xref: /linux/block/blk-settings.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "blk.h"
19 #include "blk-rq-qos.h"
20 #include "blk-wbt.h"
21 
22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 {
24 	q->rq_timeout = timeout;
25 }
26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27 
28 /**
29  * blk_set_stacking_limits - set default limits for stacking devices
30  * @lim:  the queue_limits structure to reset
31  *
32  * Prepare queue limits for applying limits from underlying devices using
33  * blk_stack_limits().
34  */
35 void blk_set_stacking_limits(struct queue_limits *lim)
36 {
37 	memset(lim, 0, sizeof(*lim));
38 	lim->logical_block_size = SECTOR_SIZE;
39 	lim->physical_block_size = SECTOR_SIZE;
40 	lim->io_min = SECTOR_SIZE;
41 	lim->discard_granularity = SECTOR_SIZE;
42 	lim->dma_alignment = SECTOR_SIZE - 1;
43 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44 
45 	/* Inherit limits from component devices */
46 	lim->max_segments = USHRT_MAX;
47 	lim->max_discard_segments = USHRT_MAX;
48 	lim->max_hw_sectors = UINT_MAX;
49 	lim->max_segment_size = UINT_MAX;
50 	lim->max_sectors = UINT_MAX;
51 	lim->max_dev_sectors = UINT_MAX;
52 	lim->max_write_zeroes_sectors = UINT_MAX;
53 	lim->max_zone_append_sectors = UINT_MAX;
54 	lim->max_user_discard_sectors = UINT_MAX;
55 }
56 EXPORT_SYMBOL(blk_set_stacking_limits);
57 
58 static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59 		struct queue_limits *lim)
60 {
61 	/*
62 	 * For read-ahead of large files to be effective, we need to read ahead
63 	 * at least twice the optimal I/O size.
64 	 */
65 	bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66 	bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67 }
68 
69 static int blk_validate_zoned_limits(struct queue_limits *lim)
70 {
71 	if (!lim->zoned) {
72 		if (WARN_ON_ONCE(lim->max_open_zones) ||
73 		    WARN_ON_ONCE(lim->max_active_zones) ||
74 		    WARN_ON_ONCE(lim->zone_write_granularity) ||
75 		    WARN_ON_ONCE(lim->max_zone_append_sectors))
76 			return -EINVAL;
77 		return 0;
78 	}
79 
80 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81 		return -EINVAL;
82 
83 	if (lim->zone_write_granularity < lim->logical_block_size)
84 		lim->zone_write_granularity = lim->logical_block_size;
85 
86 	if (lim->max_zone_append_sectors) {
87 		/*
88 		 * The Zone Append size is limited by the maximum I/O size
89 		 * and the zone size given that it can't span zones.
90 		 */
91 		lim->max_zone_append_sectors =
92 			min3(lim->max_hw_sectors,
93 			     lim->max_zone_append_sectors,
94 			     lim->chunk_sectors);
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * Check that the limits in lim are valid, initialize defaults for unset
102  * values, and cap values based on others where needed.
103  */
104 static int blk_validate_limits(struct queue_limits *lim)
105 {
106 	unsigned int max_hw_sectors;
107 
108 	/*
109 	 * Unless otherwise specified, default to 512 byte logical blocks and a
110 	 * physical block size equal to the logical block size.
111 	 */
112 	if (!lim->logical_block_size)
113 		lim->logical_block_size = SECTOR_SIZE;
114 	if (lim->physical_block_size < lim->logical_block_size)
115 		lim->physical_block_size = lim->logical_block_size;
116 
117 	/*
118 	 * The minimum I/O size defaults to the physical block size unless
119 	 * explicitly overridden.
120 	 */
121 	if (lim->io_min < lim->physical_block_size)
122 		lim->io_min = lim->physical_block_size;
123 
124 	/*
125 	 * max_hw_sectors has a somewhat weird default for historical reason,
126 	 * but driver really should set their own instead of relying on this
127 	 * value.
128 	 *
129 	 * The block layer relies on the fact that every driver can
130 	 * handle at lest a page worth of data per I/O, and needs the value
131 	 * aligned to the logical block size.
