1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/gcd.h> 11 12 #include "blk.h" 13 14 unsigned long blk_max_low_pfn; 15 EXPORT_SYMBOL(blk_max_low_pfn); 16 17 unsigned long blk_max_pfn; 18 19 /** 20 * blk_queue_prep_rq - set a prepare_request function for queue 21 * @q: queue 22 * @pfn: prepare_request function 23 * 24 * It's possible for a queue to register a prepare_request callback which 25 * is invoked before the request is handed to the request_fn. The goal of 26 * the function is to prepare a request for I/O, it can be used to build a 27 * cdb from the request data for instance. 28 * 29 */ 30 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 31 { 32 q->prep_rq_fn = pfn; 33 } 34 EXPORT_SYMBOL(blk_queue_prep_rq); 35 36 /** 37 * blk_queue_set_discard - set a discard_sectors function for queue 38 * @q: queue 39 * @dfn: prepare_discard function 40 * 41 * It's possible for a queue to register a discard callback which is used 42 * to transform a discard request into the appropriate type for the 43 * hardware. If none is registered, then discard requests are failed 44 * with %EOPNOTSUPP. 45 * 46 */ 47 void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn) 48 { 49 q->prepare_discard_fn = dfn; 50 } 51 EXPORT_SYMBOL(blk_queue_set_discard); 52 53 /** 54 * blk_queue_merge_bvec - set a merge_bvec function for queue 55 * @q: queue 56 * @mbfn: merge_bvec_fn 57 * 58 * Usually queues have static limitations on the max sectors or segments that 59 * we can put in a request. Stacking drivers may have some settings that 60 * are dynamic, and thus we have to query the queue whether it is ok to 61 * add a new bio_vec to a bio at a given offset or not. If the block device 62 * has such limitations, it needs to register a merge_bvec_fn to control 63 * the size of bio's sent to it. Note that a block device *must* allow a 64 * single page to be added to an empty bio. The block device driver may want 65 * to use the bio_split() function to deal with these bio's. By default 66 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 67 * honored. 68 */ 69 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 70 { 71 q->merge_bvec_fn = mbfn; 72 } 73 EXPORT_SYMBOL(blk_queue_merge_bvec); 74 75 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 76 { 77 q->softirq_done_fn = fn; 78 } 79 EXPORT_SYMBOL(blk_queue_softirq_done); 80 81 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 82 { 83 q->rq_timeout = timeout; 84 } 85 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 86 87 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 88 { 89 q->rq_timed_out_fn = fn; 90 } 91 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 92 93 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 94 { 95 q->lld_busy_fn = fn; 96 } 97 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 98 99 /** 100 * blk_set_default_limits - reset limits to default values 101 * @lim: the queue_limits structure to reset 102 * 103 * Description: 104 * Returns a queue_limit struct to its default state. Can be used by 105 * stacking drivers like DM that stage table swaps and reuse an 106 * existing device queue. 107 */ 108 void blk_set_default_limits(struct queue_limits *lim) 109 { 110 lim->max_phys_segments = MAX_PHYS_SEGMENTS; 111 lim->max_hw_segments = MAX_HW_SEGMENTS; 112 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 113 lim->max_segment_size = MAX_SEGMENT_SIZE; 114 lim->max_sectors = lim->max_hw_sectors = SAFE_MAX_SECTORS; 115 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 116 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 117 lim->alignment_offset = 0; 118 lim->io_opt = 0; 119 lim->misaligned = 0; 120 lim->no_cluster = 0; 121 } 122 EXPORT_SYMBOL(blk_set_default_limits); 123 124 /** 125 * blk_queue_make_request - define an alternate make_request function for a device 126 * @q: the request queue for the device to be affected 127 * @mfn: the alternate make_request function 128 * 129 * Description: 130 * The normal way for &struct bios to be passed to a device 131 * driver is for them to be collected into requests on a request 132 * queue, and then to allow the device driver to select requests 133 * off that queue when it is ready. This works well for many block 134 * devices. However some block devices (typically virtual devices 135 * such as md or lvm) do not benefit from the processing on the 136 * request queue, and are served best by having the requests passed 137 * directly to them. This can be achieved by providing a function 138 * to blk_queue_make_request(). 139 * 140 * Caveat: 141 * The driver that does this *must* be able to deal appropriately 142 * with buffers in "highmemory". This can be accomplished by either calling 143 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 144 * blk_queue_bounce() to create a buffer in normal memory. 145 **/ 146 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 147 { 148 /* 149 * set defaults 150 */ 151 q->nr_requests = BLKDEV_MAX_RQ; 152 153 q->make_request_fn = mfn; 154 blk_queue_dma_alignment(q, 511); 155 blk_queue_congestion_threshold(q); 156 q->nr_batching = BLK_BATCH_REQ; 157 158 q->unplug_thresh = 4; /* hmm */ 159 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ 160 if (q->unplug_delay == 0) 161 q->unplug_delay = 1; 162 163 q->unplug_timer.function = blk_unplug_timeout; 164 q->unplug_timer.data = (unsigned long)q; 165 166 blk_set_default_limits(&q->limits); 167 168 /* 169 * If the caller didn't supply a lock, fall back to our embedded 170 * per-queue locks 171 */ 172 if (!q->queue_lock) 173 q->queue_lock = &q->__queue_lock; 174 175 /* 176 * by default assume old behaviour and bounce for any highmem page 177 */ 178 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 179 } 180 EXPORT_SYMBOL(blk_queue_make_request); 181 182 /** 183 * blk_queue_bounce_limit - set bounce buffer limit for queue 184 * @q: the request queue for the device 185 * @dma_mask: the maximum address the device can handle 186 * 187 * Description: 188 * Different hardware can have different requirements as to what pages 189 * it can do I/O directly to. A low level driver can call 190 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 191 * buffers for doing I/O to pages residing above @dma_mask. 192 **/ 193 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask) 194 { 195 unsigned long b_pfn = dma_mask >> PAGE_SHIFT; 196 int dma = 0; 197 198 q->bounce_gfp = GFP_NOIO; 199 #if BITS_PER_LONG == 64 200 /* 201 * Assume anything <= 4GB can be handled by IOMMU. Actually 202 * some IOMMUs can handle everything, but I don't know of a 203 * way to test this here. 204 */ 205 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 206 dma = 1; 207 q->limits.bounce_pfn = max_low_pfn; 208 #else 209 if (b_pfn < blk_max_low_pfn) 210 dma = 1; 211 q->limits.bounce_pfn = b_pfn; 212 #endif 213 if (dma) { 214 init_emergency_isa_pool(); 215 q->bounce_gfp = GFP_NOIO | GFP_DMA; 216 q->limits.bounce_pfn = b_pfn; 217 } 218 } 219 EXPORT_SYMBOL(blk_queue_bounce_limit); 220 221 /** 222 * blk_queue_max_sectors - set max sectors for a request for this queue 223 * @q: the request queue for the device 224 * @max_sectors: max sectors in the usual 512b unit 225 * 226 * Description: 227 * Enables a low level driver to set an upper limit on the size of 228 * received requests. 