1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/gcd.h> 11 #include <linux/lcm.h> 12 #include <linux/jiffies.h> 13 #include <linux/gfp.h> 14 15 #include "blk.h" 16 17 unsigned long blk_max_low_pfn; 18 EXPORT_SYMBOL(blk_max_low_pfn); 19 20 unsigned long blk_max_pfn; 21 22 /** 23 * blk_queue_prep_rq - set a prepare_request function for queue 24 * @q: queue 25 * @pfn: prepare_request function 26 * 27 * It's possible for a queue to register a prepare_request callback which 28 * is invoked before the request is handed to the request_fn. The goal of 29 * the function is to prepare a request for I/O, it can be used to build a 30 * cdb from the request data for instance. 31 * 32 */ 33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 34 { 35 q->prep_rq_fn = pfn; 36 } 37 EXPORT_SYMBOL(blk_queue_prep_rq); 38 39 /** 40 * blk_queue_merge_bvec - set a merge_bvec function for queue 41 * @q: queue 42 * @mbfn: merge_bvec_fn 43 * 44 * Usually queues have static limitations on the max sectors or segments that 45 * we can put in a request. Stacking drivers may have some settings that 46 * are dynamic, and thus we have to query the queue whether it is ok to 47 * add a new bio_vec to a bio at a given offset or not. If the block device 48 * has such limitations, it needs to register a merge_bvec_fn to control 49 * the size of bio's sent to it. Note that a block device *must* allow a 50 * single page to be added to an empty bio. The block device driver may want 51 * to use the bio_split() function to deal with these bio's. By default 52 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 53 * honored. 54 */ 55 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 56 { 57 q->merge_bvec_fn = mbfn; 58 } 59 EXPORT_SYMBOL(blk_queue_merge_bvec); 60 61 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 62 { 63 q->softirq_done_fn = fn; 64 } 65 EXPORT_SYMBOL(blk_queue_softirq_done); 66 67 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 68 { 69 q->rq_timeout = timeout; 70 } 71 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 72 73 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 74 { 75 q->rq_timed_out_fn = fn; 76 } 77 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 78 79 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 80 { 81 q->lld_busy_fn = fn; 82 } 83 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 84 85 /** 86 * blk_set_default_limits - reset limits to default values 87 * @lim: the queue_limits structure to reset 88 * 89 * Description: 90 * Returns a queue_limit struct to its default state. Can be used by 91 * stacking drivers like DM that stage table swaps and reuse an 92 * existing device queue. 93 */ 94 void blk_set_default_limits(struct queue_limits *lim) 95 { 96 lim->max_segments = BLK_MAX_SEGMENTS; 97 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 98 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 99 lim->max_sectors = BLK_DEF_MAX_SECTORS; 100 lim->max_hw_sectors = INT_MAX; 101 lim->max_discard_sectors = 0; 102 lim->discard_granularity = 0; 103 lim->discard_alignment = 0; 104 lim->discard_misaligned = 0; 105 lim->discard_zeroes_data = -1; 106 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 107 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 108 lim->alignment_offset = 0; 109 lim->io_opt = 0; 110 lim->misaligned = 0; 111 lim->no_cluster = 0; 112 } 113 EXPORT_SYMBOL(blk_set_default_limits); 114 115 /** 116 * blk_queue_make_request - define an alternate make_request function for a device 117 * @q: the request queue for the device to be affected 118 * @mfn: the alternate make_request function 119 * 120 * Description: 121 * The normal way for &struct bios to be passed to a device 122 * driver is for them to be collected into requests on a request 123 * queue, and then to allow the device driver to select requests 124 * off that queue when it is ready. This works well for many block 125 * devices. However some block devices (typically virtual devices 126 * such as md or lvm) do not benefit from the processing on the 127 * request queue, and are served best by having the requests passed 128 * directly to them. This can be achieved by providing a function 129 * to blk_queue_make_request(). 130 * 131 * Caveat: 132 * The driver that does this *must* be able to deal appropriately 133 * with buffers in "highmemory". This can be accomplished by either calling 134 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 135 * blk_queue_bounce() to create a buffer in normal memory. 