xref: /linux/block/blk-settings.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14 
15 #include "blk.h"
16 
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19 
20 unsigned long blk_max_pfn;
21 
22 /**
23  * blk_queue_prep_rq - set a prepare_request function for queue
24  * @q:		queue
25  * @pfn:	prepare_request function
26  *
27  * It's possible for a queue to register a prepare_request callback which
28  * is invoked before the request is handed to the request_fn. The goal of
29  * the function is to prepare a request for I/O, it can be used to build a
30  * cdb from the request data for instance.
31  *
32  */
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 	q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38 
39 /**
40  * blk_queue_merge_bvec - set a merge_bvec function for queue
41  * @q:		queue
42  * @mbfn:	merge_bvec_fn
43  *
44  * Usually queues have static limitations on the max sectors or segments that
45  * we can put in a request. Stacking drivers may have some settings that
46  * are dynamic, and thus we have to query the queue whether it is ok to
47  * add a new bio_vec to a bio at a given offset or not. If the block device
48  * has such limitations, it needs to register a merge_bvec_fn to control
49  * the size of bio's sent to it. Note that a block device *must* allow a
50  * single page to be added to an empty bio. The block device driver may want
51  * to use the bio_split() function to deal with these bio's. By default
52  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
53  * honored.
54  */
55 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
56 {
57 	q->merge_bvec_fn = mbfn;
58 }
59 EXPORT_SYMBOL(blk_queue_merge_bvec);
60 
61 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
62 {
63 	q->softirq_done_fn = fn;
64 }
65 EXPORT_SYMBOL(blk_queue_softirq_done);
66 
67 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
68 {
69 	q->rq_timeout = timeout;
70 }
71 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
72 
73 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
74 {
75 	q->rq_timed_out_fn = fn;
76 }
77 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
78 
79 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
80 {
81 	q->lld_busy_fn = fn;
82 }
83 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
84 
85 /**
86  * blk_set_default_limits - reset limits to default values
87  * @lim:  the queue_limits structure to reset
88  *
89  * Description:
90  *   Returns a queue_limit struct to its default state.  Can be used by
91  *   stacking drivers like DM that stage table swaps and reuse an
92  *   existing device queue.
93  */
94 void blk_set_default_limits(struct queue_limits *lim)
95 {
96 	lim->max_segments = BLK_MAX_SEGMENTS;
97 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
98 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
99 	lim->max_sectors = BLK_DEF_MAX_SECTORS;
100 	lim->max_hw_sectors = INT_MAX;
101 	lim->max_discard_sectors = 0;
102 	lim->discard_granularity = 0;
103 	lim->discard_alignment = 0;
104 	lim->discard_misaligned = 0;
105 	lim->discard_zeroes_data = -1;
106 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
107 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
108 	lim->alignment_offset = 0;
109 	lim->io_opt = 0;
110 	lim->misaligned = 0;
111 	lim->no_cluster = 0;
112 }
113 EXPORT_SYMBOL(blk_set_default_limits);
114 
115 /**
116  * blk_queue_make_request - define an alternate make_request function for a device
117  * @q:  the request queue for the device to be affected
118  * @mfn: the alternate make_request function
119  *
120  * Description:
121  *    The normal way for &struct bios to be passed to a device
122  *    driver is for them to be collected into requests on a request
123  *    queue, and then to allow the device driver to select requests
124  *    off that queue when it is ready.  This works well for many block
125  *    devices. However some block devices (typically virtual devices
126  *    such as md or lvm) do not benefit from the processing on the
127  *    request queue, and are served best by having the requests passed
128  *    directly to them.  This can be achieved by providing a function
129  *    to blk_queue_make_request().
130  *
131  * Caveat:
132  *    The driver that does this *must* be able to deal appropriately
133  *    with buffers in "highmemory". This can be accomplished by either calling
134  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
135  *    blk_queue_bounce() to create a buffer in normal memory.
