xref: /linux/block/blk-settings.c (revision 8f5b5f78113e881cb8570c961b0dc42b218a1b9e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "blk.h"
19 #include "blk-rq-qos.h"
20 #include "blk-wbt.h"
21 
22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 {
24 	q->rq_timeout = timeout;
25 }
26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27 
28 /**
29  * blk_set_stacking_limits - set default limits for stacking devices
30  * @lim:  the queue_limits structure to reset
31  *
32  * Prepare queue limits for applying limits from underlying devices using
33  * blk_stack_limits().
34  */
35 void blk_set_stacking_limits(struct queue_limits *lim)
36 {
37 	memset(lim, 0, sizeof(*lim));
38 	lim->logical_block_size = SECTOR_SIZE;
39 	lim->physical_block_size = SECTOR_SIZE;
40 	lim->io_min = SECTOR_SIZE;
41 	lim->discard_granularity = SECTOR_SIZE;
42 	lim->dma_alignment = SECTOR_SIZE - 1;
43 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44 
45 	/* Inherit limits from component devices */
46 	lim->max_segments = USHRT_MAX;
47 	lim->max_discard_segments = USHRT_MAX;
48 	lim->max_hw_sectors = UINT_MAX;
49 	lim->max_segment_size = UINT_MAX;
50 	lim->max_sectors = UINT_MAX;
51 	lim->max_dev_sectors = UINT_MAX;
52 	lim->max_write_zeroes_sectors = UINT_MAX;
53 	lim->max_zone_append_sectors = UINT_MAX;
54 	lim->max_user_discard_sectors = UINT_MAX;
55 }
56 EXPORT_SYMBOL(blk_set_stacking_limits);
57 
58 static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59 		struct queue_limits *lim)
60 {
61 	/*
62 	 * For read-ahead of large files to be effective, we need to read ahead
63 	 * at least twice the optimal I/O size.
64 	 */
65 	bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66 	bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67 }
68 
69 static int blk_validate_zoned_limits(struct queue_limits *lim)
70 {
71 	if (!lim->zoned) {
72 		if (WARN_ON_ONCE(lim->max_open_zones) ||
73 		    WARN_ON_ONCE(lim->max_active_zones) ||
74 		    WARN_ON_ONCE(lim->zone_write_granularity) ||
75 		    WARN_ON_ONCE(lim->max_zone_append_sectors))
76 			return -EINVAL;
77 		return 0;
78 	}
79 
80 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81 		return -EINVAL;
82 
83 	if (lim->zone_write_granularity < lim->logical_block_size)
84 		lim->zone_write_granularity = lim->logical_block_size;
85 
86 	if (lim->max_zone_append_sectors) {
87 		/*
88 		 * The Zone Append size is limited by the maximum I/O size
89 		 * and the zone size given that it can't span zones.
90 		 */
91 		lim->max_zone_append_sectors =
92 			min3(lim->max_hw_sectors,
93 			     lim->max_zone_append_sectors,
94 			     lim->chunk_sectors);
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * Check that the limits in lim are valid, initialize defaults for unset
102  * values, and cap values based on others where needed.
103  */
104 static int blk_validate_limits(struct queue_limits *lim)
105 {
106 	unsigned int max_hw_sectors;
107 
108 	/*
109 	 * Unless otherwise specified, default to 512 byte logical blocks and a
110 	 * physical block size equal to the logical block size.
111 	 */
112 	if (!lim->logical_block_size)
113 		lim->logical_block_size = SECTOR_SIZE;
114 	if (lim->physical_block_size < lim->logical_block_size)
115 		lim->physical_block_size = lim->logical_block_size;
116 
117 	/*
118 	 * The minimum I/O size defaults to the physical block size unless
119 	 * explicitly overridden.
120 	 */
121 	if (lim->io_min < lim->physical_block_size)
122 		lim->io_min = lim->physical_block_size;
123 
124 	/*
125 	 * max_hw_sectors has a somewhat weird default for historical reason,
126 	 * but driver really should set their own instead of relying on this
127 	 * value.
128 	 *
129 	 * The block layer relies on the fact that every driver can
130 	 * handle at lest a page worth of data per I/O, and needs the value
131 	 * aligned to the logical block size.
132 	 */
133 	if (!lim->max_hw_sectors)
134 		lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
135 	if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
136 		return -EINVAL;
137 	lim->max_hw_sectors = round_down(lim->max_hw_sectors,
138 			lim->logical_block_size >> SECTOR_SHIFT);
139 
140 	/*
141 	 * The actual max_sectors value is a complex beast and also takes the
142 	 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
143 	 * value into account.  The ->max_sectors value is always calculated
144 	 * from these, so directly setting it won't have any effect.
