1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 18 #include "blk.h" 19 #include "blk-rq-qos.h" 20 #include "blk-wbt.h" 21 22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 23 { 24 q->rq_timeout = timeout; 25 } 26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 27 28 /** 29 * blk_set_stacking_limits - set default limits for stacking devices 30 * @lim: the queue_limits structure to reset 31 * 32 * Prepare queue limits for applying limits from underlying devices using 33 * blk_stack_limits(). 34 */ 35 void blk_set_stacking_limits(struct queue_limits *lim) 36 { 37 memset(lim, 0, sizeof(*lim)); 38 lim->logical_block_size = SECTOR_SIZE; 39 lim->physical_block_size = SECTOR_SIZE; 40 lim->io_min = SECTOR_SIZE; 41 lim->discard_granularity = SECTOR_SIZE; 42 lim->dma_alignment = SECTOR_SIZE - 1; 43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 44 45 /* Inherit limits from component devices */ 46 lim->max_segments = USHRT_MAX; 47 lim->max_discard_segments = USHRT_MAX; 48 lim->max_hw_sectors = UINT_MAX; 49 lim->max_segment_size = UINT_MAX; 50 lim->max_sectors = UINT_MAX; 51 lim->max_dev_sectors = UINT_MAX; 52 lim->max_write_zeroes_sectors = UINT_MAX; 53 lim->max_zone_append_sectors = UINT_MAX; 54 lim->max_user_discard_sectors = UINT_MAX; 55 } 56 EXPORT_SYMBOL(blk_set_stacking_limits); 57 58 static void blk_apply_bdi_limits(struct backing_dev_info *bdi, 59 struct queue_limits *lim) 60 { 61 /* 62 * For read-ahead of large files to be effective, we need to read ahead 63 * at least twice the optimal I/O size. 64 */ 65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; 67 } 68 69 static int blk_validate_zoned_limits(struct queue_limits *lim) 70 { 71 if (!lim->zoned) { 72 if (WARN_ON_ONCE(lim->max_open_zones) || 73 WARN_ON_ONCE(lim->max_active_zones) || 74 WARN_ON_ONCE(lim->zone_write_granularity) || 75 WARN_ON_ONCE(lim->max_zone_append_sectors)) 76 return -EINVAL; 77 return 0; 78 } 79 80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) 81 return -EINVAL; 82 83 if (lim->zone_write_granularity < lim->logical_block_size) 84 lim->zone_write_granularity = lim->logical_block_size; 85 86 if (lim->max_zone_append_sectors) { 87 /* 88 * The Zone Append size is limited by the maximum I/O size 89 * and the zone size given that it can't span zones. 90 */ 91 lim->max_zone_append_sectors = 92 min3(lim->max_hw_sectors, 93 lim->max_zone_append_sectors, 94 lim->chunk_sectors); 95 } 96 97 return 0; 98 } 99 100 /* 101 * Check that the limits in lim are valid, initialize defaults for unset 102 * values, and cap values based on others where needed. 103 */ 104 static int blk_validate_limits(struct queue_limits *lim) 105 { 106 unsigned int max_hw_sectors; 107 108 /* 109 * Unless otherwise specified, default to 512 byte logical blocks and a 110 * physical block size equal to the logical block size. 111 */ 112 if (!lim->logical_block_size) 113 lim->logical_block_size = SECTOR_SIZE; 114 if (lim->physical_block_size < lim->logical_block_size) 115 lim->physical_block_size = lim->logical_block_size; 116 117 /* 118 * The minimum I/O size defaults to the physical block size unless 119 * explicitly overridden. 120 */ 121 if (lim->io_min < lim->physical_block_size) 122 lim->io_min = lim->physical_block_size; 123 124 /* 125 * max_hw_sectors has a somewhat weird default for historical reason, 126 * but driver really should set their own instead of relying on this 127 * value. 128 * 129 * The block layer relies on the fact that every driver can 130 * handle at lest a page worth of data per I/O, and needs the value 131 * aligned to the logical block size. 132 */ 133 if (!lim->max_hw_sectors) 134 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 135 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) 136 return -EINVAL; 137 lim->max_hw_sectors = round_down(lim->max_hw_sectors, 138 lim->logical_block_size >> SECTOR_SHIFT); 139 140 /* 141 * The actual max_sectors value is a complex beast and also takes the 142 * max_dev_sectors value (set by SCSI ULPs) and a user configurable 143 * value into account. The ->max_sectors value is always calculated 144 * from these, so directly setting it won't have any effect. 