xref: /linux/block/blk-settings.c (revision 71dfa617ea9f18e4585fe78364217cd32b1fc382)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "blk.h"
19 #include "blk-rq-qos.h"
20 #include "blk-wbt.h"
21 
22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 {
24 	q->rq_timeout = timeout;
25 }
26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27 
28 /**
29  * blk_set_stacking_limits - set default limits for stacking devices
30  * @lim:  the queue_limits structure to reset
31  *
32  * Prepare queue limits for applying limits from underlying devices using
33  * blk_stack_limits().
34  */
35 void blk_set_stacking_limits(struct queue_limits *lim)
36 {
37 	memset(lim, 0, sizeof(*lim));
38 	lim->logical_block_size = SECTOR_SIZE;
39 	lim->physical_block_size = SECTOR_SIZE;
40 	lim->io_min = SECTOR_SIZE;
41 	lim->discard_granularity = SECTOR_SIZE;
42 	lim->dma_alignment = SECTOR_SIZE - 1;
43 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44 
45 	/* Inherit limits from component devices */
46 	lim->max_segments = USHRT_MAX;
47 	lim->max_discard_segments = USHRT_MAX;
48 	lim->max_hw_sectors = UINT_MAX;
49 	lim->max_segment_size = UINT_MAX;
50 	lim->max_sectors = UINT_MAX;
51 	lim->max_dev_sectors = UINT_MAX;
52 	lim->max_write_zeroes_sectors = UINT_MAX;
53 	lim->max_zone_append_sectors = UINT_MAX;
54 	lim->max_user_discard_sectors = UINT_MAX;
55 }
56 EXPORT_SYMBOL(blk_set_stacking_limits);
57 
58 static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59 		struct queue_limits *lim)
60 {
61 	/*
62 	 * For read-ahead of large files to be effective, we need to read ahead
63 	 * at least twice the optimal I/O size.
64 	 */
65 	bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66 	bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67 }
68 
69 static int blk_validate_zoned_limits(struct queue_limits *lim)
70 {
71 	if (!lim->zoned) {
72 		if (WARN_ON_ONCE(lim->max_open_zones) ||
73 		    WARN_ON_ONCE(lim->max_active_zones) ||
74 		    WARN_ON_ONCE(lim->zone_write_granularity) ||
75 		    WARN_ON_ONCE(lim->max_zone_append_sectors))
76 			return -EINVAL;
77 		return 0;
78 	}
79 
80 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81 		return -EINVAL;
82 
83 	if (lim->zone_write_granularity < lim->logical_block_size)
84 		lim->zone_write_granularity = lim->logical_block_size;
85 
86 	if (lim->max_zone_append_sectors) {
87 		/*
88 		 * The Zone Append size is limited by the maximum I/O size
89 		 * and the zone size given that it can't span zones.
90 		 */
91 		lim->max_zone_append_sectors =
92 			min3(lim->max_hw_sectors,
93 			     lim->max_zone_append_sectors,
94 			     lim->chunk_sectors);
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * Check that the limits in lim are valid, initialize defaults for unset
102  * values, and cap values based on others where needed.
103  */
104 static int blk_validate_limits(struct queue_limits *lim)
105 {
106 	unsigned int max_hw_sectors;
107 
108 	/*
109 	 * Unless otherwise specified, default to 512 byte logical blocks and a
110 	 * physical block size equal to the logical block size.
111 	 */
112 	if (!lim->logical_block_size)
113 		lim->logical_block_size = SECTOR_SIZE;
114 	if (lim->physical_block_size < lim->logical_block_size)
115 		lim->physical_block_size = lim->logical_block_size;
116 
117 	/*
118 	 * The minimum I/O size defaults to the physical block size unless
119 	 * explicitly overridden.
120 	 */
121 	if (lim->io_min < lim->physical_block_size)
122 		lim->io_min = lim->physical_block_size;
123 
124 	/*
125 	 * max_hw_sectors has a somewhat weird default for historical reason,
126 	 * but driver really should set their own instead of relying on this
127 	 * value.
128 	 *
129 	 * The block layer relies on the fact that every driver can
130 	 * handle at lest a page worth of data per I/O, and needs the value
131 	 * aligned to the logical block size.
132 	 */
133 	if (!lim->max_hw_sectors)
134 		lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
135 	if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
136 		return -EINVAL;
137 	lim->max_hw_sectors = round_down(lim->max_hw_sectors,
138 			lim->logical_block_size >> SECTOR_SHIFT);
139 
140 	/*
141 	 * The actual max_sectors value is a complex beast and also takes the
142 	 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
143 	 * value into account.  The ->max_sectors value is always calculated
144 	 * from these, so directly setting it won't have any effect.