136  **/
137 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
138 {
139 	/*
140 	 * set defaults
141 	 */
142 	q->nr_requests = BLKDEV_MAX_RQ;
143 
144 	q->make_request_fn = mfn;
145 	blk_queue_dma_alignment(q, 511);
146 	blk_queue_congestion_threshold(q);
147 	q->nr_batching = BLK_BATCH_REQ;
148 
149 	q->unplug_thresh = 4;		/* hmm */
150 	q->unplug_delay = msecs_to_jiffies(3);	/* 3 milliseconds */
151 	if (q->unplug_delay == 0)
152 		q->unplug_delay = 1;
153 
154 	q->unplug_timer.function = blk_unplug_timeout;
155 	q->unplug_timer.data = (unsigned long)q;
156 
157 	blk_set_default_limits(&q->limits);
158 	blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
159 
160 	/*
161 	 * If the caller didn't supply a lock, fall back to our embedded
162 	 * per-queue locks
163 	 */
164 	if (!q->queue_lock)
165 		q->queue_lock = &q->__queue_lock;
166 
167 	/*
168 	 * by default assume old behaviour and bounce for any highmem page
169 	 */
170 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
171 }
172 EXPORT_SYMBOL(blk_queue_make_request);
173 
174 /**
175  * blk_queue_bounce_limit - set bounce buffer limit for queue
176  * @q: the request queue for the device
177  * @dma_mask: the maximum address the device can handle
178  *
179  * Description:
180  *    Different hardware can have different requirements as to what pages
181  *    it can do I/O directly to. A low level driver can call
182  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
183  *    buffers for doing I/O to pages residing above @dma_mask.
184  **/
185 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
186 {
187 	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
188 	int dma = 0;
189 
190 	q->bounce_gfp = GFP_NOIO;
191 #if BITS_PER_LONG == 64
192 	/*
193 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
194 	 * some IOMMUs can handle everything, but I don't know of a
195 	 * way to test this here.
196 	 */
197 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
198 		dma = 1;
199 	q->limits.bounce_pfn = max_low_pfn;
200 #else
201 	if (b_pfn < blk_max_low_pfn)
202 		dma = 1;
203 	q->limits.bounce_pfn = b_pfn;
204 #endif
205 	if (dma) {
206 		init_emergency_isa_pool();
207 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
208 		q->limits.bounce_pfn = b_pfn;
209 	}
210 }
211 EXPORT_SYMBOL(blk_queue_bounce_limit);
212 
213 /**
214  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
215  * @q:  the request queue for the device
216  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
217  *
218  * Description:
219  *    Enables a low level driver to set a hard upper limit,
220  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
221  *    the device driver based upon the combined capabilities of I/O
222  *    controller and storage device.
223  *
224  *    max_sectors is a soft limit imposed by the block layer for
225  *    filesystem type requests.  This value can be overridden on a
226  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
227  *    The soft limit can not exceed max_hw_sectors.
228  **/
229 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
230 {
231 	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
232 		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
233 		printk(KERN_INFO "%s: set to minimum %d\n",
234 		       __func__, max_hw_sectors);
235 	}
236 
237 	q->limits.max_hw_sectors = max_hw_sectors;
238 	q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
239 				      BLK_DEF_MAX_SECTORS);
240 }
241 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
242 
243 /**
244  * blk_queue_max_discard_sectors - set max sectors for a single discard
245  * @q:  the request queue for the device
246  * @max_discard_sectors: maximum number of sectors to discard
247  **/
248 void blk_queue_max_discard_sectors(struct request_queue *q,
249 		unsigned int max_discard_sectors)
250 {
251 	q->limits.max_discard_sectors = max_discard_sectors;
252 }
253 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
254 
255 /**
256  * blk_queue_max_segments - set max hw segments for a request for this queue
257  * @q:  the request queue for the device
258  * @max_segments:  max number of segments
259  *
260  * Description:
261  *    Enables a low level driver to set an upper limit on the number of
262  *    hw data segments in a request.
263  **/
264 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
265 {
266 	if (!max_segments) {
267 		max_segments = 1;
268 		printk(KERN_INFO "%s: set to minimum %d\n",
269 		       __func__, max_segments);
270 	}
271 
272 	q->limits.max_segments = max_segments;
273 }
274 EXPORT_SYMBOL(blk_queue_max_segments);
275 
276 /**
277  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
278  * @q:  the request queue for the device
279  * @max_size:  max size of segment in bytes
280  *
281  * Description:
282  *    Enables a low level driver to set an upper limit on the size of a
283  *    coalesced segment
284  **/
285 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
286 {
287 	if (max_size < PAGE_CACHE_SIZE) {
288 		max_size = PAGE_CACHE_SIZE;
289 		printk(KERN_INFO "%s: set to minimum %d\n",
290 		       __func__, max_size);
291 	}
292 
293 	q->limits.max_segment_size = max_size;
294 }
295 EXPORT_SYMBOL(blk_queue_max_segment_size);
296 
297 /**
298  * blk_queue_logical_block_size - set logical block size for the queue
299  * @q:  the request queue for the device
300  * @size:  the logical block size, in bytes
301  *
302  * Description:
303  *   This should be set to the lowest possible block size that the
304  *   storage device can address.  The default of 512 covers most
305  *   hardware.