229 **/ 230 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors) 231 { 232 if ((max_sectors << 9) < PAGE_CACHE_SIZE) { 233 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 234 printk(KERN_INFO "%s: set to minimum %d\n", 235 __func__, max_sectors); 236 } 237 238 if (BLK_DEF_MAX_SECTORS > max_sectors) 239 q->limits.max_hw_sectors = q->limits.max_sectors = max_sectors; 240 else { 241 q->limits.max_sectors = BLK_DEF_MAX_SECTORS; 242 q->limits.max_hw_sectors = max_sectors; 243 } 244 } 245 EXPORT_SYMBOL(blk_queue_max_sectors); 246 247 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_sectors) 248 { 249 if (BLK_DEF_MAX_SECTORS > max_sectors) 250 q->limits.max_hw_sectors = BLK_DEF_MAX_SECTORS; 251 else 252 q->limits.max_hw_sectors = max_sectors; 253 } 254 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 255 256 /** 257 * blk_queue_max_phys_segments - set max phys segments for a request for this queue 258 * @q: the request queue for the device 259 * @max_segments: max number of segments 260 * 261 * Description: 262 * Enables a low level driver to set an upper limit on the number of 263 * physical data segments in a request. This would be the largest sized 264 * scatter list the driver could handle. 265 **/ 266 void blk_queue_max_phys_segments(struct request_queue *q, 267 unsigned short max_segments) 268 { 269 if (!max_segments) { 270 max_segments = 1; 271 printk(KERN_INFO "%s: set to minimum %d\n", 272 __func__, max_segments); 273 } 274 275 q->limits.max_phys_segments = max_segments; 276 } 277 EXPORT_SYMBOL(blk_queue_max_phys_segments); 278 279 /** 280 * blk_queue_max_hw_segments - set max hw segments for a request for this queue 281 * @q: the request queue for the device 282 * @max_segments: max number of segments 283 * 284 * Description: 285 * Enables a low level driver to set an upper limit on the number of 286 * hw data segments in a request. This would be the largest number of 287 * address/length pairs the host adapter can actually give at once 288 * to the device. 289 **/ 290 void blk_queue_max_hw_segments(struct request_queue *q, 291 unsigned short max_segments) 292 { 293 if (!max_segments) { 294 max_segments = 1; 295 printk(KERN_INFO "%s: set to minimum %d\n", 296 __func__, max_segments); 297 } 298 299 q->limits.max_hw_segments = max_segments; 300 } 301 EXPORT_SYMBOL(blk_queue_max_hw_segments); 302 303 /** 304 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 305 * @q: the request queue for the device 306 * @max_size: max size of segment in bytes 307 * 308 * Description: 309 * Enables a low level driver to set an upper limit on the size of a 310 * coalesced segment 311 **/ 312 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 313 { 314 if (max_size < PAGE_CACHE_SIZE) { 315 max_size = PAGE_CACHE_SIZE; 316 printk(KERN_INFO "%s: set to minimum %d\n", 317 __func__, max_size); 318 } 319 320 q->limits.max_segment_size = max_size; 321 } 322 EXPORT_SYMBOL(blk_queue_max_segment_size); 323 324 /** 325 * blk_queue_logical_block_size - set logical block size for the queue 326 * @q: the request queue for the device 327 * @size: the logical block size, in bytes 328 * 329 * Description: 330 * This should be set to the lowest possible block size that the 331 * storage device can address. The default of 512 covers most 332 * hardware. 333 **/ 334 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 335 { 336 q->limits.logical_block_size = size; 337 338 if (q->limits.physical_block_size < size) 339 q->limits.physical_block_size = size; 340 341 if (q->limits.io_min < q->limits.physical_block_size) 342 q->limits.io_min = q->limits.physical_block_size; 343 } 344 EXPORT_SYMBOL(blk_queue_logical_block_size); 345 346 /** 347 * blk_queue_physical_block_size - set physical block size for the queue 348 * @q: the request queue for the device 349 * @size: the physical block size, in bytes 350 * 351 * Description: 352 * This should be set to the lowest possible sector size that the 353 * hardware can operate on without reverting to read-modify-write 354 * operations. 355 */ 356 void blk_queue_physical_block_size(struct request_queue *q, unsigned short size) 357 { 358 q->limits.physical_block_size = size; 359 360 if (q->limits.physical_block_size < q->limits.logical_block_size) 361 q->limits.physical_block_size = q->limits.logical_block_size; 362 363 if (q->limits.io_min < q->limits.physical_block_size) 364 q->limits.io_min = q->limits.physical_block_size; 365 } 366 EXPORT_SYMBOL(blk_queue_physical_block_size); 367 368 /** 369 * blk_queue_alignment_offset - set physical block alignment offset 370 * @q: the request queue for the device 371 * @offset: alignment offset in bytes 372 * 373 * Description: 374 * Some devices are naturally misaligned to compensate for things like 375 * the legacy DOS partition table 63-sector offset. Low-level drivers 376 * should call this function for devices whose first sector is not 377 * naturally aligned. 