132 	 */
133 	if (!lim->max_hw_sectors)
134 		lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
135 	if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
136 		return -EINVAL;
137 	lim->max_hw_sectors = round_down(lim->max_hw_sectors,
138 			lim->logical_block_size >> SECTOR_SHIFT);
139 
140 	/*
141 	 * The actual max_sectors value is a complex beast and also takes the
142 	 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
143 	 * value into account.  The ->max_sectors value is always calculated
144 	 * from these, so directly setting it won't have any effect.
145 	 */
146 	max_hw_sectors = min_not_zero(lim->max_hw_sectors,
147 				lim->max_dev_sectors);
148 	if (lim->max_user_sectors) {
149 		if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
150 			return -EINVAL;
151 		lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
152 	} else {
153 		lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
154 	}
155 	lim->max_sectors = round_down(lim->max_sectors,
156 			lim->logical_block_size >> SECTOR_SHIFT);
157 
158 	/*
159 	 * Random default for the maximum number of segments.  Driver should not
160 	 * rely on this and set their own.
161 	 */
162 	if (!lim->max_segments)
163 		lim->max_segments = BLK_MAX_SEGMENTS;
164 
165 	lim->max_discard_sectors =
166 		min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
167 
168 	if (!lim->max_discard_segments)
169 		lim->max_discard_segments = 1;
170 
171 	if (lim->discard_granularity < lim->physical_block_size)
172 		lim->discard_granularity = lim->physical_block_size;
173 
174 	/*
175 	 * By default there is no limit on the segment boundary alignment,
176 	 * but if there is one it can't be smaller than the page size as
177 	 * that would break all the normal I/O patterns.
178 	 */
179 	if (!lim->seg_boundary_mask)
180 		lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
181 	if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
182 		return -EINVAL;
183 
184 	/*
185 	 * Stacking device may have both virtual boundary and max segment
186 	 * size limit, so allow this setting now, and long-term the two
187 	 * might need to move out of stacking limits since we have immutable
188 	 * bvec and lower layer bio splitting is supposed to handle the two
189 	 * correctly.
190 	 */
191 	if (lim->virt_boundary_mask) {
192 		if (!lim->max_segment_size)
193 			lim->max_segment_size = UINT_MAX;
194 	} else {
195 		/*
196 		 * The maximum segment size has an odd historic 64k default that
197 		 * drivers probably should override.  Just like the I/O size we
198 		 * require drivers to at least handle a full page per segment.
199 		 */
200 		if (!lim->max_segment_size)
201 			lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
202 		if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
203 			return -EINVAL;
204 	}
205 
206 	/*
207 	 * We require drivers to at least do logical block aligned I/O, but
208 	 * historically could not check for that due to the separate calls
209 	 * to set the limits.  Once the transition is finished the check
210 	 * below should be narrowed down to check the logical block size.
211 	 */
212 	if (!lim->dma_alignment)
213 		lim->dma_alignment = SECTOR_SIZE - 1;
214 	if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
215 		return -EINVAL;
216 
217 	if (lim->alignment_offset) {
218 		lim->alignment_offset &= (lim->physical_block_size - 1);
219 		lim->misaligned = 0;
220 	}
221 
222 	return blk_validate_zoned_limits(lim);
223 }
224 
225 /*
226  * Set the default limits for a newly allocated queue.  @lim contains the
227  * initial limits set by the driver, which could be no limit in which case
228  * all fields are cleared to zero.
229  */
230 int blk_set_default_limits(struct queue_limits *lim)
231 {
232 	/*
233 	 * Most defaults are set by capping the bounds in blk_validate_limits,
234 	 * but max_user_discard_sectors is special and needs an explicit
235 	 * initialization to the max value here.
236 	 */
237 	lim->max_user_discard_sectors = UINT_MAX;
238 	return blk_validate_limits(lim);
239 }
240 
241 /**
242  * queue_limits_commit_update - commit an atomic update of queue limits
243  * @q:		queue to update
244  * @lim:	limits to apply
245  *
246  * Apply the limits in @lim that were obtained from queue_limits_start_update()
247  * and updated by the caller to @q.