145 	 */
146 	max_hw_sectors = min_not_zero(lim->max_hw_sectors,
147 				lim->max_dev_sectors);
148 	if (lim->max_user_sectors) {
149 		if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
150 			return -EINVAL;
151 		lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
152 	} else {
153 		lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
154 	}
155 	lim->max_sectors = round_down(lim->max_sectors,
156 			lim->logical_block_size >> SECTOR_SHIFT);
157 
158 	/*
159 	 * Random default for the maximum number of segments.  Driver should not
160 	 * rely on this and set their own.
161 	 */
162 	if (!lim->max_segments)
163 		lim->max_segments = BLK_MAX_SEGMENTS;
164 
165 	lim->max_discard_sectors =
166 		min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
167 
168 	if (!lim->max_discard_segments)
169 		lim->max_discard_segments = 1;
170 
171 	if (lim->discard_granularity < lim->physical_block_size)
172 		lim->discard_granularity = lim->physical_block_size;
173 
174 	/*
175 	 * By default there is no limit on the segment boundary alignment,
176 	 * but if there is one it can't be smaller than the page size as
177 	 * that would break all the normal I/O patterns.
178 	 */
179 	if (!lim->seg_boundary_mask)
180 		lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
181 	if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
182 		return -EINVAL;
183 
184 	/*
185 	 * Stacking device may have both virtual boundary and max segment
186 	 * size limit, so allow this setting now, and long-term the two
187 	 * might need to move out of stacking limits since we have immutable
188 	 * bvec and lower layer bio splitting is supposed to handle the two
189 	 * correctly.
190 	 */
191 	if (lim->virt_boundary_mask) {
192 		if (!lim->max_segment_size)
193 			lim->max_segment_size = UINT_MAX;
194 	} else {
195 		/*
196 		 * The maximum segment size has an odd historic 64k default that
197 		 * drivers probably should override.  Just like the I/O size we
198 		 * require drivers to at least handle a full page per segment.
199 		 */
200 		if (!lim->max_segment_size)
201 			lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
202 		if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
203 			return -EINVAL;
204 	}
205 
206 	/*
207 	 * We require drivers to at least do logical block aligned I/O, but
208 	 * historically could not check for that due to the separate calls
209 	 * to set the limits.  Once the transition is finished the check
210 	 * below should be narrowed down to check the logical block size.
211 	 */
212 	if (!lim->dma_alignment)
213 		lim->dma_alignment = SECTOR_SIZE - 1;
214 	if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
215 		return -EINVAL;
216 
217 	if (lim->alignment_offset) {
218 		lim->alignment_offset &= (lim->physical_block_size - 1);
219 		lim->misaligned = 0;
220 	}
221 
222 	return blk_validate_zoned_limits(lim);
223 }
224 
225 /*
226  * Set the default limits for a newly allocated queue.  @lim contains the
227  * initial limits set by the driver, which could be no limit in which case
228  * all fields are cleared to zero.
229  */
230 int blk_set_default_limits(struct queue_limits *lim)
231 {
232 	/*
233 	 * Most defaults are set by capping the bounds in blk_validate_limits,
234 	 * but max_user_discard_sectors is special and needs an explicit
235 	 * initialization to the max value here.
236 	 */
237 	lim->max_user_discard_sectors = UINT_MAX;
238 	return blk_validate_limits(lim);
239 }
240 
241 /**
242  * queue_limits_commit_update - commit an atomic update of queue limits
243  * @q:		queue to update
244  * @lim:	limits to apply
245  *
246  * Apply the limits in @lim that were obtained from queue_limits_start_update()
247  * and updated by the caller to @q.
248  *
249  * Returns 0 if successful, else a negative error code.
250  */
251 int queue_limits_commit_update(struct request_queue *q,
252 		struct queue_limits *lim)
253 	__releases(q->limits_lock)
254 {
255 	int error = blk_validate_limits(lim);
256 
257 	if (!error) {
258 		q->limits = *lim;
259 		if (q->disk)
260 			blk_apply_bdi_limits(q->disk->bdi, lim);
261 	}
262 	mutex_unlock(&q->limits_lock);
263 	return error;
264 }
265 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
266 
267 /**
268  * queue_limits_set - apply queue limits to queue
269  * @q:		queue to update
270  * @lim:	limits to apply
271  *
272  * Apply the limits in @lim that were freshly initialized to @q.
273  * To update existing limits use queue_limits_start_update() and
274  * queue_limits_commit_update() instead.
