1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 18 #include "blk.h" 19 #include "blk-rq-qos.h" 20 #include "blk-wbt.h" 21 22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 23 { 24 q->rq_timeout = timeout; 25 } 26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 27 28 /** 29 * blk_set_stacking_limits - set default limits for stacking devices 30 * @lim: the queue_limits structure to reset 31 * 32 * Prepare queue limits for applying limits from underlying devices using 33 * blk_stack_limits(). 34 */ 35 void blk_set_stacking_limits(struct queue_limits *lim) 36 { 37 memset(lim, 0, sizeof(*lim)); 38 lim->logical_block_size = SECTOR_SIZE; 39 lim->physical_block_size = SECTOR_SIZE; 40 lim->io_min = SECTOR_SIZE; 41 lim->discard_granularity = SECTOR_SIZE; 42 lim->dma_alignment = SECTOR_SIZE - 1; 43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 44 45 /* Inherit limits from component devices */ 46 lim->max_segments = USHRT_MAX; 47 lim->max_discard_segments = USHRT_MAX; 48 lim->max_hw_sectors = UINT_MAX; 49 lim->max_segment_size = UINT_MAX; 50 lim->max_sectors = UINT_MAX; 51 lim->max_dev_sectors = UINT_MAX; 52 lim->max_write_zeroes_sectors = UINT_MAX; 53 lim->max_zone_append_sectors = UINT_MAX; 54 lim->max_user_discard_sectors = UINT_MAX; 55 } 56 EXPORT_SYMBOL(blk_set_stacking_limits); 57 58 static void blk_apply_bdi_limits(struct backing_dev_info *bdi, 59 struct queue_limits *lim) 60 { 61 /* 62 * For read-ahead of large files to be effective, we need to read ahead 63 * at least twice the optimal I/O size. 64 */ 65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; 67 } 68 69 static int blk_validate_zoned_limits(struct queue_limits *lim) 70 { 71 if (!lim->zoned) { 72 if (WARN_ON_ONCE(lim->max_open_zones) || 73 WARN_ON_ONCE(lim->max_active_zones) || 74 WARN_ON_ONCE(lim->zone_write_granularity) || 75 WARN_ON_ONCE(lim->max_zone_append_sectors)) 76 return -EINVAL; 77 return 0; 78 } 79 80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) 81 return -EINVAL; 82 83 if (lim->zone_write_granularity < lim->logical_block_size) 84 lim->zone_write_granularity = lim->logical_block_size; 85 86 if (lim->max_zone_append_sectors) { 87 /* 88 * The Zone Append size is limited by the maximum I/O size 89 * and the zone size given that it can't span zones. 90 */ 91 lim->max_zone_append_sectors = 92 min3(lim->max_hw_sectors, 93 lim->max_zone_append_sectors, 94 lim->chunk_sectors); 95 } 96 97 return 0; 98 } 99 100 /* 101 * Check that the limits in lim are valid, initialize defaults for unset 102 * values, and cap values based on others where needed. 103 */ 104 static int blk_validate_limits(struct queue_limits *lim) 105 { 106 unsigned int max_hw_sectors; 107 108 /* 109 * Unless otherwise specified, default to 512 byte logical blocks and a 110 * physical block size equal to the logical block size. 111 */ 112 if (!lim->logical_block_size) 113 lim->logical_block_size = SECTOR_SIZE; 114 if (lim->physical_block_size < lim->logical_block_size) 115 lim->physical_block_size = lim->logical_block_size; 116 117 /* 118 * The minimum I/O size defaults to the physical block size unless 119 * explicitly overridden. 120 */ 121 if (lim->io_min < lim->physical_block_size) 122 lim->io_min = lim->physical_block_size; 123 124 /* 125 * max_hw_sectors has a somewhat weird default for historical reason, 126 * but driver really should set their own instead of relying on this 127 * value. 128 * 129 * The block layer relies on the fact that every driver can 130 * handle at lest a page worth of data per I/O, and needs the value 131 * aligned to the logical block size. 132 */ 133 if (!lim->max_hw_sectors) 134 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 135 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) 136 return -EINVAL; 137 lim->max_hw_sectors = round_down(lim->max_hw_sectors, 138 lim->logical_block_size >> SECTOR_SHIFT); 139 140 /* 141 * The actual max_sectors value is a complex beast and also takes the 142 * max_dev_sectors value (set by SCSI ULPs) and a user configurable 143 * value into account. The ->max_sectors value is always calculated 144 * from these, so directly setting it won't have any effect. 