248  *
249  * Returns 0 if successful, else a negative error code.
250  */
251 int queue_limits_commit_update(struct request_queue *q,
252 		struct queue_limits *lim)
253 	__releases(q->limits_lock)
254 {
255 	int error = blk_validate_limits(lim);
256 
257 	if (!error) {
258 		q->limits = *lim;
259 		if (q->disk)
260 			blk_apply_bdi_limits(q->disk->bdi, lim);
261 	}
262 	mutex_unlock(&q->limits_lock);
263 	return error;
264 }
265 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
266 
267 /**
268  * queue_limits_set - apply queue limits to queue
269  * @q:		queue to update
270  * @lim:	limits to apply
271  *
272  * Apply the limits in @lim that were freshly initialized to @q.
273  * To update existing limits use queue_limits_start_update() and
274  * queue_limits_commit_update() instead.
275  *
276  * Returns 0 if successful, else a negative error code.
277  */
278 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
279 {
280 	mutex_lock(&q->limits_lock);
281 	return queue_limits_commit_update(q, lim);
282 }
283 EXPORT_SYMBOL_GPL(queue_limits_set);
284 
285 /**
286  * blk_queue_chunk_sectors - set size of the chunk for this queue
287  * @q:  the request queue for the device
288  * @chunk_sectors:  chunk sectors in the usual 512b unit
289  *
290  * Description:
291  *    If a driver doesn't want IOs to cross a given chunk size, it can set
292  *    this limit and prevent merging across chunks. Note that the block layer
293  *    must accept a page worth of data at any offset. So if the crossing of
294  *    chunks is a hard limitation in the driver, it must still be prepared
295  *    to split single page bios.
296  **/
297 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
298 {
299 	q->limits.chunk_sectors = chunk_sectors;
300 }
301 EXPORT_SYMBOL(blk_queue_chunk_sectors);
302 
303 /**
304  * blk_queue_max_discard_sectors - set max sectors for a single discard
305  * @q:  the request queue for the device
306  * @max_discard_sectors: maximum number of sectors to discard
307  **/
308 void blk_queue_max_discard_sectors(struct request_queue *q,
309 		unsigned int max_discard_sectors)
310 {
311 	struct queue_limits *lim = &q->limits;
312 
313 	lim->max_hw_discard_sectors = max_discard_sectors;
314 	lim->max_discard_sectors =
315 		min(max_discard_sectors, lim->max_user_discard_sectors);
316 }
317 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
318 
319 /**
320  * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
321  * @q:  the request queue for the device
322  * @max_sectors: maximum number of sectors to secure_erase
323  **/
324 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
325 		unsigned int max_sectors)
326 {
327 	q->limits.max_secure_erase_sectors = max_sectors;
328 }
329 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
330 
331 /**
332  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
333  *                                      write zeroes
334  * @q:  the request queue for the device
335  * @max_write_zeroes_sectors: maximum number of sectors to write per command
336  **/
337 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
338 		unsigned int max_write_zeroes_sectors)
339 {
340 	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
341 }
342 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
343 
344 /**
345  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
346  * @q:  the request queue for the device
347  * @max_zone_append_sectors: maximum number of sectors to write per command
348  *
349  * Sets the maximum number of sectors allowed for zone append commands. If
350  * Specifying 0 for @max_zone_append_sectors indicates that the queue does
351  * not natively support zone append operations and that the block layer must
352  * emulate these operations using regular writes.
353  **/
354 void blk_queue_max_zone_append_sectors(struct request_queue *q,
355 		unsigned int max_zone_append_sectors)
356 {
357 	unsigned int max_sectors = 0;
358 
359 	if (WARN_ON(!blk_queue_is_zoned(q)))
360 		return;
361 
362 	if (max_zone_append_sectors) {
363 		max_sectors = min(q->limits.max_hw_sectors,
364 				  max_zone_append_sectors);
365 		max_sectors = min(q->limits.chunk_sectors, max_sectors);
366 
367 		/*
368 		 * Signal eventual driver bugs resulting in the max_zone_append
369 		 * sectors limit being 0 due to the chunk_sectors limit (zone
370 		 * size) not set or the max_hw_sectors limit not set.