275  *
276  * Returns 0 if successful, else a negative error code.
277  */
278 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
279 {
280 	mutex_lock(&q->limits_lock);
281 	return queue_limits_commit_update(q, lim);
282 }
283 EXPORT_SYMBOL_GPL(queue_limits_set);
284 
285 /**
286  * blk_queue_bounce_limit - set bounce buffer limit for queue
287  * @q: the request queue for the device
288  * @bounce: bounce limit to enforce
289  *
290  * Description:
291  *    Force bouncing for ISA DMA ranges or highmem.
292  *
293  *    DEPRECATED, don't use in new code.
294  **/
295 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
296 {
297 	q->limits.bounce = bounce;
298 }
299 EXPORT_SYMBOL(blk_queue_bounce_limit);
300 
301 /**
302  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
303  * @q:  the request queue for the device
304  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
305  *
306  * Description:
307  *    Enables a low level driver to set a hard upper limit,
308  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
309  *    the device driver based upon the capabilities of the I/O
310  *    controller.
311  *
312  *    max_dev_sectors is a hard limit imposed by the storage device for
313  *    READ/WRITE requests. It is set by the disk driver.
314  *
315  *    max_sectors is a soft limit imposed by the block layer for
316  *    filesystem type requests.  This value can be overridden on a
317  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
318  *    The soft limit can not exceed max_hw_sectors.
319  **/
320 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
321 {
322 	struct queue_limits *limits = &q->limits;
323 	unsigned int max_sectors;
324 
325 	if ((max_hw_sectors << 9) < PAGE_SIZE) {
326 		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
327 		pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors);
328 	}
329 
330 	max_hw_sectors = round_down(max_hw_sectors,
331 				    limits->logical_block_size >> SECTOR_SHIFT);
332 	limits->max_hw_sectors = max_hw_sectors;
333 
334 	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
335 
336 	if (limits->max_user_sectors)
337 		max_sectors = min(max_sectors, limits->max_user_sectors);
338 	else
339 		max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP);
340 
341 	max_sectors = round_down(max_sectors,
342 				 limits->logical_block_size >> SECTOR_SHIFT);
343 	limits->max_sectors = max_sectors;
344 
345 	if (!q->disk)
346 		return;
347 	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
348 }
349 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
350 
351 /**
352  * blk_queue_chunk_sectors - set size of the chunk for this queue
353  * @q:  the request queue for the device
354  * @chunk_sectors:  chunk sectors in the usual 512b unit
355  *
356  * Description:
357  *    If a driver doesn't want IOs to cross a given chunk size, it can set
358  *    this limit and prevent merging across chunks. Note that the block layer
359  *    must accept a page worth of data at any offset. So if the crossing of
360  *    chunks is a hard limitation in the driver, it must still be prepared
361  *    to split single page bios.
362  **/
363 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
364 {
365 	q->limits.chunk_sectors = chunk_sectors;
366 }
367 EXPORT_SYMBOL(blk_queue_chunk_sectors);
368 
369 /**
370  * blk_queue_max_discard_sectors - set max sectors for a single discard
371  * @q:  the request queue for the device
372  * @max_discard_sectors: maximum number of sectors to discard
373  **/
374 void blk_queue_max_discard_sectors(struct request_queue *q,
375 		unsigned int max_discard_sectors)
376 {
377 	struct queue_limits *lim = &q->limits;
378 
379 	lim->max_hw_discard_sectors = max_discard_sectors;
380 	lim->max_discard_sectors =
381 		min(max_discard_sectors, lim->max_user_discard_sectors);
382 }
383 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
384 
385 /**
386  * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
387  * @q:  the request queue for the device
388  * @max_sectors: maximum number of sectors to secure_erase
389  **/
390 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
391 		unsigned int max_sectors)
392 {
393 	q->limits.max_secure_erase_sectors = max_sectors;
394 }
395 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
396 
397 /**
398  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
399  *                                      write zeroes
400  * @q:  the request queue for the device
401  * @max_write_zeroes_sectors: maximum number of sectors to write per command
402  **/
403 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
404 		unsigned int max_write_zeroes_sectors)
405 {
406 	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
407 }
408 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
409 
410 /**
411  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
412  * @q:  the request queue for the device
413  * @max_zone_append_sectors: maximum number of sectors to write per command
414  *
415  * Sets the maximum number of sectors allowed for zone append commands. If
416  * Specifying 0 for @max_zone_append_sectors indicates that the queue does
417  * not natively support zone append operations and that the block layer must
418  * emulate these operations using regular writes.