306  **/
307 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
308 {
309 	q->limits.logical_block_size = size;
310 
311 	if (q->limits.physical_block_size < size)
312 		q->limits.physical_block_size = size;
313 
314 	if (q->limits.io_min < q->limits.physical_block_size)
315 		q->limits.io_min = q->limits.physical_block_size;
316 }
317 EXPORT_SYMBOL(blk_queue_logical_block_size);
318 
319 /**
320  * blk_queue_physical_block_size - set physical block size for the queue
321  * @q:  the request queue for the device
322  * @size:  the physical block size, in bytes
323  *
324  * Description:
325  *   This should be set to the lowest possible sector size that the
326  *   hardware can operate on without reverting to read-modify-write
327  *   operations.
328  */
329 void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
330 {
331 	q->limits.physical_block_size = size;
332 
333 	if (q->limits.physical_block_size < q->limits.logical_block_size)
334 		q->limits.physical_block_size = q->limits.logical_block_size;
335 
336 	if (q->limits.io_min < q->limits.physical_block_size)
337 		q->limits.io_min = q->limits.physical_block_size;
338 }
339 EXPORT_SYMBOL(blk_queue_physical_block_size);
340 
341 /**
342  * blk_queue_alignment_offset - set physical block alignment offset
343  * @q:	the request queue for the device
344  * @offset: alignment offset in bytes
345  *
346  * Description:
347  *   Some devices are naturally misaligned to compensate for things like
348  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
349  *   should call this function for devices whose first sector is not
350  *   naturally aligned.
351  */
352 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
353 {
354 	q->limits.alignment_offset =
355 		offset & (q->limits.physical_block_size - 1);
356 	q->limits.misaligned = 0;
357 }
358 EXPORT_SYMBOL(blk_queue_alignment_offset);
359 
360 /**
361  * blk_limits_io_min - set minimum request size for a device
362  * @limits: the queue limits
363  * @min:  smallest I/O size in bytes
364  *
365  * Description:
366  *   Some devices have an internal block size bigger than the reported
367  *   hardware sector size.  This function can be used to signal the
368  *   smallest I/O the device can perform without incurring a performance
369  *   penalty.
370  */
371 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
372 {
373 	limits->io_min = min;
374 
375 	if (limits->io_min < limits->logical_block_size)
376 		limits->io_min = limits->logical_block_size;
377 
378 	if (limits->io_min < limits->physical_block_size)
379 		limits->io_min = limits->physical_block_size;
380 }
381 EXPORT_SYMBOL(blk_limits_io_min);
382 
383 /**
384  * blk_queue_io_min - set minimum request size for the queue
385  * @q:	the request queue for the device
386  * @min:  smallest I/O size in bytes
387  *
388  * Description:
389  *   Storage devices may report a granularity or preferred minimum I/O
390  *   size which is the smallest request the device can perform without
391  *   incurring a performance penalty.  For disk drives this is often the
392  *   physical block size.  For RAID arrays it is often the stripe chunk
393  *   size.  A properly aligned multiple of minimum_io_size is the
394  *   preferred request size for workloads where a high number of I/O
395  *   operations is desired.
396  */
397 void blk_queue_io_min(struct request_queue *q, unsigned int min)
398 {
399 	blk_limits_io_min(&q->limits, min);
400 }
401 EXPORT_SYMBOL(blk_queue_io_min);
402 
403 /**
404  * blk_limits_io_opt - set optimal request size for a device
405  * @limits: the queue limits
406  * @opt:  smallest I/O size in bytes
407  *
408  * Description:
409  *   Storage devices may report an optimal I/O size, which is the
410  *   device's preferred unit for sustained I/O.  This is rarely reported
411  *   for disk drives.  For RAID arrays it is usually the stripe width or
412  *   the internal track size.  A properly aligned multiple of
413  *   optimal_io_size is the preferred request size for workloads where
414  *   sustained throughput is desired.