145 */ 146 max_hw_sectors = min_not_zero(lim->max_hw_sectors, 147 lim->max_dev_sectors); 148 if (lim->max_user_sectors) { 149 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE) 150 return -EINVAL; 151 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); 152 } else { 153 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); 154 } 155 lim->max_sectors = round_down(lim->max_sectors, 156 lim->logical_block_size >> SECTOR_SHIFT); 157 158 /* 159 * Random default for the maximum number of segments. Driver should not 160 * rely on this and set their own. 161 */ 162 if (!lim->max_segments) 163 lim->max_segments = BLK_MAX_SEGMENTS; 164 165 lim->max_discard_sectors = 166 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); 167 168 if (!lim->max_discard_segments) 169 lim->max_discard_segments = 1; 170 171 if (lim->discard_granularity < lim->physical_block_size) 172 lim->discard_granularity = lim->physical_block_size; 173 174 /* 175 * By default there is no limit on the segment boundary alignment, 176 * but if there is one it can't be smaller than the page size as 177 * that would break all the normal I/O patterns. 178 */ 179 if (!lim->seg_boundary_mask) 180 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 181 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1)) 182 return -EINVAL; 183 184 /* 185 * Stacking device may have both virtual boundary and max segment 186 * size limit, so allow this setting now, and long-term the two 187 * might need to move out of stacking limits since we have immutable 188 * bvec and lower layer bio splitting is supposed to handle the two 189 * correctly. 190 */ 191 if (lim->virt_boundary_mask) { 192 if (!lim->max_segment_size) 193 lim->max_segment_size = UINT_MAX; 194 } else { 195 /* 196 * The maximum segment size has an odd historic 64k default that 197 * drivers probably should override. Just like the I/O size we 198 * require drivers to at least handle a full page per segment. 199 */ 200 if (!lim->max_segment_size) 201 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 202 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE)) 203 return -EINVAL; 204 } 205 206 /* 207 * We require drivers to at least do logical block aligned I/O, but 208 * historically could not check for that due to the separate calls 209 * to set the limits. Once the transition is finished the check 210 * below should be narrowed down to check the logical block size. 211 */ 212 if (!lim->dma_alignment) 213 lim->dma_alignment = SECTOR_SIZE - 1; 214 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) 215 return -EINVAL; 216 217 if (lim->alignment_offset) { 218 lim->alignment_offset &= (lim->physical_block_size - 1); 219 lim->misaligned = 0; 220 } 221 222 return blk_validate_zoned_limits(lim); 223 } 224 225 /* 226 * Set the default limits for a newly allocated queue. @lim contains the 227 * initial limits set by the driver, which could be no limit in which case 228 * all fields are cleared to zero. 229 */ 230 int blk_set_default_limits(struct queue_limits *lim) 231 { 232 /* 233 * Most defaults are set by capping the bounds in blk_validate_limits, 234 * but max_user_discard_sectors is special and needs an explicit 235 * initialization to the max value here. 236 */ 237 lim->max_user_discard_sectors = UINT_MAX; 238 return blk_validate_limits(lim); 239 } 240 241 /** 242 * queue_limits_commit_update - commit an atomic update of queue limits 243 * @q: queue to update 244 * @lim: limits to apply 245 * 246 * Apply the limits in @lim that were obtained from queue_limits_start_update() 247 * and updated by the caller to @q. 248 * 249 * Returns 0 if successful, else a negative error code. 250 */ 251 int queue_limits_commit_update(struct request_queue *q, 252 struct queue_limits *lim) 253 __releases(q->limits_lock) 254 { 255 int error = blk_validate_limits(lim); 256 257 if (!error) { 258 q->limits = *lim; 259 if (q->disk) 260 blk_apply_bdi_limits(q->disk->bdi, lim); 261 } 262 mutex_unlock(&q->limits_lock); 263 return error; 264 } 265 EXPORT_SYMBOL_GPL(queue_limits_commit_update); 266 267 /** 268 * queue_limits_set - apply queue limits to queue 269 * @q: queue to update 270 * @lim: limits to apply 271 * 272 * Apply the limits in @lim that were freshly initialized to @q. 273 * To update existing limits use queue_limits_start_update() and 274 * queue_limits_commit_update() instead. 275 * 276 * Returns 0 if successful, else a negative error code. 277 */ 278 int queue_limits_set(struct request_queue *q, struct queue_limits *lim) 279 { 280 mutex_lock(&q->limits_lock); 281 return queue_limits_commit_update(q, lim); 282 } 283 EXPORT_SYMBOL_GPL(queue_limits_set); 284 285 /** 286 * blk_queue_bounce_limit - set bounce buffer limit for queue 287 * @q: the request queue for the device 288 * @bounce: bounce limit to enforce 289 * 290 * Description: 291 * Force bouncing for ISA DMA ranges or highmem. 292 * 293 * DEPRECATED, don't use in new code. 294 **/ 295 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce) 296 { 297 q->limits.bounce = bounce; 298 } 299 EXPORT_SYMBOL(blk_queue_bounce_limit); 300 301 /** 302 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 303 * @q: the request queue for the device 304 * @max_hw_sectors: max hardware sectors in the usual 512b unit 305 * 306 * Description: 307 * Enables a low level driver to set a hard upper limit, 308 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 309 * the device driver based upon the capabilities of the I/O 310 * controller. 