1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/gcd.h> 11 #include <linux/jiffies.h> 12 13 #include "blk.h" 14 15 unsigned long blk_max_low_pfn; 16 EXPORT_SYMBOL(blk_max_low_pfn); 17 18 unsigned long blk_max_pfn; 19 20 /** 21 * blk_queue_prep_rq - set a prepare_request function for queue 22 * @q: queue 23 * @pfn: prepare_request function 24 * 25 * It's possible for a queue to register a prepare_request callback which 26 * is invoked before the request is handed to the request_fn. The goal of 27 * the function is to prepare a request for I/O, it can be used to build a 28 * cdb from the request data for instance. 29 * 30 */ 31 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 32 { 33 q->prep_rq_fn = pfn; 34 } 35 EXPORT_SYMBOL(blk_queue_prep_rq); 36 37 /** 38 * blk_queue_merge_bvec - set a merge_bvec function for queue 39 * @q: queue 40 * @mbfn: merge_bvec_fn 41 * 42 * Usually queues have static limitations on the max sectors or segments that 43 * we can put in a request. Stacking drivers may have some settings that 44 * are dynamic, and thus we have to query the queue whether it is ok to 45 * add a new bio_vec to a bio at a given offset or not. If the block device 46 * has such limitations, it needs to register a merge_bvec_fn to control 47 * the size of bio's sent to it. Note that a block device *must* allow a 48 * single page to be added to an empty bio. The block device driver may want 49 * to use the bio_split() function to deal with these bio's. By default 50 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 51 * honored. 52 */ 53 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 54 { 55 q->merge_bvec_fn = mbfn; 56 } 57 EXPORT_SYMBOL(blk_queue_merge_bvec); 58 59 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 60 { 61 q->softirq_done_fn = fn; 62 } 63 EXPORT_SYMBOL(blk_queue_softirq_done); 64 65 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 66 { 67 q->rq_timeout = timeout; 68 } 69 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 70 71 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 72 { 73 q->rq_timed_out_fn = fn; 74 } 75 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 76 77 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 78 { 79 q->lld_busy_fn = fn; 80 } 81 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 82 83 /** 84 * blk_set_default_limits - reset limits to default values 85 * @lim: the queue_limits structure to reset 86 * 87 * Description: 88 * Returns a queue_limit struct to its default state. Can be used by 89 * stacking drivers like DM that stage table swaps and reuse an 90 * existing device queue. 91 */ 92 void blk_set_default_limits(struct queue_limits *lim) 93 { 94 lim->max_segments = BLK_MAX_SEGMENTS; 95 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 96 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 97 lim->max_sectors = BLK_DEF_MAX_SECTORS; 98 lim->max_hw_sectors = INT_MAX; 99 lim->max_discard_sectors = 0; 100 lim->discard_granularity = 0; 101 lim->discard_alignment = 0; 102 lim->discard_misaligned = 0; 103 lim->discard_zeroes_data = -1; 104 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 105 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 106 lim->alignment_offset = 0; 107 lim->io_opt = 0; 108 lim->misaligned = 0; 109 lim->no_cluster = 0; 110 } 111 EXPORT_SYMBOL(blk_set_default_limits); 112 113 /** 114 * blk_queue_make_request - define an alternate make_request function for a device 115 * @q: the request queue for the device to be affected 116 * @mfn: the alternate make_request function 117 * 118 * Description: 119 * The normal way for &struct bios to be passed to a device 120 * driver is for them to be collected into requests on a request 121 * queue, and then to allow the device driver to select requests 122 * off that queue when it is ready. This works well for many block 123 * devices. However some block devices (typically virtual devices 124 * such as md or lvm) do not benefit from the processing on the 125 * request queue, and are served best by having the requests passed 126 * directly to them. This can be achieved by providing a function 127 * to blk_queue_make_request(). 128 * 129 * Caveat: 130 * The driver that does this *must* be able to deal appropriately 131 * with buffers in "highmemory". This can be accomplished by either calling 132 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 133 * blk_queue_bounce() to create a buffer in normal memory. 