1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 18 #include "blk.h" 19 #include "blk-rq-qos.h" 20 #include "blk-wbt.h" 21 22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 23 { 24 q->rq_timeout = timeout; 25 } 26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 27 28 /** 29 * blk_set_stacking_limits - set default limits for stacking devices 30 * @lim: the queue_limits structure to reset 31 * 32 * Prepare queue limits for applying limits from underlying devices using 33 * blk_stack_limits(). 34 */ 35 void blk_set_stacking_limits(struct queue_limits *lim) 36 { 37 memset(lim, 0, sizeof(*lim)); 38 lim->logical_block_size = SECTOR_SIZE; 39 lim->physical_block_size = SECTOR_SIZE; 40 lim->io_min = SECTOR_SIZE; 41 lim->discard_granularity = SECTOR_SIZE; 42 lim->dma_alignment = SECTOR_SIZE - 1; 43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 44 45 /* Inherit limits from component devices */ 46 lim->max_segments = USHRT_MAX; 47 lim->max_discard_segments = USHRT_MAX; 48 lim->max_hw_sectors = UINT_MAX; 49 lim->max_segment_size = UINT_MAX; 50 lim->max_sectors = UINT_MAX; 51 lim->max_dev_sectors = UINT_MAX; 52 lim->max_write_zeroes_sectors = UINT_MAX; 53 lim->max_zone_append_sectors = UINT_MAX; 54 lim->max_user_discard_sectors = UINT_MAX; 55 } 56 EXPORT_SYMBOL(blk_set_stacking_limits); 57 58 static void blk_apply_bdi_limits(struct backing_dev_info *bdi, 59 struct queue_limits *lim) 60 { 61 /* 62 * For read-ahead of large files to be effective, we need to read ahead 63 * at least twice the optimal I/O size. 64 */ 65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; 67 } 68 69 static int blk_validate_zoned_limits(struct queue_limits *lim) 70 { 71 if (!lim->zoned) { 72 if (WARN_ON_ONCE(lim->max_open_zones) || 73 WARN_ON_ONCE(lim->max_active_zones) || 74 WARN_ON_ONCE(lim->zone_write_granularity) || 75 WARN_ON_ONCE(lim->max_zone_append_sectors)) 76 return -EINVAL; 77 return 0; 78 } 79 80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) 81 return -EINVAL; 82 83 if (lim->zone_write_granularity < lim->logical_block_size) 84 lim->zone_write_granularity = lim->logical_block_size; 85 86 if (lim->max_zone_append_sectors) { 87 /* 88 * The Zone Append size is limited by the maximum I/O size 89 * and the zone size given that it can't span zones. 90 */ 91 lim->max_zone_append_sectors = 92 min3(lim->max_hw_sectors, 93 lim->max_zone_append_sectors, 94 lim->chunk_sectors); 95 } 96 97 return 0; 98 } 99 100 /* 101 * Check that the limits in lim are valid, initialize defaults for unset 102 * values, and cap values based on others where needed. 103 */ 104 static int blk_validate_limits(struct queue_limits *lim) 105 { 106 unsigned int max_hw_sectors; 107 108 /* 109 * Unless otherwise specified, default to 512 byte logical blocks and a 110 * physical block size equal to the logical block size. 111 */ 112 if (!lim->logical_block_size) 113 lim->logical_block_size = SECTOR_SIZE; 114 if (lim->physical_block_size < lim->logical_block_size) 115 lim->physical_block_size = lim->logical_block_size; 116 117 /* 118 * The minimum I/O size defaults to the physical block size unless 119 * explicitly overridden. 120 */ 121 if (lim->io_min < lim->physical_block_size) 122 lim->io_min = lim->physical_block_size; 123 124 /* 125 * max_hw_sectors has a somewhat weird default for historical reason, 126 * but driver really should set their own instead of relying on this 127 * value. 128 * 129 * The block layer relies on the fact that every driver can 130 * handle at lest a page worth of data per I/O, and needs the value 131 * aligned to the logical block size. 132 */ 133 if (!lim->max_hw_sectors) 134 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 135 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) 136 return -EINVAL; 137 lim->max_hw_sectors = round_down(lim->max_hw_sectors, 138 lim->logical_block_size >> SECTOR_SHIFT); 139 140 /* 141 * The actual max_sectors value is a complex beast and also takes the 142 * max_dev_sectors value (set by SCSI ULPs) and a user configurable 143 * value into account. The ->max_sectors value is always calculated 144 * from these, so directly setting it won't have any effect. 