 error = -EINVAL; 573 goto out_unlock; 574 } 575 #endif 576 577 q->limits = *lim; 578 if (q->disk) 579 blk_apply_bdi_limits(q->disk->bdi, lim); 580 out_unlock: 581 mutex_unlock(&q->limits_lock); 582 return error; 583 } 584 EXPORT_SYMBOL_GPL(queue_limits_commit_update); 585 586 /** 587 * queue_limits_commit_update_frozen - commit an atomic update of queue limits 588 * @q: queue to update 589 * @lim: limits to apply 590 * 591 * Apply the limits in @lim that were obtained from queue_limits_start_update() 592 * and updated with the new values by the caller to @q. Freezes the queue 593 * before the update and unfreezes it after. 594 * 595 * Returns 0 if successful, else a negative error code. 596 */ 597 int queue_limits_commit_update_frozen(struct request_queue *q, 598 struct queue_limits *lim) 599 { 600 unsigned int memflags; 601 int ret; 602 603 memflags = blk_mq_freeze_queue(q); 604 ret = queue_limits_commit_update(q, lim); 605 blk_mq_unfreeze_queue(q, memflags); 606 607 return ret; 608 } 609 EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen); 610 611 /** 612 * queue_limits_set - apply queue limits to queue 613 * @q: queue to update 614 * @lim: limits to apply 615 * 616 * Apply the limits in @lim that were freshly initialized to @q. 617 * To update existing limits use queue_limits_start_update() and 618 * queue_limits_commit_update() instead. 619 * 620 * Returns 0 if successful, else a negative error code. 621 */ 622 int queue_limits_set(struct request_queue *q, struct queue_limits *lim) 623 { 624 mutex_lock(&q->limits_lock); 625 return queue_limits_commit_update(q, lim); 626 } 627 EXPORT_SYMBOL_GPL(queue_limits_set); 628 629 static int queue_limit_alignment_offset(const struct queue_limits *lim, 630 sector_t sector) 631 { 632 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 633 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 634 << SECTOR_SHIFT; 635 636 return (granularity + lim->alignment_offset - alignment) % granularity; 637 } 638 639 static unsigned int queue_limit_discard_alignment( 640 const struct queue_limits *lim, sector_t sector) 641 { 642 unsigned int alignment, granularity, offset; 643 644 if (!lim->max_discard_sectors) 645 return 0; 646 647 /* Why are these in bytes, not sectors? */ 648 alignment = lim->discard_alignment >> SECTOR_SHIFT; 649 granularity = lim->discard_granularity >> SECTOR_SHIFT; 650 651 /* Offset of the partition start in 'granularity' sectors */ 652 offset = sector_div(sector, granularity); 653 654 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 655 offset = (granularity + alignment - offset) % granularity; 656 657 /* Turn it back into bytes, gaah */ 658 return offset << SECTOR_SHIFT; 659 } 660 661 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 662 { 663 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 664 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 665 sectors = PAGE_SIZE >> SECTOR_SHIFT; 666 return sectors; 667 } 668 669 /* Check if second and later bottom devices are compliant */ 670 static bool blk_stack_atomic_writes_tail(struct queue_limits *t, 671 struct queue_limits *b) 672 { 673 /* We're not going to support different boundary sizes.. yet */ 674 if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary) 675 return false; 676 677 /* Can't support this */ 678 if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max) 679 return false; 680 681 /* Or this */ 682 if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min) 683 return false; 684 685 t->atomic_write_hw_max = min(t->atomic_write_hw_max, 686 b->atomic_write_hw_max); 687 t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min, 688 b->atomic_write_hw_unit_min); 689 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max, 690 b->atomic_write_hw_unit_max); 691 return true; 692 } 693 694 static void blk_stack_atomic_writes_chunk_sectors(struct queue_limits *t) 695 { 696 unsigned int chunk_bytes; 697 698 if (!t->chunk_sectors) 699 return; 700 701 /* 702 * If chunk sectors is so large that its value in bytes overflows 703 * UINT_MAX, then just shift it down so it definitely will fit. 704 * We don't support atomic writes of such a large size anyway. 