134 **/ 135 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 136 { 137 /* 138 * set defaults 139 */ 140 q->nr_requests = BLKDEV_MAX_RQ; 141 142 q->make_request_fn = mfn; 143 blk_queue_dma_alignment(q, 511); 144 blk_queue_congestion_threshold(q); 145 q->nr_batching = BLK_BATCH_REQ; 146 147 q->unplug_thresh = 4; /* hmm */ 148 q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */ 149 if (q->unplug_delay == 0) 150 q->unplug_delay = 1; 151 152 q->unplug_timer.function = blk_unplug_timeout; 153 q->unplug_timer.data = (unsigned long)q; 154 155 blk_set_default_limits(&q->limits); 156 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS); 157 158 /* 159 * If the caller didn't supply a lock, fall back to our embedded 160 * per-queue locks 161 */ 162 if (!q->queue_lock) 163 q->queue_lock = &q->__queue_lock; 164 165 /* 166 * by default assume old behaviour and bounce for any highmem page 167 */ 168 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 169 } 170 EXPORT_SYMBOL(blk_queue_make_request); 171 172 /** 173 * blk_queue_bounce_limit - set bounce buffer limit for queue 174 * @q: the request queue for the device 175 * @dma_mask: the maximum address the device can handle 176 * 177 * Description: 178 * Different hardware can have different requirements as to what pages 179 * it can do I/O directly to. A low level driver can call 180 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 181 * buffers for doing I/O to pages residing above @dma_mask. 182 **/ 183 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask) 184 { 185 unsigned long b_pfn = dma_mask >> PAGE_SHIFT; 186 int dma = 0; 187 188 q->bounce_gfp = GFP_NOIO; 189 #if BITS_PER_LONG == 64 190 /* 191 * Assume anything <= 4GB can be handled by IOMMU. Actually 192 * some IOMMUs can handle everything, but I don't know of a 193 * way to test this here. 194 */ 195 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 196 dma = 1; 197 q->limits.bounce_pfn = max_low_pfn; 198 #else 199 if (b_pfn < blk_max_low_pfn) 200 dma = 1; 201 q->limits.bounce_pfn = b_pfn; 202 #endif 203 if (dma) { 204 init_emergency_isa_pool(); 205 q->bounce_gfp = GFP_NOIO | GFP_DMA; 206 q->limits.bounce_pfn = b_pfn; 207 } 208 } 209 EXPORT_SYMBOL(blk_queue_bounce_limit); 210 211 /** 212 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 213 * @q: the request queue for the device 214 * @max_hw_sectors: max hardware sectors in the usual 512b unit 215 * 216 * Description: 217 * Enables a low level driver to set a hard upper limit, 218 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 219 * the device driver based upon the combined capabilities of I/O 220 * controller and storage device. 221 * 222 * max_sectors is a soft limit imposed by the block layer for 223 * filesystem type requests. This value can be overridden on a 224 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 225 * The soft limit can not exceed max_hw_sectors. 226 **/ 227 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 228 { 229 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) { 230 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 231 printk(KERN_INFO "%s: set to minimum %d\n", 232 __func__, max_hw_sectors); 233 } 234 235 q->limits.max_hw_sectors = max_hw_sectors; 236 q->limits.max_sectors = min_t(unsigned int, max_hw_sectors, 237 BLK_DEF_MAX_SECTORS); 238 } 239 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 240 241 /** 242 * blk_queue_max_discard_sectors - set max sectors for a single discard 243 * @q: the request queue for the device 244 * @max_discard_sectors: maximum number of sectors to discard 245 **/ 246 void blk_queue_max_discard_sectors(struct request_queue *q, 247 unsigned int max_discard_sectors) 248 { 249 q->limits.max_discard_sectors = max_discard_sectors; 250 } 251 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 252 253 /** 254 * blk_queue_max_segments - set max hw segments for a request for this queue 255 * @q: the request queue for the device 256 * @max_segments: max number of segments 257 * 258 * Description: 259 * Enables a low level driver to set an upper limit on the number of 260 * hw data segments in a request. 