145 */ 146 max_hw_sectors = min_not_zero(lim->max_hw_sectors, 147 lim->max_dev_sectors); 148 if (lim->max_user_sectors) { 149 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE) 150 return -EINVAL; 151 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); 152 } else { 153 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); 154 } 155 lim->max_sectors = round_down(lim->max_sectors, 156 lim->logical_block_size >> SECTOR_SHIFT); 157 158 /* 159 * Random default for the maximum number of segments. Driver should not 160 * rely on this and set their own. 161 */ 162 if (!lim->max_segments) 163 lim->max_segments = BLK_MAX_SEGMENTS; 164 165 lim->max_discard_sectors = 166 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); 167 168 if (!lim->max_discard_segments) 169 lim->max_discard_segments = 1; 170 171 if (lim->discard_granularity < lim->physical_block_size) 172 lim->discard_granularity = lim->physical_block_size; 173 174 /* 175 * By default there is no limit on the segment boundary alignment, 176 * but if there is one it can't be smaller than the page size as 177 * that would break all the normal I/O patterns. 178 */ 179 if (!lim->seg_boundary_mask) 180 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 181 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1)) 182 return -EINVAL; 183 184 /* 185 * Stacking device may have both virtual boundary and max segment 186 * size limit, so allow this setting now, and long-term the two 187 * might need to move out of stacking limits since we have immutable 188 * bvec and lower layer bio splitting is supposed to handle the two 189 * correctly. 190 */ 191 if (lim->virt_boundary_mask) { 192 if (!lim->max_segment_size) 193 lim->max_segment_size = UINT_MAX; 194 } else { 195 /* 196 * The maximum segment size has an odd historic 64k default that 197 * drivers probably should override. Just like the I/O size we 198 * require drivers to at least handle a full page per segment. 199 */ 200 if (!lim->max_segment_size) 201 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 202 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE)) 203 return -EINVAL; 204 } 205 206 /* 207 * We require drivers to at least do logical block aligned I/O, but 208 * historically could not check for that due to the separate calls 209 * to set the limits. Once the transition is finished the check 210 * below should be narrowed down to check the logical block size. 211 */ 212 if (!lim->dma_alignment) 213 lim->dma_alignment = SECTOR_SIZE - 1; 214 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) 215 return -EINVAL; 216 217 if (lim->alignment_offset) { 218 lim->alignment_offset &= (lim->physical_block_size - 1); 219 lim->misaligned = 0; 220 } 221 222 return blk_validate_zoned_limits(lim); 223 } 224 225 /* 226 * Set the default limits for a newly allocated queue. @lim contains the 227 * initial limits set by the driver, which could be no limit in which case 228 * all fields are cleared to zero. 229 */ 230 int blk_set_default_limits(struct queue_limits *lim) 231 { 232 /* 233 * Most defaults are set by capping the bounds in blk_validate_limits, 234 * but max_user_discard_sectors is special and needs an explicit 235 * initialization to the max value here. 236 */ 237 lim->max_user_discard_sectors = UINT_MAX; 238 return blk_validate_limits(lim); 239 } 240 241 /** 242 * queue_limits_commit_update - commit an atomic update of queue limits 243 * @q: queue to update 244 * @lim: limits to apply 245 * 246 * Apply the limits in @lim that were obtained from queue_limits_start_update() 247 * and updated by the caller to @q. 248 * 249 * Returns 0 if successful, else a negative error code. 250 */ 251 int queue_limits_commit_update(struct request_queue *q, 252 struct queue_limits *lim) 253 __releases(q->limits_lock) 254 { 255 int error = blk_validate_limits(lim); 256 257 if (!error) { 258 q->limits = *lim; 259 if (q->disk) 260 blk_apply_bdi_limits(q->disk->bdi, lim); 261 } 262 mutex_unlock(&q->limits_lock); 263 return error; 264 } 265 EXPORT_SYMBOL_GPL(queue_limits_commit_update); 266 267 /** 268 * queue_limits_set - apply queue limits to queue 269 * @q: queue to update 270 * @lim: limits to apply 271 * 272 * Apply the limits in @lim that were freshly initialized to @q. 273 * To update existing limits use queue_limits_start_update() and 274 * queue_limits_commit_update() instead. 