419  **/
420 void blk_queue_max_zone_append_sectors(struct request_queue *q,
421 		unsigned int max_zone_append_sectors)
422 {
423 	unsigned int max_sectors = 0;
424 
425 	if (WARN_ON(!blk_queue_is_zoned(q)))
426 		return;
427 
428 	if (max_zone_append_sectors) {
429 		max_sectors = min(q->limits.max_hw_sectors,
430 				  max_zone_append_sectors);
431 		max_sectors = min(q->limits.chunk_sectors, max_sectors);
432 
433 		/*
434 		 * Signal eventual driver bugs resulting in the max_zone_append
435 		 * sectors limit being 0 due to the chunk_sectors limit (zone
436 		 * size) not set or the max_hw_sectors limit not set.
437 		 */
438 		WARN_ON_ONCE(!max_sectors);
439 	}
440 
441 	q->limits.max_zone_append_sectors = max_sectors;
442 }
443 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
444 
445 /**
446  * blk_queue_max_segments - set max hw segments for a request for this queue
447  * @q:  the request queue for the device
448  * @max_segments:  max number of segments
449  *
450  * Description:
451  *    Enables a low level driver to set an upper limit on the number of
452  *    hw data segments in a request.
453  **/
454 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
455 {
456 	if (!max_segments) {
457 		max_segments = 1;
458 		pr_info("%s: set to minimum %u\n", __func__, max_segments);
459 	}
460 
461 	q->limits.max_segments = max_segments;
462 }
463 EXPORT_SYMBOL(blk_queue_max_segments);
464 
465 /**
466  * blk_queue_max_discard_segments - set max segments for discard requests
467  * @q:  the request queue for the device
468  * @max_segments:  max number of segments
469  *
470  * Description:
471  *    Enables a low level driver to set an upper limit on the number of
472  *    segments in a discard request.
473  **/
474 void blk_queue_max_discard_segments(struct request_queue *q,
475 		unsigned short max_segments)
476 {
477 	q->limits.max_discard_segments = max_segments;
478 }
479 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
480 
481 /**
482  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
483  * @q:  the request queue for the device
484  * @max_size:  max size of segment in bytes
485  *
486  * Description:
487  *    Enables a low level driver to set an upper limit on the size of a
488  *    coalesced segment
489  **/
490 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
491 {
492 	if (max_size < PAGE_SIZE) {
493 		max_size = PAGE_SIZE;
494 		pr_info("%s: set to minimum %u\n", __func__, max_size);
495 	}
496 
497 	/* see blk_queue_virt_boundary() for the explanation */
498 	WARN_ON_ONCE(q->limits.virt_boundary_mask);
499 
500 	q->limits.max_segment_size = max_size;
501 }
502 EXPORT_SYMBOL(blk_queue_max_segment_size);
503 
504 /**
505  * blk_queue_logical_block_size - set logical block size for the queue
506  * @q:  the request queue for the device
507  * @size:  the logical block size, in bytes
508  *
509  * Description:
510  *   This should be set to the lowest possible block size that the
511  *   storage device can address.  The default of 512 covers most
512  *   hardware.
513  **/
514 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
515 {
516 	struct queue_limits *limits = &q->limits;
517 
518 	limits->logical_block_size = size;
519 
520 	if (limits->discard_granularity < limits->logical_block_size)
521 		limits->discard_granularity = limits->logical_block_size;
522 
523 	if (limits->physical_block_size < size)
524 		limits->physical_block_size = size;
525 
526 	if (limits->io_min < limits->physical_block_size)
527 		limits->io_min = limits->physical_block_size;
528 
529 	limits->max_hw_sectors =
530 		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
531 	limits->max_sectors =
532 		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
533 }
534 EXPORT_SYMBOL(blk_queue_logical_block_size);
535 
536 /**
537  * blk_queue_physical_block_size - set physical block size for the queue
538  * @q:  the request queue for the device
539  * @size:  the physical block size, in bytes
540  *
541  * Description:
542  *   This should be set to the lowest possible sector size that the
543  *   hardware can operate on without reverting to read-modify-write
544  *   operations.
545  */
546 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
547 {
548 	q->limits.physical_block_size = size;
549 
550 	if (q->limits.physical_block_size < q->limits.logical_block_size)
551 		q->limits.physical_block_size = q->limits.logical_block_size;
552 
553 	if (q->limits.discard_granularity < q->limits.physical_block_size)
554 		q->limits.discard_granularity = q->limits.physical_block_size;
555 
556 	if (q->limits.io_min < q->limits.physical_block_size)
557 		q->limits.io_min = q->limits.physical_block_size;
558 }
559 EXPORT_SYMBOL(blk_queue_physical_block_size);
560 
561 /**
562  * blk_queue_zone_write_granularity - set zone write granularity for the queue
563  * @q:  the request queue for the zoned device
564  * @size:  the zone write granularity size, in bytes
565  *
566  * Description:
567  *   This should be set to the lowest possible size allowing to write in
568  *   sequential zones of a zoned block device.