371 		 */
372 		WARN_ON_ONCE(!max_sectors);
373 	}
374 
375 	q->limits.max_zone_append_sectors = max_sectors;
376 }
377 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
378 
379 /**
380  * blk_queue_logical_block_size - set logical block size for the queue
381  * @q:  the request queue for the device
382  * @size:  the logical block size, in bytes
383  *
384  * Description:
385  *   This should be set to the lowest possible block size that the
386  *   storage device can address.  The default of 512 covers most
387  *   hardware.
388  **/
389 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
390 {
391 	struct queue_limits *limits = &q->limits;
392 
393 	limits->logical_block_size = size;
394 
395 	if (limits->discard_granularity < limits->logical_block_size)
396 		limits->discard_granularity = limits->logical_block_size;
397 
398 	if (limits->physical_block_size < size)
399 		limits->physical_block_size = size;
400 
401 	if (limits->io_min < limits->physical_block_size)
402 		limits->io_min = limits->physical_block_size;
403 
404 	limits->max_hw_sectors =
405 		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
406 	limits->max_sectors =
407 		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
408 }
409 EXPORT_SYMBOL(blk_queue_logical_block_size);
410 
411 /**
412  * blk_queue_physical_block_size - set physical block size for the queue
413  * @q:  the request queue for the device
414  * @size:  the physical block size, in bytes
415  *
416  * Description:
417  *   This should be set to the lowest possible sector size that the
418  *   hardware can operate on without reverting to read-modify-write
419  *   operations.
420  */
421 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
422 {
423 	q->limits.physical_block_size = size;
424 
425 	if (q->limits.physical_block_size < q->limits.logical_block_size)
426 		q->limits.physical_block_size = q->limits.logical_block_size;
427 
428 	if (q->limits.discard_granularity < q->limits.physical_block_size)
429 		q->limits.discard_granularity = q->limits.physical_block_size;
430 
431 	if (q->limits.io_min < q->limits.physical_block_size)
432 		q->limits.io_min = q->limits.physical_block_size;
433 }
434 EXPORT_SYMBOL(blk_queue_physical_block_size);
435 
436 /**
437  * blk_queue_zone_write_granularity - set zone write granularity for the queue
438  * @q:  the request queue for the zoned device
439  * @size:  the zone write granularity size, in bytes
440  *
441  * Description:
442  *   This should be set to the lowest possible size allowing to write in
443  *   sequential zones of a zoned block device.
444  */
445 void blk_queue_zone_write_granularity(struct request_queue *q,
446 				      unsigned int size)
447 {
448 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
449 		return;
450 
451 	q->limits.zone_write_granularity = size;
452 
453 	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
454 		q->limits.zone_write_granularity = q->limits.logical_block_size;
455 }
456 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
457 
458 /**
459  * blk_queue_alignment_offset - set physical block alignment offset
460  * @q:	the request queue for the device
461  * @offset: alignment offset in bytes
462  *
463  * Description:
464  *   Some devices are naturally misaligned to compensate for things like
465  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
466  *   should call this function for devices whose first sector is not
467  *   naturally aligned.
468  */
469 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
470 {
471 	q->limits.alignment_offset =
472 		offset & (q->limits.physical_block_size - 1);
473 	q->limits.misaligned = 0;
474 }
475 EXPORT_SYMBOL(blk_queue_alignment_offset);
476 
477 void disk_update_readahead(struct gendisk *disk)
478 {
479 	blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
480 }
481 EXPORT_SYMBOL_GPL(disk_update_readahead);
482 
483 /**
484  * blk_limits_io_min - set minimum request size for a device
485  * @limits: the queue limits
486  * @min:  smallest I/O size in bytes
487  *
488  * Description:
489  *   Some devices have an internal block size bigger than the reported
490  *   hardware sector size.  This function can be used to signal the
491  *   smallest I/O the device can perform without incurring a performance
492  *   penalty.