378 */ 379 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 380 { 381 q->limits.alignment_offset = 382 offset & (q->limits.physical_block_size - 1); 383 q->limits.misaligned = 0; 384 } 385 EXPORT_SYMBOL(blk_queue_alignment_offset); 386 387 /** 388 * blk_limits_io_min - set minimum request size for a device 389 * @limits: the queue limits 390 * @min: smallest I/O size in bytes 391 * 392 * Description: 393 * Some devices have an internal block size bigger than the reported 394 * hardware sector size. This function can be used to signal the 395 * smallest I/O the device can perform without incurring a performance 396 * penalty. 397 */ 398 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 399 { 400 limits->io_min = min; 401 402 if (limits->io_min < limits->logical_block_size) 403 limits->io_min = limits->logical_block_size; 404 405 if (limits->io_min < limits->physical_block_size) 406 limits->io_min = limits->physical_block_size; 407 } 408 EXPORT_SYMBOL(blk_limits_io_min); 409 410 /** 411 * blk_queue_io_min - set minimum request size for the queue 412 * @q: the request queue for the device 413 * @min: smallest I/O size in bytes 414 * 415 * Description: 416 * Storage devices may report a granularity or preferred minimum I/O 417 * size which is the smallest request the device can perform without 418 * incurring a performance penalty. For disk drives this is often the 419 * physical block size. For RAID arrays it is often the stripe chunk 420 * size. A properly aligned multiple of minimum_io_size is the 421 * preferred request size for workloads where a high number of I/O 422 * operations is desired. 423 */ 424 void blk_queue_io_min(struct request_queue *q, unsigned int min) 425 { 426 blk_limits_io_min(&q->limits, min); 427 } 428 EXPORT_SYMBOL(blk_queue_io_min); 429 430 /** 431 * blk_queue_io_opt - set optimal request size for the queue 432 * @q: the request queue for the device 433 * @opt: optimal request size in bytes 434 * 435 * Description: 436 * Storage devices may report an optimal I/O size, which is the 437 * device's preferred unit for sustained I/O. This is rarely reported 438 * for disk drives. For RAID arrays it is usually the stripe width or 439 * the internal track size. A properly aligned multiple of 440 * optimal_io_size is the preferred request size for workloads where 441 * sustained throughput is desired. 442 */ 443 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 444 { 445 q->limits.io_opt = opt; 446 } 447 EXPORT_SYMBOL(blk_queue_io_opt); 448 449 /* 450 * Returns the minimum that is _not_ zero, unless both are zero. 451 */ 452 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 453 454 /** 455 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 456 * @t: the stacking driver (top) 457 * @b: the underlying device (bottom) 458 **/ 459 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 460 { 461 blk_stack_limits(&t->limits, &b->limits, 0); 462 463 if (!t->queue_lock) 464 WARN_ON_ONCE(1); 465 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 466 unsigned long flags; 467 spin_lock_irqsave(t->queue_lock, flags); 468 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 469 spin_unlock_irqrestore(t->queue_lock, flags); 470 } 471 } 472 EXPORT_SYMBOL(blk_queue_stack_limits); 473 474 /** 475 * blk_stack_limits - adjust queue_limits for stacked devices 476 * @t: the stacking driver limits (top) 477 * @b: the underlying queue limits (bottom) 478 * @offset: offset to beginning of data within component device 479 * 480 * Description: 481 * Merges two queue_limit structs. Returns 0 if alignment didn't 482 * change. Returns -1 if adding the bottom device caused 483 * misalignment. 