1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 18 #include "blk.h" 19 #include "blk-rq-qos.h" 20 #include "blk-wbt.h" 21 22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 23 { 24 q->rq_timeout = timeout; 25 } 26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 27 28 /** 29 * blk_set_stacking_limits - set default limits for stacking devices 30 * @lim: the queue_limits structure to reset 31 * 32 * Prepare queue limits for applying limits from underlying devices using 33 * blk_stack_limits(). 34 */ 35 void blk_set_stacking_limits(struct queue_limits *lim) 36 { 37 memset(lim, 0, sizeof(*lim)); 38 lim->logical_block_size = SECTOR_SIZE; 39 lim->physical_block_size = SECTOR_SIZE; 40 lim->io_min = SECTOR_SIZE; 41 lim->discard_granularity = SECTOR_SIZE; 42 lim->dma_alignment = SECTOR_SIZE - 1; 43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 44 45 /* Inherit limits from component devices */ 46 lim->max_segments = USHRT_MAX; 47 lim->max_discard_segments = USHRT_MAX; 48 lim->max_hw_sectors = UINT_MAX; 49 lim->max_segment_size = UINT_MAX; 50 lim->max_sectors = UINT_MAX; 51 lim->max_dev_sectors = UINT_MAX; 52 lim->max_write_zeroes_sectors = UINT_MAX; 53 lim->max_hw_zone_append_sectors = UINT_MAX; 54 lim->max_user_discard_sectors = UINT_MAX; 55 } 56 EXPORT_SYMBOL(blk_set_stacking_limits); 57 58 void blk_apply_bdi_limits(struct backing_dev_info *bdi, 59 struct queue_limits *lim) 60 { 61 /* 62 * For read-ahead of large files to be effective, we need to read ahead 63 * at least twice the optimal I/O size. 64 */ 65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; 67 } 68 69 static int blk_validate_zoned_limits(struct queue_limits *lim) 70 { 71 if (!(lim->features & BLK_FEAT_ZONED)) { 72 if (WARN_ON_ONCE(lim->max_open_zones) || 73 WARN_ON_ONCE(lim->max_active_zones) || 74 WARN_ON_ONCE(lim->zone_write_granularity) || 75 WARN_ON_ONCE(lim->max_zone_append_sectors)) 76 return -EINVAL; 77 return 0; 78 } 79 80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) 81 return -EINVAL; 82 83 /* 84 * Given that active zones include open zones, the maximum number of 85 * open zones cannot be larger than the maximum number of active zones. 86 */ 87 if (lim->max_active_zones && 88 lim->max_open_zones > lim->max_active_zones) 89 return -EINVAL; 90 91 if (lim->zone_write_granularity < lim->logical_block_size) 92 lim->zone_write_granularity = lim->logical_block_size; 93 94 /* 95 * The Zone Append size is limited by the maximum I/O size and the zone 96 * size given that it can't span zones. 97 * 98 * If no max_hw_zone_append_sectors limit is provided, the block layer 99 * will emulated it, else we're also bound by the hardware limit. 100 */ 101 lim->max_zone_append_sectors = 102 min_not_zero(lim->max_hw_zone_append_sectors, 103 min(lim->chunk_sectors, lim->max_hw_sectors)); 104 return 0; 105 } 106 107 static int blk_validate_integrity_limits(struct queue_limits *lim) 108 { 109 struct blk_integrity *bi = &lim->integrity; 110 111 if (!bi->tuple_size) { 112 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE || 113 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) { 114 pr_warn("invalid PI settings.\n"); 115 return -EINVAL; 116 } 117 return 0; 118 } 119 120 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) { 121 pr_warn("integrity support disabled.\n"); 122 return -EINVAL; 123 } 124 125 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE && 126 (bi->flags & BLK_INTEGRITY_REF_TAG)) { 127 pr_warn("ref tag not support without checksum.\n"); 128 return -EINVAL; 129 } 130 131 if (!bi->interval_exp) 132 bi->interval_exp = ilog2(lim->logical_block_size); 133 134 return 0; 135 } 136 137 /* 138 * Returns max guaranteed bytes which we can fit in a bio. 139 * 140 * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector), 141 * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from 142 * the first and last segments. 