311 * 312 * max_dev_sectors is a hard limit imposed by the storage device for 313 * READ/WRITE requests. It is set by the disk driver. 314 * 315 * max_sectors is a soft limit imposed by the block layer for 316 * filesystem type requests. This value can be overridden on a 317 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 318 * The soft limit can not exceed max_hw_sectors. 319 **/ 320 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 321 { 322 struct queue_limits *limits = &q->limits; 323 unsigned int max_sectors; 324 325 if ((max_hw_sectors << 9) < PAGE_SIZE) { 326 max_hw_sectors = 1 << (PAGE_SHIFT - 9); 327 pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors); 328 } 329 330 max_hw_sectors = round_down(max_hw_sectors, 331 limits->logical_block_size >> SECTOR_SHIFT); 332 limits->max_hw_sectors = max_hw_sectors; 333 334 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors); 335 336 if (limits->max_user_sectors) 337 max_sectors = min(max_sectors, limits->max_user_sectors); 338 else 339 max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP); 340 341 max_sectors = round_down(max_sectors, 342 limits->logical_block_size >> SECTOR_SHIFT); 343 limits->max_sectors = max_sectors; 344 345 if (!q->disk) 346 return; 347 q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9); 348 } 349 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 350 351 /** 352 * blk_queue_chunk_sectors - set size of the chunk for this queue 353 * @q: the request queue for the device 354 * @chunk_sectors: chunk sectors in the usual 512b unit 355 * 356 * Description: 357 * If a driver doesn't want IOs to cross a given chunk size, it can set 358 * this limit and prevent merging across chunks. Note that the block layer 359 * must accept a page worth of data at any offset. So if the crossing of 360 * chunks is a hard limitation in the driver, it must still be prepared 361 * to split single page bios. 362 **/ 363 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) 364 { 365 q->limits.chunk_sectors = chunk_sectors; 366 } 367 EXPORT_SYMBOL(blk_queue_chunk_sectors); 368 369 /** 370 * blk_queue_max_discard_sectors - set max sectors for a single discard 371 * @q: the request queue for the device 372 * @max_discard_sectors: maximum number of sectors to discard 373 **/ 374 void blk_queue_max_discard_sectors(struct request_queue *q, 375 unsigned int max_discard_sectors) 376 { 377 struct queue_limits *lim = &q->limits; 378 379 lim->max_hw_discard_sectors = max_discard_sectors; 380 lim->max_discard_sectors = 381 min(max_discard_sectors, lim->max_user_discard_sectors); 382 } 383 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 384 385 /** 386 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase 387 * @q: the request queue for the device 388 * @max_sectors: maximum number of sectors to secure_erase 389 **/ 390 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 391 unsigned int max_sectors) 392 { 393 q->limits.max_secure_erase_sectors = max_sectors; 394 } 395 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors); 396 397 /** 398 * blk_queue_max_write_zeroes_sectors - set max sectors for a single 399 * write zeroes 400 * @q: the request queue for the device 401 * @max_write_zeroes_sectors: maximum number of sectors to write per command 402 **/ 403 void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 404 unsigned int max_write_zeroes_sectors) 405 { 406 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors; 407 } 408 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors); 409 410 /** 411 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append 412 * @q: the request queue for the device 413 * @max_zone_append_sectors: maximum number of sectors to write per command 414 * 415 * Sets the maximum number of sectors allowed for zone append commands. If 416 * Specifying 0 for @max_zone_append_sectors indicates that the queue does 417 * not natively support zone append operations and that the block layer must 418 * emulate these operations using regular writes. 