145 	 */
146 	max_hw_sectors = min_not_zero(lim->max_hw_sectors,
147 				lim->max_dev_sectors);
148 	if (lim->max_user_sectors) {
149 		if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
150 			return -EINVAL;
151 		lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
152 	} else {
153 		lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
154 	}
155 	lim->max_sectors = round_down(lim->max_sectors,
156 			lim->logical_block_size >> SECTOR_SHIFT);
157 
158 	/*
159 	 * Random default for the maximum number of segments.  Driver should not
160 	 * rely on this and set their own.
161 	 */
162 	if (!lim->max_segments)
163 		lim->max_segments = BLK_MAX_SEGMENTS;
164 
165 	lim->max_discard_sectors =
166 		min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
167 
168 	if (!lim->max_discard_segments)
169 		lim->max_discard_segments = 1;
170 
171 	if (lim->discard_granularity < lim->physical_block_size)
172 		lim->discard_granularity = lim->physical_block_size;
173 
174 	/*
175 	 * By default there is no limit on the segment boundary alignment,
176 	 * but if there is one it can't be smaller than the page size as
177 	 * that would break all the normal I/O patterns.
178 	 */
179 	if (!lim->seg_boundary_mask)
180 		lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
181 	if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
182 		return -EINVAL;
183 
184 	/*
185 	 * Stacking device may have both virtual boundary and max segment
186 	 * size limit, so allow this setting now, and long-term the two
187 	 * might need to move out of stacking limits since we have immutable
188 	 * bvec and lower layer bio splitting is supposed to handle the two
189 	 * correctly.
190 	 */
191 	if (!lim->virt_boundary_mask) {
192 		/*
193 		 * The maximum segment size has an odd historic 64k default that
194 		 * drivers probably should override.  Just like the I/O size we
195 		 * require drivers to at least handle a full page per segment.
196 		 */
197 		if (!lim->max_segment_size)
198 			lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
199 		if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
200 			return -EINVAL;
201 	}
202 
203 	/*
204 	 * We require drivers to at least do logical block aligned I/O, but
205 	 * historically could not check for that due to the separate calls
206 	 * to set the limits.  Once the transition is finished the check
207 	 * below should be narrowed down to check the logical block size.
208 	 */
209 	if (!lim->dma_alignment)
210 		lim->dma_alignment = SECTOR_SIZE - 1;
211 	if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
212 		return -EINVAL;
213 
214 	if (lim->alignment_offset) {
215 		lim->alignment_offset &= (lim->physical_block_size - 1);
216 		lim->misaligned = 0;
217 	}
218 
219 	return blk_validate_zoned_limits(lim);
220 }
221 
222 /*
223  * Set the default limits for a newly allocated queue.  @lim contains the
224  * initial limits set by the driver, which could be no limit in which case
225  * all fields are cleared to zero.
226  */
227 int blk_set_default_limits(struct queue_limits *lim)
228 {
229 	/*
230 	 * Most defaults are set by capping the bounds in blk_validate_limits,
231 	 * but max_user_discard_sectors is special and needs an explicit
232 	 * initialization to the max value here.
233 	 */
234 	lim->max_user_discard_sectors = UINT_MAX;
235 	return blk_validate_limits(lim);
236 }
237 
238 /**
239  * queue_limits_commit_update - commit an atomic update of queue limits
240  * @q:		queue to update
241  * @lim:	limits to apply
242  *
243  * Apply the limits in @lim that were obtained from queue_limits_start_update()
244  * and updated by the caller to @q.
245  *
246  * Returns 0 if successful, else a negative error code.
247  */
248 int queue_limits_commit_update(struct request_queue *q,
249 		struct queue_limits *lim)
250 	__releases(q->limits_lock)
251 {
252 	int error = blk_validate_limits(lim);
253 
254 	if (!error) {
255 		q->limits = *lim;
256 		if (q->disk)
257 			blk_apply_bdi_limits(q->disk->bdi, lim);
258 	}
259 	mutex_unlock(&q->limits_lock);
260 	return error;
261 }
262 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
263 
264 /**
265  * queue_limits_set - apply queue limits to queue
266  * @q:		queue to update
267  * @lim:	limits to apply
268  *
269  * Apply the limits in @lim that were freshly initialized to @q.
270  * To update existing limits use queue_limits_start_update() and
271  * queue_limits_commit_update() instead.
272  *
273  * Returns 0 if successful, else a negative error code.