569  */
570 void blk_queue_zone_write_granularity(struct request_queue *q,
571 				      unsigned int size)
572 {
573 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
574 		return;
575 
576 	q->limits.zone_write_granularity = size;
577 
578 	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
579 		q->limits.zone_write_granularity = q->limits.logical_block_size;
580 }
581 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
582 
583 /**
584  * blk_queue_alignment_offset - set physical block alignment offset
585  * @q:	the request queue for the device
586  * @offset: alignment offset in bytes
587  *
588  * Description:
589  *   Some devices are naturally misaligned to compensate for things like
590  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
591  *   should call this function for devices whose first sector is not
592  *   naturally aligned.
593  */
594 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
595 {
596 	q->limits.alignment_offset =
597 		offset & (q->limits.physical_block_size - 1);
598 	q->limits.misaligned = 0;
599 }
600 EXPORT_SYMBOL(blk_queue_alignment_offset);
601 
602 void disk_update_readahead(struct gendisk *disk)
603 {
604 	blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
605 }
606 EXPORT_SYMBOL_GPL(disk_update_readahead);
607 
608 /**
609  * blk_limits_io_min - set minimum request size for a device
610  * @limits: the queue limits
611  * @min:  smallest I/O size in bytes
612  *
613  * Description:
614  *   Some devices have an internal block size bigger than the reported
615  *   hardware sector size.  This function can be used to signal the
616  *   smallest I/O the device can perform without incurring a performance
617  *   penalty.
618  */
619 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
620 {
621 	limits->io_min = min;
622 
623 	if (limits->io_min < limits->logical_block_size)
624 		limits->io_min = limits->logical_block_size;
625 
626 	if (limits->io_min < limits->physical_block_size)
627 		limits->io_min = limits->physical_block_size;
628 }
629 EXPORT_SYMBOL(blk_limits_io_min);
630 
631 /**
632  * blk_queue_io_min - set minimum request size for the queue
633  * @q:	the request queue for the device
634  * @min:  smallest I/O size in bytes
635  *
636  * Description:
637  *   Storage devices may report a granularity or preferred minimum I/O
638  *   size which is the smallest request the device can perform without
639  *   incurring a performance penalty.  For disk drives this is often the
640  *   physical block size.  For RAID arrays it is often the stripe chunk
641  *   size.  A properly aligned multiple of minimum_io_size is the
642  *   preferred request size for workloads where a high number of I/O
643  *   operations is desired.
644  */
645 void blk_queue_io_min(struct request_queue *q, unsigned int min)
646 {
647 	blk_limits_io_min(&q->limits, min);
648 }
649 EXPORT_SYMBOL(blk_queue_io_min);
650 
651 /**
652  * blk_limits_io_opt - set optimal request size for a device
653  * @limits: the queue limits
654  * @opt:  smallest I/O size in bytes
655  *
656  * Description:
657  *   Storage devices may report an optimal I/O size, which is the
658  *   device's preferred unit for sustained I/O.  This is rarely reported
659  *   for disk drives.  For RAID arrays it is usually the stripe width or
660  *   the internal track size.  A properly aligned multiple of
661  *   optimal_io_size is the preferred request size for workloads where
662  *   sustained throughput is desired.
663  */
664 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
665 {
666 	limits->io_opt = opt;
667 }
668 EXPORT_SYMBOL(blk_limits_io_opt);
669 
670 /**
671  * blk_queue_io_opt - set optimal request size for the queue
672  * @q:	the request queue for the device
673  * @opt:  optimal request size in bytes
674  *
675  * Description:
676  *   Storage devices may report an optimal I/O size, which is the
677  *   device's preferred unit for sustained I/O.  This is rarely reported
678  *   for disk drives.  For RAID arrays it is usually the stripe width or
679  *   the internal track size.  A properly aligned multiple of
680  *   optimal_io_size is the preferred request size for workloads where
681  *   sustained throughput is desired.
