xref: /linux/block/blk-settings.c (revision 8b1935e6a36b0967efc593d67ed3aebbfbc1f5b1)
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/jiffies.h>
12 
13 #include "blk.h"
14 
15 unsigned long blk_max_low_pfn;
16 EXPORT_SYMBOL(blk_max_low_pfn);
17 
18 unsigned long blk_max_pfn;
19 
20 /**
21  * blk_queue_prep_rq - set a prepare_request function for queue
22  * @q:		queue
23  * @pfn:	prepare_request function
24  *
25  * It's possible for a queue to register a prepare_request callback which
26  * is invoked before the request is handed to the request_fn. The goal of
27  * the function is to prepare a request for I/O, it can be used to build a
28  * cdb from the request data for instance.
29  *
30  */
31 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
32 {
33 	q->prep_rq_fn = pfn;
34 }
35 EXPORT_SYMBOL(blk_queue_prep_rq);
36 
37 /**
38  * blk_queue_merge_bvec - set a merge_bvec function for queue
39  * @q:		queue
40  * @mbfn:	merge_bvec_fn
41  *
42  * Usually queues have static limitations on the max sectors or segments that
43  * we can put in a request. Stacking drivers may have some settings that
44  * are dynamic, and thus we have to query the queue whether it is ok to
45  * add a new bio_vec to a bio at a given offset or not. If the block device
46  * has such limitations, it needs to register a merge_bvec_fn to control
47  * the size of bio's sent to it. Note that a block device *must* allow a
48  * single page to be added to an empty bio. The block device driver may want
49  * to use the bio_split() function to deal with these bio's. By default
50  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
51  * honored.
52  */
53 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
54 {
55 	q->merge_bvec_fn = mbfn;
56 }
57 EXPORT_SYMBOL(blk_queue_merge_bvec);
58 
59 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
60 {
61 	q->softirq_done_fn = fn;
62 }
63 EXPORT_SYMBOL(blk_queue_softirq_done);
64 
65 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
66 {
67 	q->rq_timeout = timeout;
68 }
69 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
70 
71 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
72 {
73 	q->rq_timed_out_fn = fn;
74 }
75 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
76 
77 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
78 {
79 	q->lld_busy_fn = fn;
80 }
81 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
82 
83 /**
84  * blk_set_default_limits - reset limits to default values
85  * @lim:  the queue_limits structure to reset
86  *
87  * Description:
88  *   Returns a queue_limit struct to its default state.  Can be used by
89  *   stacking drivers like DM that stage table swaps and reuse an
90  *   existing device queue.
91  */
92 void blk_set_default_limits(struct queue_limits *lim)
93 {
94 	lim->max_segments = BLK_MAX_SEGMENTS;
95 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
96 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
97 	lim->max_sectors = BLK_DEF_MAX_SECTORS;
98 	lim->max_hw_sectors = INT_MAX;
99 	lim->max_discard_sectors = 0;
100 	lim->discard_granularity = 0;
101 	lim->discard_alignment = 0;
102 	lim->discard_misaligned = 0;
103 	lim->discard_zeroes_data = -1;
104 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
105 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
106 	lim->alignment_offset = 0;
107 	lim->io_opt = 0;
108 	lim->misaligned = 0;
109 	lim->no_cluster = 0;
110 }
111 EXPORT_SYMBOL(blk_set_default_limits);
112 
113 /**
114  * blk_queue_make_request - define an alternate make_request function for a device
115  * @q:  the request queue for the device to be affected
116  * @mfn: the alternate make_request function
117  *
118  * Description:
119  *    The normal way for &struct bios to be passed to a device
120  *    driver is for them to be collected into requests on a request
121  *    queue, and then to allow the device driver to select requests
122  *    off that queue when it is ready.  This works well for many block
123  *    devices. However some block devices (typically virtual devices
124  *    such as md or lvm) do not benefit from the processing on the
125  *    request queue, and are served best by having the requests passed
126  *    directly to them.  This can be achieved by providing a function
127  *    to blk_queue_make_request().
128  *
129  * Caveat:
130  *    The driver that does this *must* be able to deal appropriately
131  *    with buffers in "highmemory". This can be accomplished by either calling
132  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
133  *    blk_queue_bounce() to create a buffer in normal memory.
