xref: /linux/block/blk-settings.c (revision c31f4aa8fed048fa70e742c4bb49bb48dc489ab3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/t10-pi.h>
18 #include <linux/crc64.h>
19 
20 #include "blk.h"
21 #include "blk-rq-qos.h"
22 #include "blk-wbt.h"
23 
24 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
25 {
26 	WRITE_ONCE(q->rq_timeout, timeout);
27 }
28 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
29 
30 /**
31  * blk_set_stacking_limits - set default limits for stacking devices
32  * @lim:  the queue_limits structure to reset
33  *
34  * Prepare queue limits for applying limits from underlying devices using
35  * blk_stack_limits().
36  */
37 void blk_set_stacking_limits(struct queue_limits *lim)
38 {
39 	memset(lim, 0, sizeof(*lim));
40 	lim->logical_block_size = SECTOR_SIZE;
41 	lim->physical_block_size = SECTOR_SIZE;
42 	lim->io_min = SECTOR_SIZE;
43 	lim->discard_granularity = SECTOR_SIZE;
44 	lim->dma_alignment = SECTOR_SIZE - 1;
45 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
46 
47 	/* Inherit limits from component devices */
48 	lim->max_segments = USHRT_MAX;
49 	lim->max_discard_segments = USHRT_MAX;
50 	lim->max_hw_sectors = UINT_MAX;
51 	lim->max_segment_size = UINT_MAX;
52 	lim->max_sectors = UINT_MAX;
53 	lim->max_dev_sectors = UINT_MAX;
54 	lim->max_write_zeroes_sectors = UINT_MAX;
55 	lim->max_hw_wzeroes_unmap_sectors = UINT_MAX;
56 	lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
57 	lim->max_hw_zone_append_sectors = UINT_MAX;
58 	lim->max_user_discard_sectors = UINT_MAX;
59 	lim->atomic_write_hw_max = UINT_MAX;
60 }
61 EXPORT_SYMBOL(blk_set_stacking_limits);
62 
63 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
64 		struct queue_limits *lim)
65 {
66 	u64 io_opt = lim->io_opt;
67 
68 	/*
69 	 * For read-ahead of large files to be effective, we need to read ahead
70 	 * at least twice the optimal I/O size. For rotational devices that do
71 	 * not report an optimal I/O size (e.g. ATA HDDs), use the maximum I/O
72 	 * size to avoid falling back to the (rather inefficient) small default
73 	 * read-ahead size.
74 	 *
75 	 * There is no hardware limitation for the read-ahead size and the user
76 	 * might have increased the read-ahead size through sysfs, so don't ever
77 	 * decrease it.
78 	 */
79 	if (!io_opt && (lim->features & BLK_FEAT_ROTATIONAL))
80 		io_opt = (u64)lim->max_sectors << SECTOR_SHIFT;
81 
82 	bdi->ra_pages = max3(bdi->ra_pages,
83 				io_opt * 2 >> PAGE_SHIFT,
84 				VM_READAHEAD_PAGES);
85 	bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
86 }
87 
88 static int blk_validate_zoned_limits(struct queue_limits *lim)
89 {
90 	if (!(lim->features & BLK_FEAT_ZONED)) {
91 		if (WARN_ON_ONCE(lim->max_open_zones) ||
92 		    WARN_ON_ONCE(lim->max_active_zones) ||
93 		    WARN_ON_ONCE(lim->zone_write_granularity) ||
94 		    WARN_ON_ONCE(lim->max_zone_append_sectors))
95 			return -EINVAL;
96 		return 0;
97 	}
98 
99 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
100 		return -EINVAL;
101 
102 	/*
103 	 * Given that active zones include open zones, the maximum number of
104 	 * open zones cannot be larger than the maximum number of active zones.
105 	 */
106 	if (lim->max_active_zones &&
107 	    lim->max_open_zones > lim->max_active_zones)
108 		return -EINVAL;
109 
110 	if (lim->zone_write_granularity < lim->logical_block_size)
111 		lim->zone_write_granularity = lim->logical_block_size;
112 
113 	/*
114 	 * The Zone Append size is limited by the maximum I/O size and the zone
115 	 * size given that it can't span zones.
116 	 *
117 	 * If no max_hw_zone_append_sectors limit is provided, the block layer
118 	 * will emulated it, else we're also bound by the hardware limit.
119 	 */
120 	lim->max_zone_append_sectors =
121 		min_not_zero(lim->max_hw_zone_append_sectors,
122 			min(lim->chunk_sectors, lim->max_hw_sectors));
123 	return 0;
124 }
125 
126 /*
127  * Maximum size of I/O that needs a block layer integrity buffer.  Limited
128  * by the number of intervals for which we can fit the integrity buffer into
129  * the buffer size.  Because the buffer is a single segment it is also limited
130  * by the maximum segment size.