136 **/ 137 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 138 { 139 /* 140 * set defaults 141 */ 142 q->nr_requests = BLKDEV_MAX_RQ; 143 144 q->make_request_fn = mfn; 145 blk_queue_dma_alignment(q, 511); 146 blk_queue_congestion_threshold(q); 147 q->nr_batching = BLK_BATCH_REQ; 148 149 q->unplug_thresh = 4; /* hmm */ 150 q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */ 151 if (q->unplug_delay == 0) 152 q->unplug_delay = 1; 153 154 q->unplug_timer.function = blk_unplug_timeout; 155 q->unplug_timer.data = (unsigned long)q; 156 157 blk_set_default_limits(&q->limits); 158 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS); 159 160 /* 161 * If the caller didn't supply a lock, fall back to our embedded 162 * per-queue locks 163 */ 164 if (!q->queue_lock) 165 q->queue_lock = &q->__queue_lock; 166 167 /* 168 * by default assume old behaviour and bounce for any highmem page 169 */ 170 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 171 } 172 EXPORT_SYMBOL(blk_queue_make_request); 173 174 /** 175 * blk_queue_bounce_limit - set bounce buffer limit for queue 176 * @q: the request queue for the device 177 * @dma_mask: the maximum address the device can handle 178 * 179 * Description: 180 * Different hardware can have different requirements as to what pages 181 * it can do I/O directly to. A low level driver can call 182 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 183 * buffers for doing I/O to pages residing above @dma_mask. 184 **/ 185 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask) 186 { 187 unsigned long b_pfn = dma_mask >> PAGE_SHIFT; 188 int dma = 0; 189 190 q->bounce_gfp = GFP_NOIO; 191 #if BITS_PER_LONG == 64 192 /* 193 * Assume anything <= 4GB can be handled by IOMMU. Actually 194 * some IOMMUs can handle everything, but I don't know of a 195 * way to test this here. 196 */ 197 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 198 dma = 1; 199 q->limits.bounce_pfn = max_low_pfn; 200 #else 201 if (b_pfn < blk_max_low_pfn) 202 dma = 1; 203 q->limits.bounce_pfn = b_pfn; 204 #endif 205 if (dma) { 206 init_emergency_isa_pool(); 207 q->bounce_gfp = GFP_NOIO | GFP_DMA; 208 q->limits.bounce_pfn = b_pfn; 209 } 210 } 211 EXPORT_SYMBOL(blk_queue_bounce_limit); 212 213 /** 214 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 215 * @q: the request queue for the device 216 * @max_hw_sectors: max hardware sectors in the usual 512b unit 217 * 218 * Description: 219 * Enables a low level driver to set a hard upper limit, 220 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 221 * the device driver based upon the combined capabilities of I/O 222 * controller and storage device. 223 * 224 * max_sectors is a soft limit imposed by the block layer for 225 * filesystem type requests. This value can be overridden on a 226 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 227 * The soft limit can not exceed max_hw_sectors. 228 **/ 229 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 230 { 231 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) { 232 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 233 printk(KERN_INFO "%s: set to minimum %d\n", 234 __func__, max_hw_sectors); 235 } 236 237 q->limits.max_hw_sectors = max_hw_sectors; 238 q->limits.max_sectors = min_t(unsigned int, max_hw_sectors, 239 BLK_DEF_MAX_SECTORS); 240 } 241 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 242 243 /** 244 * blk_queue_max_discard_sectors - set max sectors for a single discard 245 * @q: the request queue for the device 246 * @max_discard_sectors: maximum number of sectors to discard 247 **/ 248 void blk_queue_max_discard_sectors(struct request_queue *q, 249 unsigned int max_discard_sectors) 250 { 251 q->limits.max_discard_sectors = max_discard_sectors; 252 } 253 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 254 255 /** 256 * blk_queue_max_segments - set max hw segments for a request for this queue 257 * @q: the request queue for the device 258 * @max_segments: max number of segments 259 * 260 * Description: 261 * Enables a low level driver to set an upper limit on the number of 262 * hw data segments in a request. 