134  **/
135 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
136 {
137 	/*
138 	 * set defaults
139 	 */
140 	q->nr_requests = BLKDEV_MAX_RQ;
141 
142 	q->make_request_fn = mfn;
143 	blk_queue_dma_alignment(q, 511);
144 	blk_queue_congestion_threshold(q);
145 	q->nr_batching = BLK_BATCH_REQ;
146 
147 	q->unplug_thresh = 4;		/* hmm */
148 	q->unplug_delay = msecs_to_jiffies(3);	/* 3 milliseconds */
149 	if (q->unplug_delay == 0)
150 		q->unplug_delay = 1;
151 
152 	q->unplug_timer.function = blk_unplug_timeout;
153 	q->unplug_timer.data = (unsigned long)q;
154 
155 	blk_set_default_limits(&q->limits);
156 	blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
157 
158 	/*
159 	 * If the caller didn't supply a lock, fall back to our embedded
160 	 * per-queue locks
161 	 */
162 	if (!q->queue_lock)
163 		q->queue_lock = &q->__queue_lock;
164 
165 	/*
166 	 * by default assume old behaviour and bounce for any highmem page
167 	 */
168 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
169 }
170 EXPORT_SYMBOL(blk_queue_make_request);
171 
172 /**
173  * blk_queue_bounce_limit - set bounce buffer limit for queue
174  * @q: the request queue for the device
175  * @dma_mask: the maximum address the device can handle
176  *
177  * Description:
178  *    Different hardware can have different requirements as to what pages
179  *    it can do I/O directly to. A low level driver can call
180  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
181  *    buffers for doing I/O to pages residing above @dma_mask.
182  **/
183 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
184 {
185 	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
186 	int dma = 0;
187 
188 	q->bounce_gfp = GFP_NOIO;
189 #if BITS_PER_LONG == 64
190 	/*
191 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
192 	 * some IOMMUs can handle everything, but I don't know of a
193 	 * way to test this here.
194 	 */
195 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
196 		dma = 1;
197 	q->limits.bounce_pfn = max_low_pfn;
198 #else
199 	if (b_pfn < blk_max_low_pfn)
200 		dma = 1;
201 	q->limits.bounce_pfn = b_pfn;
202 #endif
203 	if (dma) {
204 		init_emergency_isa_pool();
205 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
206 		q->limits.bounce_pfn = b_pfn;
207 	}
208 }
209 EXPORT_SYMBOL(blk_queue_bounce_limit);
210 
211 /**
212  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
213  * @q:  the request queue for the device
214  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
215  *
216  * Description:
217  *    Enables a low level driver to set a hard upper limit,
218  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
219  *    the device driver based upon the combined capabilities of I/O
220  *    controller and storage device.
221  *
222  *    max_sectors is a soft limit imposed by the block layer for
223  *    filesystem type requests.  This value can be overridden on a
224  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
225  *    The soft limit can not exceed max_hw_sectors.
226  **/
227 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
228 {
229 	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
230 		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
231 		printk(KERN_INFO "%s: set to minimum %d\n",
232 		       __func__, max_hw_sectors);
233 	}
234 
235 	q->limits.max_hw_sectors = max_hw_sectors;
236 	q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
237 				      BLK_DEF_MAX_SECTORS);
238 }
239 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
240 
241 /**
242  * blk_queue_max_discard_sectors - set max sectors for a single discard
243  * @q:  the request queue for the device
244  * @max_discard_sectors: maximum number of sectors to discard
245  **/
246 void blk_queue_max_discard_sectors(struct request_queue *q,
247 		unsigned int max_discard_sectors)
248 {
249 	q->limits.max_discard_sectors = max_discard_sectors;
250 }
251 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
252 
253 /**
254  * blk_queue_max_segments - set max hw segments for a request for this queue
255  * @q:  the request queue for the device
256  * @max_segments:  max number of segments
257  *
258  * Description:
259  *    Enables a low level driver to set an upper limit on the number of
260  *    hw data segments in a request.