682  */
683 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
684 {
685 	blk_limits_io_opt(&q->limits, opt);
686 	if (!q->disk)
687 		return;
688 	q->disk->bdi->ra_pages =
689 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
690 }
691 EXPORT_SYMBOL(blk_queue_io_opt);
692 
693 static int queue_limit_alignment_offset(const struct queue_limits *lim,
694 		sector_t sector)
695 {
696 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
697 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
698 		<< SECTOR_SHIFT;
699 
700 	return (granularity + lim->alignment_offset - alignment) % granularity;
701 }
702 
703 static unsigned int queue_limit_discard_alignment(
704 		const struct queue_limits *lim, sector_t sector)
705 {
706 	unsigned int alignment, granularity, offset;
707 
708 	if (!lim->max_discard_sectors)
709 		return 0;
710 
711 	/* Why are these in bytes, not sectors? */
712 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
713 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
714 	if (!granularity)
715 		return 0;
716 
717 	/* Offset of the partition start in 'granularity' sectors */
718 	offset = sector_div(sector, granularity);
719 
720 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
721 	offset = (granularity + alignment - offset) % granularity;
722 
723 	/* Turn it back into bytes, gaah */
724 	return offset << SECTOR_SHIFT;
725 }
726 
727 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
728 {
729 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
730 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
731 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
732 	return sectors;
733 }
734 
735 /**
736  * blk_stack_limits - adjust queue_limits for stacked devices
737  * @t:	the stacking driver limits (top device)
738  * @b:  the underlying queue limits (bottom, component device)
739  * @start:  first data sector within component device
740  *
741  * Description:
742  *    This function is used by stacking drivers like MD and DM to ensure
743  *    that all component devices have compatible block sizes and
744  *    alignments.  The stacking driver must provide a queue_limits
745  *    struct (top) and then iteratively call the stacking function for
746  *    all component (bottom) devices.  The stacking function will
747  *    attempt to combine the values and ensure proper alignment.
748  *
749  *    Returns 0 if the top and bottom queue_limits are compatible.  The
750  *    top device's block sizes and alignment offsets may be adjusted to
751  *    ensure alignment with the bottom device. If no compatible sizes
752  *    and alignments exist, -1 is returned and the resulting top
753  *    queue_limits will have the misaligned flag set to indicate that
754  *    the alignment_offset is undefined.
755  */
756 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
757 		     sector_t start)
758 {
759 	unsigned int top, bottom, alignment, ret = 0;
760 
761 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
762 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
763 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
764 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
765 					b->max_write_zeroes_sectors);
766 	t->max_zone_append_sectors = min(queue_limits_max_zone_append_sectors(t),
767 					 queue_limits_max_zone_append_sectors(b));
768 	t->bounce = max(t->bounce, b->bounce);
769 
770 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
771 					    b->seg_boundary_mask);
772 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
773 					    b->virt_boundary_mask);
774 
775 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
776 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
777 					       b->max_discard_segments);
778 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
779 						 b->max_integrity_segments);
780 
781 	t->max_segment_size = min_not_zero(t->max_segment_size,
782 					   b->max_segment_size);
783 
784 	t->misaligned |= b->misaligned;
785 
786 	alignment = queue_limit_alignment_offset(b, start);
787 
788 	/* Bottom device has different alignment.  Check that it is
789 	 * compatible with the current top alignment.
790 	 */
791 	if (t->alignment_offset != alignment) {
792 
793 		top = max(t->physical_block_size, t->io_min)
794 			+ t->alignment_offset;
795 		bottom = max(b->physical_block_size, b->io_min) + alignment;
796 
797 		/* Verify that top and bottom intervals line up */
798 		if (max(top, bottom) % min(top, bottom)) {
799 			t->misaligned = 1;
800 			ret = -1;
801 		}
802 	}
803 
804 	t->logical_block_size = max(t->logical_block_size,
805 				    b->logical_block_size);
806 
807 	t->physical_block_size = max(t->physical_block_size,
808 				     b->physical_block_size);
809 
810 	t->io_min = max(t->io_min, b->io_min);
811 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
812 	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
813 
814 	/* Set non-power-of-2 compatible chunk_sectors boundary */
815 	if (b->chunk_sectors)
816 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
817 
818 	/* Physical block size a multiple of the logical block size? */
819 	if (t->physical_block_size & (t->logical_block_size - 1)) {
820 		t->physical_block_size = t->logical_block_size;
821 		t->misaligned = 1;