415  */
416 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
417 {
418 	limits->io_opt = opt;
419 }
420 EXPORT_SYMBOL(blk_limits_io_opt);
421 
422 /**
423  * blk_queue_io_opt - set optimal request size for the queue
424  * @q:	the request queue for the device
425  * @opt:  optimal request size in bytes
426  *
427  * Description:
428  *   Storage devices may report an optimal I/O size, which is the
429  *   device's preferred unit for sustained I/O.  This is rarely reported
430  *   for disk drives.  For RAID arrays it is usually the stripe width or
431  *   the internal track size.  A properly aligned multiple of
432  *   optimal_io_size is the preferred request size for workloads where
433  *   sustained throughput is desired.
434  */
435 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
436 {
437 	blk_limits_io_opt(&q->limits, opt);
438 }
439 EXPORT_SYMBOL(blk_queue_io_opt);
440 
441 /*
442  * Returns the minimum that is _not_ zero, unless both are zero.
443  */
444 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
445 
446 /**
447  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
448  * @t:	the stacking driver (top)
449  * @b:  the underlying device (bottom)
450  **/
451 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
452 {
453 	blk_stack_limits(&t->limits, &b->limits, 0);
454 
455 	if (!t->queue_lock)
456 		WARN_ON_ONCE(1);
457 	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
458 		unsigned long flags;
459 		spin_lock_irqsave(t->queue_lock, flags);
460 		queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
461 		spin_unlock_irqrestore(t->queue_lock, flags);
462 	}
463 }
464 EXPORT_SYMBOL(blk_queue_stack_limits);
465 
466 /**
467  * blk_stack_limits - adjust queue_limits for stacked devices
468  * @t:	the stacking driver limits (top device)
469  * @b:  the underlying queue limits (bottom, component device)
470  * @start:  first data sector within component device
471  *
472  * Description:
473  *    This function is used by stacking drivers like MD and DM to ensure
474  *    that all component devices have compatible block sizes and
475  *    alignments.  The stacking driver must provide a queue_limits
476  *    struct (top) and then iteratively call the stacking function for
477  *    all component (bottom) devices.  The stacking function will
478  *    attempt to combine the values and ensure proper alignment.
479  *
480  *    Returns 0 if the top and bottom queue_limits are compatible.  The
481  *    top device's block sizes and alignment offsets may be adjusted to
482  *    ensure alignment with the bottom device. If no compatible sizes
483  *    and alignments exist, -1 is returned and the resulting top
484  *    queue_limits will have the misaligned flag set to indicate that
485  *    the alignment_offset is undefined.
486  */
487 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
488 		     sector_t start)
489 {
490 	unsigned int top, bottom, alignment, ret = 0;
491 
492 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
493 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
494 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
495 
496 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
497 					    b->seg_boundary_mask);
498 
499 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
500 
501 	t->max_segment_size = min_not_zero(t->max_segment_size,
502 					   b->max_segment_size);
503 
504 	t->misaligned |= b->misaligned;
505 
506 	alignment = queue_limit_alignment_offset(b, start);
507 
508 	/* Bottom device has different alignment.  Check that it is
509 	 * compatible with the current top alignment.