705 */ 706 if (check_shl_overflow(t->chunk_sectors, SECTOR_SHIFT, &chunk_bytes)) 707 chunk_bytes = t->chunk_sectors; 708 709 /* 710 * Find values for limits which work for chunk size. 711 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk 712 * size, as the chunk size is not restricted to a power-of-2. 713 * So we need to find highest power-of-2 which works for the chunk 714 * size. 715 * As an example scenario, we could have t->unit_max = 16K and 716 * t->chunk_sectors = 24KB. For this case, reduce t->unit_max to a 717 * value aligned with both limits, i.e. 8K in this example. 718 */ 719 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max, 720 max_pow_of_two_factor(chunk_bytes)); 721 722 t->atomic_write_hw_unit_min = min(t->atomic_write_hw_unit_min, 723 t->atomic_write_hw_unit_max); 724 t->atomic_write_hw_max = min(t->atomic_write_hw_max, chunk_bytes); 725 } 726 727 /* Check stacking of first bottom device */ 728 static bool blk_stack_atomic_writes_head(struct queue_limits *t, 729 struct queue_limits *b) 730 { 731 if (!blk_valid_atomic_writes_boundary(t->chunk_sectors, 732 b->atomic_write_hw_boundary >> SECTOR_SHIFT)) 733 return false; 734 735 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max; 736 t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min; 737 t->atomic_write_hw_max = b->atomic_write_hw_max; 738 t->atomic_write_hw_boundary = b->atomic_write_hw_boundary; 739 return true; 740 } 741 742 static void blk_stack_atomic_writes_limits(struct queue_limits *t, 743 struct queue_limits *b, sector_t start) 744 { 745 if (!(b->features & BLK_FEAT_ATOMIC_WRITES)) 746 goto unsupported; 747 748 if (!b->atomic_write_hw_unit_min) 749 goto unsupported; 750 751 if (!blk_atomic_write_start_sect_aligned(start, b)) 752 goto unsupported; 753 754 /* UINT_MAX indicates no stacking of bottom devices yet */ 755 if (t->atomic_write_hw_max == UINT_MAX) { 756 if (!blk_stack_atomic_writes_head(t, b)) 757 goto unsupported; 758 } else { 759 if (!blk_stack_atomic_writes_tail(t, b)) 760 goto unsupported; 761 } 762 blk_stack_atomic_writes_chunk_sectors(t); 763 return; 764 765 unsupported: 766 t->atomic_write_hw_max = 0; 767 t->atomic_write_hw_unit_max = 0; 768 t->atomic_write_hw_unit_min = 0; 769 t->atomic_write_hw_boundary = 0; 770 } 771 772 /** 773 * blk_stack_limits - adjust queue_limits for stacked devices 774 * @t: the stacking driver limits (top device) 775 * @b: the underlying queue limits (bottom, component device) 776 * @start: first data sector within component device 777 * 778 * Description: 779 * This function is used by stacking drivers like MD and DM to ensure 780 * that all component devices have compatible block sizes and 781 * alignments. The stacking driver must provide a queue_limits 782 * struct (top) and then iteratively call the stacking function for 783 * all component (bottom) devices. The stacking function will 784 * attempt to combine the values and ensure proper alignment. 785 * 786 * Returns 0 if the top and bottom queue_limits are compatible. The 787 * top device's block sizes and alignment offsets may be adjusted to 788 * ensure alignment with the bottom device. If no compatible sizes 789 * and alignments exist, -1 is returned and the resulting top 790 * queue_limits will have the misaligned flag set to indicate that 791 * the alignment_offset is undefined. 792 */ 793 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 794 sector_t start) 795 { 796 unsigned int top, bottom, alignment; 797 int ret = 0; 798 799 t->features |= (b->features & BLK_FEAT_INHERIT_MASK); 800 801 /* 802 * Some feaures need to be supported both by the stacking driver and all 803 * underlying devices. The stacking driver sets these flags before 804 * stacking the limits, and this will clear the flags if any of the 805 * underlying devices does not support it. 806 */ 807 if (!(b->features & BLK_FEAT_NOWAIT)) 808 t->features &= ~BLK_FEAT_NOWAIT; 809 if (!