419 **/ 420 void blk_queue_max_zone_append_sectors(struct request_queue *q, 421 unsigned int max_zone_append_sectors) 422 { 423 unsigned int max_sectors = 0; 424 425 if (WARN_ON(!blk_queue_is_zoned(q))) 426 return; 427 428 if (max_zone_append_sectors) { 429 max_sectors = min(q->limits.max_hw_sectors, 430 max_zone_append_sectors); 431 max_sectors = min(q->limits.chunk_sectors, max_sectors); 432 433 /* 434 * Signal eventual driver bugs resulting in the max_zone_append 435 * sectors limit being 0 due to the chunk_sectors limit (zone 436 * size) not set or the max_hw_sectors limit not set. 437 */ 438 WARN_ON_ONCE(!max_sectors); 439 } 440 441 q->limits.max_zone_append_sectors = max_sectors; 442 } 443 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors); 444 445 /** 446 * blk_queue_max_segments - set max hw segments for a request for this queue 447 * @q: the request queue for the device 448 * @max_segments: max number of segments 449 * 450 * Description: 451 * Enables a low level driver to set an upper limit on the number of 452 * hw data segments in a request. 453 **/ 454 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 455 { 456 if (!max_segments) { 457 max_segments = 1; 458 pr_info("%s: set to minimum %u\n", __func__, max_segments); 459 } 460 461 q->limits.max_segments = max_segments; 462 } 463 EXPORT_SYMBOL(blk_queue_max_segments); 464 465 /** 466 * blk_queue_max_discard_segments - set max segments for discard requests 467 * @q: the request queue for the device 468 * @max_segments: max number of segments 469 * 470 * Description: 471 * Enables a low level driver to set an upper limit on the number of 472 * segments in a discard request. 473 **/ 474 void blk_queue_max_discard_segments(struct request_queue *q, 475 unsigned short max_segments) 476 { 477 q->limits.max_discard_segments = max_segments; 478 } 479 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments); 480 481 /** 482 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 483 * @q: the request queue for the device 484 * @max_size: max size of segment in bytes 485 * 486 * Description: 487 * Enables a low level driver to set an upper limit on the size of a 488 * coalesced segment 489 **/ 490 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 491 { 492 if (max_size < PAGE_SIZE) { 493 max_size = PAGE_SIZE; 494 pr_info("%s: set to minimum %u\n", __func__, max_size); 495 } 496 497 /* see blk_queue_virt_boundary() for the explanation */ 498 WARN_ON_ONCE(q->limits.virt_boundary_mask); 499 500 q->limits.max_segment_size = max_size; 501 } 502 EXPORT_SYMBOL(blk_queue_max_segment_size); 503 504 /** 505 * blk_queue_logical_block_size - set logical block size for the queue 506 * @q: the request queue for the device 507 * @size: the logical block size, in bytes 508 * 509 * Description: 510 * This should be set to the lowest possible block size that the 511 * storage device can address. The default of 512 covers most 512 * hardware. 513 **/ 514 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size) 515 { 516 struct queue_limits *limits = &q->limits; 517 518 limits->logical_block_size = size; 519 520 if (limits->discard_granularity < limits->logical_block_size) 521 limits->discard_granularity = limits->logical_block_size; 522 523 if (limits->physical_block_size < size) 524 limits->physical_block_size = size; 525 526 if (limits->io_min < limits->physical_block_size) 527 limits->io_min = limits->physical_block_size; 528 529 limits->max_hw_sectors = 530 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT); 531 limits->max_sectors = 532 round_down(limits->max_sectors, size >> SECTOR_SHIFT); 533 } 534 EXPORT_SYMBOL(blk_queue_logical_block_size); 535 536 /** 537 * blk_queue_physical_block_size - set physical block size for the queue 538 * @q: the request queue for the device 539 * @size: the physical block size, in bytes 540 * 541 * Description: 542 * This should be set to the lowest possible sector size that the 543 * hardware can operate on without reverting to read-modify-write 544 * operations. 545 */ 546 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 547 { 548 q->limits.physical_block_size = size; 549 550 if (q->limits.physical_block_size < q->limits.logical_block_size) 551 q->limits.physical_block_size = q->limits.logical_block_size; 552 553 if (q->limits.discard_granularity < q->limits.physical_block_size) 554 q->limits.discard_granularity = q->limits.physical_block_size; 555 556 if (q->limits.io_min < q->limits.physical_block_size) 557 q->limits.io_min = q->limits.physical_block_size; 558 } 559 EXPORT_SYMBOL(blk_queue_physical_block_size); 560 561 /** 562 * blk_queue_zone_write_granularity - set zone write granularity for the queue 563 * @q: the request queue for the zoned device 564 * @size: the zone write granularity size, in bytes 565 * 566 * Description: 567 * This should be set to the lowest possible size allowing to write in 568 * sequential zones of a zoned block device. 