274  */
275 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
276 {
277 	mutex_lock(&q->limits_lock);
278 	return queue_limits_commit_update(q, lim);
279 }
280 EXPORT_SYMBOL_GPL(queue_limits_set);
281 
282 /**
283  * blk_queue_bounce_limit - set bounce buffer limit for queue
284  * @q: the request queue for the device
285  * @bounce: bounce limit to enforce
286  *
287  * Description:
288  *    Force bouncing for ISA DMA ranges or highmem.
289  *
290  *    DEPRECATED, don't use in new code.
291  **/
292 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
293 {
294 	q->limits.bounce = bounce;
295 }
296 EXPORT_SYMBOL(blk_queue_bounce_limit);
297 
298 /**
299  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
300  * @q:  the request queue for the device
301  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
302  *
303  * Description:
304  *    Enables a low level driver to set a hard upper limit,
305  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
306  *    the device driver based upon the capabilities of the I/O
307  *    controller.
308  *
309  *    max_dev_sectors is a hard limit imposed by the storage device for
310  *    READ/WRITE requests. It is set by the disk driver.
311  *
312  *    max_sectors is a soft limit imposed by the block layer for
313  *    filesystem type requests.  This value can be overridden on a
314  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
315  *    The soft limit can not exceed max_hw_sectors.
316  **/
317 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
318 {
319 	struct queue_limits *limits = &q->limits;
320 	unsigned int max_sectors;
321 
322 	if ((max_hw_sectors << 9) < PAGE_SIZE) {
323 		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
324 		pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors);
325 	}
326 
327 	max_hw_sectors = round_down(max_hw_sectors,
328 				    limits->logical_block_size >> SECTOR_SHIFT);
329 	limits->max_hw_sectors = max_hw_sectors;
330 
331 	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
332 
333 	if (limits->max_user_sectors)
334 		max_sectors = min(max_sectors, limits->max_user_sectors);
335 	else
336 		max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP);
337 
338 	max_sectors = round_down(max_sectors,
339 				 limits->logical_block_size >> SECTOR_SHIFT);
340 	limits->max_sectors = max_sectors;
341 
342 	if (!q->disk)
343 		return;
344 	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
345 }
346 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
347 
348 /**
349  * blk_queue_chunk_sectors - set size of the chunk for this queue
350  * @q:  the request queue for the device
351  * @chunk_sectors:  chunk sectors in the usual 512b unit
352  *
353  * Description:
354  *    If a driver doesn't want IOs to cross a given chunk size, it can set
355  *    this limit and prevent merging across chunks. Note that the block layer
356  *    must accept a page worth of data at any offset. So if the crossing of
357  *    chunks is a hard limitation in the driver, it must still be prepared
358  *    to split single page bios.
359  **/
360 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
361 {
362 	q->limits.chunk_sectors = chunk_sectors;
363 }
364 EXPORT_SYMBOL(blk_queue_chunk_sectors);
365 
366 /**
367  * blk_queue_max_discard_sectors - set max sectors for a single discard
368  * @q:  the request queue for the device
369  * @max_discard_sectors: maximum number of sectors to discard
370  **/
371 void blk_queue_max_discard_sectors(struct request_queue *q,
372 		unsigned int max_discard_sectors)
373 {
374 	struct queue_limits *lim = &q->limits;
375 
376 	lim->max_hw_discard_sectors = max_discard_sectors;
377 	lim->max_discard_sectors =
378 		min(max_discard_sectors, lim->max_user_discard_sectors);
379 }
380 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
381 
382 /**
383  * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
384  * @q:  the request queue for the device
385  * @max_sectors: maximum number of sectors to secure_erase
386  **/
387 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
388 		unsigned int max_sectors)
389 {
390 	q->limits.max_secure_erase_sectors = max_sectors;
391 }
392 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
393 
394 /**
395  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
396  *                                      write zeroes
397  * @q:  the request queue for the device
398  * @max_write_zeroes_sectors: maximum number of sectors to write per command
399  **/
400 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
401 		unsigned int max_write_zeroes_sectors)
402 {
403 	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
404 }
405 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
406 
407 /**
408  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
409  * @q:  the request queue for the device
410  * @max_zone_append_sectors: maximum number of sectors to write per command
411  **/
412 void blk_queue_max_zone_append_sectors(struct request_queue *q,
413 		unsigned int max_zone_append_sectors)
414 {
415 	unsigned int max_sectors;
416 
417 	if (WARN_ON(!blk_queue_is_zoned(q)))
418 		return;
419 
420 	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
421 	max_sectors = min(q->limits.chunk_sectors, max_sectors);
422 
423 	/*
424 	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
425 	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
426 	 * or the max_hw_sectors limit not set.