131  */
132 static inline unsigned int max_integrity_io_size(struct queue_limits *lim)
133 {
134 	return min_t(unsigned int, lim->max_segment_size,
135 		(BLK_INTEGRITY_MAX_SIZE / lim->integrity.metadata_size) <<
136 			lim->integrity.interval_exp);
137 }
138 
139 static int blk_validate_integrity_limits(struct queue_limits *lim)
140 {
141 	struct blk_integrity *bi = &lim->integrity;
142 
143 	if (!bi->metadata_size) {
144 		if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
145 		    bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
146 			pr_warn("invalid PI settings.\n");
147 			return -EINVAL;
148 		}
149 		bi->flags |= BLK_INTEGRITY_NOGENERATE | BLK_INTEGRITY_NOVERIFY;
150 		return 0;
151 	}
152 
153 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
154 		pr_warn("integrity support disabled.\n");
155 		return -EINVAL;
156 	}
157 
158 	if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
159 	    (bi->flags & BLK_INTEGRITY_REF_TAG)) {
160 		pr_warn("ref tag not support without checksum.\n");
161 		return -EINVAL;
162 	}
163 
164 	if (bi->pi_offset + bi->pi_tuple_size > bi->metadata_size) {
165 		pr_warn("pi_offset (%u) + pi_tuple_size (%u) exceeds metadata_size (%u)\n",
166 			bi->pi_offset, bi->pi_tuple_size, bi->metadata_size);
167 		return -EINVAL;
168 	}
169 
170 	switch (bi->csum_type) {
171 	case BLK_INTEGRITY_CSUM_NONE:
172 		if (bi->pi_tuple_size) {
173 			pr_warn("pi_tuple_size must be 0 when checksum type is none\n");
174 			return -EINVAL;
175 		}
176 		break;
177 	case BLK_INTEGRITY_CSUM_CRC:
178 	case BLK_INTEGRITY_CSUM_IP:
179 		if (bi->pi_tuple_size != sizeof(struct t10_pi_tuple)) {
180 			pr_warn("pi_tuple_size mismatch for T10 PI: expected %zu, got %u\n",
181 				 sizeof(struct t10_pi_tuple),
182 				 bi->pi_tuple_size);
183 			return -EINVAL;
184 		}
185 		break;
186 	case BLK_INTEGRITY_CSUM_CRC64:
187 		if (bi->pi_tuple_size != sizeof(struct crc64_pi_tuple)) {
188 			pr_warn("pi_tuple_size mismatch for CRC64 PI: expected %zu, got %u\n",
189 				 sizeof(struct crc64_pi_tuple),
190 				 bi->pi_tuple_size);
191 			return -EINVAL;
192 		}
193 		break;
194 	}
195 
196 	if (!bi->interval_exp) {
197 		bi->interval_exp = ilog2(lim->logical_block_size);
198 	} else if (bi->interval_exp < SECTOR_SHIFT ||
199 		   bi->interval_exp > ilog2(lim->logical_block_size)) {
200 		pr_warn("invalid interval_exp %u\n", bi->interval_exp);
201 		return -EINVAL;
202 	}
203 
204 	/*
205 	 * The PI generation / validation helpers do not expect intervals to
206 	 * straddle multiple bio_vecs.  Enforce alignment so that those are
207 	 * never generated, and that each buffer is aligned as expected.
208 	 */
209 	if (bi->csum_type) {
210 		lim->dma_alignment = max(lim->dma_alignment,
211 					(1U << bi->interval_exp) - 1);
212 	}
213 
214 	/*
215 	 * The block layer automatically adds integrity data for bios that don't
216 	 * already have it.  Limit the I/O size so that a single maximum size
217 	 * metadata segment can cover the integrity data for the entire I/O.
218 	 */
219 	lim->max_sectors = min(lim->max_sectors,
220 		max_integrity_io_size(lim) >> SECTOR_SHIFT);
221 
222 	return 0;
223 }
224 
225 /*
226  * Returns max guaranteed bytes which we can fit in a bio.
227  *
228  * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
229  * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
230  * the first and last segments.
231  */
232 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
233 {
234 	unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
235 	unsigned int length;
236 
237 	length = min(max_segments, 2) * lim->logical_block_size;
238 	if (max_segments > 2)
239 		length += (max_segments - 2) * PAGE_SIZE;
240 
241 	return length;
242 }
243 
244 static void blk_atomic_writes_update_limits(struct queue_limits *lim)
245 {
246 	unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
247 					blk_queue_max_guaranteed_bio(lim));
248 
249 	unit_limit = rounddown_pow_of_two(unit_limit);
250 
251 	lim->atomic_write_max_sectors =
252 		min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
253 			lim->max_hw_sectors);
254 	lim->atomic_write_unit_min =
255 		min(lim->atomic_write_hw_unit_min, unit_limit);
256 	lim->atomic_write_unit_max =
257 		min(lim->atomic_write_hw_unit_max, unit_limit);
258 	lim->atomic_write_boundary_sectors =
259 		lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
260 }
261 
262 /*
263  * Test whether any boundary is aligned with any chunk size. Stacked
264  * devices store any stripe size in t->chunk_sectors.