261  **/
262 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
263 {
264 	if (!max_segments) {
265 		max_segments = 1;
266 		printk(KERN_INFO "%s: set to minimum %d\n",
267 		       __func__, max_segments);
268 	}
269 
270 	q->limits.max_segments = max_segments;
271 }
272 EXPORT_SYMBOL(blk_queue_max_segments);
273 
274 /**
275  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
276  * @q:  the request queue for the device
277  * @max_size:  max size of segment in bytes
278  *
279  * Description:
280  *    Enables a low level driver to set an upper limit on the size of a
281  *    coalesced segment
282  **/
283 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
284 {
285 	if (max_size < PAGE_CACHE_SIZE) {
286 		max_size = PAGE_CACHE_SIZE;
287 		printk(KERN_INFO "%s: set to minimum %d\n",
288 		       __func__, max_size);
289 	}
290 
291 	q->limits.max_segment_size = max_size;
292 }
293 EXPORT_SYMBOL(blk_queue_max_segment_size);
294 
295 /**
296  * blk_queue_logical_block_size - set logical block size for the queue
297  * @q:  the request queue for the device
298  * @size:  the logical block size, in bytes
299  *
300  * Description:
301  *   This should be set to the lowest possible block size that the
302  *   storage device can address.  The default of 512 covers most
303  *   hardware.
304  **/
305 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
306 {
307 	q->limits.logical_block_size = size;
308 
309 	if (q->limits.physical_block_size < size)
310 		q->limits.physical_block_size = size;
311 
312 	if (q->limits.io_min < q->limits.physical_block_size)
313 		q->limits.io_min = q->limits.physical_block_size;
314 }
315 EXPORT_SYMBOL(blk_queue_logical_block_size);
316 
317 /**
318  * blk_queue_physical_block_size - set physical block size for the queue
319  * @q:  the request queue for the device
320  * @size:  the physical block size, in bytes
321  *
322  * Description:
323  *   This should be set to the lowest possible sector size that the
324  *   hardware can operate on without reverting to read-modify-write
325  *   operations.
326  */
327 void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
328 {
329 	q->limits.physical_block_size = size;
330 
331 	if (q->limits.physical_block_size < q->limits.logical_block_size)
332 		q->limits.physical_block_size = q->limits.logical_block_size;
333 
334 	if (q->limits.io_min < q->limits.physical_block_size)
335 		q->limits.io_min = q->limits.physical_block_size;
336 }
337 EXPORT_SYMBOL(blk_queue_physical_block_size);
338 
339 /**
340  * blk_queue_alignment_offset - set physical block alignment offset
341  * @q:	the request queue for the device
342  * @offset: alignment offset in bytes
343  *
344  * Description:
345  *   Some devices are naturally misaligned to compensate for things like
346  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
347  *   should call this function for devices whose first sector is not
348  *   naturally aligned.
349  */
350 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
351 {
352 	q->limits.alignment_offset =
353 		offset & (q->limits.physical_block_size - 1);
354 	q->limits.misaligned = 0;
355 }
356 EXPORT_SYMBOL(blk_queue_alignment_offset);
357 
358 /**
359  * blk_limits_io_min - set minimum request size for a device
360  * @limits: the queue limits
361  * @min:  smallest I/O size in bytes
362  *
363  * Description:
364  *   Some devices have an internal block size bigger than the reported
365  *   hardware sector size.  This function can be used to signal the
366  *   smallest I/O the device can perform without incurring a performance
367  *   penalty.
368  */
369 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
370 {
371 	limits->io_min = min;
372 
373 	if (limits->io_min < limits->logical_block_size)
374 		limits->io_min = limits->logical_block_size;
375 
376 	if (limits->io_min < limits->physical_block_size)
377 		limits->io_min = limits->physical_block_size;
378 }
379 EXPORT_SYMBOL(blk_limits_io_min);
380 
381 /**
382  * blk_queue_io_min - set minimum request size for the queue
383  * @q:	the request queue for the device
384  * @min:  smallest I/O size in bytes
385  *
386  * Description:
387  *   Storage devices may report a granularity or preferred minimum I/O
388  *   size which is the smallest request the device can perform without
389  *   incurring a performance penalty.  For disk drives this is often the
390  *   physical block size.  For RAID arrays it is often the stripe chunk
391  *   size.  A properly aligned multiple of minimum_io_size is the
392  *   preferred request size for workloads where a high number of I/O
393  *   operations is desired.
394  */
395 void blk_queue_io_min(struct request_queue *q, unsigned int min)
396 {
397 	blk_limits_io_min(&q->limits, min);
398 }
399 EXPORT_SYMBOL(blk_queue_io_min);
400 
401 /**
402  * blk_limits_io_opt - set optimal request size for a device
403  * @limits: the queue limits
404  * @opt:  smallest I/O size in bytes
405  *
406  * Description:
407  *   Storage devices may report an optimal I/O size, which is the
408  *   device's preferred unit for sustained I/O.  This is rarely reported
409  *   for disk drives.  For RAID arrays it is usually the stripe width or
410  *   the internal track size.  A properly aligned multiple of
411  *   optimal_io_size is the preferred request size for workloads where
412  *   sustained throughput is desired.