427 	 */
428 	WARN_ON(!max_sectors);
429 
430 	q->limits.max_zone_append_sectors = max_sectors;
431 }
432 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
433 
434 /**
435  * blk_queue_max_segments - set max hw segments for a request for this queue
436  * @q:  the request queue for the device
437  * @max_segments:  max number of segments
438  *
439  * Description:
440  *    Enables a low level driver to set an upper limit on the number of
441  *    hw data segments in a request.
442  **/
443 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
444 {
445 	if (!max_segments) {
446 		max_segments = 1;
447 		pr_info("%s: set to minimum %u\n", __func__, max_segments);
448 	}
449 
450 	q->limits.max_segments = max_segments;
451 }
452 EXPORT_SYMBOL(blk_queue_max_segments);
453 
454 /**
455  * blk_queue_max_discard_segments - set max segments for discard requests
456  * @q:  the request queue for the device
457  * @max_segments:  max number of segments
458  *
459  * Description:
460  *    Enables a low level driver to set an upper limit on the number of
461  *    segments in a discard request.
462  **/
463 void blk_queue_max_discard_segments(struct request_queue *q,
464 		unsigned short max_segments)
465 {
466 	q->limits.max_discard_segments = max_segments;
467 }
468 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
469 
470 /**
471  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
472  * @q:  the request queue for the device
473  * @max_size:  max size of segment in bytes
474  *
475  * Description:
476  *    Enables a low level driver to set an upper limit on the size of a
477  *    coalesced segment
478  **/
479 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
480 {
481 	if (max_size < PAGE_SIZE) {
482 		max_size = PAGE_SIZE;
483 		pr_info("%s: set to minimum %u\n", __func__, max_size);
484 	}
485 
486 	/* see blk_queue_virt_boundary() for the explanation */
487 	WARN_ON_ONCE(q->limits.virt_boundary_mask);
488 
489 	q->limits.max_segment_size = max_size;
490 }
491 EXPORT_SYMBOL(blk_queue_max_segment_size);
492 
493 /**
494  * blk_queue_logical_block_size - set logical block size for the queue
495  * @q:  the request queue for the device
496  * @size:  the logical block size, in bytes
497  *
498  * Description:
499  *   This should be set to the lowest possible block size that the
500  *   storage device can address.  The default of 512 covers most
501  *   hardware.
502  **/
503 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
504 {
505 	struct queue_limits *limits = &q->limits;
506 
507 	limits->logical_block_size = size;
508 
509 	if (limits->discard_granularity < limits->logical_block_size)
510 		limits->discard_granularity = limits->logical_block_size;
511 
512 	if (limits->physical_block_size < size)
513 		limits->physical_block_size = size;
514 
515 	if (limits->io_min < limits->physical_block_size)
516 		limits->io_min = limits->physical_block_size;
517 
518 	limits->max_hw_sectors =
519 		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
520 	limits->max_sectors =
521 		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
522 }
523 EXPORT_SYMBOL(blk_queue_logical_block_size);
524 
525 /**
526  * blk_queue_physical_block_size - set physical block size for the queue
527  * @q:  the request queue for the device
528  * @size:  the physical block size, in bytes
529  *
530  * Description:
531  *   This should be set to the lowest possible sector size that the
532  *   hardware can operate on without reverting to read-modify-write
533  *   operations.
534  */
535 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
536 {
537 	q->limits.physical_block_size = size;
538 
539 	if (q->limits.physical_block_size < q->limits.logical_block_size)
540 		q->limits.physical_block_size = q->limits.logical_block_size;
541 
542 	if (q->limits.discard_granularity < q->limits.physical_block_size)
543 		q->limits.discard_granularity = q->limits.physical_block_size;
544 
545 	if (q->limits.io_min < q->limits.physical_block_size)
546 		q->limits.io_min = q->limits.physical_block_size;
547 }
548 EXPORT_SYMBOL(blk_queue_physical_block_size);
549 
550 /**
551  * blk_queue_zone_write_granularity - set zone write granularity for the queue
552  * @q:  the request queue for the zoned device
553  * @size:  the zone write granularity size, in bytes
554  *
555  * Description:
556  *   This should be set to the lowest possible size allowing to write in
557  *   sequential zones of a zoned block device.