261 **/ 262 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 263 { 264 if (!max_segments) { 265 max_segments = 1; 266 printk(KERN_INFO "%s: set to minimum %d\n", 267 __func__, max_segments); 268 } 269 270 q->limits.max_segments = max_segments; 271 } 272 EXPORT_SYMBOL(blk_queue_max_segments); 273 274 /** 275 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 276 * @q: the request queue for the device 277 * @max_size: max size of segment in bytes 278 * 279 * Description: 280 * Enables a low level driver to set an upper limit on the size of a 281 * coalesced segment 282 **/ 283 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 284 { 285 if (max_size < PAGE_CACHE_SIZE) { 286 max_size = PAGE_CACHE_SIZE; 287 printk(KERN_INFO "%s: set to minimum %d\n", 288 __func__, max_size); 289 } 290 291 q->limits.max_segment_size = max_size; 292 } 293 EXPORT_SYMBOL(blk_queue_max_segment_size); 294 295 /** 296 * blk_queue_logical_block_size - set logical block size for the queue 297 * @q: the request queue for the device 298 * @size: the logical block size, in bytes 299 * 300 * Description: 301 * This should be set to the lowest possible block size that the 302 * storage device can address. The default of 512 covers most 303 * hardware. 304 **/ 305 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 306 { 307 q->limits.logical_block_size = size; 308 309 if (q->limits.physical_block_size < size) 310 q->limits.physical_block_size = size; 311 312 if (q->limits.io_min < q->limits.physical_block_size) 313 q->limits.io_min = q->limits.physical_block_size; 314 } 315 EXPORT_SYMBOL(blk_queue_logical_block_size); 316 317 /** 318 * blk_queue_physical_block_size - set physical block size for the queue 319 * @q: the request queue for the device 320 * @size: the physical block size, in bytes 321 * 322 * Description: 323 * This should be set to the lowest possible sector size that the 324 * hardware can operate on without reverting to read-modify-write 325 * operations. 326 */ 327 void blk_queue_physical_block_size(struct request_queue *q, unsigned short size) 328 { 329 q->limits.physical_block_size = size; 330 331 if (q->limits.physical_block_size < q->limits.logical_block_size) 332 q->limits.physical_block_size = q->limits.logical_block_size; 333 334 if (q->limits.io_min < q->limits.physical_block_size) 335 q->limits.io_min = q->limits.physical_block_size; 336 } 337 EXPORT_SYMBOL(blk_queue_physical_block_size); 338 339 /** 340 * blk_queue_alignment_offset - set physical block alignment offset 341 * @q: the request queue for the device 342 * @offset: alignment offset in bytes 343 * 344 * Description: 345 * Some devices are naturally misaligned to compensate for things like 346 * the legacy DOS partition table 63-sector offset. Low-level drivers 347 * should call this function for devices whose first sector is not 348 * naturally aligned. 349 */ 350 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 351 { 352 q->limits.alignment_offset = 353 offset & (q->limits.physical_block_size - 1); 354 q->limits.misaligned = 0; 355 } 356 EXPORT_SYMBOL(blk_queue_alignment_offset); 357 358 /** 359 * blk_limits_io_min - set minimum request size for a device 360 * @limits: the queue limits 361 * @min: smallest I/O size in bytes 362 * 363 * Description: 364 * Some devices have an internal block size bigger than the reported 365 * hardware sector size. This function can be used to signal the 366 * smallest I/O the device can perform without incurring a performance 367 * penalty. 368 */ 369 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 370 { 371 limits->io_min = min; 372 373 if (limits->io_min < limits->logical_block_size) 374 limits->io_min = limits->logical_block_size; 375 376 if (limits->io_min < limits->physical_block_size) 377 limits->io_min = limits->physical_block_size; 378 } 379 EXPORT_SYMBOL(blk_limits_io_min); 380 381 /** 382 * blk_queue_io_min - set minimum request size for the queue 383 * @q: the request queue for the device 384 * @min: smallest I/O size in bytes 385 * 386 * Description: 387 * Storage devices may report a granularity or preferred minimum I/O 388 * size which is the smallest request the device can perform without 389 * incurring a performance penalty. For disk drives this is often the 390 * physical block size. For RAID arrays it is often the stripe chunk 391 * size. A properly aligned multiple of minimum_io_size is the 392 * preferred request size for workloads where a high number of I/O 393 * operations is desired. 