569 */ 570 void blk_queue_zone_write_granularity(struct request_queue *q, 571 unsigned int size) 572 { 573 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 574 return; 575 576 q->limits.zone_write_granularity = size; 577 578 if (q->limits.zone_write_granularity < q->limits.logical_block_size) 579 q->limits.zone_write_granularity = q->limits.logical_block_size; 580 } 581 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity); 582 583 /** 584 * blk_queue_alignment_offset - set physical block alignment offset 585 * @q: the request queue for the device 586 * @offset: alignment offset in bytes 587 * 588 * Description: 589 * Some devices are naturally misaligned to compensate for things like 590 * the legacy DOS partition table 63-sector offset. Low-level drivers 591 * should call this function for devices whose first sector is not 592 * naturally aligned. 593 */ 594 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 595 { 596 q->limits.alignment_offset = 597 offset & (q->limits.physical_block_size - 1); 598 q->limits.misaligned = 0; 599 } 600 EXPORT_SYMBOL(blk_queue_alignment_offset); 601 602 void disk_update_readahead(struct gendisk *disk) 603 { 604 blk_apply_bdi_limits(disk->bdi, &disk->queue->limits); 605 } 606 EXPORT_SYMBOL_GPL(disk_update_readahead); 607 608 /** 609 * blk_limits_io_min - set minimum request size for a device 610 * @limits: the queue limits 611 * @min: smallest I/O size in bytes 612 * 613 * Description: 614 * Some devices have an internal block size bigger than the reported 615 * hardware sector size. This function can be used to signal the 616 * smallest I/O the device can perform without incurring a performance 617 * penalty. 618 */ 619 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 620 { 621 limits->io_min = min; 622 623 if (limits->io_min < limits->logical_block_size) 624 limits->io_min = limits->logical_block_size; 625 626 if (limits->io_min < limits->physical_block_size) 627 limits->io_min = limits->physical_block_size; 628 } 629 EXPORT_SYMBOL(blk_limits_io_min); 630 631 /** 632 * blk_queue_io_min - set minimum request size for the queue 633 * @q: the request queue for the device 634 * @min: smallest I/O size in bytes 635 * 636 * Description: 637 * Storage devices may report a granularity or preferred minimum I/O 638 * size which is the smallest request the device can perform without 639 * incurring a performance penalty. For disk drives this is often the 640 * physical block size. For RAID arrays it is often the stripe chunk 641 * size. A properly aligned multiple of minimum_io_size is the 642 * preferred request size for workloads where a high number of I/O 643 * operations is desired. 644 */ 645 void blk_queue_io_min(struct request_queue *q, unsigned int min) 646 { 647 blk_limits_io_min(&q->limits, min); 648 } 649 EXPORT_SYMBOL(blk_queue_io_min); 650 651 /** 652 * blk_limits_io_opt - set optimal request size for a device 653 * @limits: the queue limits 654 * @opt: smallest I/O size in bytes 655 * 656 * Description: 657 * Storage devices may report an optimal I/O size, which is the 658 * device's preferred unit for sustained I/O. This is rarely reported 659 * for disk drives. For RAID arrays it is usually the stripe width or 660 * the internal track size. A properly aligned multiple of 661 * optimal_io_size is the preferred request size for workloads where 662 * sustained throughput is desired. 663 */ 664 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 665 { 666 limits->io_opt = opt; 667 } 668 EXPORT_SYMBOL(blk_limits_io_opt); 669 670 /** 671 * blk_queue_io_opt - set optimal request size for the queue 672 * @q: the request queue for the device 673 * @opt: optimal request size in bytes 674 * 675 * Description: 676 * Storage devices may report an optimal I/O size, which is the 677 * device's preferred unit for sustained I/O. This is rarely reported 678 * for disk drives. For RAID arrays it is usually the stripe width or 679 * the internal track size. A properly aligned multiple of 680 * optimal_io_size is the preferred request size for workloads where 681 * sustained throughput is desired. 