263 **/ 264 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 265 { 266 if (!max_segments) { 267 max_segments = 1; 268 printk(KERN_INFO "%s: set to minimum %d\n", 269 __func__, max_segments); 270 } 271 272 q->limits.max_segments = max_segments; 273 } 274 EXPORT_SYMBOL(blk_queue_max_segments); 275 276 /** 277 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 278 * @q: the request queue for the device 279 * @max_size: max size of segment in bytes 280 * 281 * Description: 282 * Enables a low level driver to set an upper limit on the size of a 283 * coalesced segment 284 **/ 285 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 286 { 287 if (max_size < PAGE_CACHE_SIZE) { 288 max_size = PAGE_CACHE_SIZE; 289 printk(KERN_INFO "%s: set to minimum %d\n", 290 __func__, max_size); 291 } 292 293 q->limits.max_segment_size = max_size; 294 } 295 EXPORT_SYMBOL(blk_queue_max_segment_size); 296 297 /** 298 * blk_queue_logical_block_size - set logical block size for the queue 299 * @q: the request queue for the device 300 * @size: the logical block size, in bytes 301 * 302 * Description: 303 * This should be set to the lowest possible block size that the 304 * storage device can address. The default of 512 covers most 305 * hardware. 306 **/ 307 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 308 { 309 q->limits.logical_block_size = size; 310 311 if (q->limits.physical_block_size < size) 312 q->limits.physical_block_size = size; 313 314 if (q->limits.io_min < q->limits.physical_block_size) 315 q->limits.io_min = q->limits.physical_block_size; 316 } 317 EXPORT_SYMBOL(blk_queue_logical_block_size); 318 319 /** 320 * blk_queue_physical_block_size - set physical block size for the queue 321 * @q: the request queue for the device 322 * @size: the physical block size, in bytes 323 * 324 * Description: 325 * This should be set to the lowest possible sector size that the 326 * hardware can operate on without reverting to read-modify-write 327 * operations. 328 */ 329 void blk_queue_physical_block_size(struct request_queue *q, unsigned short size) 330 { 331 q->limits.physical_block_size = size; 332 333 if (q->limits.physical_block_size < q->limits.logical_block_size) 334 q->limits.physical_block_size = q->limits.logical_block_size; 335 336 if (q->limits.io_min < q->limits.physical_block_size) 337 q->limits.io_min = q->limits.physical_block_size; 338 } 339 EXPORT_SYMBOL(blk_queue_physical_block_size); 340 341 /** 342 * blk_queue_alignment_offset - set physical block alignment offset 343 * @q: the request queue for the device 344 * @offset: alignment offset in bytes 345 * 346 * Description: 347 * Some devices are naturally misaligned to compensate for things like 348 * the legacy DOS partition table 63-sector offset. Low-level drivers 349 * should call this function for devices whose first sector is not 350 * naturally aligned. 351 */ 352 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 353 { 354 q->limits.alignment_offset = 355 offset & (q->limits.physical_block_size - 1); 356 q->limits.misaligned = 0; 357 } 358 EXPORT_SYMBOL(blk_queue_alignment_offset); 359 360 /** 361 * blk_limits_io_min - set minimum request size for a device 362 * @limits: the queue limits 363 * @min: smallest I/O size in bytes 364 * 365 * Description: 366 * Some devices have an internal block size bigger than the reported 367 * hardware sector size. This function can be used to signal the 368 * smallest I/O the device can perform without incurring a performance 369 * penalty. 370 */ 371 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 372 { 373 limits->io_min = min; 374 375 if (limits->io_min < limits->logical_block_size) 376 limits->io_min = limits->logical_block_size; 377 378 if (limits->io_min < limits->physical_block_size) 379 limits->io_min = limits->physical_block_size; 380 } 381 EXPORT_SYMBOL(blk_limits_io_min); 382 383 /** 384 * blk_queue_io_min - set minimum request size for the queue 385 * @q: the request queue for the device 386 * @min: smallest I/O size in bytes 387 * 388 * Description: 389 * Storage devices may report a granularity or preferred minimum I/O 390 * size which is the smallest request the device can perform without 391 * incurring a performance penalty. For disk drives this is often the 392 * physical block size. For RAID arrays it is often the stripe chunk 393 * size. A properly aligned multiple of minimum_io_size is the 394 * preferred request size for workloads where a high number of I/O 395 * operations is desired. 