394 */ 395 void blk_queue_io_min(struct request_queue *q, unsigned int min) 396 { 397 blk_limits_io_min(&q->limits, min); 398 } 399 EXPORT_SYMBOL(blk_queue_io_min); 400 401 /** 402 * blk_limits_io_opt - set optimal request size for a device 403 * @limits: the queue limits 404 * @opt: smallest I/O size in bytes 405 * 406 * Description: 407 * Storage devices may report an optimal I/O size, which is the 408 * device's preferred unit for sustained I/O. This is rarely reported 409 * for disk drives. For RAID arrays it is usually the stripe width or 410 * the internal track size. A properly aligned multiple of 411 * optimal_io_size is the preferred request size for workloads where 412 * sustained throughput is desired. 413 */ 414 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 415 { 416 limits->io_opt = opt; 417 } 418 EXPORT_SYMBOL(blk_limits_io_opt); 419 420 /** 421 * blk_queue_io_opt - set optimal request size for the queue 422 * @q: the request queue for the device 423 * @opt: optimal request size in bytes 424 * 425 * Description: 426 * Storage devices may report an optimal I/O size, which is the 427 * device's preferred unit for sustained I/O. This is rarely reported 428 * for disk drives. For RAID arrays it is usually the stripe width or 429 * the internal track size. A properly aligned multiple of 430 * optimal_io_size is the preferred request size for workloads where 431 * sustained throughput is desired. 432 */ 433 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 434 { 435 blk_limits_io_opt(&q->limits, opt); 436 } 437 EXPORT_SYMBOL(blk_queue_io_opt); 438 439 /* 440 * Returns the minimum that is _not_ zero, unless both are zero. 441 */ 442 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 443 444 /** 445 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 446 * @t: the stacking driver (top) 447 * @b: the underlying device (bottom) 448 **/ 449 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 450 { 451 blk_stack_limits(&t->limits, &b->limits, 0); 452 453 if (!t->queue_lock) 454 WARN_ON_ONCE(1); 455 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 456 unsigned long flags; 457 spin_lock_irqsave(t->queue_lock, flags); 458 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 459 spin_unlock_irqrestore(t->queue_lock, flags); 460 } 461 } 462 EXPORT_SYMBOL(blk_queue_stack_limits); 463 464 static unsigned int lcm(unsigned int a, unsigned int b) 465 { 466 if (a && b) 467 return (a * b) / gcd(a, b); 468 else if (b) 469 return b; 470 471 return a; 472 } 473 474 /** 475 * blk_stack_limits - adjust queue_limits for stacked devices 476 * @t: the stacking driver limits (top device) 477 * @b: the underlying queue limits (bottom, component device) 478 * @start: first data sector within component device 479 * 480 * Description: 481 * This function is used by stacking drivers like MD and DM to ensure 482 * that all component devices have compatible block sizes and 483 * alignments. The stacking driver must provide a queue_limits 484 * struct (top) and then iteratively call the stacking function for 485 * all component (bottom) devices. The stacking function will 486 * attempt to combine the values and ensure proper alignment. 487 * 488 * Returns 0 if the top and bottom queue_limits are compatible. The 489 * top device's block sizes and alignment offsets may be adjusted to 490 * ensure alignment with the bottom device. If no compatible sizes 491 * and alignments exist, -1 is returned and the resulting top 492 * queue_limits will have the misaligned flag set to indicate that 493 * the alignment_offset is undefined. 494 */ 495 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 496 sector_t start) 497 { 498 unsigned int top, bottom, alignment, ret = 0; 499 500 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 501 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 502 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 503 504 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 505 b->seg_boundary_mask); 506 507 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 508 509 t->max_segment_size = min_not_zero(t->max_segment_size, 510 b->max_segment_size); 511 512 t->misaligned |= b->misaligned; 513 514 alignment = queue_limit_alignment_offset(b, start); 515 516 /* Bottom device has different alignment. Check that it is 517 * compatible with the current top alignment. 