822 		ret = -1;
823 	}
824 
825 	/* Minimum I/O a multiple of the physical block size? */
826 	if (t->io_min & (t->physical_block_size - 1)) {
827 		t->io_min = t->physical_block_size;
828 		t->misaligned = 1;
829 		ret = -1;
830 	}
831 
832 	/* Optimal I/O a multiple of the physical block size? */
833 	if (t->io_opt & (t->physical_block_size - 1)) {
834 		t->io_opt = 0;
835 		t->misaligned = 1;
836 		ret = -1;
837 	}
838 
839 	/* chunk_sectors a multiple of the physical block size? */
840 	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
841 		t->chunk_sectors = 0;
842 		t->misaligned = 1;
843 		ret = -1;
844 	}
845 
846 	t->raid_partial_stripes_expensive =
847 		max(t->raid_partial_stripes_expensive,
848 		    b->raid_partial_stripes_expensive);
849 
850 	/* Find lowest common alignment_offset */
851 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
852 		% max(t->physical_block_size, t->io_min);
853 
854 	/* Verify that new alignment_offset is on a logical block boundary */
855 	if (t->alignment_offset & (t->logical_block_size - 1)) {
856 		t->misaligned = 1;
857 		ret = -1;
858 	}
859 
860 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
861 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
862 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
863 
864 	/* Discard alignment and granularity */
865 	if (b->discard_granularity) {
866 		alignment = queue_limit_discard_alignment(b, start);
867 
868 		if (t->discard_granularity != 0 &&
869 		    t->discard_alignment != alignment) {
870 			top = t->discard_granularity + t->discard_alignment;
871 			bottom = b->discard_granularity + alignment;
872 
873 			/* Verify that top and bottom intervals line up */
874 			if ((max(top, bottom) % min(top, bottom)) != 0)
875 				t->discard_misaligned = 1;
876 		}
877 
878 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
879 						      b->max_discard_sectors);
880 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
881 							 b->max_hw_discard_sectors);
882 		t->discard_granularity = max(t->discard_granularity,
883 					     b->discard_granularity);
884 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
885 			t->discard_granularity;
886 	}
887 	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
888 						   b->max_secure_erase_sectors);
889 	t->zone_write_granularity = max(t->zone_write_granularity,
890 					b->zone_write_granularity);
891 	t->zoned = max(t->zoned, b->zoned);
892 	if (!t->zoned) {
893 		t->zone_write_granularity = 0;
894 		t->max_zone_append_sectors = 0;
895 	}
896 	return ret;
897 }
898 EXPORT_SYMBOL(blk_stack_limits);
899 
900 /**
901  * queue_limits_stack_bdev - adjust queue_limits for stacked devices
902  * @t:	the stacking driver limits (top device)
903  * @bdev:  the underlying block device (bottom)
904  * @offset:  offset to beginning of data within component device
905  * @pfx: prefix to use for warnings logged
906  *
907  * Description:
908  *    This function is used by stacking drivers like MD and DM to ensure
909  *    that all component devices have compatible block sizes and
910  *    alignments.  The stacking driver must provide a queue_limits
911  *    struct (top) and then iteratively call the stacking function for
912  *    all component (bottom) devices.  The stacking function will
913  *    attempt to combine the values and ensure proper alignment.
914  */
915 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
916 		sector_t offset, const char *pfx)
917 {
918 	if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
919 			get_start_sect(bdev) + offset))
920 		pr_notice("%s: Warning: Device %pg is misaligned\n",
921 			pfx, bdev);
922 }
923 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
924 
925 /**
926  * blk_queue_update_dma_pad - update pad mask
927  * @q:     the request queue for the device
928  * @mask:  pad mask
929  *
930  * Update dma pad mask.
931  *
932  * Appending pad buffer to a request modifies the last entry of a
933  * scatter list such that it includes the pad buffer.
934  **/
935 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
936 {
937 	if (mask > q->dma_pad_mask)
938 		q->dma_pad_mask = mask;
939 }
940 EXPORT_SYMBOL(blk_queue_update_dma_pad);
941 
942 /**
943  * blk_queue_segment_boundary - set boundary rules for segment merging
944  * @q:  the request queue for the device
945  * @mask:  the memory boundary mask
946  **/
947 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
948 {
949 	if (mask < PAGE_SIZE - 1) {
950 		mask = PAGE_SIZE - 1;
951 		pr_info("%s: set to minimum %lx\n", __func__, mask);
952 	}
953 
954 	q->limits.seg_boundary_mask = mask;
955 }
956 EXPORT_SYMBOL(blk_queue_segment_boundary);
957 
958 /**
959  * blk_queue_virt_boundary - set boundary rules for bio merging
960  * @q:  the request queue for the device
961  * @mask:  the memory boundary mask
962  **/
963 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
964 {
965 	q->limits.virt_boundary_mask = mask;
966 
967 	/*
968 	 * Devices that require a virtual boundary do not support scatter/gather
969 	 * I/O natively, but instead require a descriptor list entry for each
970 	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
971 	 * of that they are not limited by our notion of "segment size".