265  */
266 static bool blk_valid_atomic_writes_boundary(unsigned int chunk_sectors,
267 					unsigned int boundary_sectors)
268 {
269 	if (!chunk_sectors || !boundary_sectors)
270 		return true;
271 
272 	if (boundary_sectors > chunk_sectors &&
273 	    boundary_sectors % chunk_sectors)
274 		return false;
275 
276 	if (chunk_sectors > boundary_sectors &&
277 	    chunk_sectors % boundary_sectors)
278 		return false;
279 
280 	return true;
281 }
282 
283 static void blk_validate_atomic_write_limits(struct queue_limits *lim)
284 {
285 	unsigned int boundary_sectors;
286 	unsigned int atomic_write_hw_max_sectors =
287 			lim->atomic_write_hw_max >> SECTOR_SHIFT;
288 
289 	if (!(lim->features & BLK_FEAT_ATOMIC_WRITES))
290 		goto unsupported;
291 
292 	/* UINT_MAX indicates stacked limits in initial state */
293 	if (lim->atomic_write_hw_max == UINT_MAX)
294 		goto unsupported;
295 
296 	if (!lim->atomic_write_hw_max)
297 		goto unsupported;
298 
299 	if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
300 		goto unsupported;
301 
302 	if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
303 		goto unsupported;
304 
305 	if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
306 			 lim->atomic_write_hw_unit_max))
307 		goto unsupported;
308 
309 	if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
310 			 lim->atomic_write_hw_max))
311 		goto unsupported;
312 
313 	if (WARN_ON_ONCE(lim->chunk_sectors &&
314 			atomic_write_hw_max_sectors > lim->chunk_sectors))
315 		goto unsupported;
316 
317 	boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
318 
319 	if (boundary_sectors) {
320 		if (WARN_ON_ONCE(lim->atomic_write_hw_max >
321 				 lim->atomic_write_hw_boundary))
322 			goto unsupported;
323 
324 		if (WARN_ON_ONCE(!blk_valid_atomic_writes_boundary(
325 			lim->chunk_sectors, boundary_sectors)))
326 			goto unsupported;
327 
328 		/*
329 		 * The boundary size just needs to be a multiple of unit_max
330 		 * (and not necessarily a power-of-2), so this following check
331 		 * could be relaxed in future.
332 		 * Furthermore, if needed, unit_max could even be reduced so
333 		 * that it is compliant with a !power-of-2 boundary.
334 		 */
335 		if (!is_power_of_2(boundary_sectors))
336 			goto unsupported;
337 	}
338 
339 	blk_atomic_writes_update_limits(lim);
340 	return;
341 
342 unsupported:
343 	lim->atomic_write_max_sectors = 0;
344 	lim->atomic_write_boundary_sectors = 0;
345 	lim->atomic_write_unit_min = 0;
346 	lim->atomic_write_unit_max = 0;
347 }
348 
349 /*
350  * Check that the limits in lim are valid, initialize defaults for unset
351  * values, and cap values based on others where needed.
352  */
353 int blk_validate_limits(struct queue_limits *lim)
354 {
355 	unsigned int max_hw_sectors;
356 	unsigned int logical_block_sectors;
357 	unsigned long seg_size;
358 	int err;
359 
360 	/*
361 	 * Unless otherwise specified, default to 512 byte logical blocks and a
362 	 * physical block size equal to the logical block size.
363 	 */
364 	if (!lim->logical_block_size)
365 		lim->logical_block_size = SECTOR_SIZE;
366 	else if (blk_validate_block_size(lim->logical_block_size)) {
367 		pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
368 		return -EINVAL;
369 	}
370 	if (lim->physical_block_size < lim->logical_block_size) {
371 		lim->physical_block_size = lim->logical_block_size;
372 	} else if (!is_power_of_2(lim->physical_block_size)) {
373 		pr_warn("Invalid physical block size (%d)\n", lim->physical_block_size);
374 		return -EINVAL;
375 	}
376 
377 	/*
378 	 * The minimum I/O size defaults to the physical block size unless
379 	 * explicitly overridden.
380 	 */
381 	if (lim->io_min < lim->physical_block_size)
382 		lim->io_min = lim->physical_block_size;
383 
384 	/*
385 	 * The optimal I/O size may not be aligned to physical block size
386 	 * (because it may be limited by dma engines which have no clue about
387 	 * block size of the disks attached to them), so we round it down here.
388 	 */
389 	lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
390 
391 	/*
392 	 * max_hw_sectors has a somewhat weird default for historical reason,
393 	 * but driver really should set their own instead of relying on this
394 	 * value.