143 */ 144 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim) 145 { 146 unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments); 147 unsigned int length; 148 149 length = min(max_segments, 2) * lim->logical_block_size; 150 if (max_segments > 2) 151 length += (max_segments - 2) * PAGE_SIZE; 152 153 return length; 154 } 155 156 static void blk_atomic_writes_update_limits(struct queue_limits *lim) 157 { 158 unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT, 159 blk_queue_max_guaranteed_bio(lim)); 160 161 unit_limit = rounddown_pow_of_two(unit_limit); 162 163 lim->atomic_write_max_sectors = 164 min(lim->atomic_write_hw_max >> SECTOR_SHIFT, 165 lim->max_hw_sectors); 166 lim->atomic_write_unit_min = 167 min(lim->atomic_write_hw_unit_min, unit_limit); 168 lim->atomic_write_unit_max = 169 min(lim->atomic_write_hw_unit_max, unit_limit); 170 lim->atomic_write_boundary_sectors = 171 lim->atomic_write_hw_boundary >> SECTOR_SHIFT; 172 } 173 174 static void blk_validate_atomic_write_limits(struct queue_limits *lim) 175 { 176 unsigned int boundary_sectors; 177 178 if (!lim->atomic_write_hw_max) 179 goto unsupported; 180 181 boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT; 182 183 if (boundary_sectors) { 184 /* 185 * A feature of boundary support is that it disallows bios to 186 * be merged which would result in a merged request which 187 * crosses either a chunk sector or atomic write HW boundary, 188 * even though chunk sectors may be just set for performance. 189 * For simplicity, disallow atomic writes for a chunk sector 190 * which is non-zero and smaller than atomic write HW boundary. 191 * Furthermore, chunk sectors must be a multiple of atomic 192 * write HW boundary. Otherwise boundary support becomes 193 * complicated. 194 * Devices which do not conform to these rules can be dealt 195 * with if and when they show up. 196 */ 197 if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors)) 198 goto unsupported; 199 200 /* 201 * The boundary size just needs to be a multiple of unit_max 202 * (and not necessarily a power-of-2), so this following check 203 * could be relaxed in future. 204 * Furthermore, if needed, unit_max could even be reduced so 205 * that it is compliant with a !power-of-2 boundary. 206 */ 207 if (!is_power_of_2(boundary_sectors)) 208 goto unsupported; 209 } 210 211 blk_atomic_writes_update_limits(lim); 212 return; 213 214 unsupported: 215 lim->atomic_write_max_sectors = 0; 216 lim->atomic_write_boundary_sectors = 0; 217 lim->atomic_write_unit_min = 0; 218 lim->atomic_write_unit_max = 0; 219 } 220 221 /* 222 * Check that the limits in lim are valid, initialize defaults for unset 223 * values, and cap values based on others where needed. 224 */ 225 int blk_validate_limits(struct queue_limits *lim) 226 { 227 unsigned int max_hw_sectors; 228 unsigned int logical_block_sectors; 229 int err; 230 231 /* 232 * Unless otherwise specified, default to 512 byte logical blocks and a 233 * physical block size equal to the logical block size. 234 */ 235 if (!lim->logical_block_size) 236 lim->logical_block_size = SECTOR_SIZE; 237 else if (blk_validate_block_size(lim->logical_block_size)) { 238 pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size); 239 return -EINVAL; 240 } 241 if (lim->physical_block_size < lim->logical_block_size) 242 lim->physical_block_size = lim->logical_block_size; 243 244 /* 245 * The minimum I/O size defaults to the physical block size unless 246 * explicitly overridden. 247 */ 248 if (lim->io_min < lim->physical_block_size) 249 lim->io_min = lim->physical_block_size; 250 251 /* 252 * max_hw_sectors has a somewhat weird default for historical reason, 253 * but driver really should set their own instead of relying on this 254 * value. 255 * 256 * The block layer relies on the fact that every driver can 257 * handle at lest a page worth of data per I/O, and needs the value 258 * aligned to the logical block size. 259 */ 260 if (!lim->max_hw_sectors) 261 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 262 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) 263 return -EINVAL; 264 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT; 265 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors)) 266 return -EINVAL; 267 lim->max_hw_sectors = round_down(lim->max_hw_sectors, 268 logical_block_sectors); 269 270 /* 271 * The actual max_sectors value is a complex beast and also takes the 272 * max_dev_sectors value (set by SCSI ULPs) and a user configurable 273 * value into account. The ->max_sectors value is always calculated 274 * from these, so directly setting it won't have any effect. 