510 	 */
511 	if (t->alignment_offset != alignment) {
512 
513 		top = max(t->physical_block_size, t->io_min)
514 			+ t->alignment_offset;
515 		bottom = max(b->physical_block_size, b->io_min) + alignment;
516 
517 		/* Verify that top and bottom intervals line up */
518 		if (max(top, bottom) & (min(top, bottom) - 1)) {
519 			t->misaligned = 1;
520 			ret = -1;
521 		}
522 	}
523 
524 	t->logical_block_size = max(t->logical_block_size,
525 				    b->logical_block_size);
526 
527 	t->physical_block_size = max(t->physical_block_size,
528 				     b->physical_block_size);
529 
530 	t->io_min = max(t->io_min, b->io_min);
531 	t->io_opt = lcm(t->io_opt, b->io_opt);
532 
533 	t->no_cluster |= b->no_cluster;
534 	t->discard_zeroes_data &= b->discard_zeroes_data;
535 
536 	/* Physical block size a multiple of the logical block size? */
537 	if (t->physical_block_size & (t->logical_block_size - 1)) {
538 		t->physical_block_size = t->logical_block_size;
539 		t->misaligned = 1;
540 		ret = -1;
541 	}
542 
543 	/* Minimum I/O a multiple of the physical block size? */
544 	if (t->io_min & (t->physical_block_size - 1)) {
545 		t->io_min = t->physical_block_size;
546 		t->misaligned = 1;
547 		ret = -1;
548 	}
549 
550 	/* Optimal I/O a multiple of the physical block size? */
551 	if (t->io_opt & (t->physical_block_size - 1)) {
552 		t->io_opt = 0;
553 		t->misaligned = 1;
554 		ret = -1;
555 	}
556 
557 	/* Find lowest common alignment_offset */
558 	t->alignment_offset = lcm(t->alignment_offset, alignment)
559 		& (max(t->physical_block_size, t->io_min) - 1);
560 
561 	/* Verify that new alignment_offset is on a logical block boundary */
562 	if (t->alignment_offset & (t->logical_block_size - 1)) {
563 		t->misaligned = 1;
564 		ret = -1;
565 	}
566 
567 	/* Discard alignment and granularity */
568 	if (b->discard_granularity) {
569 		alignment = queue_limit_discard_alignment(b, start);
570 
571 		if (t->discard_granularity != 0 &&
572 		    t->discard_alignment != alignment) {
573 			top = t->discard_granularity + t->discard_alignment;
574 			bottom = b->discard_granularity + alignment;
575 
576 			/* Verify that top and bottom intervals line up */
577 			if (max(top, bottom) & (min(top, bottom) - 1))
578 				t->discard_misaligned = 1;
579 		}
580 
581 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
582 						      b->max_discard_sectors);
583 		t->discard_granularity = max(t->discard_granularity,
584 					     b->discard_granularity);
585 		t->discard_alignment = lcm(t->discard_alignment, alignment) &
586 			(t->discard_granularity - 1);
587 	}
588 
589 	return ret;
590 }
591 EXPORT_SYMBOL(blk_stack_limits);
592 
593 /**
594  * bdev_stack_limits - adjust queue limits for stacked drivers
595  * @t:	the stacking driver limits (top device)
596  * @bdev:  the component block_device (bottom)
597  * @start:  first data sector within component device
598  *
599  * Description:
600  *    Merges queue limits for a top device and a block_device.  Returns
601  *    0 if alignment didn't change.  Returns -1 if adding the bottom
602  *    device caused misalignment.
603  */
604 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
605 		      sector_t start)
606 {
607 	struct request_queue *bq = bdev_get_queue(bdev);
608 
609 	start += get_start_sect(bdev);
610 
611 	return blk_stack_limits(t, &bq->limits, start);
612 }
613 EXPORT_SYMBOL(bdev_stack_limits);
614 
615 /**
616  * disk_stack_limits - adjust queue limits for stacked drivers
617  * @disk:  MD/DM gendisk (top)
618  * @bdev:  the underlying block device (bottom)
619  * @offset:  offset to beginning of data within component device
620  *
621  * Description:
622  *    Merges the limits for a top level gendisk and a bottom level
623  *    block_device.
624  */
625 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
626 		       sector_t offset)
627 {
628 	struct request_queue *t = disk->queue;
629 	struct request_queue *b = bdev_get_queue(bdev);
630 
631 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
632 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
633 
634 		disk_name(disk, 0, top);
635 		bdevname(bdev, bottom);
636 
637 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
638 		       top, bottom);
639 	}
640 
641 	if (!t->queue_lock)
642 		WARN_ON_ONCE(1);
643 	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
644 		unsigned long flags;
645 
646 		spin_lock_irqsave(t->queue_lock, flags);
647 		if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
648 			queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
649 		spin_unlock_irqrestore(t->queue_lock, flags);
650 	}
651 }
652 EXPORT_SYMBOL(disk_stack_limits);
653 
654 /**
655  * blk_queue_dma_pad - set pad mask
656  * @q:     the request queue for the device
657  * @mask:  pad mask
658  *
659  * Set dma pad mask.
660  *
661  * Appending pad buffer to a request modifies the last entry of a
662  * scatter list such that it includes the pad buffer.