275 * 276 * Returns 0 if successful, else a negative error code. 277 */ 278 int queue_limits_set(struct request_queue *q, struct queue_limits *lim) 279 { 280 mutex_lock(&q->limits_lock); 281 return queue_limits_commit_update(q, lim); 282 } 283 EXPORT_SYMBOL_GPL(queue_limits_set); 284 285 /** 286 * blk_queue_chunk_sectors - set size of the chunk for this queue 287 * @q: the request queue for the device 288 * @chunk_sectors: chunk sectors in the usual 512b unit 289 * 290 * Description: 291 * If a driver doesn't want IOs to cross a given chunk size, it can set 292 * this limit and prevent merging across chunks. Note that the block layer 293 * must accept a page worth of data at any offset. So if the crossing of 294 * chunks is a hard limitation in the driver, it must still be prepared 295 * to split single page bios. 296 **/ 297 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) 298 { 299 q->limits.chunk_sectors = chunk_sectors; 300 } 301 EXPORT_SYMBOL(blk_queue_chunk_sectors); 302 303 /** 304 * blk_queue_max_discard_sectors - set max sectors for a single discard 305 * @q: the request queue for the device 306 * @max_discard_sectors: maximum number of sectors to discard 307 **/ 308 void blk_queue_max_discard_sectors(struct request_queue *q, 309 unsigned int max_discard_sectors) 310 { 311 struct queue_limits *lim = &q->limits; 312 313 lim->max_hw_discard_sectors = max_discard_sectors; 314 lim->max_discard_sectors = 315 min(max_discard_sectors, lim->max_user_discard_sectors); 316 } 317 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 318 319 /** 320 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase 321 * @q: the request queue for the device 322 * @max_sectors: maximum number of sectors to secure_erase 323 **/ 324 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 325 unsigned int max_sectors) 326 { 327 q->limits.max_secure_erase_sectors = max_sectors; 328 } 329 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors); 330 331 /** 332 * blk_queue_max_write_zeroes_sectors - set max sectors for a single 333 * write zeroes 334 * @q: the request queue for the device 335 * @max_write_zeroes_sectors: maximum number of sectors to write per command 336 **/ 337 void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 338 unsigned int max_write_zeroes_sectors) 339 { 340 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors; 341 } 342 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors); 343 344 /** 345 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append 346 * @q: the request queue for the device 347 * @max_zone_append_sectors: maximum number of sectors to write per command 348 * 349 * Sets the maximum number of sectors allowed for zone append commands. If 350 * Specifying 0 for @max_zone_append_sectors indicates that the queue does 351 * not natively support zone append operations and that the block layer must 352 * emulate these operations using regular writes. 353 **/ 354 void blk_queue_max_zone_append_sectors(struct request_queue *q, 355 unsigned int max_zone_append_sectors) 356 { 357 unsigned int max_sectors = 0; 358 359 if (WARN_ON(!blk_queue_is_zoned(q))) 360 return; 361 362 if (max_zone_append_sectors) { 363 max_sectors = min(q->limits.max_hw_sectors, 364 max_zone_append_sectors); 365 max_sectors = min(q->limits.chunk_sectors, max_sectors); 366 367 /* 368 * Signal eventual driver bugs resulting in the max_zone_append 369 * sectors limit being 0 due to the chunk_sectors limit (zone 370 * size) not set or the max_hw_sectors limit not set. 371 */ 372 WARN_ON_ONCE(!max_sectors); 373 } 374 375 q->limits.max_zone_append_sectors = max_sectors; 376 } 377 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors); 378 379 /** 380 * blk_queue_logical_block_size - set logical block size for the queue 381 * @q: the request queue for the device 382 * @size: the logical block size, in bytes 383 * 384 * Description: 385 * This should be set to the lowest possible block size that the 386 * storage device can address. The default of 512 covers most 387 * hardware. 