493  */
494 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
495 {
496 	limits->io_min = min;
497 
498 	if (limits->io_min < limits->logical_block_size)
499 		limits->io_min = limits->logical_block_size;
500 
501 	if (limits->io_min < limits->physical_block_size)
502 		limits->io_min = limits->physical_block_size;
503 }
504 EXPORT_SYMBOL(blk_limits_io_min);
505 
506 /**
507  * blk_queue_io_min - set minimum request size for the queue
508  * @q:	the request queue for the device
509  * @min:  smallest I/O size in bytes
510  *
511  * Description:
512  *   Storage devices may report a granularity or preferred minimum I/O
513  *   size which is the smallest request the device can perform without
514  *   incurring a performance penalty.  For disk drives this is often the
515  *   physical block size.  For RAID arrays it is often the stripe chunk
516  *   size.  A properly aligned multiple of minimum_io_size is the
517  *   preferred request size for workloads where a high number of I/O
518  *   operations is desired.
519  */
520 void blk_queue_io_min(struct request_queue *q, unsigned int min)
521 {
522 	blk_limits_io_min(&q->limits, min);
523 }
524 EXPORT_SYMBOL(blk_queue_io_min);
525 
526 /**
527  * blk_limits_io_opt - set optimal request size for a device
528  * @limits: the queue limits
529  * @opt:  smallest I/O size in bytes
530  *
531  * Description:
532  *   Storage devices may report an optimal I/O size, which is the
533  *   device's preferred unit for sustained I/O.  This is rarely reported
534  *   for disk drives.  For RAID arrays it is usually the stripe width or
535  *   the internal track size.  A properly aligned multiple of
536  *   optimal_io_size is the preferred request size for workloads where
537  *   sustained throughput is desired.
538  */
539 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
540 {
541 	limits->io_opt = opt;
542 }
543 EXPORT_SYMBOL(blk_limits_io_opt);
544 
545 static int queue_limit_alignment_offset(const struct queue_limits *lim,
546 		sector_t sector)
547 {
548 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
549 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
550 		<< SECTOR_SHIFT;
551 
552 	return (granularity + lim->alignment_offset - alignment) % granularity;
553 }
554 
555 static unsigned int queue_limit_discard_alignment(
556 		const struct queue_limits *lim, sector_t sector)
557 {
558 	unsigned int alignment, granularity, offset;
559 
560 	if (!lim->max_discard_sectors)
561 		return 0;
562 
563 	/* Why are these in bytes, not sectors? */
564 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
565 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
566 	if (!granularity)
567 		return 0;
568 
569 	/* Offset of the partition start in 'granularity' sectors */
570 	offset = sector_div(sector, granularity);
571 
572 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
573 	offset = (granularity + alignment - offset) % granularity;
574 
575 	/* Turn it back into bytes, gaah */
576 	return offset << SECTOR_SHIFT;
577 }
578 
579 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
580 {
581 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
582 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
583 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
584 	return sectors;
585 }
586 
587 /**
588  * blk_stack_limits - adjust queue_limits for stacked devices
589  * @t:	the stacking driver limits (top device)
590  * @b:  the underlying queue limits (bottom, component device)
591  * @start:  first data sector within component device
592  *
593  * Description:
594  *    This function is used by stacking drivers like MD and DM to ensure
595  *    that all component devices have compatible block sizes and
596  *    alignments.  The stacking driver must provide a queue_limits
597  *    struct (top) and then iteratively call the stacking function for
598  *    all component (bottom) devices.  The stacking function will
599  *    attempt to combine the values and ensure proper alignment.
600  *
601  *    Returns 0 if the top and bottom queue_limits are compatible.  The
602  *    top device's block sizes and alignment offsets may be adjusted to
603  *    ensure alignment with the bottom device. If no compatible sizes
604  *    and alignments exist, -1 is returned and the resulting top
605  *    queue_limits will have the misaligned flag set to indicate that
606  *    the alignment_offset is undefined.