413  */
414 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
415 {
416 	limits->io_opt = opt;
417 }
418 EXPORT_SYMBOL(blk_limits_io_opt);
419 
420 /**
421  * blk_queue_io_opt - set optimal request size for the queue
422  * @q:	the request queue for the device
423  * @opt:  optimal request size in bytes
424  *
425  * Description:
426  *   Storage devices may report an optimal I/O size, which is the
427  *   device's preferred unit for sustained I/O.  This is rarely reported
428  *   for disk drives.  For RAID arrays it is usually the stripe width or
429  *   the internal track size.  A properly aligned multiple of
430  *   optimal_io_size is the preferred request size for workloads where
431  *   sustained throughput is desired.
432  */
433 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
434 {
435 	blk_limits_io_opt(&q->limits, opt);
436 }
437 EXPORT_SYMBOL(blk_queue_io_opt);
438 
439 /*
440  * Returns the minimum that is _not_ zero, unless both are zero.
441  */
442 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
443 
444 /**
445  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
446  * @t:	the stacking driver (top)
447  * @b:  the underlying device (bottom)
448  **/
449 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
450 {
451 	blk_stack_limits(&t->limits, &b->limits, 0);
452 
453 	if (!t->queue_lock)
454 		WARN_ON_ONCE(1);
455 	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
456 		unsigned long flags;
457 		spin_lock_irqsave(t->queue_lock, flags);
458 		queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
459 		spin_unlock_irqrestore(t->queue_lock, flags);
460 	}
461 }
462 EXPORT_SYMBOL(blk_queue_stack_limits);
463 
464 static unsigned int lcm(unsigned int a, unsigned int b)
465 {
466 	if (a && b)
467 		return (a * b) / gcd(a, b);
468 	else if (b)
469 		return b;
470 
471 	return a;
472 }
473 
474 /**
475  * blk_stack_limits - adjust queue_limits for stacked devices
476  * @t:	the stacking driver limits (top device)
477  * @b:  the underlying queue limits (bottom, component device)
478  * @start:  first data sector within component device
479  *
480  * Description:
481  *    This function is used by stacking drivers like MD and DM to ensure
482  *    that all component devices have compatible block sizes and
483  *    alignments.  The stacking driver must provide a queue_limits
484  *    struct (top) and then iteratively call the stacking function for
485  *    all component (bottom) devices.  The stacking function will
486  *    attempt to combine the values and ensure proper alignment.
487  *
488  *    Returns 0 if the top and bottom queue_limits are compatible.  The
489  *    top device's block sizes and alignment offsets may be adjusted to
490  *    ensure alignment with the bottom device. If no compatible sizes
491  *    and alignments exist, -1 is returned and the resulting top
492  *    queue_limits will have the misaligned flag set to indicate that
493  *    the alignment_offset is undefined.
494  */
495 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
496 		     sector_t start)
497 {
498 	unsigned int top, bottom, alignment, ret = 0;
499 
500 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
501 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
502 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
503 
504 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
505 					    b->seg_boundary_mask);
506 
507 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
508 
509 	t->max_segment_size = min_not_zero(t->max_segment_size,
510 					   b->max_segment_size);
511 
512 	t->misaligned |= b->misaligned;
513 
514 	alignment = queue_limit_alignment_offset(b, start);
515 
516 	/* Bottom device has different alignment.  Check that it is
517 	 * compatible with the current top alignment.