388 **/ 389 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size) 390 { 391 struct queue_limits *limits = &q->limits; 392 393 limits->logical_block_size = size; 394 395 if (limits->discard_granularity < limits->logical_block_size) 396 limits->discard_granularity = limits->logical_block_size; 397 398 if (limits->physical_block_size < size) 399 limits->physical_block_size = size; 400 401 if (limits->io_min < limits->physical_block_size) 402 limits->io_min = limits->physical_block_size; 403 404 limits->max_hw_sectors = 405 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT); 406 limits->max_sectors = 407 round_down(limits->max_sectors, size >> SECTOR_SHIFT); 408 } 409 EXPORT_SYMBOL(blk_queue_logical_block_size); 410 411 /** 412 * blk_queue_physical_block_size - set physical block size for the queue 413 * @q: the request queue for the device 414 * @size: the physical block size, in bytes 415 * 416 * Description: 417 * This should be set to the lowest possible sector size that the 418 * hardware can operate on without reverting to read-modify-write 419 * operations. 420 */ 421 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 422 { 423 q->limits.physical_block_size = size; 424 425 if (q->limits.physical_block_size < q->limits.logical_block_size) 426 q->limits.physical_block_size = q->limits.logical_block_size; 427 428 if (q->limits.discard_granularity < q->limits.physical_block_size) 429 q->limits.discard_granularity = q->limits.physical_block_size; 430 431 if (q->limits.io_min < q->limits.physical_block_size) 432 q->limits.io_min = q->limits.physical_block_size; 433 } 434 EXPORT_SYMBOL(blk_queue_physical_block_size); 435 436 /** 437 * blk_queue_zone_write_granularity - set zone write granularity for the queue 438 * @q: the request queue for the zoned device 439 * @size: the zone write granularity size, in bytes 440 * 441 * Description: 442 * This should be set to the lowest possible size allowing to write in 443 * sequential zones of a zoned block device. 444 */ 445 void blk_queue_zone_write_granularity(struct request_queue *q, 446 unsigned int size) 447 { 448 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 449 return; 450 451 q->limits.zone_write_granularity = size; 452 453 if (q->limits.zone_write_granularity < q->limits.logical_block_size) 454 q->limits.zone_write_granularity = q->limits.logical_block_size; 455 } 456 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity); 457 458 /** 459 * blk_queue_alignment_offset - set physical block alignment offset 460 * @q: the request queue for the device 461 * @offset: alignment offset in bytes 462 * 463 * Description: 464 * Some devices are naturally misaligned to compensate for things like 465 * the legacy DOS partition table 63-sector offset. Low-level drivers 466 * should call this function for devices whose first sector is not 467 * naturally aligned. 468 */ 469 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 470 { 471 q->limits.alignment_offset = 472 offset & (q->limits.physical_block_size - 1); 473 q->limits.misaligned = 0; 474 } 475 EXPORT_SYMBOL(blk_queue_alignment_offset); 476 477 void disk_update_readahead(struct gendisk *disk) 478 { 479 blk_apply_bdi_limits(disk->bdi, &disk->queue->limits); 480 } 481 EXPORT_SYMBOL_GPL(disk_update_readahead); 482 483 /** 484 * blk_limits_io_min - set minimum request size for a device 485 * @limits: the queue limits 486 * @min: smallest I/O size in bytes 487 * 488 * Description: 489 * Some devices have an internal block size bigger than the reported 490 * hardware sector size. This function can be used to signal the 491 * smallest I/O the device can perform without incurring a performance 492 * penalty. 