607  */
608 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
609 		     sector_t start)
610 {
611 	unsigned int top, bottom, alignment, ret = 0;
612 
613 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
614 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
615 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
616 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
617 					b->max_write_zeroes_sectors);
618 	t->max_zone_append_sectors = min(queue_limits_max_zone_append_sectors(t),
619 					 queue_limits_max_zone_append_sectors(b));
620 	t->bounce = max(t->bounce, b->bounce);
621 
622 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
623 					    b->seg_boundary_mask);
624 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
625 					    b->virt_boundary_mask);
626 
627 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
628 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
629 					       b->max_discard_segments);
630 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
631 						 b->max_integrity_segments);
632 
633 	t->max_segment_size = min_not_zero(t->max_segment_size,
634 					   b->max_segment_size);
635 
636 	t->misaligned |= b->misaligned;
637 
638 	alignment = queue_limit_alignment_offset(b, start);
639 
640 	/* Bottom device has different alignment.  Check that it is
641 	 * compatible with the current top alignment.
642 	 */
643 	if (t->alignment_offset != alignment) {
644 
645 		top = max(t->physical_block_size, t->io_min)
646 			+ t->alignment_offset;
647 		bottom = max(b->physical_block_size, b->io_min) + alignment;
648 
649 		/* Verify that top and bottom intervals line up */
650 		if (max(top, bottom) % min(top, bottom)) {
651 			t->misaligned = 1;
652 			ret = -1;
653 		}
654 	}
655 
656 	t->logical_block_size = max(t->logical_block_size,
657 				    b->logical_block_size);
658 
659 	t->physical_block_size = max(t->physical_block_size,
660 				     b->physical_block_size);
661 
662 	t->io_min = max(t->io_min, b->io_min);
663 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
664 	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
665 
666 	/* Set non-power-of-2 compatible chunk_sectors boundary */
667 	if (b->chunk_sectors)
668 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
669 
670 	/* Physical block size a multiple of the logical block size? */
671 	if (t->physical_block_size & (t->logical_block_size - 1)) {
672 		t->physical_block_size = t->logical_block_size;
673 		t->misaligned = 1;
674 		ret = -1;
675 	}
676 
677 	/* Minimum I/O a multiple of the physical block size? */
678 	if (t->io_min & (t->physical_block_size - 1)) {
679 		t->io_min = t->physical_block_size;
680 		t->misaligned = 1;
681 		ret = -1;
682 	}
683 
684 	/* Optimal I/O a multiple of the physical block size? */
685 	if (t->io_opt & (t->physical_block_size - 1)) {
686 		t->io_opt = 0;
687 		t->misaligned = 1;
688 		ret = -1;
689 	}
690 
691 	/* chunk_sectors a multiple of the physical block size? */
692 	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
693 		t->chunk_sectors = 0;
694 		t->misaligned = 1;
695 		ret = -1;
696 	}
697 
698 	t->raid_partial_stripes_expensive =
699 		max(t->raid_partial_stripes_expensive,
700 		    b->raid_partial_stripes_expensive);
701 
702 	/* Find lowest common alignment_offset */
703 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
704 		% max(t->physical_block_size, t->io_min);
705 
706 	/* Verify that new alignment_offset is on a logical block boundary */
707 	if (t->alignment_offset & (t->logical_block_size - 1)) {
708 		t->misaligned = 1;
709 		ret = -1;
710 	}
711 
712 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
713 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
714 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
715 
716 	/* Discard alignment and granularity */
717 	if (b->discard_granularity) {
718 		alignment = queue_limit_discard_alignment(b, start);
719 
720 		if (t->discard_granularity != 0 &&
721 		    t->discard_alignment != alignment) {
722 			top = t->discard_granularity + t->discard_alignment;
723 			bottom = b->discard_granularity + alignment;
724 
725 			/* Verify that top and bottom intervals line up */
726 			if ((max(top, bottom) % min(top, bottom)) != 0)
727 				t->discard_misaligned = 1;
728 		}
729 
730 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
731 						      b->max_discard_sectors);
732 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
733 							 b->max_hw_discard_sectors);
734 		t->discard_granularity = max(t->discard_granularity,
735 					     b->discard_granularity);
736 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
737 			t->discard_granularity;
738 	}
739 	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
740 						   b->max_secure_erase_sectors);
741 	t->zone_write_granularity = max(t->zone_write_granularity,
742 					b->zone_write_granularity);
743 	t->zoned = max(t->zoned, b->zoned);
744 	if (!t->zoned) {
745 		t->zone_write_granularity = 0;
746 		t->max_zone_append_sectors = 0;
747 	}
748 	return ret;
749 }
750 EXPORT_SYMBOL(blk_stack_limits);
751 
752 /**
753  * queue_limits_stack_bdev - adjust queue_limits for stacked devices
754  * @t:	the stacking driver limits (top device)
755  * @bdev:  the underlying block device (bottom)
756  * @offset:  offset to beginning of data within component device
757  * @pfx: prefix to use for warnings logged
758  *
759  * Description:
760  *    This function is used by stacking drivers like MD and DM to ensure
761  *    that all component devices have compatible block sizes and
762  *    alignments.  The stacking driver must provide a queue_limits
763  *    struct (top) and then iteratively call the stacking function for
764  *    all component (bottom) devices.  The stacking function will
765  *    attempt to combine the values and ensure proper alignment.