558  */
559 void blk_queue_zone_write_granularity(struct request_queue *q,
560 				      unsigned int size)
561 {
562 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
563 		return;
564 
565 	q->limits.zone_write_granularity = size;
566 
567 	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
568 		q->limits.zone_write_granularity = q->limits.logical_block_size;
569 }
570 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
571 
572 /**
573  * blk_queue_alignment_offset - set physical block alignment offset
574  * @q:	the request queue for the device
575  * @offset: alignment offset in bytes
576  *
577  * Description:
578  *   Some devices are naturally misaligned to compensate for things like
579  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
580  *   should call this function for devices whose first sector is not
581  *   naturally aligned.
582  */
583 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
584 {
585 	q->limits.alignment_offset =
586 		offset & (q->limits.physical_block_size - 1);
587 	q->limits.misaligned = 0;
588 }
589 EXPORT_SYMBOL(blk_queue_alignment_offset);
590 
591 void disk_update_readahead(struct gendisk *disk)
592 {
593 	blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
594 }
595 EXPORT_SYMBOL_GPL(disk_update_readahead);
596 
597 /**
598  * blk_limits_io_min - set minimum request size for a device
599  * @limits: the queue limits
600  * @min:  smallest I/O size in bytes
601  *
602  * Description:
603  *   Some devices have an internal block size bigger than the reported
604  *   hardware sector size.  This function can be used to signal the
605  *   smallest I/O the device can perform without incurring a performance
606  *   penalty.
607  */
608 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
609 {
610 	limits->io_min = min;
611 
612 	if (limits->io_min < limits->logical_block_size)
613 		limits->io_min = limits->logical_block_size;
614 
615 	if (limits->io_min < limits->physical_block_size)
616 		limits->io_min = limits->physical_block_size;
617 }
618 EXPORT_SYMBOL(blk_limits_io_min);
619 
620 /**
621  * blk_queue_io_min - set minimum request size for the queue
622  * @q:	the request queue for the device
623  * @min:  smallest I/O size in bytes
624  *
625  * Description:
626  *   Storage devices may report a granularity or preferred minimum I/O
627  *   size which is the smallest request the device can perform without
628  *   incurring a performance penalty.  For disk drives this is often the
629  *   physical block size.  For RAID arrays it is often the stripe chunk
630  *   size.  A properly aligned multiple of minimum_io_size is the
631  *   preferred request size for workloads where a high number of I/O
632  *   operations is desired.
633  */
634 void blk_queue_io_min(struct request_queue *q, unsigned int min)
635 {
636 	blk_limits_io_min(&q->limits, min);
637 }
638 EXPORT_SYMBOL(blk_queue_io_min);
639 
640 /**
641  * blk_limits_io_opt - set optimal request size for a device
642  * @limits: the queue limits
643  * @opt:  smallest I/O size in bytes
644  *
645  * Description:
646  *   Storage devices may report an optimal I/O size, which is the
647  *   device's preferred unit for sustained I/O.  This is rarely reported
648  *   for disk drives.  For RAID arrays it is usually the stripe width or
649  *   the internal track size.  A properly aligned multiple of
650  *   optimal_io_size is the preferred request size for workloads where
651  *   sustained throughput is desired.
652  */
653 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
654 {
655 	limits->io_opt = opt;
656 }
657 EXPORT_SYMBOL(blk_limits_io_opt);
658 
659 /**
660  * blk_queue_io_opt - set optimal request size for the queue
661  * @q:	the request queue for the device
662  * @opt:  optimal request size in bytes
663  *
664  * Description:
665  *   Storage devices may report an optimal I/O size, which is the
666  *   device's preferred unit for sustained I/O.  This is rarely reported
667  *   for disk drives.  For RAID arrays it is usually the stripe width or
668  *   the internal track size.  A properly aligned multiple of
669  *   optimal_io_size is the preferred request size for workloads where
670  *   sustained throughput is desired.