145 */ 146 max_hw_sectors = min_not_zero(lim->max_hw_sectors, 147 lim->max_dev_sectors); 148 if (lim->max_user_sectors) { 149 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE) 150 return -EINVAL; 151 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); 152 } else { 153 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); 154 } 155 lim->max_sectors = round_down(lim->max_sectors, 156 lim->logical_block_size >> SECTOR_SHIFT); 157 158 /* 159 * Random default for the maximum number of segments. Driver should not 160 * rely on this and set their own. 161 */ 162 if (!lim->max_segments) 163 lim->max_segments = BLK_MAX_SEGMENTS; 164 165 lim->max_discard_sectors = 166 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); 167 168 if (!lim->max_discard_segments) 169 lim->max_discard_segments = 1; 170 171 if (lim->discard_granularity < lim->physical_block_size) 172 lim->discard_granularity = lim->physical_block_size; 173 174 /* 175 * By default there is no limit on the segment boundary alignment, 176 * but if there is one it can't be smaller than the page size as 177 * that would break all the normal I/O patterns. 178 */ 179 if (!lim->seg_boundary_mask) 180 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 181 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1)) 182 return -EINVAL; 183 184 /* 185 * Devices that require a virtual boundary do not support scatter/gather 186 * I/O natively, but instead require a descriptor list entry for each 187 * page (which might not be identical to the Linux PAGE_SIZE). Because 188 * of that they are not limited by our notion of "segment size". 189 */ 190 if (lim->virt_boundary_mask) { 191 if (WARN_ON_ONCE(lim->max_segment_size && 192 lim->max_segment_size != UINT_MAX)) 193 return -EINVAL; 194 lim->max_segment_size = UINT_MAX; 195 } else { 196 /* 197 * The maximum segment size has an odd historic 64k default that 198 * drivers probably should override. Just like the I/O size we 199 * require drivers to at least handle a full page per segment. 200 */ 201 if (!lim->max_segment_size) 202 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 203 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE)) 204 return -EINVAL; 205 } 206 207 /* 208 * We require drivers to at least do logical block aligned I/O, but 209 * historically could not check for that due to the separate calls 210 * to set the limits. Once the transition is finished the check 211 * below should be narrowed down to check the logical block size. 212 */ 213 if (!lim->dma_alignment) 214 lim->dma_alignment = SECTOR_SIZE - 1; 215 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) 216 return -EINVAL; 217 218 if (lim->alignment_offset) { 219 lim->alignment_offset &= (lim->physical_block_size - 1); 220 lim->misaligned = 0; 221 } 222 223 return blk_validate_zoned_limits(lim); 224 } 225 226 /* 227 * Set the default limits for a newly allocated queue. @lim contains the 228 * initial limits set by the driver, which could be no limit in which case 229 * all fields are cleared to zero. 230 */ 231 int blk_set_default_limits(struct queue_limits *lim) 232 { 233 /* 234 * Most defaults are set by capping the bounds in blk_validate_limits, 235 * but max_user_discard_sectors is special and needs an explicit 236 * initialization to the max value here. 237 */ 238 lim->max_user_discard_sectors = UINT_MAX; 239 return blk_validate_limits(lim); 240 } 241 242 /** 243 * queue_limits_commit_update - commit an atomic update of queue limits 244 * @q: queue to update 245 * @lim: limits to apply 246 * 247 * Apply the limits in @lim that were obtained from queue_limits_start_update() 248 * and updated by the caller to @q. 249 * 250 * Returns 0 if successful, else a negative error code. 251 */ 252 int queue_limits_commit_update(struct request_queue *q, 253 struct queue_limits *lim) 254 __releases(q->limits_lock) 255 { 256 int error = blk_validate_limits(lim); 257 258 if (!error) { 259 q->limits = *lim; 260 if (q->disk) 261 blk_apply_bdi_limits(q->disk->bdi, lim); 262 } 263 mutex_unlock(&q->limits_lock); 264 return error; 265 } 266 EXPORT_SYMBOL_GPL(queue_limits_commit_update); 267 268 /** 269 * queue_limits_set - apply queue limits to queue 270 * @q: queue to update 271 * @lim: limits to apply 272 * 273 * Apply the limits in @lim that were freshly initialized to @q. 274 * To update existing limits use queue_limits_start_update() and 275 * queue_limits_commit_update() instead. 