396 */ 397 void blk_queue_io_min(struct request_queue *q, unsigned int min) 398 { 399 blk_limits_io_min(&q->limits, min); 400 } 401 EXPORT_SYMBOL(blk_queue_io_min); 402 403 /** 404 * blk_limits_io_opt - set optimal request size for a device 405 * @limits: the queue limits 406 * @opt: smallest I/O size in bytes 407 * 408 * Description: 409 * Storage devices may report an optimal I/O size, which is the 410 * device's preferred unit for sustained I/O. This is rarely reported 411 * for disk drives. For RAID arrays it is usually the stripe width or 412 * the internal track size. A properly aligned multiple of 413 * optimal_io_size is the preferred request size for workloads where 414 * sustained throughput is desired. 415 */ 416 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 417 { 418 limits->io_opt = opt; 419 } 420 EXPORT_SYMBOL(blk_limits_io_opt); 421 422 /** 423 * blk_queue_io_opt - set optimal request size for the queue 424 * @q: the request queue for the device 425 * @opt: optimal request size in bytes 426 * 427 * Description: 428 * Storage devices may report an optimal I/O size, which is the 429 * device's preferred unit for sustained I/O. This is rarely reported 430 * for disk drives. For RAID arrays it is usually the stripe width or 431 * the internal track size. A properly aligned multiple of 432 * optimal_io_size is the preferred request size for workloads where 433 * sustained throughput is desired. 434 */ 435 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 436 { 437 blk_limits_io_opt(&q->limits, opt); 438 } 439 EXPORT_SYMBOL(blk_queue_io_opt); 440 441 /* 442 * Returns the minimum that is _not_ zero, unless both are zero. 443 */ 444 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 445 446 /** 447 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 448 * @t: the stacking driver (top) 449 * @b: the underlying device (bottom) 450 **/ 451 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 452 { 453 blk_stack_limits(&t->limits, &b->limits, 0); 454 455 if (!t->queue_lock) 456 WARN_ON_ONCE(1); 457 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 458 unsigned long flags; 459 spin_lock_irqsave(t->queue_lock, flags); 460 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 461 spin_unlock_irqrestore(t->queue_lock, flags); 462 } 463 } 464 EXPORT_SYMBOL(blk_queue_stack_limits); 465 466 /** 467 * blk_stack_limits - adjust queue_limits for stacked devices 468 * @t: the stacking driver limits (top device) 469 * @b: the underlying queue limits (bottom, component device) 470 * @start: first data sector within component device 471 * 472 * Description: 473 * This function is used by stacking drivers like MD and DM to ensure 474 * that all component devices have compatible block sizes and 475 * alignments. The stacking driver must provide a queue_limits 476 * struct (top) and then iteratively call the stacking function for 477 * all component (bottom) devices. The stacking function will 478 * attempt to combine the values and ensure proper alignment. 479 * 480 * Returns 0 if the top and bottom queue_limits are compatible. The 481 * top device's block sizes and alignment offsets may be adjusted to 482 * ensure alignment with the bottom device. If no compatible sizes 483 * and alignments exist, -1 is returned and the resulting top 484 * queue_limits will have the misaligned flag set to indicate that 485 * the alignment_offset is undefined. 486 */ 487 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 488 sector_t start) 489 { 490 unsigned int top, bottom, alignment, ret = 0; 491 492 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 493 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 494 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 495 496 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 497 b->seg_boundary_mask); 498 499 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 500 501 t->max_segment_size = min_not_zero(t->max_segment_size, 502 b->max_segment_size); 503 504 t->misaligned |= b->misaligned; 505 506 alignment = queue_limit_alignment_offset(b, start); 507 508 /* Bottom device has different alignment. Check that it is 509 * compatible with the current top alignment. 