671  */
672 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
673 {
674 	blk_limits_io_opt(&q->limits, opt);
675 	if (!q->disk)
676 		return;
677 	q->disk->bdi->ra_pages =
678 		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
679 }
680 EXPORT_SYMBOL(blk_queue_io_opt);
681 
682 static int queue_limit_alignment_offset(const struct queue_limits *lim,
683 		sector_t sector)
684 {
685 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
686 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
687 		<< SECTOR_SHIFT;
688 
689 	return (granularity + lim->alignment_offset - alignment) % granularity;
690 }
691 
692 static unsigned int queue_limit_discard_alignment(
693 		const struct queue_limits *lim, sector_t sector)
694 {
695 	unsigned int alignment, granularity, offset;
696 
697 	if (!lim->max_discard_sectors)
698 		return 0;
699 
700 	/* Why are these in bytes, not sectors? */
701 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
702 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
703 	if (!granularity)
704 		return 0;
705 
706 	/* Offset of the partition start in 'granularity' sectors */
707 	offset = sector_div(sector, granularity);
708 
709 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
710 	offset = (granularity + alignment - offset) % granularity;
711 
712 	/* Turn it back into bytes, gaah */
713 	return offset << SECTOR_SHIFT;
714 }
715 
716 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
717 {
718 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
719 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
720 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
721 	return sectors;
722 }
723 
724 /**
725  * blk_stack_limits - adjust queue_limits for stacked devices
726  * @t:	the stacking driver limits (top device)
727  * @b:  the underlying queue limits (bottom, component device)
728  * @start:  first data sector within component device
729  *
730  * Description:
731  *    This function is used by stacking drivers like MD and DM to ensure
732  *    that all component devices have compatible block sizes and
733  *    alignments.  The stacking driver must provide a queue_limits
734  *    struct (top) and then iteratively call the stacking function for
735  *    all component (bottom) devices.  The stacking function will
736  *    attempt to combine the values and ensure proper alignment.
737  *
738  *    Returns 0 if the top and bottom queue_limits are compatible.  The
739  *    top device's block sizes and alignment offsets may be adjusted to
740  *    ensure alignment with the bottom device. If no compatible sizes
741  *    and alignments exist, -1 is returned and the resulting top
742  *    queue_limits will have the misaligned flag set to indicate that
743  *    the alignment_offset is undefined.
744  */
745 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
746 		     sector_t start)
747 {
748 	unsigned int top, bottom, alignment, ret = 0;
749 
750 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
751 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
752 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
753 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
754 					b->max_write_zeroes_sectors);
755 	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
756 					b->max_zone_append_sectors);
757 	t->bounce = max(t->bounce, b->bounce);
758 
759 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
760 					    b->seg_boundary_mask);
761 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
762 					    b->virt_boundary_mask);
763 
764 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
765 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
766 					       b->max_discard_segments);
767 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
768 						 b->max_integrity_segments);
769 
770 	t->max_segment_size = min_not_zero(t->max_segment_size,
771 					   b->max_segment_size);
772 
773 	t->misaligned |= b->misaligned;
774 
775 	alignment = queue_limit_alignment_offset(b, start);
776 
777 	/* Bottom device has different alignment.  Check that it is
778 	 * compatible with the current top alignment.
779 	 */
780 	if (t->alignment_offset != alignment) {
781 
782 		top = max(t->physical_block_size, t->io_min)
783 			+ t->alignment_offset;
784 		bottom = max(b->physical_block_size, b->io_min) + alignment;
785 
786 		/* Verify that top and bottom intervals line up */
787 		if (max(top, bottom) % min(top, bottom)) {
788 			t->misaligned = 1;
789 			ret = -1;
790 		}
791 	}
792 
793 	t->logical_block_size = max(t->logical_block_size,
794 				    b->logical_block_size);
795 
796 	t->physical_block_size = max(t->physical_block_size,
797 				     b->physical_block_size);
798 
799 	t->io_min = max(t->io_min, b->io_min);
800 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
801 	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
802 
803 	/* Set non-power-of-2 compatible chunk_sectors boundary */
804 	if (b->chunk_sectors)
805 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
806 
807 	/* Physical block size a multiple of the logical block size? */
808 	if (t->physical_block_size & (t->logical_block_size - 1)) {
809 		t->physical_block_size = t->logical_block_size;
810 		t->misaligned = 1;
811 		ret = -1;
812 	}
813 
814 	/* Minimum I/O a multiple of the physical block size? */
815 	if (t->io_min & (t->physical_block_size - 1)) {
816 		t->io_min = t->physical_block_size;
817 		t->misaligned = 1;
818 		ret = -1;
819 	}