395 	 *
396 	 * The block layer relies on the fact that every driver can
397 	 * handle at lest a page worth of data per I/O, and needs the value
398 	 * aligned to the logical block size.
399 	 */
400 	if (!lim->max_hw_sectors)
401 		lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
402 	if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
403 		return -EINVAL;
404 	logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
405 	if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
406 		return -EINVAL;
407 	lim->max_hw_sectors = round_down(lim->max_hw_sectors,
408 			logical_block_sectors);
409 
410 	/*
411 	 * The actual max_sectors value is a complex beast and also takes the
412 	 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
413 	 * value into account.  The ->max_sectors value is always calculated
414 	 * from these, so directly setting it won't have any effect.
415 	 */
416 	max_hw_sectors = min_not_zero(lim->max_hw_sectors,
417 				lim->max_dev_sectors);
418 	if (lim->max_user_sectors) {
419 		if (lim->max_user_sectors < BLK_MIN_SEGMENT_SIZE / SECTOR_SIZE)
420 			return -EINVAL;
421 		lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
422 	} else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
423 		lim->max_sectors =
424 			min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
425 	} else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
426 		lim->max_sectors =
427 			min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
428 	} else {
429 		lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
430 	}
431 	lim->max_sectors = round_down(lim->max_sectors,
432 			logical_block_sectors);
433 
434 	/*
435 	 * Random default for the maximum number of segments.  Driver should not
436 	 * rely on this and set their own.
437 	 */
438 	if (!lim->max_segments)
439 		lim->max_segments = BLK_MAX_SEGMENTS;
440 
441 	if (lim->max_hw_wzeroes_unmap_sectors &&
442 	    lim->max_hw_wzeroes_unmap_sectors != lim->max_write_zeroes_sectors)
443 		return -EINVAL;
444 	lim->max_wzeroes_unmap_sectors = min(lim->max_hw_wzeroes_unmap_sectors,
445 			lim->max_user_wzeroes_unmap_sectors);
446 
447 	lim->max_discard_sectors =
448 		min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
449 
450 	/*
451 	 * When discard is not supported, discard_granularity should be reported
452 	 * as 0 to userspace.
453 	 */
454 	if (lim->max_discard_sectors)
455 		lim->discard_granularity =
456 			max(lim->discard_granularity, lim->physical_block_size);
457 	else
458 		lim->discard_granularity = 0;
459 
460 	if (!lim->max_discard_segments)
461 		lim->max_discard_segments = 1;
462 
463 	/*
464 	 * By default there is no limit on the segment boundary alignment,
465 	 * but if there is one it can't be smaller than the page size as
466 	 * that would break all the normal I/O patterns.
467 	 */
468 	if (!lim->seg_boundary_mask)
469 		lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
470 	if (WARN_ON_ONCE(lim->seg_boundary_mask < BLK_MIN_SEGMENT_SIZE - 1))
471 		return -EINVAL;
472 
473 	/*
474 	 * Stacking device may have both virtual boundary and max segment
475 	 * size limit, so allow this setting now, and long-term the two
476 	 * might need to move out of stacking limits since we have immutable
477 	 * bvec and lower layer bio splitting is supposed to handle the two
478 	 * correctly.
479 	 */
480 	if (lim->virt_boundary_mask) {
481 		if (!lim->max_segment_size)
482 			lim->max_segment_size = UINT_MAX;
483 	} else {
484 		/*
485 		 * The maximum segment size has an odd historic 64k default that
486 		 * drivers probably should override.  Just like the I/O size we
487 		 * require drivers to at least handle a full page per segment.
488 		 */
489 		if (!lim->max_segment_size)
490 			lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
491 		if (WARN_ON_ONCE(lim->max_segment_size < BLK_MIN_SEGMENT_SIZE))
492 			return -EINVAL;
493 	}
494 
495 	/* setup max segment size for building new segment in fast path */
496 	if (lim->seg_boundary_mask > lim->max_segment_size - 1)
497 		seg_size = lim->max_segment_size;
498 	else
499 		seg_size = lim->seg_boundary_mask + 1;
500 	lim->max_fast_segment_size = min_t(unsigned int, seg_size, PAGE_SIZE);
501 
502 	/*
503 	 * We require drivers to at least do logical block aligned I/O, but
504 	 * historically could not check for that due to the separate calls
505 	 * to set the limits.  Once the transition is finished the check
506 	 * below should be narrowed down to check the logical block size.