682 */ 683 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 684 { 685 blk_limits_io_opt(&q->limits, opt); 686 if (!q->disk) 687 return; 688 q->disk->bdi->ra_pages = 689 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 690 } 691 EXPORT_SYMBOL(blk_queue_io_opt); 692 693 static int queue_limit_alignment_offset(const struct queue_limits *lim, 694 sector_t sector) 695 { 696 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 697 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 698 << SECTOR_SHIFT; 699 700 return (granularity + lim->alignment_offset - alignment) % granularity; 701 } 702 703 static unsigned int queue_limit_discard_alignment( 704 const struct queue_limits *lim, sector_t sector) 705 { 706 unsigned int alignment, granularity, offset; 707 708 if (!lim->max_discard_sectors) 709 return 0; 710 711 /* Why are these in bytes, not sectors? */ 712 alignment = lim->discard_alignment >> SECTOR_SHIFT; 713 granularity = lim->discard_granularity >> SECTOR_SHIFT; 714 if (!granularity) 715 return 0; 716 717 /* Offset of the partition start in 'granularity' sectors */ 718 offset = sector_div(sector, granularity); 719 720 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 721 offset = (granularity + alignment - offset) % granularity; 722 723 /* Turn it back into bytes, gaah */ 724 return offset << SECTOR_SHIFT; 725 } 726 727 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 728 { 729 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 730 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 731 sectors = PAGE_SIZE >> SECTOR_SHIFT; 732 return sectors; 733 } 734 735 /** 736 * blk_stack_limits - adjust queue_limits for stacked devices 737 * @t: the stacking driver limits (top device) 738 * @b: the underlying queue limits (bottom, component device) 739 * @start: first data sector within component device 740 * 741 * Description: 742 * This function is used by stacking drivers like MD and DM to ensure 743 * that all component devices have compatible block sizes and 744 * alignments. The stacking driver must provide a queue_limits 745 * struct (top) and then iteratively call the stacking function for 746 * all component (bottom) devices. The stacking function will 747 * attempt to combine the values and ensure proper alignment. 748 * 749 * Returns 0 if the top and bottom queue_limits are compatible. The 750 * top device's block sizes and alignment offsets may be adjusted to 751 * ensure alignment with the bottom device. If no compatible sizes 752 * and alignments exist, -1 is returned and the resulting top 753 * queue_limits will have the misaligned flag set to indicate that 754 * the alignment_offset is undefined. 755 */ 756 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 757 sector_t start) 758 { 759 unsigned int top, bottom, alignment, ret = 0; 760 761 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 762 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 763 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 764 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 765 b->max_write_zeroes_sectors); 766 t->max_zone_append_sectors = min(queue_limits_max_zone_append_sectors(t), 767 queue_limits_max_zone_append_sectors(b)); 768 t->bounce = max(t->bounce, b->bounce); 769 770 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 771 b->seg_boundary_mask); 772 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 773 b->virt_boundary_mask); 774 775 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 776 t->max_discard_segments = min_not_zero(t->max_discard_segments, 777 b->max_discard_segments); 778 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 779 b->max_integrity_segments); 780 781 t->max_segment_size = min_not_zero(t->max_segment_size, 782 b->max_segment_size); 783 784 t->misaligned |= b->misaligned; 785 786 alignment = queue_limit_alignment_offset(b, start); 787 788 /* Bottom device has different alignment. Check that it is 789 * compatible with the current top alignment. 790 */ 791 if (t->alignment_offset != alignment) { 792 793 top = max(t->physical_block_size, t->io_min) 794 + t->alignment_offset; 795 bottom = max(b->physical_block_size, b->io_min) + alignment; 796 797 /* Verify that top and bottom intervals line up */ 798 if (max(top, bottom) % min(top, bottom)) { 799 t->misaligned = 1; 800 ret = -1; 801 } 802 } 803 804 t->logical_block_size = max(t->logical_block_size, 805 b->logical_block_size); 806 807 t->physical_block_size = max(t->physical_block_size, 808 b->physical_block_size); 809 810 t->io_min = max(t->io_min, b->io_min); 811 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 812 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 813 814 /* Set non-power-of-2 compatible chunk_sectors boundary */ 815 if (b->chunk_sectors) 816 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 817 818 /* Physical block size a multiple of the logical block size? */ 819 if (t->physical_block_size & (t->logical_block_size - 1)) { 820 t->physical_block_size = t->logical_block_size; 821 t->misaligned = 1; 822 ret = -1; 823 } 824 825 /* Minimum I/O a multiple of the physical block size? */ 826 if (t->io_min & (t->physical_block_size - 1)) { 827 t->io_min = t->physical_block_size; 828 t->misaligned = 1; 829 ret = -1; 830 } 831 832 /* Optimal I/O a multiple of the physical block