275 */ 276 max_hw_sectors = min_not_zero(lim->max_hw_sectors, 277 lim->max_dev_sectors); 278 if (lim->max_user_sectors) { 279 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE) 280 return -EINVAL; 281 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); 282 } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 283 lim->max_sectors = 284 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT); 285 } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 286 lim->max_sectors = 287 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT); 288 } else { 289 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); 290 } 291 lim->max_sectors = round_down(lim->max_sectors, 292 logical_block_sectors); 293 294 /* 295 * Random default for the maximum number of segments. Driver should not 296 * rely on this and set their own. 297 */ 298 if (!lim->max_segments) 299 lim->max_segments = BLK_MAX_SEGMENTS; 300 301 lim->max_discard_sectors = 302 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); 303 304 if (!lim->max_discard_segments) 305 lim->max_discard_segments = 1; 306 307 if (lim->discard_granularity < lim->physical_block_size) 308 lim->discard_granularity = lim->physical_block_size; 309 310 /* 311 * By default there is no limit on the segment boundary alignment, 312 * but if there is one it can't be smaller than the page size as 313 * that would break all the normal I/O patterns. 314 */ 315 if (!lim->seg_boundary_mask) 316 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 317 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1)) 318 return -EINVAL; 319 320 /* 321 * Stacking device may have both virtual boundary and max segment 322 * size limit, so allow this setting now, and long-term the two 323 * might need to move out of stacking limits since we have immutable 324 * bvec and lower layer bio splitting is supposed to handle the two 325 * correctly. 326 */ 327 if (lim->virt_boundary_mask) { 328 if (!lim->max_segment_size) 329 lim->max_segment_size = UINT_MAX; 330 } else { 331 /* 332 * The maximum segment size has an odd historic 64k default that 333 * drivers probably should override. Just like the I/O size we 334 * require drivers to at least handle a full page per segment. 335 */ 336 if (!lim->max_segment_size) 337 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 338 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE)) 339 return -EINVAL; 340 } 341 342 /* 343 * We require drivers to at least do logical block aligned I/O, but 344 * historically could not check for that due to the separate calls 345 * to set the limits. Once the transition is finished the check 346 * below should be narrowed down to check the logical block size. 347 */ 348 if (!lim->dma_alignment) 349 lim->dma_alignment = SECTOR_SIZE - 1; 350 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) 351 return -EINVAL; 352 353 if (lim->alignment_offset) { 354 lim->alignment_offset &= (lim->physical_block_size - 1); 355 lim->flags &= ~BLK_FLAG_MISALIGNED; 356 } 357 358 if (!(lim->features & BLK_FEAT_WRITE_CACHE)) 359 lim->features &= ~BLK_FEAT_FUA; 360 361 blk_validate_atomic_write_limits(lim); 362 363 err = blk_validate_integrity_limits(lim); 364 if (err) 365 return err; 366 return blk_validate_zoned_limits(lim); 367 } 368 EXPORT_SYMBOL_GPL(blk_validate_limits); 369 370 /* 371 * Set the default limits for a newly allocated queue. @lim contains the 372 * initial limits set by the driver, which could be no limit in which case 373 * all fields are cleared to zero. 374 */ 375 int blk_set_default_limits(struct queue_limits *lim) 376 { 377 /* 378 * Most defaults are set by capping the bounds in blk_validate_limits, 379 * but max_user_discard_sectors is special and needs an explicit 380 * initialization to the max value here. 381 */ 382 lim->max_user_discard_sectors = UINT_MAX; 383 return blk_validate_limits(lim); 384 } 385 386 /** 387 * queue_limits_commit_update - commit an atomic update of queue limits 388 * @q: queue to update 389 * @lim: limits to apply 390 * 391 * Apply the limits in @lim that were obtained from queue_limits_start_update() 392 * and updated by the caller to @q. 393 * 394 * Returns 0 if successful, else a negative error code. 395 */ 396 int queue_limits_commit_update(struct request_queue *q, 397 struct queue_limits *lim) 398 { 399 int error; 400 401 error = blk_validate_limits(lim); 402 if (error) 403 goto out_unlock; 404 405 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 406 if (q->crypto_profile && lim->integrity.tag_size) { 407 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n"); 408 error = -EINVAL; 409 goto out_unlock; 410 } 411 #endif 412 413 q->limits = *lim; 414 if (q->disk) 415 blk_apply_bdi_limits(q->disk->bdi, lim); 416 out_unlock: 417 mutex_unlock(&q->limits_lock); 418 return error; 419 } 420 EXPORT_SYMBOL_GPL(queue_limits_commit_update); 421 422 /** 423 * queue_limits_set - apply queue limits to queue 424 * @q: queue to update 425 * @lim: limits to apply 426 * 427 * Apply the limits in @lim that were freshly initialized to @q. 428 * To update existing limits use queue_limits_start_update() and 429 * queue_limits_commit_update() instead. 430 * 431 * Returns 0 if successful, else a negative error code. 432 */ 433 int queue_limits_set(struct request_queue *q, struct queue_limits *lim) 434 { 435 mutex_lock(&q->limits_lock); 436 return queue_limits_commit_update(q, lim); 437 } 438 EXPORT_SYMBOL_GPL(queue_limits_set); 439 440 static int queue_limit_alignment_offset(const struct queue_limits *lim, 441 sector_t sector) 442 { 443 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 444 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 445 << SECTOR_SHIFT; 446 447 return (granularity + lim->alignment_offset - alignment) % granularity; 448 } 449 450 static unsigned int queue_limit_discard_alignment( 451 const struct queue_limits *lim, sector_t sector) 452 { 453 unsigned int alignment, granularity, offset; 454 455 if (!lim->max_discard_sectors) 456 return 0; 457 458 /* Why are these in bytes, not sectors? */ 459 alignment = lim->discard_alignment >> SECTOR_SHIFT; 460 granularity = lim->discard_granularity >> SECTOR_SHIFT; 461 if (!granularity) 462 return 0; 463 464 /* Offset of the partition start in 'granularity' sectors */ 465 offset = sector_div(sector, granularity); 466 467 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 468 offset = (granularity + alignment - offset) % granularity; 469 470 /* Turn it back into bytes, gaah */ 471 return offset << SECTOR_SHIFT; 472 } 473 474 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 475 { 476 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 477 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 478 sectors = PAGE_SIZE >> SECTOR_SHIFT; 479 return sectors; 480 } 481 482 /** 483 * blk_stack_limits - adjust queue_limits for stacked devices 484 * @t: the stacking driver limits (top device) 485 * @b: the underlying queue limits (bottom, component device) 486 * @start: first data sector within component device 487 * 488 * Description: 489 * This function is used by stacking drivers like MD and DM to ensure 490 * that all component devices have compatible block sizes and 491 * alignments. The stacking driver must provide a queue_limits 492 * struct (top) and then iteratively call the stacking function for 493 * all component (bottom) devices. The stacking function will 494 * attempt to combine the values and ensure proper alignment. 495 * 496 * Returns 0 if the top and bottom queue_limits are compatible. The 497 * top device's block sizes and alignment offsets may be adjusted to 498 * ensure alignment with the bottom device. If no compatible sizes 499 * and alignments exist, -1 is returned and the resulting top 500 * queue_limits will have the misaligned flag set to indicate that 501 * the alignment_offset is undefined. 502 */ 503 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 504 sector_t start) 505 { 506 unsigned int top, bottom, alignment, ret = 0; 507 508 t->features |= (b->features & BLK_FEAT_INHERIT_MASK); 509 510 /* 511 * Some feaures need to be supported both by the stacking driver and all 512 * underlying devices. The stacking driver sets these flags before 513 * stacking the limits, and this will clear the flags if any of the 514 * underlying devices does not support it. 515 */ 516 if (!