507 	 */
508 	if (!lim->dma_alignment)
509 		lim->dma_alignment = SECTOR_SIZE - 1;
510 	if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
511 		return -EINVAL;
512 
513 	if (lim->alignment_offset) {
514 		lim->alignment_offset &= (lim->physical_block_size - 1);
515 		lim->flags &= ~BLK_FLAG_MISALIGNED;
516 	}
517 
518 	if (!(lim->features & BLK_FEAT_WRITE_CACHE))
519 		lim->features &= ~BLK_FEAT_FUA;
520 
521 	blk_validate_atomic_write_limits(lim);
522 
523 	err = blk_validate_integrity_limits(lim);
524 	if (err)
525 		return err;
526 	return blk_validate_zoned_limits(lim);
527 }
528 EXPORT_SYMBOL_GPL(blk_validate_limits);
529 
530 /*
531  * Set the default limits for a newly allocated queue.  @lim contains the
532  * initial limits set by the driver, which could be no limit in which case
533  * all fields are cleared to zero.
534  */
535 int blk_set_default_limits(struct queue_limits *lim)
536 {
537 	/*
538 	 * Most defaults are set by capping the bounds in blk_validate_limits,
539 	 * but these limits are special and need an explicit initialization to
540 	 * the max value here.
541 	 */
542 	lim->max_user_discard_sectors = UINT_MAX;
543 	lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
544 	return blk_validate_limits(lim);
545 }
546 
547 /**
548  * queue_limits_commit_update - commit an atomic update of queue limits
549  * @q:		queue to update
550  * @lim:	limits to apply
551  *
552  * Apply the limits in @lim that were obtained from queue_limits_start_update()
553  * and updated by the caller to @q.  The caller must have frozen the queue or
554  * ensure that there are no outstanding I/Os by other means.
555  *
556  * Returns 0 if successful, else a negative error code.
557  */
558 int queue_limits_commit_update(struct request_queue *q,
559 		struct queue_limits *lim)
560 {
561 	int error;
562 
563 	lockdep_assert_held(&q->limits_lock);
564 
565 	error = blk_validate_limits(lim);
566 	if (error)
567 		goto out_unlock;
568 
569 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
570 	if (q->crypto_profile && lim->integrity.tag_size) {
571 		pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
572 		error = -EINVAL;
573 		goto out_unlock;
574 	}
575 #endif
576 
577 	q->limits = *lim;
578 	if (q->disk)
579 		blk_apply_bdi_limits(q->disk->bdi, lim);
580 out_unlock:
581 	mutex_unlock(&q->limits_lock);
582 	return error;
583 }
584 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
585 
586 /**
587  * queue_limits_commit_update_frozen - commit an atomic update of queue limits
588  * @q:		queue to update
589  * @lim:	limits to apply
590  *
591  * Apply the limits in @lim that were obtained from queue_limits_start_update()
592  * and updated with the new values by the caller to @q.  Freezes the queue
593  * before the update and unfreezes it after.
594  *
595  * Returns 0 if successful, else a negative error code.
596  */
597 int queue_limits_commit_update_frozen(struct request_queue *q,
598 		struct queue_limits *lim)
599 {
600 	unsigned int memflags;
601 	int ret;
602 
603 	memflags = blk_mq_freeze_queue(q);
604 	ret = queue_limits_commit_update(q, lim);
605 	blk_mq_unfreeze_queue(q, memflags);
606 
607 	return ret;
608 }
609 EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen);
610 
611 /**
612  * queue_limits_set - apply queue limits to queue
613  * @q:		queue to update
614  * @lim:	limits to apply
615  *
616  * Apply the limits in @lim that were freshly initialized to @q.
617  * To update existing limits use queue_limits_start_update() and
618  * queue_limits_commit_update() instead.
619  *
620  * Returns 0 if successful, else a negative error code.
621  */
622 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
623 {
624 	mutex_lock(&q->limits_lock);
625 	return queue_limits_commit_update(q, lim);
626 }
627 EXPORT_SYMBOL_GPL(queue_limits_set);
628 
629 static int queue_limit_alignment_offset(const struct queue_limits *lim,
630 		sector_t sector)
631 {
632 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
633 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
634 		<< SECTOR_SHIFT;
635 
636 	return (granularity + lim->alignment_offset - alignment) % granularity;
637 }
638 
639 static unsigned int queue_limit_discard_alignment(
640 		const struct queue_limits *lim, sector_t sector)
641 {
642 	unsigned int alignment, granularity, offset;
643 
644 	if (!lim->max_discard_sectors)
645 		return 0;
646 
647 	/* Why are these in bytes, not sectors? */
648 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
649 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
650 
651 	/* Offset of the partition start in 'granularity' sectors */
652 	offset = sector_div(sector, granularity);
653 
654 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
655 	offset = (granularity + alignment - offset) % granularity;
656 
657 	/* Turn it back into bytes, gaah */
658 	return offset << SECTOR_SHIFT;
659 }
660 
661 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
662 {
663 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
664 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
665 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
666 	return sectors;
667 }
668 
669 /* Check if second and later bottom devices are compliant */
670 static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
671 				struct queue_limits *b)
672 {
673 	/* We're not going to support different boundary sizes.. yet */
674 	if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
675 		return false;
676 
677 	/* Can't support this */
678 	if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
679 		return false;
680 
681 	/* Or this */
682 	if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
683 		return false;
684 
685 	t->atomic_write_hw_max = min(t->atomic_write_hw_max,
686 				b->atomic_write_hw_max);
687 	t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
688 				b->atomic_write_hw_unit_min);
689 	t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
690 				b->atomic_write_hw_unit_max);
691 	return true;
692 }
693 
694 static void blk_stack_atomic_writes_chunk_sectors(struct queue_limits *t)
695 {
696 	unsigned int chunk_bytes;
697 
698 	if (!t->chunk_sectors)
699 		return;
700 
701 	/*
702 	 * If chunk sectors is so large that its value in bytes overflows
703 	 * UINT_MAX, then just shift it down so it definitely will fit.