518 */ 519 if (t->alignment_offset != alignment) { 520 521 top = max(t->physical_block_size, t->io_min) 522 + t->alignment_offset; 523 bottom = max(b->physical_block_size, b->io_min) + alignment; 524 525 /* Verify that top and bottom intervals line up */ 526 if (max(top, bottom) & (min(top, bottom) - 1)) { 527 t->misaligned = 1; 528 ret = -1; 529 } 530 } 531 532 t->logical_block_size = max(t->logical_block_size, 533 b->logical_block_size); 534 535 t->physical_block_size = max(t->physical_block_size, 536 b->physical_block_size); 537 538 t->io_min = max(t->io_min, b->io_min); 539 t->io_opt = lcm(t->io_opt, b->io_opt); 540 541 t->no_cluster |= b->no_cluster; 542 t->discard_zeroes_data &= b->discard_zeroes_data; 543 544 /* Physical block size a multiple of the logical block size? */ 545 if (t->physical_block_size & (t->logical_block_size - 1)) { 546 t->physical_block_size = t->logical_block_size; 547 t->misaligned = 1; 548 ret = -1; 549 } 550 551 /* Minimum I/O a multiple of the physical block size? */ 552 if (t->io_min & (t->physical_block_size - 1)) { 553 t->io_min = t->physical_block_size; 554 t->misaligned = 1; 555 ret = -1; 556 } 557 558 /* Optimal I/O a multiple of the physical block size? */ 559 if (t->io_opt & (t->physical_block_size - 1)) { 560 t->io_opt = 0; 561 t->misaligned = 1; 562 ret = -1; 563 } 564 565 /* Find lowest common alignment_offset */ 566 t->alignment_offset = lcm(t->alignment_offset, alignment) 567 & (max(t->physical_block_size, t->io_min) - 1); 568 569 /* Verify that new alignment_offset is on a logical block boundary */ 570 if (t->alignment_offset & (t->logical_block_size - 1)) { 571 t->misaligned = 1; 572 ret = -1; 573 } 574 575 /* Discard alignment and granularity */ 576 if (b->discard_granularity) { 577 alignment = queue_limit_discard_alignment(b, start); 578 579 if (t->discard_granularity != 0 && 580 t->discard_alignment != alignment) { 581 top = t->discard_granularity + t->discard_alignment; 582 bottom = b->discard_granularity + alignment; 583 584 /* Verify that top and bottom intervals line up */ 585 if (max(top, bottom) & (min(top, bottom) - 1)) 586 t->discard_misaligned = 1; 587 } 588 589 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 590 b->max_discard_sectors); 591 t->discard_granularity = max(t->discard_granularity, 592 b->discard_granularity); 593 t->discard_alignment = lcm(t->discard_alignment, alignment) & 594 (t->discard_granularity - 1); 595 } 596 597 return ret; 598 } 599 EXPORT_SYMBOL(blk_stack_limits); 600 601 /** 602 * bdev_stack_limits - adjust queue limits for stacked drivers 603 * @t: the stacking driver limits (top device) 604 * @bdev: the component block_device (bottom) 605 * @start: first data sector within component device 606 * 607 * Description: 608 * Merges queue limits for a top device and a block_device. Returns 609 * 0 if alignment didn't change. Returns -1 if adding the bottom 610 * device caused misalignment. 611 */ 612 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 613 sector_t start) 614 { 615 struct request_queue *bq = bdev_get_queue(bdev); 616 617 start += get_start_sect(bdev); 618 619 return blk_stack_limits(t, &bq->limits, start); 620 } 621 EXPORT_SYMBOL(bdev_stack_limits); 622 623 /** 624 * disk_stack_limits - adjust queue limits for stacked drivers 625 * @disk: MD/DM gendisk (top) 626 * @bdev: the underlying block device (bottom) 627 * @offset: offset to beginning of data within component device 628 * 629 * Description: 630 * Merges the limits for a top level gendisk and a bottom level 631 * block_device. 632 */ 633 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 634 sector_t offset) 635 { 636 struct request_queue *t = disk->queue; 637 struct request_queue *b = bdev_get_queue(bdev); 638 639 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) { 640 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 641 642 disk_name(disk, 0, top); 643 bdevname(bdev, bottom); 644 645 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 646 top, bottom); 647 } 648 649 if (!t->queue_lock) 650 WARN_ON_ONCE(1); 651 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { 652 unsigned long flags; 653 654 spin_lock_irqsave(t->queue_lock, flags); 655 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) 656 queue_flag_clear(QUEUE_FLAG_CLUSTER, t); 657 spin_unlock_irqrestore(t->queue_lock, flags); 658 } 659 } 660 EXPORT_SYMBOL(disk_stack_limits); 661 662 /** 663 * blk_queue_dma_pad - set pad mask 664 * @q: the request queue for the device 665 * @mask: pad mask 666 * 667 * Set dma pad mask. 668 * 669 * Appending pad buffer to a request modifies the last entry of a 670 * scatter list such that it includes the pad buffer. 