972 	 */
973 	if (mask)
974 		q->limits.max_segment_size = UINT_MAX;
975 }
976 EXPORT_SYMBOL(blk_queue_virt_boundary);
977 
978 /**
979  * blk_queue_dma_alignment - set dma length and memory alignment
980  * @q:     the request queue for the device
981  * @mask:  alignment mask
982  *
983  * description:
984  *    set required memory and length alignment for direct dma transactions.
985  *    this is used when building direct io requests for the queue.
986  *
987  **/
988 void blk_queue_dma_alignment(struct request_queue *q, int mask)
989 {
990 	q->limits.dma_alignment = mask;
991 }
992 EXPORT_SYMBOL(blk_queue_dma_alignment);
993 
994 /**
995  * blk_queue_update_dma_alignment - update dma length and memory alignment
996  * @q:     the request queue for the device
997  * @mask:  alignment mask
998  *
999  * description:
1000  *    update required memory and length alignment for direct dma transactions.
1001  *    If the requested alignment is larger than the current alignment, then
1002  *    the current queue alignment is updated to the new value, otherwise it
1003  *    is left alone.  The design of this is to allow multiple objects
1004  *    (driver, device, transport etc) to set their respective
1005  *    alignments without having them interfere.
1006  *
1007  **/
1008 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
1009 {
1010 	BUG_ON(mask > PAGE_SIZE);
1011 
1012 	if (mask > q->limits.dma_alignment)
1013 		q->limits.dma_alignment = mask;
1014 }
1015 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
1016 
1017 /**
1018  * blk_set_queue_depth - tell the block layer about the device queue depth
1019  * @q:		the request queue for the device
1020  * @depth:		queue depth
1021  *
1022  */
1023 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1024 {
1025 	q->queue_depth = depth;
1026 	rq_qos_queue_depth_changed(q);
1027 }
1028 EXPORT_SYMBOL(blk_set_queue_depth);
1029 
1030 /**
1031  * blk_queue_write_cache - configure queue's write cache
1032  * @q:		the request queue for the device
1033  * @wc:		write back cache on or off
1034  * @fua:	device supports FUA writes, if true
1035  *
1036  * Tell the block layer about the write cache of @q.
1037  */
1038 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
1039 {
1040 	if (wc) {
1041 		blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
1042 		blk_queue_flag_set(QUEUE_FLAG_WC, q);
1043 	} else {
1044 		blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
1045 		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
1046 	}
1047 	if (fua)
1048 		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
1049 	else
1050 		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
1051 }
1052 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
1053 
1054 /**
1055  * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
1056  * @q:		the request queue for the device
1057  * @dev:	the device pointer for dma
1058  *
1059  * Tell the block layer about merging the segments by dma map of @q.
1060  */
1061 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1062 				       struct device *dev)
1063 {
1064 	unsigned long boundary = dma_get_merge_boundary(dev);
1065 
1066 	if (!boundary)
1067 		return false;
1068 
1069 	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
1070 	blk_queue_virt_boundary(q, boundary);
1071 
1072 	return true;
1073 }
1074 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
1075 
1076 /**
1077  * disk_set_zoned - inidicate a zoned device
1078  * @disk:	gendisk to configure
1079  */
1080 void disk_set_zoned(struct gendisk *disk)
1081 {
1082 	struct request_queue *q = disk->queue;
1083 
1084 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
1085 
1086 	/*
1087 	 * Set the zone write granularity to the device logical block
1088 	 * size by default. The driver can change this value if needed.
1089 	 */
1090 	q->limits.zoned = true;
1091 	blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
1092 }
1093 EXPORT_SYMBOL_GPL(disk_set_zoned);
1094 
1095 int bdev_alignment_offset(struct block_device *bdev)
1096 {
1097 	struct request_queue *q = bdev_get_queue(bdev);
1098 
1099 	if (q->limits.misaligned)
1100 		return -1;
1101 	if (bdev_is_partition(bdev))
1102 		return queue_limit_alignment_offset(&q->limits,
1103 				bdev->bd_start_sect);
1104 	return q->limits.alignment_offset;
1105 }
1106 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1107 
1108 unsigned int bdev_discard_alignment(struct block_device *bdev)
1109 {
1110 	struct request_queue *q = bdev_get_queue(bdev);
1111 
1112 	if (bdev_is_partition(bdev))
1113 		return queue_limit_discard_alignment(&q->limits,
1114 				bdev->bd_start_sect);
1115 	return q->limits.discard_alignment;
1116 }
1117 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
1118