820 
821 	/* Optimal I/O a multiple of the physical block size? */
822 	if (t->io_opt & (t->physical_block_size - 1)) {
823 		t->io_opt = 0;
824 		t->misaligned = 1;
825 		ret = -1;
826 	}
827 
828 	/* chunk_sectors a multiple of the physical block size? */
829 	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
830 		t->chunk_sectors = 0;
831 		t->misaligned = 1;
832 		ret = -1;
833 	}
834 
835 	t->raid_partial_stripes_expensive =
836 		max(t->raid_partial_stripes_expensive,
837 		    b->raid_partial_stripes_expensive);
838 
839 	/* Find lowest common alignment_offset */
840 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
841 		% max(t->physical_block_size, t->io_min);
842 
843 	/* Verify that new alignment_offset is on a logical block boundary */
844 	if (t->alignment_offset & (t->logical_block_size - 1)) {
845 		t->misaligned = 1;
846 		ret = -1;
847 	}
848 
849 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
850 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
851 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
852 
853 	/* Discard alignment and granularity */
854 	if (b->discard_granularity) {
855 		alignment = queue_limit_discard_alignment(b, start);
856 
857 		if (t->discard_granularity != 0 &&
858 		    t->discard_alignment != alignment) {
859 			top = t->discard_granularity + t->discard_alignment;
860 			bottom = b->discard_granularity + alignment;
861 
862 			/* Verify that top and bottom intervals line up */
863 			if ((max(top, bottom) % min(top, bottom)) != 0)
864 				t->discard_misaligned = 1;
865 		}
866 
867 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
868 						      b->max_discard_sectors);
869 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
870 							 b->max_hw_discard_sectors);
871 		t->discard_granularity = max(t->discard_granularity,
872 					     b->discard_granularity);
873 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
874 			t->discard_granularity;
875 	}
876 	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
877 						   b->max_secure_erase_sectors);
878 	t->zone_write_granularity = max(t->zone_write_granularity,
879 					b->zone_write_granularity);
880 	t->zoned = max(t->zoned, b->zoned);
881 	if (!t->zoned) {
882 		t->zone_write_granularity = 0;
883 		t->max_zone_append_sectors = 0;
884 	}
885 	return ret;
886 }
887 EXPORT_SYMBOL(blk_stack_limits);
888 
889 /**
890  * queue_limits_stack_bdev - adjust queue_limits for stacked devices
891  * @t:	the stacking driver limits (top device)
892  * @bdev:  the underlying block device (bottom)
893  * @offset:  offset to beginning of data within component device
894  * @pfx: prefix to use for warnings logged
895  *
896  * Description:
897  *    This function is used by stacking drivers like MD and DM to ensure
898  *    that all component devices have compatible block sizes and
899  *    alignments.  The stacking driver must provide a queue_limits
900  *    struct (top) and then iteratively call the stacking function for
901  *    all component (bottom) devices.  The stacking function will
902  *    attempt to combine the values and ensure proper alignment.
903  */
904 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
905 		sector_t offset, const char *pfx)
906 {
907 	if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
908 			get_start_sect(bdev) + offset))
909 		pr_notice("%s: Warning: Device %pg is misaligned\n",
910 			pfx, bdev);
911 }
912 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
913 
914 /**
915  * blk_queue_update_dma_pad - update pad mask
916  * @q:     the request queue for the device
917  * @mask:  pad mask
918  *
919  * Update dma pad mask.
920  *
921  * Appending pad buffer to a request modifies the last entry of a
922  * scatter list such that it includes the pad buffer.
923  **/
924 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
925 {
926 	if (mask > q->dma_pad_mask)
927 		q->dma_pad_mask = mask;
928 }
929 EXPORT_SYMBOL(blk_queue_update_dma_pad);
930 
931 /**
932  * blk_queue_segment_boundary - set boundary rules for segment merging
933  * @q:  the request queue for the device
934  * @mask:  the memory boundary mask
935  **/
936 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
937 {
938 	if (mask < PAGE_SIZE - 1) {
939 		mask = PAGE_SIZE - 1;
940 		pr_info("%s: set to minimum %lx\n", __func__, mask);
941 	}
942 
943 	q->limits.seg_boundary_mask = mask;
944 }
945 EXPORT_SYMBOL(blk_queue_segment_boundary);
946 
947 /**
948  * blk_queue_virt_boundary - set boundary rules for bio merging
949  * @q:  the request queue for the device
950  * @mask:  the memory boundary mask
951  **/
952 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
953 {
954 	q->limits.virt_boundary_mask = mask;
955 
956 	/*
957 	 * Devices that require a virtual boundary do not support scatter/gather
958 	 * I/O natively, but instead require a descriptor list entry for each
959 	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
960 	 * of that they are not limited by our notion of "segment size".
961 	 */
962 	if (mask)
963 		q->limits.max_segment_size = UINT_MAX;
964 }
965 EXPORT_SYMBOL(blk_queue_virt_boundary);
966 
967 /**
968  * blk_queue_dma_alignment - set dma length and memory alignment
969  * @q:     the request queue for the device
970  * @mask:  alignment mask
971  *
972  * description:
973  *    set required memory and length alignment for direct dma transactions.
974  *    this is used when building direct io requests for the queue.