276 * 277 * Returns 0 if successful, else a negative error code. 278 */ 279 int queue_limits_set(struct request_queue *q, struct queue_limits *lim) 280 { 281 mutex_lock(&q->limits_lock); 282 return queue_limits_commit_update(q, lim); 283 } 284 EXPORT_SYMBOL_GPL(queue_limits_set); 285 286 /** 287 * blk_queue_bounce_limit - set bounce buffer limit for queue 288 * @q: the request queue for the device 289 * @bounce: bounce limit to enforce 290 * 291 * Description: 292 * Force bouncing for ISA DMA ranges or highmem. 293 * 294 * DEPRECATED, don't use in new code. 295 **/ 296 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce) 297 { 298 q->limits.bounce = bounce; 299 } 300 EXPORT_SYMBOL(blk_queue_bounce_limit); 301 302 /** 303 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 304 * @q: the request queue for the device 305 * @max_hw_sectors: max hardware sectors in the usual 512b unit 306 * 307 * Description: 308 * Enables a low level driver to set a hard upper limit, 309 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 310 * the device driver based upon the capabilities of the I/O 311 * controller. 312 * 313 * max_dev_sectors is a hard limit imposed by the storage device for 314 * READ/WRITE requests. It is set by the disk driver. 315 * 316 * max_sectors is a soft limit imposed by the block layer for 317 * filesystem type requests. This value can be overridden on a 318 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 319 * The soft limit can not exceed max_hw_sectors. 320 **/ 321 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 322 { 323 struct queue_limits *limits = &q->limits; 324 unsigned int max_sectors; 325 326 if ((max_hw_sectors << 9) < PAGE_SIZE) { 327 max_hw_sectors = 1 << (PAGE_SHIFT - 9); 328 pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors); 329 } 330 331 max_hw_sectors = round_down(max_hw_sectors, 332 limits->logical_block_size >> SECTOR_SHIFT); 333 limits->max_hw_sectors = max_hw_sectors; 334 335 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors); 336 337 if (limits->max_user_sectors) 338 max_sectors = min(max_sectors, limits->max_user_sectors); 339 else 340 max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP); 341 342 max_sectors = round_down(max_sectors, 343 limits->logical_block_size >> SECTOR_SHIFT); 344 limits->max_sectors = max_sectors; 345 346 if (!q->disk) 347 return; 348 q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9); 349 } 350 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 351 352 /** 353 * blk_queue_chunk_sectors - set size of the chunk for this queue 354 * @q: the request queue for the device 355 * @chunk_sectors: chunk sectors in the usual 512b unit 356 * 357 * Description: 358 * If a driver doesn't want IOs to cross a given chunk size, it can set 359 * this limit and prevent merging across chunks. Note that the block layer 360 * must accept a page worth of data at any offset. So if the crossing of 361 * chunks is a hard limitation in the driver, it must still be prepared 362 * to split single page bios. 363 **/ 364 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) 365 { 366 q->limits.chunk_sectors = chunk_sectors; 367 } 368 EXPORT_SYMBOL(blk_queue_chunk_sectors); 369 370 /** 371 * blk_queue_max_discard_sectors - set max sectors for a single discard 372 * @q: the request queue for the device 373 * @max_discard_sectors: maximum number of sectors to discard 374 **/ 375 void blk_queue_max_discard_sectors(struct request_queue *q, 376 unsigned int max_discard_sectors) 377 { 378 