(b->features & BLK_FEAT_NOWAIT)) 517 t->features &= ~BLK_FEAT_NOWAIT; 518 if (!(b->features & BLK_FEAT_POLL)) 519 t->features &= ~BLK_FEAT_POLL; 520 521 t->flags |= (b->flags & BLK_FLAG_MISALIGNED); 522 523 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 524 t->max_user_sectors = min_not_zero(t->max_user_sectors, 525 b->max_user_sectors); 526 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 527 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 528 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 529 b->max_write_zeroes_sectors); 530 t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors, 531 b->max_hw_zone_append_sectors); 532 533 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 534 b->seg_boundary_mask); 535 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 536 b->virt_boundary_mask); 537 538 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 539 t->max_discard_segments = min_not_zero(t->max_discard_segments, 540 b->max_discard_segments); 541 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 542 b->max_integrity_segments); 543 544 t->max_segment_size = min_not_zero(t->max_segment_size, 545 b->max_segment_size); 546 547 alignment = queue_limit_alignment_offset(b, start); 548 549 /* Bottom device has different alignment. Check that it is 550 * compatible with the current top alignment. 551 */ 552 if (t->alignment_offset != alignment) { 553 554 top = max(t->physical_block_size, t->io_min) 555 + t->alignment_offset; 556 bottom = max(b->physical_block_size, b->io_min) + alignment; 557 558 /* Verify that top and bottom intervals line up */ 559 if (max(top, bottom) % min(top, bottom)) { 560 t->flags |= BLK_FLAG_MISALIGNED; 561 ret = -1; 562 } 563 } 564 565 t->logical_block_size = max(t->logical_block_size, 566 b->logical_block_size); 567 568 t->physical_block_size = max(t->physical_block_size, 569 b->physical_block_size); 570 571 t->io_min = max(t->io_min, b->io_min); 572 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 573 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 574 575 /* Set non-power-of-2 compatible chunk_sectors boundary */ 576 if (b->chunk_sectors) 577 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 578 579 /* Physical block size a multiple of the logical block size? */ 580 if (t->physical_block_size & (t->logical_block_size - 1)) { 581 t->physical_block_size = t->logical_block_size; 582 t->flags |= BLK_FLAG_MISALIGNED; 583 ret = -1; 584 } 585 586 /* Minimum I/O a multiple of the physical block size? */ 587 if (t->io_min & (t->physical_block_size - 1)) { 588 t->io_min = t->physical_block_size; 589 t->flags |= BLK_FLAG_MISALIGNED; 590 ret = -1; 591 } 592 593 /* Optimal I/O a multiple of the physical block size? */ 594 if (t->io_opt & (t->physical_block_size - 1)) { 595 t->io_opt = 0; 596 t->flags |= BLK_FLAG_MISALIGNED; 597 ret = -1; 598 } 599 600 /* chunk_sectors a multiple of the physical block size? */ 601 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { 602 t->chunk_sectors = 0; 603 t->flags |= BLK_FLAG_MISALIGNED; 604 ret = -1; 605 } 606 607 /* Find lowest common alignment_offset */ 608 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 609 % max(t->physical_block_size, t->io_min); 610 611 /* Verify that new alignment_offset is on a logical block boundary */ 612 if (t->alignment_offset & (t->logical_block_size - 1)) { 613 t->flags |= BLK_FLAG_MISALIGNED; 614 ret = -1; 615 } 616 617 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 618 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 619 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 620 621 /* Discard alignment and granularity */ 622 if (b->discard_granularity) { 623 alignment = queue_limit_discard_alignment(b, start); 624 625 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 626 b->max_discard_sectors); 627 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 628 b->max_hw_discard_sectors); 629 t->discard_granularity = max(t->discard_granularity, 630 b->discard_granularity); 631 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 632 t->discard_granularity; 633 } 634 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 635 b->max_secure_erase_sectors); 636 t->zone_write_granularity = max(t->zone_write_granularity, 637 b->zone_write_granularity); 638 if (!