(b->features & BLK_FEAT_POLL)) 810 t->features &= ~BLK_FEAT_POLL; 811 812 t->flags |= (b->flags & BLK_FLAG_MISALIGNED); 813 814 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 815 t->max_user_sectors = min_not_zero(t->max_user_sectors, 816 b->max_user_sectors); 817 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 818 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 819 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 820 b->max_write_zeroes_sectors); 821 t->max_user_wzeroes_unmap_sectors = 822 min(t->max_user_wzeroes_unmap_sectors, 823 b->max_user_wzeroes_unmap_sectors); 824 t->max_hw_wzeroes_unmap_sectors = 825 min(t->max_hw_wzeroes_unmap_sectors, 826 b->max_hw_wzeroes_unmap_sectors); 827 828 t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors, 829 b->max_hw_zone_append_sectors); 830 831 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 832 b->seg_boundary_mask); 833 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 834 b->virt_boundary_mask); 835 836 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 837 t->max_discard_segments = min_not_zero(t->max_discard_segments, 838 b->max_discard_segments); 839 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 840 b->max_integrity_segments); 841 842 t->max_segment_size = min_not_zero(t->max_segment_size, 843 b->max_segment_size); 844 845 alignment = queue_limit_alignment_offset(b, start); 846 847 /* Bottom device has different alignment. Check that it is 848 * compatible with the current top alignment. 849 */ 850 if (t->alignment_offset != alignment) { 851 852 top = max(t->physical_block_size, t->io_min) 853 + t->alignment_offset; 854 bottom = max(b->physical_block_size, b->io_min) + alignment; 855 856 /* Verify that top and bottom intervals line up */ 857 if (max(top, bottom) % min(top, bottom)) { 858 t->flags |= BLK_FLAG_MISALIGNED; 859 ret = -1; 860 } 861 } 862 863 t->logical_block_size = max(t->logical_block_size, 864 b->logical_block_size); 865 866 t->physical_block_size = max(t->physical_block_size, 867 b->physical_block_size); 868 869 t->io_min = max(t->io_min, b->io_min); 870 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 871 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 872 873 /* Set non-power-of-2 compatible chunk_sectors boundary */ 874 if (b->chunk_sectors) 875 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 876 877 /* Physical block size a multiple of the logical block size? */ 878 if (t->physical_block_size & (t->logical_block_size - 1)) { 879 t->physical_block_size = t->logical_block_size; 880 t->flags |= BLK_FLAG_MISALIGNED; 881 ret = -1; 882 } 883 884 /* Minimum I/O a multiple of the physical block size? */ 885 if (t->io_min & (t->physical_block_size - 1)) { 886 t->io_min = t->physical_block_size; 887 t->flags |= BLK_FLAG_MISALIGNED; 888 ret = -1; 889 } 890 891 /* Optimal I/O a multiple of the physical block size? */ 892 if (t->io_opt & (t->physical_block_size - 1)) { 893 t->io_opt = 0; 894 t->flags |= BLK_FLAG_MISALIGNED; 895 ret = -1; 896 } 897 898 /* chunk_sectors a multiple of the physical block size? */ 899 if (t->chunk_sectors % (t->physical_block_size >> SECTOR_SHIFT)) { 900 t->chunk_sectors = 0; 901 t->flags |= BLK_FLAG_MISALIGNED; 902 ret = -1; 903 } 904 905 /* Find lowest common alignment_offset */ 906 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 907 % max(t->physical_block_size, t->io_min); 908 909 /* Verify that new alignment_offset is on a logical block boundary */ 910 if (t->alignment_offset & (t->logical_block_size - 1)) { 911 t->flags |= BLK_FLAG_MISALIGNED; 912 ret = -1; 913 } 914 915 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 916 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 917 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 918 919 /* Discard alignment and granularity */ 920 if (b->discard_granularity) { 921 alignment = queue_limit_discard_alignment(b, start); 922 923 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 924 b->max_discard_sectors); 925 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 926 b->max_hw_discard_sectors); 927 t->discard_granularity = max(t->discard_granularity, 928 b->discard_granularity); 929 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 930 t->discard_granularity; 931 } 932 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 933 b->max_secure_erase_sectors); 934 t->zone_write_granularity = max(t->zone_write_granularity, 935 b->zone_write_granularity); 936 if (!