struct queue_limits *lim = &q->limits; 379 380 lim->max_hw_discard_sectors = max_discard_sectors; 381 lim->max_discard_sectors = 382 min(max_discard_sectors, lim->max_user_discard_sectors); 383 } 384 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 385 386 /** 387 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase 388 * @q: the request queue for the device 389 * @max_sectors: maximum number of sectors to secure_erase 390 **/ 391 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 392 unsigned int max_sectors) 393 { 394 q->limits.max_secure_erase_sectors = max_sectors; 395 } 396 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors); 397 398 /** 399 * blk_queue_max_write_zeroes_sectors - set max sectors for a single 400 * write zeroes 401 * @q: the request queue for the device 402 * @max_write_zeroes_sectors: maximum number of sectors to write per command 403 **/ 404 void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 405 unsigned int max_write_zeroes_sectors) 406 { 407 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors; 408 } 409 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors); 410 411 /** 412 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append 413 * @q: the request queue for the device 414 * @max_zone_append_sectors: maximum number of sectors to write per command 415 **/ 416 void blk_queue_max_zone_append_sectors(struct request_queue *q, 417 unsigned int max_zone_append_sectors) 418 { 419 unsigned int max_sectors; 420 421 if (WARN_ON(!blk_queue_is_zoned(q))) 422 return; 423 424 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors); 425 max_sectors = min(q->limits.chunk_sectors, max_sectors); 426 427 /* 428 * Signal eventual driver bugs resulting in the max_zone_append sectors limit 429 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set, 430 * or the max_hw_sectors limit not set. 431 */ 432 WARN_ON(!max_sectors); 433 434 q->limits.max_zone_append_sectors = max_sectors; 435 } 436 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors); 437 438 /** 439 * blk_queue_max_segments - set max hw segments for a request for this queue 440 * @q: the request queue for the device 441 * @max_segments: max number of segments 442 * 443 * Description: 444 * Enables a low level driver to set an upper limit on the number of 445 * hw data segments in a request. 446 **/ 447 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 448 { 449 if (!max_segments) { 450 max_segments = 1; 451 pr_info("%s: set to minimum %u\n", __func__, max_segments); 452 } 453 454 q->limits.max_segments = max_segments; 455 } 456 EXPORT_SYMBOL(blk_queue_max_segments); 457 458 /** 459 * blk_queue_max_discard_segments - set max segments for discard requests 460 * @q: the request queue for the device 461 * @max_segments: max number of segments 462 * 463 * Description: 464 * Enables a low level driver to set an upper limit on the number of 465 * segments in a discard request. 466 **/ 467 void blk_queue_max_discard_segments(struct request_queue *q, 468 unsigned short max_segments) 469 { 470 q->limits.max_discard_segments = max_segments; 471 } 472 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments); 473 474 /** 475 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 476 * @q: the request queue for the device 477 * @max_size: max size of segment in bytes 478 * 479 * Description: 480 * Enables a low level driver to set an upper limit on the size of a 481 * coalesced segment 482 **/ 483 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 484 { 485 if (max_size < PAGE_SIZE) { 486 max_size = PAGE_SIZE; 487 pr_info("%s: set to minimum %u\n", __func__, max_size); 488 } 489 490 /* see blk_queue_virt_boundary() for the explanation */ 491 WARN_ON_ONCE(q->limits.virt_boundary_mask); 492 493 q->limits.max_segment_size = max_size; 494 } 495 EXPORT_SYMBOL(blk_queue_max_segment_size); 496 497 /** 498 * blk_queue_logical_block_size - set logical block size for the queue 499 * @q: the request queue for the device 500 * @size: the logical block size, in bytes 501 * 502 * Description: 503 * This should be set to the lowest possible block size that the 504 * storage device can address. The default of 512 covers most 505 * hardware. 