510 */ 511 if (t->alignment_offset != alignment) { 512 513 top = max(t->physical_block_size, t->io_min) 514 + t->alignment_offset; 515 bottom = max(b->physical_block_size, b->io_min) + alignment; 516 517 /* Verify that top and bottom intervals line up */ 518 if (max(top, bottom) & (min(top, bottom) - 1)) { 519 t->misaligned = 1; 520 ret = -1; 521 } 522 } 523 524 t->logical_block_size = max(t->logical_block_size, 525 b->logical_block_size); 526 527 t->physical_block_size = max(t->physical_block_size, 528 b->physical_block_size); 529 530 t->io_min = max(t->io_min, b->io_min); 531 t->io_opt = lcm(t->io_opt, b->io_opt); 532 533 t->no_cluster |= b->no_cluster; 534 t->discard_zeroes_data &= b->discard_zeroes_data; 535 536 /* Physical block size a multiple of the logical block size? */ 537 if (t->physical_block_size & (t->logical_block_size - 1)) { 538 t->physical_block_size = t->logical_block_size; 539 t->misaligned = 1; 540 ret = -1; 541 } 542 543 /* Minimum I/O a multiple of the physical block size? */ 544 if (t->io_min & (t->physical_block_size - 1)) { 545 t->io_min = t->physical_block_size; 546 t->misaligned = 1; 547 ret = -1; 548 } 549 550 /* Optimal I/O a multiple of the physical block size? */ 551 if (t->io_opt & (t->physical_block_size - 1)) { 552 t->io_opt = 0; 553 t->misaligned = 1; 554 ret = -1; 555 } 556 557 /* Find lowest common alignment_offset */ 558 t->alignment_offset = lcm(t->alignment_offset, alignment) 559 & (max(t->physical_block_size, t->io_min) - 1); 560 561 /* Verify that new alignment_offset is on a logical block boundary */ 562 if (t->alignment_offset & (t->logical_block_size - 1)) { 563 t->misaligned = 1; 564 ret = -1; 565 } 566 567 /* Discard alignment and granularity */ 568 if (b->discard_granularity) { 569 alignment = queue_limit_discard_alignment(b, start); 570 571 if (t->discard_granularity != 0 && 572 t->discard_alignment != alignment) { 573 top = t->discard_granularity + t->discard_alignment; 574 bottom = b->discard_granularity + alignment; 575 576 /* Verify that top and bottom intervals line up */ 577 if (max(top, bottom) & (min(top, bottom) - 1)) 578 t->discard_misaligned = 1; 579 } 580 581 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 582 b->max_discard_sectors); 583 t->discard_granularity = max(t->discard_granularity, 584 b->discard_granularity); 585 t->discard_alignment = lcm(t->discard_alignment, alignment) & 586 (t->discard_granularity - 1); 587 } 588 589 return ret; 590 } 591 EXPORT_SYMBOL(blk_stack_limits); 592 593 /** 594 * bdev_stack_limits - adjust queue limits for stacked drivers 595 * @t: the stacking driver limits (top device) 596 * @bdev: the component block_device (bottom) 597 * @start: first data sector within component device 598 * 599 * Description: 600 * Merges queue limits for a top device and a block_device. Returns 601 * 0 if alignment didn't change. Returns -1 if adding the bottom 602 * device caused misalignment. 603 */ 604 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 605 sector_t start) 606 { 607 struct request_queue *bq = bdev_get_queue(bdev); 608 609 start += get_start_sect(bdev); 610 611 return blk_stack_limits(t, &bq->limits, start); 612 } 613 EXPORT_SYMBOL(bdev_stack_limits); 614 615 /** 616 * disk_stack_limits - adjust queue limits for stacked drivers 617 * @disk: MD/DM gendisk (top) 618 * @bdev: the underlying block device (bottom) 619 * @offset: offset to beginning of data within component device 620 * 621 * Description: 622 * Merges the limits for a top level gendisk and a bottom level 623 * block_device. 624 */ 625 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 626 sector_t offset) 627 { 628 struct request_queue *t = disk->queue; 629 struct request_queue *b = bdev_get_queue(bdev); 630 631 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) { 632 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 633 634 disk_name(disk, 0, top); 635 bdevname(bdev, bottom); 636 637 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 638 top, bottom); 639 } 640 641 if (!t->queue_lock) 642 WARN_ON_ONCE(1); 643 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 644 unsigned long flags; 645 646 spin_lock_irqsave(t->queue_lock, flags); 647 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) 648 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 649 spin_unlock_irqrestore(t->queue_lock, flags); 650 } 651 } 652 EXPORT_SYMBOL(disk_stack_limits); 653 654 /** 655 * blk_queue_dma_pad - set pad mask 656 * @q: the request queue for the device 657 * @mask: pad mask 658 * 659 * Set dma pad mask. 660 * 661 * Appending pad buffer to a request modifies the last entry of a 662 * scatter list such that it includes the pad buffer. 