484 */ 485 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 486 sector_t offset) 487 { 488 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 489 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 490 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 491 492 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 493 b->seg_boundary_mask); 494 495 t->max_phys_segments = min_not_zero(t->max_phys_segments, 496 b->max_phys_segments); 497 498 t->max_hw_segments = min_not_zero(t->max_hw_segments, 499 b->max_hw_segments); 500 501 t->max_segment_size = min_not_zero(t->max_segment_size, 502 b->max_segment_size); 503 504 t->logical_block_size = max(t->logical_block_size, 505 b->logical_block_size); 506 507 t->physical_block_size = max(t->physical_block_size, 508 b->physical_block_size); 509 510 t->io_min = max(t->io_min, b->io_min); 511 t->no_cluster |= b->no_cluster; 512 513 /* Bottom device offset aligned? */ 514 if (offset && 515 (offset & (b->physical_block_size - 1)) != b->alignment_offset) { 516 t->misaligned = 1; 517 return -1; 518 } 519 520 /* If top has no alignment offset, inherit from bottom */ 521 if (!t->alignment_offset) 522 t->alignment_offset = 523 b->alignment_offset & (b->physical_block_size - 1); 524 525 /* Top device aligned on logical block boundary? */ 526 if (t->alignment_offset & (t->logical_block_size - 1)) { 527 t->misaligned = 1; 528 return -1; 529 } 530 531 /* Find lcm() of optimal I/O size */ 532 if (t->io_opt && b->io_opt) 533 t->io_opt = (t->io_opt * b->io_opt) / gcd(t->io_opt, b->io_opt); 534 else if (b->io_opt) 535 t->io_opt = b->io_opt; 536 537 /* Verify that optimal I/O size is a multiple of io_min */ 538 if (t->io_min && t->io_opt % t->io_min) 539 return -1; 540 541 return 0; 542 } 543 EXPORT_SYMBOL(blk_stack_limits); 544 545 /** 546 * disk_stack_limits - adjust queue limits for stacked drivers 547 * @disk: MD/DM gendisk (top) 548 * @bdev: the underlying block device (bottom) 549 * @offset: offset to beginning of data within component device 550 * 551 * Description: 552 * Merges the limits for two queues. Returns 0 if alignment 553 * didn't change. Returns -1 if adding the bottom device caused 554 * misalignment. 555 */ 556 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 557 sector_t offset) 558 { 559 struct request_queue *t = disk->queue; 560 struct request_queue *b = bdev_get_queue(bdev); 561 562 offset += get_start_sect(bdev) << 9; 563 564 if (blk_stack_limits(&t->limits, &b->limits, offset) < 0) { 565 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 566 567 disk_name(disk, 0, top); 568 bdevname(bdev, bottom); 569 570 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 571 top, bottom); 572 } 573 574 if (!t->queue_lock) 575 WARN_ON_ONCE(1); 576 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 577 unsigned long flags; 578 579 spin_lock_irqsave(t->queue_lock, flags); 580 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) 581 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 582 spin_unlock_irqrestore(t->queue_lock, flags); 583 } 584 } 585 EXPORT_SYMBOL(disk_stack_limits); 586 587 /** 588 * blk_queue_dma_pad - set pad mask 589 * @q: the request queue for the device 590 * @mask: pad mask 591 * 592 * Set dma pad mask. 593 * 594 * Appending pad buffer to a request modifies the last entry of a 595 * scatter list such that it includes the pad buffer. 596 **/ 597 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 598 { 599 q->dma_pad_mask = mask; 600 } 601 EXPORT_SYMBOL(blk_queue_dma_pad); 602 603 /** 604 * blk_queue_update_dma_pad - update pad mask 605 * @q: the request queue for the device 606 * @mask: pad mask 607 * 608 * Update dma pad mask. 609 * 610 * Appending pad buffer to a request modifies the last entry of a 611 * scatter list such that it includes the pad buffer. 