506 **/ 507 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size) 508 { 509 struct queue_limits *limits = &q->limits; 510 511 limits->logical_block_size = size; 512 513 if (limits->discard_granularity < limits->logical_block_size) 514 limits->discard_granularity = limits->logical_block_size; 515 516 if (limits->physical_block_size < size) 517 limits->physical_block_size = size; 518 519 if (limits->io_min < limits->physical_block_size) 520 limits->io_min = limits->physical_block_size; 521 522 limits->max_hw_sectors = 523 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT); 524 limits->max_sectors = 525 round_down(limits->max_sectors, size >> SECTOR_SHIFT); 526 } 527 EXPORT_SYMBOL(blk_queue_logical_block_size); 528 529 /** 530 * blk_queue_physical_block_size - set physical block size for the queue 531 * @q: the request queue for the device 532 * @size: the physical block size, in bytes 533 * 534 * Description: 535 * This should be set to the lowest possible sector size that the 536 * hardware can operate on without reverting to read-modify-write 537 * operations. 538 */ 539 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 540 { 541 q->limits.physical_block_size = size; 542 543 if (q->limits.physical_block_size < q->limits.logical_block_size) 544 q->limits.physical_block_size = q->limits.logical_block_size; 545 546 if (q->limits.discard_granularity < q->limits.physical_block_size) 547 q->limits.discard_granularity = q->limits.physical_block_size; 548 549 if (q->limits.io_min < q->limits.physical_block_size) 550 q->limits.io_min = q->limits.physical_block_size; 551 } 552 EXPORT_SYMBOL(blk_queue_physical_block_size); 553 554 /** 555 * blk_queue_zone_write_granularity - set zone write granularity for the queue 556 * @q: the request queue for the zoned device 557 * @size: the zone write granularity size, in bytes 558 * 559 * Description: 560 * This should be set to the lowest possible size allowing to write in 561 * sequential zones of a zoned block device. 562 */ 563 void blk_queue_zone_write_granularity(struct request_queue *q, 564 unsigned int size) 565 { 566 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 567 return; 568 569 q->limits.zone_write_granularity = size; 570 571 if (q->limits.zone_write_granularity < q->limits.logical_block_size) 572 q->limits.zone_write_granularity = q->limits.logical_block_size; 573 } 574 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity); 575 576 /** 577 * blk_queue_alignment_offset - set physical block alignment offset 578 * @q: the request queue for the device 579 * @offset: alignment offset in bytes 580 * 581 * Description: 582 * Some devices are naturally misaligned to compensate for things like 583 * the legacy DOS partition table 63-sector offset. Low-level drivers 584 * should call this function for devices whose first sector is not 585 * naturally aligned. 586 */ 587 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 588 { 589 q->limits.alignment_offset = 590 offset & (q->limits.physical_block_size - 1); 591 q->limits.misaligned = 0; 592 } 593 EXPORT_SYMBOL(blk_queue_alignment_offset); 594 595 void disk_update_readahead(struct gendisk *disk) 596 { 597 blk_apply_bdi_limits(disk->bdi, &disk->queue->limits); 598 } 599 EXPORT_SYMBOL_GPL(disk_update_readahead); 600 601 /** 602 * blk_limits_io_min - set minimum request size for a device 603 * @limits: the queue limits 604 * @min: smallest I/O size in bytes 605 * 606 * Description: 607 * Some devices have an internal block size bigger than the reported 608 * hardware sector size. This function can be used to signal the 609 * smallest I/O the device can perform without incurring a performance 610 * penalty. 