704 	 * We don't support atomic writes of such a large size anyway.
705 	 */
706 	if (check_shl_overflow(t->chunk_sectors, SECTOR_SHIFT, &chunk_bytes))
707 		chunk_bytes = t->chunk_sectors;
708 
709 	/*
710 	 * Find values for limits which work for chunk size.
711 	 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
712 	 * size, as the chunk size is not restricted to a power-of-2.
713 	 * So we need to find highest power-of-2 which works for the chunk
714 	 * size.
715 	 * As an example scenario, we could have t->unit_max = 16K and
716 	 * t->chunk_sectors = 24KB. For this case, reduce t->unit_max to a
717 	 * value aligned with both limits, i.e. 8K in this example.
718 	 */
719 	t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
720 					max_pow_of_two_factor(chunk_bytes));
721 
722 	t->atomic_write_hw_unit_min = min(t->atomic_write_hw_unit_min,
723 					  t->atomic_write_hw_unit_max);
724 	t->atomic_write_hw_max = min(t->atomic_write_hw_max, chunk_bytes);
725 }
726 
727 /* Check stacking of first bottom device */
728 static bool blk_stack_atomic_writes_head(struct queue_limits *t,
729 				struct queue_limits *b)
730 {
731 	if (!blk_valid_atomic_writes_boundary(t->chunk_sectors,
732 			b->atomic_write_hw_boundary >> SECTOR_SHIFT))
733 		return false;
734 
735 	t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
736 	t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
737 	t->atomic_write_hw_max = b->atomic_write_hw_max;
738 	t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
739 	return true;
740 }
741 
742 static void blk_stack_atomic_writes_limits(struct queue_limits *t,
743 				struct queue_limits *b, sector_t start)
744 {
745 	if (!(b->features & BLK_FEAT_ATOMIC_WRITES))
746 		goto unsupported;
747 
748 	if (!b->atomic_write_hw_unit_min)
749 		goto unsupported;
750 
751 	if (!blk_atomic_write_start_sect_aligned(start, b))
752 		goto unsupported;
753 
754 	/* UINT_MAX indicates no stacking of bottom devices yet */
755 	if (t->atomic_write_hw_max == UINT_MAX) {
756 		if (!blk_stack_atomic_writes_head(t, b))
757 			goto unsupported;
758 	} else {
759 		if (!blk_stack_atomic_writes_tail(t, b))
760 			goto unsupported;
761 	}
762 	blk_stack_atomic_writes_chunk_sectors(t);
763 	return;
764 
765 unsupported:
766 	t->atomic_write_hw_max = 0;
767 	t->atomic_write_hw_unit_max = 0;
768 	t->atomic_write_hw_unit_min = 0;
769 	t->atomic_write_hw_boundary = 0;
770 }
771 
772 /**
773  * blk_stack_limits - adjust queue_limits for stacked devices
774  * @t:	the stacking driver limits (top device)
775  * @b:  the underlying queue limits (bottom, component device)
776  * @start:  first data sector within component device
777  *
778  * Description:
779  *    This function is used by stacking drivers like MD and DM to ensure
780  *    that all component devices have compatible block sizes and
781  *    alignments.  The stacking driver must provide a queue_limits
782  *    struct (top) and then iteratively call the stacking function for
783  *    all component (bottom) devices.  The stacking function will
784  *    attempt to combine the values and ensure proper alignment.
785  *
786  *    Returns 0 if the top and bottom queue_limits are compatible.  The
787  *    top device's block sizes and alignment offsets may be adjusted to
788  *    ensure alignment with the bottom device. If no compatible sizes
789  *    and alignments exist, -1 is returned and the resulting top
790  *    queue_limits will have the misaligned flag set to indicate that
791  *    the alignment_offset is undefined.