663  **/
664 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
665 {
666 	q->dma_pad_mask = mask;
667 }
668 EXPORT_SYMBOL(blk_queue_dma_pad);
669 
670 /**
671  * blk_queue_update_dma_pad - update pad mask
672  * @q:     the request queue for the device
673  * @mask:  pad mask
674  *
675  * Update dma pad mask.
676  *
677  * Appending pad buffer to a request modifies the last entry of a
678  * scatter list such that it includes the pad buffer.
679  **/
680 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
681 {
682 	if (mask > q->dma_pad_mask)
683 		q->dma_pad_mask = mask;
684 }
685 EXPORT_SYMBOL(blk_queue_update_dma_pad);
686 
687 /**
688  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
689  * @q:  the request queue for the device
690  * @dma_drain_needed: fn which returns non-zero if drain is necessary
691  * @buf:	physically contiguous buffer
692  * @size:	size of the buffer in bytes
693  *
694  * Some devices have excess DMA problems and can't simply discard (or
695  * zero fill) the unwanted piece of the transfer.  They have to have a
696  * real area of memory to transfer it into.  The use case for this is
697  * ATAPI devices in DMA mode.  If the packet command causes a transfer
698  * bigger than the transfer size some HBAs will lock up if there
699  * aren't DMA elements to contain the excess transfer.  What this API
700  * does is adjust the queue so that the buf is always appended
701  * silently to the scatterlist.
702  *
703  * Note: This routine adjusts max_hw_segments to make room for appending
704  * the drain buffer.  If you call blk_queue_max_segments() after calling
705  * this routine, you must set the limit to one fewer than your device
706  * can support otherwise there won't be room for the drain buffer.
707  */
708 int blk_queue_dma_drain(struct request_queue *q,
709 			       dma_drain_needed_fn *dma_drain_needed,
710 			       void *buf, unsigned int size)
711 {
712 	if (queue_max_segments(q) < 2)
713 		return -EINVAL;
714 	/* make room for appending the drain */
715 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
716 	q->dma_drain_needed = dma_drain_needed;
717 	q->dma_drain_buffer = buf;
718 	q->dma_drain_size = size;
719 
720 	return 0;
721 }
722 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
723 
724 /**
725  * blk_queue_segment_boundary - set boundary rules for segment merging
726  * @q:  the request queue for the device
727  * @mask:  the memory boundary mask
728  **/
729 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
730 {
731 	if (mask < PAGE_CACHE_SIZE - 1) {
732 		mask = PAGE_CACHE_SIZE - 1;
733 		printk(KERN_INFO "%s: set to minimum %lx\n",
734 		       __func__, mask);
735 	}
736 
737 	q->limits.seg_boundary_mask = mask;
738 }
739 EXPORT_SYMBOL(blk_queue_segment_boundary);
740 
741 /**
742  * blk_queue_dma_alignment - set dma length and memory alignment
743  * @q:     the request queue for the device
744  * @mask:  alignment mask
745  *
746  * description:
747  *    set required memory and length alignment for direct dma transactions.
748  *    this is used when building direct io requests for the queue.
749  *
750  **/
751 void blk_queue_dma_alignment(struct request_queue *q, int mask)
752 {
753 	q->dma_alignment = mask;
754 }
755 EXPORT_SYMBOL(blk_queue_dma_alignment);
756 
757 /**
758  * blk_queue_update_dma_alignment - update dma length and memory alignment
759  * @q:     the request queue for the device
760  * @mask:  alignment mask
761  *
762  * description:
763  *    update required memory and length alignment for direct dma transactions.
764  *    If the requested alignment is larger than the current alignment, then
765  *    the current queue alignment is updated to the new value, otherwise it
766  *    is left alone.  The design of this is to allow multiple objects
767  *    (driver, device, transport etc) to set their respective
768  *    alignments without having them interfere.
769  *
770  **/
771 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
772 {
773 	BUG_ON(mask > PAGE_SIZE);
774 
775 	if (mask > q->dma_alignment)
776 		q->dma_alignment = mask;
777 }
778 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
779 
780 static int __init blk_settings_init(void)
781 {
782 	blk_max_low_pfn = max_low_pfn - 1;
783 	blk_max_pfn = max_pfn - 1;
784 	return 0;
785 }
786 subsys_initcall(blk_settings_init);
787