518 	 */
519 	if (t->alignment_offset != alignment) {
520 
521 		top = max(t->physical_block_size, t->io_min)
522 			+ t->alignment_offset;
523 		bottom = max(b->physical_block_size, b->io_min) + alignment;
524 
525 		/* Verify that top and bottom intervals line up */
526 		if (max(top, bottom) & (min(top, bottom) - 1)) {
527 			t->misaligned = 1;
528 			ret = -1;
529 		}
530 	}
531 
532 	t->logical_block_size = max(t->logical_block_size,
533 				    b->logical_block_size);
534 
535 	t->physical_block_size = max(t->physical_block_size,
536 				     b->physical_block_size);
537 
538 	t->io_min = max(t->io_min, b->io_min);
539 	t->io_opt = lcm(t->io_opt, b->io_opt);
540 
541 	t->no_cluster |= b->no_cluster;
542 	t->discard_zeroes_data &= b->discard_zeroes_data;
543 
544 	/* Physical block size a multiple of the logical block size? */
545 	if (t->physical_block_size & (t->logical_block_size - 1)) {
546 		t->physical_block_size = t->logical_block_size;
547 		t->misaligned = 1;
548 		ret = -1;
549 	}
550 
551 	/* Minimum I/O a multiple of the physical block size? */
552 	if (t->io_min & (t->physical_block_size - 1)) {
553 		t->io_min = t->physical_block_size;
554 		t->misaligned = 1;
555 		ret = -1;
556 	}
557 
558 	/* Optimal I/O a multiple of the physical block size? */
559 	if (t->io_opt & (t->physical_block_size - 1)) {
560 		t->io_opt = 0;
561 		t->misaligned = 1;
562 		ret = -1;
563 	}
564 
565 	/* Find lowest common alignment_offset */
566 	t->alignment_offset = lcm(t->alignment_offset, alignment)
567 		& (max(t->physical_block_size, t->io_min) - 1);
568 
569 	/* Verify that new alignment_offset is on a logical block boundary */
570 	if (t->alignment_offset & (t->logical_block_size - 1)) {
571 		t->misaligned = 1;
572 		ret = -1;
573 	}
574 
575 	/* Discard alignment and granularity */
576 	if (b->discard_granularity) {
577 		alignment = queue_limit_discard_alignment(b, start);
578 
579 		if (t->discard_granularity != 0 &&
580 		    t->discard_alignment != alignment) {
581 			top = t->discard_granularity + t->discard_alignment;
582 			bottom = b->discard_granularity + alignment;
583 
584 			/* Verify that top and bottom intervals line up */
585 			if (max(top, bottom) & (min(top, bottom) - 1))
586 				t->discard_misaligned = 1;
587 		}
588 
589 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
590 						      b->max_discard_sectors);
591 		t->discard_granularity = max(t->discard_granularity,
592 					     b->discard_granularity);
593 		t->discard_alignment = lcm(t->discard_alignment, alignment) &
594 			(t->discard_granularity - 1);
595 	}
596 
597 	return ret;
598 }
599 EXPORT_SYMBOL(blk_stack_limits);
600 
601 /**
602  * bdev_stack_limits - adjust queue limits for stacked drivers
603  * @t:	the stacking driver limits (top device)
604  * @bdev:  the component block_device (bottom)
605  * @start:  first data sector within component device
606  *
607  * Description:
608  *    Merges queue limits for a top device and a block_device.  Returns
609  *    0 if alignment didn't change.  Returns -1 if adding the bottom
610  *    device caused misalignment.
611  */
612 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
613 		      sector_t start)
614 {
615 	struct request_queue *bq = bdev_get_queue(bdev);
616 
617 	start += get_start_sect(bdev);
618 
619 	return blk_stack_limits(t, &bq->limits, start);
620 }
621 EXPORT_SYMBOL(bdev_stack_limits);
622 
623 /**
624  * disk_stack_limits - adjust queue limits for stacked drivers
625  * @disk:  MD/DM gendisk (top)
626  * @bdev:  the underlying block device (bottom)
627  * @offset:  offset to beginning of data within component device
628  *
629  * Description:
630  *    Merges the limits for a top level gendisk and a bottom level
631  *    block_device.
632  */
633 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
634 		       sector_t offset)
635 {
636 	struct request_queue *t = disk->queue;
637 	struct request_queue *b = bdev_get_queue(bdev);
638 
639 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
640 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
641 
642 		disk_name(disk, 0, top);
643 		bdevname(bdev, bottom);
644 
645 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
646 		       top, bottom);
647 	}
648 
649 	if (!t->queue_lock)
650 		WARN_ON_ONCE(1);
651 	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
652 		unsigned long flags;
653 
654 		spin_lock_irqsave(t->queue_lock, flags);
655 		if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
656 			queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
657 		spin_unlock_irqrestore(t->queue_lock, flags);
658 	}
659 }
660 EXPORT_SYMBOL(disk_stack_limits);
661 
662 /**
663  * blk_queue_dma_pad - set pad mask
664  * @q:     the request queue for the device
665  * @mask:  pad mask
666  *
667  * Set dma pad mask.