975  *
976  **/
977 void blk_queue_dma_alignment(struct request_queue *q, int mask)
978 {
979 	q->limits.dma_alignment = mask;
980 }
981 EXPORT_SYMBOL(blk_queue_dma_alignment);
982 
983 /**
984  * blk_queue_update_dma_alignment - update dma length and memory alignment
985  * @q:     the request queue for the device
986  * @mask:  alignment mask
987  *
988  * description:
989  *    update required memory and length alignment for direct dma transactions.
990  *    If the requested alignment is larger than the current alignment, then
991  *    the current queue alignment is updated to the new value, otherwise it
992  *    is left alone.  The design of this is to allow multiple objects
993  *    (driver, device, transport etc) to set their respective
994  *    alignments without having them interfere.
995  *
996  **/
997 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
998 {
999 	BUG_ON(mask > PAGE_SIZE);
1000 
1001 	if (mask > q->limits.dma_alignment)
1002 		q->limits.dma_alignment = mask;
1003 }
1004 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
1005 
1006 /**
1007  * blk_set_queue_depth - tell the block layer about the device queue depth
1008  * @q:		the request queue for the device
1009  * @depth:		queue depth
1010  *
1011  */
1012 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1013 {
1014 	q->queue_depth = depth;
1015 	rq_qos_queue_depth_changed(q);
1016 }
1017 EXPORT_SYMBOL(blk_set_queue_depth);
1018 
1019 /**
1020  * blk_queue_write_cache - configure queue's write cache
1021  * @q:		the request queue for the device
1022  * @wc:		write back cache on or off
1023  * @fua:	device supports FUA writes, if true
1024  *
1025  * Tell the block layer about the write cache of @q.
1026  */
1027 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
1028 {
1029 	if (wc) {
1030 		blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
1031 		blk_queue_flag_set(QUEUE_FLAG_WC, q);
1032 	} else {
1033 		blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
1034 		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
1035 	}
1036 	if (fua)
1037 		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
1038 	else
1039 		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
1040 }
1041 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
1042 
1043 /**
1044  * blk_queue_required_elevator_features - Set a queue required elevator features
1045  * @q:		the request queue for the target device
1046  * @features:	Required elevator features OR'ed together
1047  *
1048  * Tell the block layer that for the device controlled through @q, only the
1049  * only elevators that can be used are those that implement at least the set of
1050  * features specified by @features.
1051  */
1052 void blk_queue_required_elevator_features(struct request_queue *q,
1053 					  unsigned int features)
1054 {
1055 	q->required_elevator_features = features;
1056 }
1057 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
1058 
1059 /**
1060  * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
1061  * @q:		the request queue for the device
1062  * @dev:	the device pointer for dma
1063  *
1064  * Tell the block layer about merging the segments by dma map of @q.
1065  */
1066 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1067 				       struct device *dev)
1068 {
1069 	unsigned long boundary = dma_get_merge_boundary(dev);
1070 
1071 	if (!boundary)
1072 		return false;
1073 
1074 	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
1075 	blk_queue_virt_boundary(q, boundary);
1076 
1077 	return true;
1078 }
1079 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
1080 
1081 /**
1082  * disk_set_zoned - inidicate a zoned device
1083  * @disk:	gendisk to configure
1084  */
1085 void disk_set_zoned(struct gendisk *disk)
1086 {
1087 	struct request_queue *q = disk->queue;
1088 
1089 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
1090 
1091 	/*
1092 	 * Set the zone write granularity to the device logical block
1093 	 * size by default. The driver can change this value if needed.
1094 	 */
1095 	q->limits.zoned = true;
1096 	blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
1097 }
1098 EXPORT_SYMBOL_GPL(disk_set_zoned);
1099 
1100 int bdev_alignment_offset(struct block_device *bdev)
1101 {
1102 	struct request_queue *q = bdev_get_queue(bdev);
1103 
1104 	if (q->limits.misaligned)
1105 		return -1;
1106 	if (bdev_is_partition(bdev))
1107 		return queue_limit_alignment_offset(&q->limits,
1108 				bdev->bd_start_sect);
1109 	return q->limits.alignment_offset;
1110 }
1111 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1112 
1113 unsigned int bdev_discard_alignment(struct block_device *bdev)
1114 {
1115 	struct request_queue *q = bdev_get_queue(bdev);
1116 
1117 	if (bdev_is_partition(bdev))
1118 		return queue_limit_discard_alignment(&q->limits,
1119 				bdev->bd_start_sect);
1120 	return q->limits.discard_alignment;
1121 }
1122 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
1123