792  */
793 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
794 		     sector_t start)
795 {
796 	unsigned int top, bottom, alignment;
797 	int ret = 0;
798 
799 	t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
800 
801 	/*
802 	 * Some feaures need to be supported both by the stacking driver and all
803 	 * underlying devices.  The stacking driver sets these flags before
804 	 * stacking the limits, and this will clear the flags if any of the
805 	 * underlying devices does not support it.
806 	 */
807 	if (!(b->features & BLK_FEAT_NOWAIT))
808 		t->features &= ~BLK_FEAT_NOWAIT;
809 	if (!(b->features & BLK_FEAT_POLL))
810 		t->features &= ~BLK_FEAT_POLL;
811 
812 	t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
813 
814 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
815 	t->max_user_sectors = min_not_zero(t->max_user_sectors,
816 			b->max_user_sectors);
817 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
818 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
819 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
820 					b->max_write_zeroes_sectors);
821 	t->max_user_wzeroes_unmap_sectors =
822 			min(t->max_user_wzeroes_unmap_sectors,
823 			    b->max_user_wzeroes_unmap_sectors);
824 	t->max_hw_wzeroes_unmap_sectors =
825 			min(t->max_hw_wzeroes_unmap_sectors,
826 			    b->max_hw_wzeroes_unmap_sectors);
827 
828 	t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
829 					b->max_hw_zone_append_sectors);
830 
831 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
832 					    b->seg_boundary_mask);
833 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
834 					    b->virt_boundary_mask);
835 
836 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
837 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
838 					       b->max_discard_segments);
839 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
840 						 b->max_integrity_segments);
841 
842 	t->max_segment_size = min_not_zero(t->max_segment_size,
843 					   b->max_segment_size);
844 
845 	alignment = queue_limit_alignment_offset(b, start);
846 
847 	/* Bottom device has different alignment.  Check that it is
848 	 * compatible with the current top alignment.
849 	 */
850 	if (t->alignment_offset != alignment) {
851 
852 		top = max(t->physical_block_size, t->io_min)
853 			+ t->alignment_offset;
854 		bottom = max(b->physical_block_size, b->io_min) + alignment;
855 
856 		/* Verify that top and bottom intervals line up */
857 		if (max(top, bottom) % min(top, bottom)) {
858 			t->flags |= BLK_FLAG_MISALIGNED;
859 			ret = -1;
860 		}
861 	}
862 
863 	t->logical_block_size = max(t->logical_block_size,
864 				    b->logical_block_size);
865 
866 	t->physical_block_size = max(t->physical_block_size,
867 				     b->physical_block_size);
868 
869 	t->io_min = max(t->io_min, b->io_min);
870 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
871 	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
872 
873 	/* Set non-power-of-2 compatible chunk_sectors boundary */
874 	if (b->chunk_sectors)
875 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
876 
877 	/* Physical block size a multiple of the logical block size? */
878 	if (t->physical_block_size & (t->logical_block_size - 1)) {
879 		t->physical_block_size = t->logical_block_size;
880 		t->flags |= BLK_FLAG_MISALIGNED;
881 		ret = -1;
882 	}
883 
884 	/* Minimum I/O a multiple of the physical block size? */
885 	if (t->io_min & (t->physical_block_size - 1)) {
886 		t->io_min = t->physical_block_size;
887 		t->flags |= BLK_FLAG_MISALIGNED;
888 		ret = -1;
889 	}
890 
891 	/* Optimal I/O a multiple of the physical block size? */
892 	if (t->io_opt & (t->physical_block_size - 1)) {
893 		t->io_opt = 0;
894 		t->flags |= BLK_FLAG_MISALIGNED;
895 		ret = -1;
896 	}
897 
898 	/* chunk_sectors a multiple of the physical block size? */
899 	if (t->chunk_sectors % (t->physical_block_size >> SECTOR_SHIFT)) {
900 		t->chunk_sectors = 0;
901 		t->flags |= BLK_FLAG_MISALIGNED;
902 		ret = -1;
903 	}
904 
905 	/* Find lowest common alignment_offset */
906 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
907 		% max(t->physical_block_size, t->io_min);
908 
909 	/* Verify that new alignment_offset is on a logical block boundary */
910 	if (t->alignment_offset & (t->logical_block_size - 1)) {
911 		t->flags |= BLK_FLAG_MISALIGNED;
912 		ret = -1;
913 	}
914 
915 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
916 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
917 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
918 
919 	/* Discard alignment and granularity */
920 	if (b->discard_granularity) {
921 		alignment = queue_limit_discard_alignment(b, start);
922 
923 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
924 						      b->max_discard_sectors);
925 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
926 							 b->max_hw_discard_sectors);
927 		t->discard_granularity = max(t->discard_granularity,
928 					     b->discard_granularity);
929 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
930 			t->discard_granularity;
931 	}
932 	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
933 						   b->max_secure_erase_sectors);
934 	t->zone_write_granularity = max(t->zone_write_granularity,
935 					b->zone_write_granularity);
936 	if (!(t->features & BLK_FEAT_ZONED)) {
937 		t->zone_write_granularity = 0;
938 		t->max_zone_append_sectors = 0;
939 	}
940 	blk_stack_atomic_writes_limits(t, b, start);
941 
942 	return ret;
943 }
944 EXPORT_SYMBOL(blk_stack_limits);
945 
946 /**
947  * queue_limits_stack_bdev - adjust queue_limits for stacked devices
948  * @t:	the stacking driver limits (top device)
949  * @bdev:  the underlying block device (bottom)
950  * @offset:  offset to beginning of data within component device
951  * @pfx: prefix to use for warnings logged
952  *
953  * Description:
954  *    This function is used by stacking drivers like MD and DM to ensure
955  *    that all component devices have compatible block sizes and
956  *    alignments.  The stacking driver must provide a queue_limits
957  *    struct (top) and then iteratively call the stacking function for
958  *    all component (bottom) devices.  The stacking function will
959  *    attempt to combine the values and ensure proper alignment.