(t->features & BLK_FEAT_ZONED)) { 639 t->zone_write_granularity = 0; 640 t->max_zone_append_sectors = 0; 641 } 642 return ret; 643 } 644 EXPORT_SYMBOL(blk_stack_limits); 645 646 /** 647 * queue_limits_stack_bdev - adjust queue_limits for stacked devices 648 * @t: the stacking driver limits (top device) 649 * @bdev: the underlying block device (bottom) 650 * @offset: offset to beginning of data within component device 651 * @pfx: prefix to use for warnings logged 652 * 653 * Description: 654 * This function is used by stacking drivers like MD and DM to ensure 655 * that all component devices have compatible block sizes and 656 * alignments. The stacking driver must provide a queue_limits 657 * struct (top) and then iteratively call the stacking function for 658 * all component (bottom) devices. The stacking function will 659 * attempt to combine the values and ensure proper alignment. 660 */ 661 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 662 sector_t offset, const char *pfx) 663 { 664 if (blk_stack_limits(t, bdev_limits(bdev), 665 get_start_sect(bdev) + offset)) 666 pr_notice("%s: Warning: Device %pg is misaligned\n", 667 pfx, bdev); 668 } 669 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); 670 671 /** 672 * queue_limits_stack_integrity - stack integrity profile 673 * @t: target queue limits 674 * @b: base queue limits 675 * 676 * Check if the integrity profile in the @b can be stacked into the 677 * target @t. Stacking is possible if either: 678 * 679 * a) does not have any integrity information stacked into it yet 680 * b) the integrity profile in @b is identical to the one in @t 681 * 682 * If @b can be stacked into @t, return %true. Else return %false and clear the 683 * integrity information in @t. 684 */ 685 bool queue_limits_stack_integrity(struct queue_limits *t, 686 struct queue_limits *b) 687 { 688 struct blk_integrity *ti = &t->integrity; 689 struct blk_integrity *bi = &b->integrity; 690 691 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 692 return true; 693 694 if (!ti->tuple_size) { 695 /* inherit the settings from the first underlying device */ 696 if (!(ti->flags & BLK_INTEGRITY_STACKED)) { 697 ti->flags = BLK_INTEGRITY_DEVICE_CAPABLE | 698 (bi->flags & BLK_INTEGRITY_REF_TAG); 699 ti->csum_type = bi->csum_type; 700 ti->tuple_size = bi->tuple_size; 701 ti->pi_offset = bi->pi_offset; 702 ti->interval_exp = bi->interval_exp; 703 ti->tag_size = bi->tag_size; 704 goto done; 705 } 706 if (!bi->tuple_size) 707 goto done; 708 } 709 710 if (ti->tuple_size != bi->tuple_size) 711 goto incompatible; 712 if (ti->interval_exp != bi->interval_exp) 713 goto incompatible; 714 if (ti->tag_size != bi->tag_size) 715 goto incompatible; 716 if (ti->csum_type != bi->csum_type) 717 goto incompatible; 718 if ((ti->flags & BLK_INTEGRITY_REF_TAG) != 719 (bi->flags & BLK_INTEGRITY_REF_TAG)) 720 goto incompatible; 721 722 done: 723 ti->flags |= BLK_INTEGRITY_STACKED; 724 return true; 725 726 incompatible: 727 memset(ti, 0, sizeof(*ti)); 728 return false; 729 } 730 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity); 731 732 /** 733 * blk_set_queue_depth - tell the block layer about the device queue depth 734 * @q: the request queue for the device 735 * @depth: queue depth 736 * 737 */ 738 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 739 { 740 q->queue_depth = depth; 741 rq_qos_queue_depth_changed(q); 742 } 743 EXPORT_SYMBOL(blk_set_queue_depth); 744 745 int bdev_alignment_offset(struct block_device *bdev) 746 { 747 struct request_queue *q = bdev_get_queue(bdev); 748 749 if (q->limits.flags & BLK_FLAG_MISALIGNED) 750 return -1; 751 if (bdev_is_partition(bdev)) 752 return queue_limit_alignment_offset(&q->limits, 753 bdev->bd_start_sect); 754 return q->limits.alignment_offset; 755 } 756 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 757 758 unsigned int bdev_discard_alignment(struct block_device *bdev) 759 { 760 struct request_queue *q = bdev_get_queue(bdev); 761 762 if (bdev_is_partition(bdev)) 763 return queue_limit_discard_alignment(&q->limits, 764 bdev->bd_start_sect); 765 return q->limits.discard_alignment; 766 } 767 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 768