671 **/ 672 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 673 { 674 q->dma_pad_mask = mask; 675 } 676 EXPORT_SYMBOL(blk_queue_dma_pad); 677 678 /** 679 * blk_queue_update_dma_pad - update pad mask 680 * @q: the request queue for the device 681 * @mask: pad mask 682 * 683 * Update dma pad mask. 684 * 685 * Appending pad buffer to a request modifies the last entry of a 686 * scatter list such that it includes the pad buffer. 687 **/ 688 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 689 { 690 if (mask > q->dma_pad_mask) 691 q->dma_pad_mask = mask; 692 } 693 EXPORT_SYMBOL(blk_queue_update_dma_pad); 694 695 /** 696 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 697 * @q: the request queue for the device 698 * @dma_drain_needed: fn which returns non-zero if drain is necessary 699 * @buf: physically contiguous buffer 700 * @size: size of the buffer in bytes 701 * 702 * Some devices have excess DMA problems and can't simply discard (or 703 * zero fill) the unwanted piece of the transfer. They have to have a 704 * real area of memory to transfer it into. The use case for this is 705 * ATAPI devices in DMA mode. If the packet command causes a transfer 706 * bigger than the transfer size some HBAs will lock up if there 707 * aren't DMA elements to contain the excess transfer. What this API 708 * does is adjust the queue so that the buf is always appended 709 * silently to the scatterlist. 710 * 711 * Note: This routine adjusts max_hw_segments to make room for appending 712 * the drain buffer. If you call blk_queue_max_segments() after calling 713 * this routine, you must set the limit to one fewer than your device 714 * can support otherwise there won't be room for the drain buffer. 715 */ 716 int blk_queue_dma_drain(struct request_queue *q, 717 dma_drain_needed_fn *dma_drain_needed, 718 void *buf, unsigned int size) 719 { 720 if (queue_max_segments(q) < 2) 721 return -EINVAL; 722 /* make room for appending the drain */ 723 blk_queue_max_segments(q, queue_max_segments(q) - 1); 724 q->dma_drain_needed = dma_drain_needed; 725 q->dma_drain_buffer = buf; 726 q->dma_drain_size = size; 727 728 return 0; 729 } 730 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 731 732 /** 733 * blk_queue_segment_boundary - set boundary rules for segment merging 734 * @q: the request queue for the device 735 * @mask: the memory boundary mask 736 **/ 737 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 738 { 739 if (mask < PAGE_CACHE_SIZE - 1) { 740 mask = PAGE_CACHE_SIZE - 1; 741 printk(KERN_INFO "%s: set to minimum %lx\n", 742 __func__, mask); 743 } 744 745 q->limits.seg_boundary_mask = mask; 746 } 747 EXPORT_SYMBOL(blk_queue_segment_boundary); 748 749 /** 750 * blk_queue_dma_alignment - set dma length and memory alignment 751 * @q: the request queue for the device 752 * @mask: alignment mask 753 * 754 * description: 755 * set required memory and length alignment for direct dma transactions. 756 * this is used when building direct io requests for the queue. 757 * 758 **/ 759 void blk_queue_dma_alignment(struct request_queue *q, int mask) 760 { 761 q->dma_alignment = mask; 762 } 763 EXPORT_SYMBOL(blk_queue_dma_alignment); 764 765 /** 766 * blk_queue_update_dma_alignment - update dma length and memory alignment 767 * @q: the request queue for the device 768 * @mask: alignment mask 769 * 770 * description: 771 * update required memory and length alignment for direct dma transactions. 772 * If the requested alignment is larger than the current alignment, then 773 * the current queue alignment is updated to the new value, otherwise it 774 * is left alone. The design of this is to allow multiple objects 775 * (driver, device, transport etc) to set their respective 776 * alignments without having them interfere. 777 * 778 **/ 779 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 780 { 781 BUG_ON(mask > PAGE_SIZE); 782 783 if (mask > q->dma_alignment) 784 q->dma_alignment = mask; 785 } 786 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 787 788 static int __init blk_settings_init(void) 789 { 790 blk_max_low_pfn = max_low_pfn - 1; 791 blk_max_pfn = max_pfn - 1; 792 return 0; 793 } 794 subsys_initcall(blk_settings_init); 795