493 */ 494 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 495 { 496 limits->io_min = min; 497 498 if (limits->io_min < limits->logical_block_size) 499 limits->io_min = limits->logical_block_size; 500 501 if (limits->io_min < limits->physical_block_size) 502 limits->io_min = limits->physical_block_size; 503 } 504 EXPORT_SYMBOL(blk_limits_io_min); 505 506 /** 507 * blk_queue_io_min - set minimum request size for the queue 508 * @q: the request queue for the device 509 * @min: smallest I/O size in bytes 510 * 511 * Description: 512 * Storage devices may report a granularity or preferred minimum I/O 513 * size which is the smallest request the device can perform without 514 * incurring a performance penalty. For disk drives this is often the 515 * physical block size. For RAID arrays it is often the stripe chunk 516 * size. A properly aligned multiple of minimum_io_size is the 517 * preferred request size for workloads where a high number of I/O 518 * operations is desired. 519 */ 520 void blk_queue_io_min(struct request_queue *q, unsigned int min) 521 { 522 blk_limits_io_min(&q->limits, min); 523 } 524 EXPORT_SYMBOL(blk_queue_io_min); 525 526 /** 527 * blk_limits_io_opt - set optimal request size for a device 528 * @limits: the queue limits 529 * @opt: smallest I/O size in bytes 530 * 531 * Description: 532 * Storage devices may report an optimal I/O size, which is the 533 * device's preferred unit for sustained I/O. This is rarely reported 534 * for disk drives. For RAID arrays it is usually the stripe width or 535 * the internal track size. A properly aligned multiple of 536 * optimal_io_size is the preferred request size for workloads where 537 * sustained throughput is desired. 538 */ 539 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 540 { 541 limits->io_opt = opt; 542 } 543 EXPORT_SYMBOL(blk_limits_io_opt); 544 545 static int queue_limit_alignment_offset(const struct queue_limits *lim, 546 sector_t sector) 547 { 548 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 549 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 550 << SECTOR_SHIFT; 551 552 return (granularity + lim->alignment_offset - alignment) % granularity; 553 } 554 555 static unsigned int queue_limit_discard_alignment( 556 const struct queue_limits *lim, sector_t sector) 557 { 558 unsigned int alignment, granularity, offset; 559 560 if (!lim->max_discard_sectors) 561 return 0; 562 563 /* Why are these in bytes, not sectors? */ 564 alignment = lim->discard_alignment >> SECTOR_SHIFT; 565 granularity = lim->discard_granularity >> SECTOR_SHIFT; 566 if (!granularity) 567 return 0; 568 569 /* Offset of the partition start in 'granularity' sectors */ 570 offset = sector_div(sector, granularity); 571 572 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 573 offset = (granularity + alignment - offset) % granularity; 574 575 /* Turn it back into bytes, gaah */ 576 return offset << SECTOR_SHIFT; 577 } 578 579 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 580 { 581 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 582 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 583 sectors = PAGE_SIZE >> SECTOR_SHIFT; 584 return sectors; 585 } 586 587 /** 588 * blk_stack_limits - adjust queue_limits for stacked devices 589 * @t: the stacking driver limits (top device) 590 * @b: the underlying queue limits (bottom, component device) 591 * @start: first data sector within component device 592 * 593 * Description: 594 * This function is used by stacking drivers like MD and DM to ensure 595 * that all component devices have compatible block sizes and 596 * alignments. The stacking driver must provide a queue_limits 597 * struct (top) and then iteratively call the stacking function for 598 * all component (bottom) devices. The stacking function will 599 * attempt to combine the values and ensure proper alignment. 600 * 601 * Returns 0 if the top and bottom queue_limits are compatible. The 602 * top device's block sizes and alignment offsets may be adjusted to 603 * ensure alignment with the bottom device. If no compatible sizes 604 * and alignments exist, -1 is returned and the resulting top 605 * queue_limits will have the misaligned flag set to indicate that 606 * the alignment_offset is undefined. 