611 */ 612 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 613 { 614 limits->io_min = min; 615 616 if (limits->io_min < limits->logical_block_size) 617 limits->io_min = limits->logical_block_size; 618 619 if (limits->io_min < limits->physical_block_size) 620 limits->io_min = limits->physical_block_size; 621 } 622 EXPORT_SYMBOL(blk_limits_io_min); 623 624 /** 625 * blk_queue_io_min - set minimum request size for the queue 626 * @q: the request queue for the device 627 * @min: smallest I/O size in bytes 628 * 629 * Description: 630 * Storage devices may report a granularity or preferred minimum I/O 631 * size which is the smallest request the device can perform without 632 * incurring a performance penalty. For disk drives this is often the 633 * physical block size. For RAID arrays it is often the stripe chunk 634 * size. A properly aligned multiple of minimum_io_size is the 635 * preferred request size for workloads where a high number of I/O 636 * operations is desired. 637 */ 638 void blk_queue_io_min(struct request_queue *q, unsigned int min) 639 { 640 blk_limits_io_min(&q->limits, min); 641 } 642 EXPORT_SYMBOL(blk_queue_io_min); 643 644 /** 645 * blk_limits_io_opt - set optimal request size for a device 646 * @limits: the queue limits 647 * @opt: smallest I/O size in bytes 648 * 649 * Description: 650 * Storage devices may report an optimal I/O size, which is the 651 * device's preferred unit for sustained I/O. This is rarely reported 652 * for disk drives. For RAID arrays it is usually the stripe width or 653 * the internal track size. A properly aligned multiple of 654 * optimal_io_size is the preferred request size for workloads where 655 * sustained throughput is desired. 656 */ 657 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 658 { 659 limits->io_opt = opt; 660 } 661 EXPORT_SYMBOL(blk_limits_io_opt); 662 663 /** 664 * blk_queue_io_opt - set optimal request size for the queue 665 * @q: the request queue for the device 666 * @opt: optimal request size in bytes 667 * 668 * Description: 669 * Storage devices may report an optimal I/O size, which is the 670 * device's preferred unit for sustained I/O. This is rarely reported 671 * for disk drives. For RAID arrays it is usually the stripe width or 672 * the internal track size. A properly aligned multiple of 673 * optimal_io_size is the preferred request size for workloads where 674 * sustained throughput is desired. 675 */ 676 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 677 { 678 blk_limits_io_opt(&q->limits, opt); 679 if (!q->disk) 680 return; 681 q->disk->bdi->ra_pages = 682 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 683 } 684 EXPORT_SYMBOL(blk_queue_io_opt); 685 686 static int queue_limit_alignment_offset(const struct queue_limits *lim, 687 sector_t sector) 688 { 689 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 690 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 691 << SECTOR_SHIFT; 692 693 return (granularity + lim->alignment_offset - alignment) % granularity; 694 } 695 696 static unsigned int queue_limit_discard_alignment( 697 const struct queue_limits *lim, sector_t sector) 698 { 699 unsigned int alignment, granularity, offset; 700 701 if (!lim->max_discard_sectors) 702 return 0; 703 704 /* Why are these in bytes, not sectors? */ 705 alignment = lim->discard_alignment >> SECTOR_SHIFT; 706 granularity = lim->discard_granularity >> SECTOR_SHIFT; 707 if (!granularity) 708 return 0; 709 710 /* Offset of the partition start in 'granularity' sectors */ 711 offset = sector_div(sector, granularity); 712 713 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 714 offset = (granularity + alignment - offset) % granularity; 715 716 /* Turn it back into bytes, gaah */ 717 return offset << SECTOR_SHIFT; 718 } 719 720 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 721 { 722 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 723 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 724 sectors = PAGE_SIZE >> SECTOR_SHIFT; 725 return sectors; 726 } 727 728 /** 729 * blk_stack_limits - adjust queue_limits for stacked devices 730 * @t: the stacking driver limits (top device) 731 * @b: the underlying queue limits (bottom, component device) 732 * @start: first data sector within component device 733 * 734 * Description: 735 * This function is used by stacking drivers like MD and DM to ensure 736 * that all component devices have compatible block sizes and 737 * alignments. The stacking driver must provide a queue_limits 738 * struct (top) and then iteratively call the stacking function for 739 * all component (bottom) devices. The stacking function will 740 * attempt to combine the values and ensure proper alignment. 