size? */ 833 if (t->io_opt & (t->physical_block_size - 1)) { 834 t->io_opt = 0; 835 t->misaligned = 1; 836 ret = -1; 837 } 838 839 /* chunk_sectors a multiple of the physical block size? */ 840 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { 841 t->chunk_sectors = 0; 842 t->misaligned = 1; 843 ret = -1; 844 } 845 846 t->raid_partial_stripes_expensive = 847 max(t->raid_partial_stripes_expensive, 848 b->raid_partial_stripes_expensive); 849 850 /* Find lowest common alignment_offset */ 851 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 852 % max(t->physical_block_size, t->io_min); 853 854 /* Verify that new alignment_offset is on a logical block boundary */ 855 if (t->alignment_offset & (t->logical_block_size - 1)) { 856 t->misaligned = 1; 857 ret = -1; 858 } 859 860 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 861 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 862 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 863 864 /* Discard alignment and granularity */ 865 if (b->discard_granularity) { 866 alignment = queue_limit_discard_alignment(b, start); 867 868 if (t->discard_granularity != 0 && 869 t->discard_alignment != alignment) { 870 top = t->discard_granularity + t->discard_alignment; 871 bottom = b->discard_granularity + alignment; 872 873 /* Verify that top and bottom intervals line up */ 874 if ((max(top, bottom) % min(top, bottom)) != 0) 875 t->discard_misaligned = 1; 876 } 877 878 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 879 b->max_discard_sectors); 880 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 881 b->max_hw_discard_sectors); 882 t->discard_granularity = max(t->discard_granularity, 883 b->discard_granularity); 884 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 885 t->discard_granularity; 886 } 887 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 888 b->max_secure_erase_sectors); 889 t->zone_write_granularity = max(t->zone_write_granularity, 890 b->zone_write_granularity); 891 t->zoned = max(t->zoned, b->zoned); 892 if (!t->zoned) { 893 t->zone_write_granularity = 0; 894 t->max_zone_append_sectors = 0; 895 } 896 return ret; 897 } 898 EXPORT_SYMBOL(blk_stack_limits); 899 900 /** 901 * queue_limits_stack_bdev - adjust queue_limits for stacked devices 902 * @t: the stacking driver limits (top device) 903 * @bdev: the underlying block device (bottom) 904 * @offset: offset to beginning of data within component device 905 * @pfx: prefix to use for warnings logged 906 * 907 * Description: 908 * This function is used by stacking drivers like MD and DM to ensure 909 * that all component devices have compatible block sizes and 910 * alignments. The stacking driver must provide a queue_limits 911 * struct (top) and then iteratively call the stacking function for 912 * all component (bottom) devices. The stacking function will 913 * attempt to combine the values and ensure proper alignment. 914 */ 915 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 916 sector_t offset, const char *pfx) 917 { 918 if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits, 919 get_start_sect(bdev) + offset)) 920 pr_notice("%s: Warning: Device %pg is misaligned\n", 921 pfx, bdev); 922 } 923 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); 924 925 /** 926 * blk_queue_update_dma_pad - update pad mask 927 * @q: the request queue for the device 928 * @mask: pad mask 929 * 930 * Update dma pad mask. 931 * 932 * Appending pad buffer to a request modifies the last entry of a 933 * scatter list such that it includes the pad buffer. 934 **/ 935 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 936 { 937 if (mask > q->dma_pad_mask) 938 q->dma_pad_mask = mask; 939 } 940 EXPORT_SYMBOL(blk_queue_update_dma_pad); 941 942 /** 943 * blk_queue_segment_boundary - set boundary rules for segment merging 944 * @q: the request queue for the device 945 * @mask: the memory boundary mask 946 **/ 947 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 948 { 949 if (mask < PAGE_SIZE - 1) { 950 mask = PAGE_SIZE - 1; 951 pr_info("%s: set to minimum %lx\n", __func__, mask); 952 } 953 954 q->limits.seg_boundary_mask = mask; 955 } 956 EXPORT_SYMBOL(blk_queue_segment_boundary); 957 958 /** 959 * blk_queue_virt_boundary - set boundary rules for bio merging 960 * @q: the request queue for the device 961 * @mask: the memory boundary mask 962 **/ 963 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask) 964 { 965 q->limits.virt_boundary_mask = mask; 966 967 /* 968 * Devices that require a virtual boundary do not support scatter/gather 969 * I/O natively, but instead require a descriptor list entry for each 970 * page (which might not be idential to the Linux PAGE_SIZE). Because 971 * of that they are not limited by our notion of "segment size". 