612 **/ 613 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 614 { 615 if (mask > q->dma_pad_mask) 616 q->dma_pad_mask = mask; 617 } 618 EXPORT_SYMBOL(blk_queue_update_dma_pad); 619 620 /** 621 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 622 * @q: the request queue for the device 623 * @dma_drain_needed: fn which returns non-zero if drain is necessary 624 * @buf: physically contiguous buffer 625 * @size: size of the buffer in bytes 626 * 627 * Some devices have excess DMA problems and can't simply discard (or 628 * zero fill) the unwanted piece of the transfer. They have to have a 629 * real area of memory to transfer it into. The use case for this is 630 * ATAPI devices in DMA mode. If the packet command causes a transfer 631 * bigger than the transfer size some HBAs will lock up if there 632 * aren't DMA elements to contain the excess transfer. What this API 633 * does is adjust the queue so that the buf is always appended 634 * silently to the scatterlist. 635 * 636 * Note: This routine adjusts max_hw_segments to make room for 637 * appending the drain buffer. If you call 638 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after 639 * calling this routine, you must set the limit to one fewer than your 640 * device can support otherwise there won't be room for the drain 641 * buffer. 642 */ 643 int blk_queue_dma_drain(struct request_queue *q, 644 dma_drain_needed_fn *dma_drain_needed, 645 void *buf, unsigned int size) 646 { 647 if (queue_max_hw_segments(q) < 2 || queue_max_phys_segments(q) < 2) 648 return -EINVAL; 649 /* make room for appending the drain */ 650 blk_queue_max_hw_segments(q, queue_max_hw_segments(q) - 1); 651 blk_queue_max_phys_segments(q, queue_max_phys_segments(q) - 1); 652 q->dma_drain_needed = dma_drain_needed; 653 q->dma_drain_buffer = buf; 654 q->dma_drain_size = size; 655 656 return 0; 657 } 658 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 659 660 /** 661 * blk_queue_segment_boundary - set boundary rules for segment merging 662 * @q: the request queue for the device 663 * @mask: the memory boundary mask 664 **/ 665 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 666 { 667 if (mask < PAGE_CACHE_SIZE - 1) { 668 mask = PAGE_CACHE_SIZE - 1; 669 printk(KERN_INFO "%s: set to minimum %lx\n", 670 __func__, mask); 671 } 672 673 q->limits.seg_boundary_mask = mask; 674 } 675 EXPORT_SYMBOL(blk_queue_segment_boundary); 676 677 /** 678 * blk_queue_dma_alignment - set dma length and memory alignment 679 * @q: the request queue for the device 680 * @mask: alignment mask 681 * 682 * description: 683 * set required memory and length alignment for direct dma transactions. 684 * this is used when building direct io requests for the queue. 685 * 686 **/ 687 void blk_queue_dma_alignment(struct request_queue *q, int mask) 688 { 689 q->dma_alignment = mask; 690 } 691 EXPORT_SYMBOL(blk_queue_dma_alignment); 692 693 /** 694 * blk_queue_update_dma_alignment - update dma length and memory alignment 695 * @q: the request queue for the device 696 * @mask: alignment mask 697 * 698 * description: 699 * update required memory and length alignment for direct dma transactions. 700 * If the requested alignment is larger than the current alignment, then 701 * the current queue alignment is updated to the new value, otherwise it 702 * is left alone. The design of this is to allow multiple objects 703 * (driver, device, transport etc) to set their respective 704 * alignments without having them interfere. 705 * 706 **/ 707 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 708 { 709 BUG_ON(mask > PAGE_SIZE); 710 711 if (mask > q->dma_alignment) 712 q->dma_alignment = mask; 713 } 714 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 715 716 static int __init blk_settings_init(void) 717 { 718 blk_max_low_pfn = max_low_pfn - 1; 719 blk_max_pfn = max_pfn - 1; 720 return 0; 721 } 722 subsys_initcall(blk_settings_init); 723