607 */ 608 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 609 sector_t start) 610 { 611 unsigned int top, bottom, alignment, ret = 0; 612 613 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 614 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 615 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 616 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 617 b->max_write_zeroes_sectors); 618 t->max_zone_append_sectors = min(queue_limits_max_zone_append_sectors(t), 619 queue_limits_max_zone_append_sectors(b)); 620 t->bounce = max(t->bounce, b->bounce); 621 622 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 623 b->seg_boundary_mask); 624 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 625 b->virt_boundary_mask); 626 627 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 628 t->max_discard_segments = min_not_zero(t->max_discard_segments, 629 b->max_discard_segments); 630 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 631 b->max_integrity_segments); 632 633 t->max_segment_size = min_not_zero(t->max_segment_size, 634 b->max_segment_size); 635 636 t->misaligned |= b->misaligned; 637 638 alignment = queue_limit_alignment_offset(b, start); 639 640 /* Bottom device has different alignment. Check that it is 641 * compatible with the current top alignment. 642 */ 643 if (t->alignment_offset != alignment) { 644 645 top = max(t->physical_block_size, t->io_min) 646 + t->alignment_offset; 647 bottom = max(b->physical_block_size, b->io_min) + alignment; 648 649 /* Verify that top and bottom intervals line up */ 650 if (max(top, bottom) % min(top, bottom)) { 651 t->misaligned = 1; 652 ret = -1; 653 } 654 } 655 656 t->logical_block_size = max(t->logical_block_size, 657 b->logical_block_size); 658 659 t->physical_block_size = max(t->physical_block_size, 660 b->physical_block_size); 661 662 t->io_min = max(t->io_min, b->io_min); 663 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 664 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 665 666 /* Set non-power-of-2 compatible chunk_sectors boundary */ 667 if (b->chunk_sectors) 668 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 669 670 /* Physical block size a multiple of the logical block size? */ 671 if (t->physical_block_size & (t->logical_block_size - 1)) { 672 t->physical_block_size = t->logical_block_size; 673 t->misaligned = 1; 674 ret = -1; 675 } 676 677 /* Minimum I/O a multiple of the physical block size? */ 678 if (t->io_min & (t->physical_block_size - 1)) { 679 t->io_min = t->physical_block_size; 680 t->misaligned = 1; 681 ret = -1; 682 } 683 684 /* Optimal I/O a multiple of the physical block size? */ 685 if (t->io_opt & (t->physical_block_size - 1)) { 686 t->io_opt = 0; 687 t->misaligned = 1; 688 ret = -1; 689 } 690 691 /* chunk_sectors a multiple of the physical block size? */ 692 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { 693 t->chunk_sectors = 0; 694 t->misaligned = 1; 695 ret = -1; 696 } 697 698 t->raid_partial_stripes_expensive = 699 max(t->raid_partial_stripes_expensive, 700 b->raid_partial_stripes_expensive); 701 702 /* Find lowest common alignment_offset */ 703 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 704 % max(t->physical_block_size, t->io_min); 705 706 /* Verify that new alignment_offset is on a logical block boundary */ 707 if (t->alignment_offset & (t->logical_block_size - 1)) { 708 t->misaligned = 1; 709 ret = -1; 710 } 711 712 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 713 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 714 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 715 716 /* Discard alignment and granularity */ 717 if (b->discard_granularity) { 718 alignment = queue_limit_discard_alignment(b, start); 719 720 if (t->discard_granularity != 0 && 721 t->discard_alignment != alignment) { 722 top = t->discard_granularity + t->discard_alignment; 723 bottom = b->discard_granularity + alignment; 724 725 /* Verify that top and bottom intervals line up */ 726 if ((max(top, bottom) % min(top, bottom)) != 0) 727 t->discard_misaligned = 1; 728 } 729 730 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 731 b->max_discard_sectors); 732 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 733 b->max_hw_discard_sectors); 734 t->discard_granularity = max(t->discard_granularity, 735 b->discard_granularity); 736 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 737 t->discard_granularity; 738 } 739 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 740 b->max_secure_erase_sectors); 741 t->zone_write_granularity = max(t->zone_write_granularity, 742 b->zone_write_granularity); 743 t->zoned = max(t->zoned, b->zoned); 744 if (!t->zoned) { 745 t->zone_write_granularity = 0; 746 t->max_zone_append_sectors = 0; 747 } 748 return ret; 749 } 750 EXPORT_SYMBOL(blk_stack_limits); 751 752 /** 753 * queue_limits_stack_bdev - adjust queue_limits for stacked devices 754 * @t: the stacking driver limits (top device) 755 * @bdev: the underlying block device (bottom) 756 * @offset: offset to beginning of data within component device 757 * @pfx: prefix to use for warnings logged 758 * 759 * Description: 760 * This function is used by stacking drivers like MD and DM to ensure 761 * that all component devices have compatible block sizes and 762 * alignments. The stacking driver must provide a queue_limits 763 * struct (top) and then iteratively call the stacking function for 764 * all component (bottom) devices. The stacking function will 765 * attempt to combine the values and ensure proper alignment. 766 */ 767 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 768 sector_t offset, const char *pfx) 769 { 770 if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits, 771 get_start_sect(bdev) + offset)) 772 pr_notice("%s: Warning: Device %pg is misaligned\n", 773 pfx, bdev); 774 } 775 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); 776 777 /** 778 * blk_queue_update_dma_pad - update pad mask 779 * @q: the request queue for the device 780 * @mask: pad mask 781 * 782 * Update dma pad mask. 783 * 784 * Appending pad buffer to a request modifies the last entry of a 785 * scatter list such that it includes the pad buffer. 786 **/ 787 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 788 { 789 if (mask > q->dma_pad_mask) 790 q->dma_pad_mask = mask; 791 } 792 EXPORT_SYMBOL(blk_queue_update_dma_pad); 793 794 /** 795 * blk_set_queue_depth - tell the block layer about the device queue depth 796 * @q: the request queue for the device 797 * @depth: queue depth 798 * 799 */ 800 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 801 { 802 q->queue_depth = depth; 803 rq_qos_queue_depth_changed(q); 804 } 805 EXPORT_SYMBOL(blk_set_queue_depth); 806 807 /** 808 * blk_queue_write_cache - configure queue's write cache 809 * @q: the request queue for the device 810 * @wc: write back cache on or off 811 * @fua: device supports FUA writes, if true 812 * 813 * Tell the block layer about the write cache of @q. 814 */ 815 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) 816 { 817 if (wc) { 818 blk_queue_flag_set(QUEUE_FLAG_HW_WC, q); 819 blk_queue_flag_set(QUEUE_FLAG_WC, q); 820 } else { 821 blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q); 822 blk_queue_flag_clear(QUEUE_FLAG_WC, q); 823 } 824 if (fua) 825 blk_queue_flag_set(QUEUE_FLAG_FUA, q); 826 else 827 blk_queue_flag_clear(QUEUE_FLAG_FUA, q); 828 } 829 EXPORT_SYMBOL_GPL(blk_queue_write_cache); 830 831 /** 832 * disk_set_zoned - inidicate a zoned device 833 * @disk: gendisk to configure 834 */ 835 void disk_set_zoned(struct gendisk *disk) 836 { 837 struct request_queue *q = disk->queue; 838 839 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)); 840 841 /* 842 * Set the zone write granularity to the device logical block 843 * size by default. The driver can change this value if needed. 844 */ 845 q->limits.zoned = true; 846 blk_queue_zone_write_granularity(q, queue_logical_block_size(q)); 847 } 848 EXPORT_SYMBOL_GPL(disk_set_zoned); 849 850 int bdev_alignment_offset(struct block_device *bdev) 851 { 852 struct request_queue *q = bdev_get_queue(bdev); 853 854 if (q->limits.misaligned) 855 return -1; 856 if (bdev_is_partition(bdev)) 857 return queue_limit_alignment_offset(&q->limits, 858 bdev->bd_start_sect); 859 return q->limits.alignment_offset; 860 } 861 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 862 863 unsigned int bdev_discard_alignment(struct block_device *bdev) 864 { 865 struct request_queue *q = bdev_get_queue(bdev); 866 867 if (bdev_is_partition(bdev)) 868 return queue_limit_discard_alignment(&q->limits, 869 bdev->bd_start_sect); 870 return q->limits.discard_alignment; 871 } 872 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 873