766  */
767 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
768 		sector_t offset, const char *pfx)
769 {
770 	if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
771 			get_start_sect(bdev) + offset))
772 		pr_notice("%s: Warning: Device %pg is misaligned\n",
773 			pfx, bdev);
774 }
775 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
776 
777 /**
778  * blk_queue_update_dma_pad - update pad mask
779  * @q:     the request queue for the device
780  * @mask:  pad mask
781  *
782  * Update dma pad mask.
783  *
784  * Appending pad buffer to a request modifies the last entry of a
785  * scatter list such that it includes the pad buffer.
786  **/
787 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
788 {
789 	if (mask > q->dma_pad_mask)
790 		q->dma_pad_mask = mask;
791 }
792 EXPORT_SYMBOL(blk_queue_update_dma_pad);
793 
794 /**
795  * blk_set_queue_depth - tell the block layer about the device queue depth
796  * @q:		the request queue for the device
797  * @depth:		queue depth
798  *
799  */
800 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
801 {
802 	q->queue_depth = depth;
803 	rq_qos_queue_depth_changed(q);
804 }
805 EXPORT_SYMBOL(blk_set_queue_depth);
806 
807 /**
808  * blk_queue_write_cache - configure queue's write cache
809  * @q:		the request queue for the device
810  * @wc:		write back cache on or off
811  * @fua:	device supports FUA writes, if true
812  *
813  * Tell the block layer about the write cache of @q.
814  */
815 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
816 {
817 	if (wc) {
818 		blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
819 		blk_queue_flag_set(QUEUE_FLAG_WC, q);
820 	} else {
821 		blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
822 		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
823 	}
824 	if (fua)
825 		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
826 	else
827 		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
828 }
829 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
830 
831 /**
832  * disk_set_zoned - inidicate a zoned device
833  * @disk:	gendisk to configure
834  */
835 void disk_set_zoned(struct gendisk *disk)
836 {
837 	struct request_queue *q = disk->queue;
838 
839 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
840 
841 	/*
842 	 * Set the zone write granularity to the device logical block
843 	 * size by default. The driver can change this value if needed.
844 	 */
845 	q->limits.zoned = true;
846 	blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
847 }
848 EXPORT_SYMBOL_GPL(disk_set_zoned);
849 
850 int bdev_alignment_offset(struct block_device *bdev)
851 {
852 	struct request_queue *q = bdev_get_queue(bdev);
853 
854 	if (q->limits.misaligned)
855 		return -1;
856 	if (bdev_is_partition(bdev))
857 		return queue_limit_alignment_offset(&q->limits,
858 				bdev->bd_start_sect);
859 	return q->limits.alignment_offset;
860 }
861 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
862 
863 unsigned int bdev_discard_alignment(struct block_device *bdev)
864 {
865 	struct request_queue *q = bdev_get_queue(bdev);
866 
867 	if (bdev_is_partition(bdev))
868 		return queue_limit_discard_alignment(&q->limits,
869 				bdev->bd_start_sect);
870 	return q->limits.discard_alignment;
871 }
872 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
873