668  *
669  * Appending pad buffer to a request modifies the last entry of a
670  * scatter list such that it includes the pad buffer.
671  **/
672 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
673 {
674 	q->dma_pad_mask = mask;
675 }
676 EXPORT_SYMBOL(blk_queue_dma_pad);
677 
678 /**
679  * blk_queue_update_dma_pad - update pad mask
680  * @q:     the request queue for the device
681  * @mask:  pad mask
682  *
683  * Update dma pad mask.
684  *
685  * Appending pad buffer to a request modifies the last entry of a
686  * scatter list such that it includes the pad buffer.
687  **/
688 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
689 {
690 	if (mask > q->dma_pad_mask)
691 		q->dma_pad_mask = mask;
692 }
693 EXPORT_SYMBOL(blk_queue_update_dma_pad);
694 
695 /**
696  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
697  * @q:  the request queue for the device
698  * @dma_drain_needed: fn which returns non-zero if drain is necessary
699  * @buf:	physically contiguous buffer
700  * @size:	size of the buffer in bytes
701  *
702  * Some devices have excess DMA problems and can't simply discard (or
703  * zero fill) the unwanted piece of the transfer.  They have to have a
704  * real area of memory to transfer it into.  The use case for this is
705  * ATAPI devices in DMA mode.  If the packet command causes a transfer
706  * bigger than the transfer size some HBAs will lock up if there
707  * aren't DMA elements to contain the excess transfer.  What this API
708  * does is adjust the queue so that the buf is always appended
709  * silently to the scatterlist.
710  *
711  * Note: This routine adjusts max_hw_segments to make room for appending
712  * the drain buffer.  If you call blk_queue_max_segments() after calling
713  * this routine, you must set the limit to one fewer than your device
714  * can support otherwise there won't be room for the drain buffer.
715  */
716 int blk_queue_dma_drain(struct request_queue *q,
717 			       dma_drain_needed_fn *dma_drain_needed,
718 			       void *buf, unsigned int size)
719 {
720 	if (queue_max_segments(q) < 2)
721 		return -EINVAL;
722 	/* make room for appending the drain */
723 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
724 	q->dma_drain_needed = dma_drain_needed;
725 	q->dma_drain_buffer = buf;
726 	q->dma_drain_size = size;
727 
728 	return 0;
729 }
730 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
731 
732 /**
733  * blk_queue_segment_boundary - set boundary rules for segment merging
734  * @q:  the request queue for the device
735  * @mask:  the memory boundary mask
736  **/
737 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
738 {
739 	if (mask < PAGE_CACHE_SIZE - 1) {
740 		mask = PAGE_CACHE_SIZE - 1;
741 		printk(KERN_INFO "%s: set to minimum %lx\n",
742 		       __func__, mask);
743 	}
744 
745 	q->limits.seg_boundary_mask = mask;
746 }
747 EXPORT_SYMBOL(blk_queue_segment_boundary);
748 
749 /**
750  * blk_queue_dma_alignment - set dma length and memory alignment
751  * @q:     the request queue for the device
752  * @mask:  alignment mask
753  *
754  * description:
755  *    set required memory and length alignment for direct dma transactions.
756  *    this is used when building direct io requests for the queue.
757  *
758  **/
759 void blk_queue_dma_alignment(struct request_queue *q, int mask)
760 {
761 	q->dma_alignment = mask;
762 }
763 EXPORT_SYMBOL(blk_queue_dma_alignment);
764 
765 /**
766  * blk_queue_update_dma_alignment - update dma length and memory alignment
767  * @q:     the request queue for the device
768  * @mask:  alignment mask
769  *
770  * description:
771  *    update required memory and length alignment for direct dma transactions.
772  *    If the requested alignment is larger than the current alignment, then
773  *    the current queue alignment is updated to the new value, otherwise it
774  *    is left alone.  The design of this is to allow multiple objects
775  *    (driver, device, transport etc) to set their respective
776  *    alignments without having them interfere.
777  *
778  **/
779 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
780 {
781 	BUG_ON(mask > PAGE_SIZE);
782 
783 	if (mask > q->dma_alignment)
784 		q->dma_alignment = mask;
785 }
786 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
787 
788 static int __init blk_settings_init(void)
789 {
790 	blk_max_low_pfn = max_low_pfn - 1;
791 	blk_max_pfn = max_pfn - 1;
792 	return 0;
793 }
794 subsys_initcall(blk_settings_init);
795