663 **/ 664 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 665 { 666 q->dma_pad_mask = mask; 667 } 668 EXPORT_SYMBOL(blk_queue_dma_pad); 669 670 /** 671 * blk_queue_update_dma_pad - update pad mask 672 * @q: the request queue for the device 673 * @mask: pad mask 674 * 675 * Update dma pad mask. 676 * 677 * Appending pad buffer to a request modifies the last entry of a 678 * scatter list such that it includes the pad buffer. 679 **/ 680 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 681 { 682 if (mask > q->dma_pad_mask) 683 q->dma_pad_mask = mask; 684 } 685 EXPORT_SYMBOL(blk_queue_update_dma_pad); 686 687 /** 688 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 689 * @q: the request queue for the device 690 * @dma_drain_needed: fn which returns non-zero if drain is necessary 691 * @buf: physically contiguous buffer 692 * @size: size of the buffer in bytes 693 * 694 * Some devices have excess DMA problems and can't simply discard (or 695 * zero fill) the unwanted piece of the transfer. They have to have a 696 * real area of memory to transfer it into. The use case for this is 697 * ATAPI devices in DMA mode. If the packet command causes a transfer 698 * bigger than the transfer size some HBAs will lock up if there 699 * aren't DMA elements to contain the excess transfer. What this API 700 * does is adjust the queue so that the buf is always appended 701 * silently to the scatterlist. 702 * 703 * Note: This routine adjusts max_hw_segments to make room for appending 704 * the drain buffer. If you call blk_queue_max_segments() after calling 705 * this routine, you must set the limit to one fewer than your device 706 * can support otherwise there won't be room for the drain buffer. 707 */ 708 int blk_queue_dma_drain(struct request_queue *q, 709 dma_drain_needed_fn *dma_drain_needed, 710 void *buf, unsigned int size) 711 { 712 if (queue_max_segments(q) < 2) 713 return -EINVAL; 714 /* make room for appending the drain */ 715 blk_queue_max_segments(q, queue_max_segments(q) - 1); 716 q->dma_drain_needed = dma_drain_needed; 717 q->dma_drain_buffer = buf; 718 q->dma_drain_size = size; 719 720 return 0; 721 } 722 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 723 724 /** 725 * blk_queue_segment_boundary - set boundary rules for segment merging 726 * @q: the request queue for the device 727 * @mask: the memory boundary mask 728 **/ 729 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 730 { 731 if (mask < PAGE_CACHE_SIZE - 1) { 732 mask = PAGE_CACHE_SIZE - 1; 733 printk(KERN_INFO "%s: set to minimum %lx\n", 734 __func__, mask); 735 } 736 737 q->limits.seg_boundary_mask = mask; 738 } 739 EXPORT_SYMBOL(blk_queue_segment_boundary); 740 741 /** 742 * blk_queue_dma_alignment - set dma length and memory alignment 743 * @q: the request queue for the device 744 * @mask: alignment mask 745 * 746 * description: 747 * set required memory and length alignment for direct dma transactions. 748 * this is used when building direct io requests for the queue. 749 * 750 **/ 751 void blk_queue_dma_alignment(struct request_queue *q, int mask) 752 { 753 q->dma_alignment = mask; 754 } 755 EXPORT_SYMBOL(blk_queue_dma_alignment); 756 757 /** 758 * blk_queue_update_dma_alignment - update dma length and memory alignment 759 * @q: the request queue for the device 760 * @mask: alignment mask 761 * 762 * description: 763 * update required memory and length alignment for direct dma transactions. 764 * If the requested alignment is larger than the current alignment, then 765 * the current queue alignment is updated to the new value, otherwise it 766 * is left alone. The design of this is to allow multiple objects 767 * (driver, device, transport etc) to set their respective 768 * alignments without having them interfere. 769 * 770 **/ 771 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 772 { 773 BUG_ON(mask > PAGE_SIZE); 774 775 if (mask > q->dma_alignment) 776 q->dma_alignment = mask; 777 } 778 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 779 780 static int __init blk_settings_init(void) 781 { 782 blk_max_low_pfn = max_low_pfn - 1; 783 blk_max_pfn = max_pfn - 1; 784 return 0; 785 } 786 subsys_initcall(blk_settings_init); 787