960  */
961 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
962 		sector_t offset, const char *pfx)
963 {
964 	if (blk_stack_limits(t, bdev_limits(bdev),
965 			get_start_sect(bdev) + offset))
966 		pr_notice("%s: Warning: Device %pg is misaligned\n",
967 			pfx, bdev);
968 }
969 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
970 
971 /**
972  * queue_limits_stack_integrity - stack integrity profile
973  * @t: target queue limits
974  * @b: base queue limits
975  *
976  * Check if the integrity profile in the @b can be stacked into the
977  * target @t.  Stacking is possible if either:
978  *
979  *   a) does not have any integrity information stacked into it yet
980  *   b) the integrity profile in @b is identical to the one in @t
981  *
982  * If @b can be stacked into @t, return %true.  Else return %false and clear the
983  * integrity information in @t.
984  */
985 bool queue_limits_stack_integrity(struct queue_limits *t,
986 		struct queue_limits *b)
987 {
988 	struct blk_integrity *ti = &t->integrity;
989 	struct blk_integrity *bi = &b->integrity;
990 
991 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
992 		return true;
993 
994 	if (ti->flags & BLK_INTEGRITY_STACKED) {
995 		if (ti->metadata_size != bi->metadata_size)
996 			goto incompatible;
997 		if (ti->interval_exp != bi->interval_exp)
998 			goto incompatible;
999 		if (ti->tag_size != bi->tag_size)
1000 			goto incompatible;
1001 		if (ti->csum_type != bi->csum_type)
1002 			goto incompatible;
1003 		if (ti->pi_tuple_size != bi->pi_tuple_size)
1004 			goto incompatible;
1005 		if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
1006 		    (bi->flags & BLK_INTEGRITY_REF_TAG))
1007 			goto incompatible;
1008 	} else {
1009 		ti->flags = BLK_INTEGRITY_STACKED;
1010 		ti->flags |= (bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) |
1011 			     (bi->flags & BLK_INTEGRITY_REF_TAG);
1012 		ti->csum_type = bi->csum_type;
1013 		ti->pi_tuple_size = bi->pi_tuple_size;
1014 		ti->metadata_size = bi->metadata_size;
1015 		ti->pi_offset = bi->pi_offset;
1016 		ti->interval_exp = bi->interval_exp;
1017 		ti->tag_size = bi->tag_size;
1018 	}
1019 	return true;
1020 
1021 incompatible:
1022 	memset(ti, 0, sizeof(*ti));
1023 	return false;
1024 }
1025 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
1026 
1027 /**
1028  * blk_set_queue_depth - tell the block layer about the device queue depth
1029  * @q:		the request queue for the device
1030  * @depth:		queue depth
1031  *
1032  */
1033 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1034 {
1035 	q->queue_depth = depth;
1036 	rq_qos_queue_depth_changed(q);
1037 }
1038 EXPORT_SYMBOL(blk_set_queue_depth);
1039 
1040 int bdev_alignment_offset(struct block_device *bdev)
1041 {
1042 	struct request_queue *q = bdev_get_queue(bdev);
1043 
1044 	if (q->limits.flags & BLK_FLAG_MISALIGNED)
1045 		return -1;
1046 	if (bdev_is_partition(bdev))
1047 		return queue_limit_alignment_offset(&q->limits,
1048 				bdev->bd_start_sect);
1049 	return q->limits.alignment_offset;
1050 }
1051 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1052 
1053 unsigned int bdev_discard_alignment(struct block_device *bdev)
1054 {
1055 	struct request_queue *q = bdev_get_queue(bdev);
1056 
1057 	if (bdev_is_partition(bdev))
1058 		return queue_limit_discard_alignment(&q->limits,
1059 				bdev->bd_start_sect);
1060 	return q->limits.discard_alignment;
1061 }
1062 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
1063