972 */ 973 if (mask) 974 q->limits.max_segment_size = UINT_MAX; 975 } 976 EXPORT_SYMBOL(blk_queue_virt_boundary); 977 978 /** 979 * blk_queue_dma_alignment - set dma length and memory alignment 980 * @q: the request queue for the device 981 * @mask: alignment mask 982 * 983 * description: 984 * set required memory and length alignment for direct dma transactions. 985 * this is used when building direct io requests for the queue. 986 * 987 **/ 988 void blk_queue_dma_alignment(struct request_queue *q, int mask) 989 { 990 q->limits.dma_alignment = mask; 991 } 992 EXPORT_SYMBOL(blk_queue_dma_alignment); 993 994 /** 995 * blk_queue_update_dma_alignment - update dma length and memory alignment 996 * @q: the request queue for the device 997 * @mask: alignment mask 998 * 999 * description: 1000 * update required memory and length alignment for direct dma transactions. 1001 * If the requested alignment is larger than the current alignment, then 1002 * the current queue alignment is updated to the new value, otherwise it 1003 * is left alone. The design of this is to allow multiple objects 1004 * (driver, device, transport etc) to set their respective 1005 * alignments without having them interfere. 1006 * 1007 **/ 1008 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 1009 { 1010 BUG_ON(mask > PAGE_SIZE); 1011 1012 if (mask > q->limits.dma_alignment) 1013 q->limits.dma_alignment = mask; 1014 } 1015 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 1016 1017 /** 1018 * blk_set_queue_depth - tell the block layer about the device queue depth 1019 * @q: the request queue for the device 1020 * @depth: queue depth 1021 * 1022 */ 1023 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 1024 { 1025 q->queue_depth = depth; 1026 rq_qos_queue_depth_changed(q); 1027 } 1028 EXPORT_SYMBOL(blk_set_queue_depth); 1029 1030 /** 1031 * blk_queue_write_cache - configure queue's write cache 1032 * @q: the request queue for the device 1033 * @wc: write back cache on or off 1034 * @fua: device supports FUA writes, if true 1035 * 1036 * Tell the block layer about the write cache of @q. 1037 */ 1038 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) 1039 { 1040 if (wc) { 1041 blk_queue_flag_set(QUEUE_FLAG_HW_WC, q); 1042 blk_queue_flag_set(QUEUE_FLAG_WC, q); 1043 } else { 1044 blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q); 1045 blk_queue_flag_clear(QUEUE_FLAG_WC, q); 1046 } 1047 if (fua) 1048 blk_queue_flag_set(QUEUE_FLAG_FUA, q); 1049 else 1050 blk_queue_flag_clear(QUEUE_FLAG_FUA, q); 1051 } 1052 EXPORT_SYMBOL_GPL(blk_queue_write_cache); 1053 1054 /** 1055 * blk_queue_can_use_dma_map_merging - configure queue for merging segments. 1056 * @q: the request queue for the device 1057 * @dev: the device pointer for dma 1058 * 1059 * Tell the block layer about merging the segments by dma map of @q. 1060 */ 1061 bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1062 struct device *dev) 1063 { 1064 unsigned long boundary = dma_get_merge_boundary(dev); 1065 1066 if (!boundary) 1067 return false; 1068 1069 /* No need to update max_segment_size. see blk_queue_virt_boundary() */ 1070 blk_queue_virt_boundary(q, boundary); 1071 1072 return true; 1073 } 1074 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging); 1075 1076 /** 1077 * disk_set_zoned - inidicate a zoned device 1078 * @disk: gendisk to configure 1079 */ 1080 void disk_set_zoned(struct gendisk *disk) 1081 { 1082 struct request_queue *q = disk->queue; 1083 1084 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)); 1085 1086 /* 1087 * Set the zone write granularity to the device logical block 1088 * size by default. The driver can change this value if needed. 1089 */ 1090 q->limits.zoned = true; 1091 blk_queue_zone_write_granularity(q, queue_logical_block_size(q)); 1092 } 1093 EXPORT_SYMBOL_GPL(disk_set_zoned); 1094 1095 int bdev_alignment_offset(struct block_device *bdev) 1096 { 1097 struct request_queue *q = bdev_get_queue(bdev); 1098 1099 if (q->limits.misaligned) 1100 return -1; 1101 if (bdev_is_partition(bdev)) 1102 return queue_limit_alignment_offset(&q->limits, 1103 bdev->bd_start_sect); 1104 return q->limits.alignment_offset; 1105 } 1106 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 1107 1108 unsigned int bdev_discard_alignment(struct block_device *bdev) 1109 { 1110 struct request_queue *q = bdev_get_queue(bdev); 1111 1112 if (bdev_is_partition(bdev)) 1113 return queue_limit_discard_alignment(&q->limits, 1114 bdev->bd_start_sect); 1115 return q->limits.discard_alignment; 1116 } 1117 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 1118