(t->features & BLK_FEAT_ZONED)) { 937 t->zone_write_granularity = 0; 938 t->max_zone_append_sectors = 0; 939 } 940 blk_stack_atomic_writes_limits(t, b, start); 941 942 return ret; 943 } 944 EXPORT_SYMBOL(blk_stack_limits); 945 946 /** 947 * queue_limits_stack_bdev - adjust queue_limits for stacked devices 948 * @t: the stacking driver limits (top device) 949 * @bdev: the underlying block device (bottom) 950 * @offset: offset to beginning of data within component device 951 * @pfx: prefix to use for warnings logged 952 * 953 * Description: 954 * This function is used by stacking drivers like MD and DM to ensure 955 * that all component devices have compatible block sizes and 956 * alignments. The stacking driver must provide a queue_limits 957 * struct (top) and then iteratively call the stacking function for 958 * all component (bottom) devices. The stacking function will 959 * attempt to combine the values and ensure proper alignment. 960 */ 961 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 962 sector_t offset, const char *pfx) 963 { 964 if (blk_stack_limits(t, bdev_limits(bdev), 965 get_start_sect(bdev) + offset)) 966 pr_notice("%s: Warning: Device %pg is misaligned\n", 967 pfx, bdev); 968 } 969 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); 970 971 /** 972 * queue_limits_stack_integrity - stack integrity profile 973 * @t: target queue limits 974 * @b: base queue limits 975 * 976 * Check if the integrity profile in the @b can be stacked into the 977 * target @t. Stacking is possible if either: 978 * 979 * a) does not have any integrity information stacked into it yet 980 * b) the integrity profile in @b is identical to the one in @t 981 * 982 * If @b can be stacked into @t, return %true. Else return %false and clear the 983 * integrity information in @t. 984 */ 985 bool queue_limits_stack_integrity(struct queue_limits *t, 986 struct queue_limits *b) 987 { 988 struct blk_integrity *ti = &t->integrity; 989 struct blk_integrity *bi = &b->integrity; 990 991 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 992 return true; 993 994 if (ti->flags & BLK_INTEGRITY_STACKED) { 995 if (ti->metadata_size != bi->metadata_size) 996 goto incompatible; 997 if (ti->interval_exp != bi->interval_exp) 998 goto incompatible; 999 if (ti->tag_size != bi->tag_size) 1000 goto incompatible; 1001 if (ti->csum_type != bi->csum_type) 1002 goto incompatible; 1003 if (ti->pi_tuple_size != bi->pi_tuple_size) 1004 goto incompatible; 1005 if ((ti->flags & BLK_INTEGRITY_REF_TAG) != 1006 (bi->flags & BLK_INTEGRITY_REF_TAG)) 1007 goto incompatible; 1008 } else { 1009 ti->flags = BLK_INTEGRITY_STACKED; 1010 ti->flags |= (bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) | 1011 (bi->flags & BLK_INTEGRITY_REF_TAG); 1012 ti->csum_type = bi->csum_type; 1013 ti->pi_tuple_size = bi->pi_tuple_size; 1014 ti->metadata_size = bi->metadata_size; 1015 ti->pi_offset = bi->pi_offset; 1016 ti->interval_exp = bi->interval_exp; 1017 ti->tag_size = bi->tag_size; 1018 } 1019 return true; 1020 1021 incompatible: 1022 memset(ti, 0, sizeof(*ti)); 1023 return false; 1024 } 1025 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity); 1026 1027 /** 1028 * blk_set_queue_depth - tell the block layer about the device queue depth 1029 * @q: the request queue for the device 1030 * @depth: queue depth 1031 * 1032 */ 1033 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 1034 { 1035 q->queue_depth = depth; 1036 rq_qos_queue_depth_changed(q); 1037 } 1038 EXPORT_SYMBOL(blk_set_queue_depth); 1039 1040 int bdev_alignment_offset(struct block_device *bdev) 1041 { 1042 struct request_queue *q = bdev_get_queue(bdev); 1043 1044 if (q->limits.flags & BLK_FLAG_MISALIGNED) 1045 return -1; 1046 if (bdev_is_partition(bdev)) 1047 return queue_limit_alignment_offset(&q->limits, 1048 bdev->bd_start_sect); 1049 return q->limits.alignment_offset; 1050 } 1051 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 1052 1053 unsigned int bdev_discard_alignment(struct block_device *bdev) 1054 { 1055 struct request_queue *q = bdev_get_queue(bdev); 1056 1057 if (bdev_is_partition(bdev)) 1058 return queue_limit_discard_alignment(&q->limits, 1059 bdev->bd_start_sect); 1060 return q->limits.discard_alignment; 1061 } 1062 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 1063