741 * 742 * Returns 0 if the top and bottom queue_limits are compatible. The 743 * top device's block sizes and alignment offsets may be adjusted to 744 * ensure alignment with the bottom device. If no compatible sizes 745 * and alignments exist, -1 is returned and the resulting top 746 * queue_limits will have the misaligned flag set to indicate that 747 * the alignment_offset is undefined. 748 */ 749 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 750 sector_t start) 751 { 752 unsigned int top, bottom, alignment, ret = 0; 753 754 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 755 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 756 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 757 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 758 b->max_write_zeroes_sectors); 759 t->max_zone_append_sectors = min(t->max_zone_append_sectors, 760 b->max_zone_append_sectors); 761 t->bounce = max(t->bounce, b->bounce); 762 763 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 764 b->seg_boundary_mask); 765 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 766 b->virt_boundary_mask); 767 768 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 769 t->max_discard_segments = min_not_zero(t->max_discard_segments, 770 b->max_discard_segments); 771 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 772 b->max_integrity_segments); 773 774 t->max_segment_size = min_not_zero(t->max_segment_size, 775 b->max_segment_size); 776 777 t->misaligned |= b->misaligned; 778 779 alignment = queue_limit_alignment_offset(b, start); 780 781 /* Bottom device has different alignment. Check that it is 782 * compatible with the current top alignment. 783 */ 784 if (t->alignment_offset != alignment) { 785 786 top = max(t->physical_block_size, t->io_min) 787 + t->alignment_offset; 788 bottom = max(b->physical_block_size, b->io_min) + alignment; 789 790 /* Verify that top and bottom intervals line up */ 791 if (max(top, bottom) % min(top, bottom)) { 792 t->misaligned = 1; 793 ret = -1; 794 } 795 } 796 797 t->logical_block_size = max(t->logical_block_size, 798 b->logical_block_size); 799 800 t->physical_block_size = max(t->physical_block_size, 801 b->physical_block_size); 802 803 t->io_min = max(t->io_min, b->io_min); 804 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 805 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 806 807 /* Set non-power-of-2 compatible chunk_sectors boundary */ 808 if (b->chunk_sectors) 809 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 810 811 /* Physical block size a multiple of the logical block size? */ 812 if (t->physical_block_size & (t->logical_block_size - 1)) { 813 t->physical_block_size = t->logical_block_size; 814 t->misaligned = 1; 815 ret = -1; 816 } 817 818 /* Minimum I/O a multiple of the physical block size? */ 819 if (t->io_min & (t->physical_block_size - 1)) { 820 t->io_min = t->physical_block_size; 821 t->misaligned = 1; 822 ret = -1; 823 } 824 825 /* Optimal I/O a multiple of the physical block size? */ 826 if (t->io_opt & (t->physical_block_size - 1)) { 827 t->io_opt = 0; 828 t->misaligned = 1; 829 ret = -1; 830 } 831 832 /* chunk_sectors a multiple of the physical block size? */ 833 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { 834 t->chunk_sectors = 0; 835 t->misaligned = 1; 836 ret = -1; 837 } 838 839 t->raid_partial_stripes_expensive = 840 max(t->raid_partial_stripes_expensive, 841 b->raid_partial_stripes_expensive); 842 843 /* Find lowest common alignment_offset */ 844 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 845 % max(t->physical_block_size, t->io_min); 846 847 /* Verify that new alignment_offset is on a logical block boundary */ 848 if (t->alignment_offset & (t->logical_block_size - 1)) { 849 t->misaligned = 1; 850 ret = -1; 851 } 852 853 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 854 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 855 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 856 857 /* Discard alignment and granularity */ 858 if (b->discard_granularity) { 859 alignment = queue_limit_discard_alignment(b, start); 860 861 if (t->discard_granularity != 0 && 862 t->discard_alignment != alignment) { 863 top = t->discard_granularity + t->discard_alignment; 864 bottom = b->discard_granularity + alignment; 865 866 /* Verify that top and bottom intervals line up */ 867 if ((max(top, bottom) % min(top, bottom)) != 0) 868 t->discard_misaligned = 1; 869 } 870 871 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 872 b->max_discard_sectors); 873 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 874 b->max_hw_discard_sectors); 875 t->discard_granularity = max(t->discard_granularity, 876 b->discard_granularity); 877 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 878 t->discard_granularity; 879 } 880 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 881 b->max_secure_erase_sectors); 882 t->zone_write_granularity = max(t->zone_write_granularity, 883 b->zone_write_granularity); 884 t->zoned = max(t->zoned, b->zoned); 885 if (!t->zoned) { 886 t->zone_write_granularity = 0; 887 t->max_zone_append_sectors = 0; 888 } 889 return ret; 890 } 891 EXPORT_SYMBOL(blk_stack_limits); 892 893 /** 894 * queue_limits_stack_bdev - adjust queue_limits for stacked devices 895 * @t: the stacking driver limits (top device) 896 * @bdev: the underlying block device (bottom) 897 * @offset: offset to beginning of data within component device 898 * @pfx: prefix to use for warnings logged 899 * 900 * Description: 901 * This function is used by stacking drivers like MD and DM to ensure 902 * that all component devices have compatible block sizes and 903 * alignments. The stacking driver must provide a queue_limits 904 * struct (top) and then iteratively call the stacking function for 905 * all component (bottom) devices. The stacking function will 906 * attempt to combine the values and ensure proper alignment. 907 */ 908 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 909 sector_t offset, const char *pfx) 910 { 911 if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits, 912 get_start_sect(bdev) + offset)) 913 pr_notice("%s: Warning: Device %pg is misaligned\n", 914 pfx, bdev); 915 } 916 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); 917 918 /** 919 * blk_queue_update_dma_pad - update pad mask 920 * @q: the request queue for the device 921 * @mask: pad mask 922 * 923 * Update dma pad mask. 924 * 925 * Appending pad buffer to a request modifies the last entry of a 926 * scatter list such that it includes the pad buffer. 927 **/ 928 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 929 { 930 if (mask > q->dma_pad_mask) 931 q->dma_pad_mask = mask; 932 } 933 EXPORT_SYMBOL(blk_queue_update_dma_pad); 934 935 /** 936 * blk_queue_segment_boundary - set boundary rules for segment merging 937 * @q: the request queue for the device 938 * @mask: the memory boundary mask 939 **/ 940 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 941 { 942 if (mask < PAGE_SIZE - 1) { 943 mask = PAGE_SIZE - 1; 944 pr_info("%s: set to minimum %lx\n", __func__, mask); 945 } 946 947 q->limits.seg_boundary_mask = mask; 948 } 949 EXPORT_SYMBOL(blk_queue_segment_boundary); 950 951 /** 952 * blk_queue_virt_boundary - set boundary rules for bio merging 953 * @q: the request queue for the device 954 * @mask: the memory boundary mask 955 **/ 956 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask) 957 { 958 q->limits.virt_boundary_mask = mask; 959 960 /* 961 * Devices that require a virtual boundary do not support scatter/gather 962 * I/O natively, but instead require a descriptor list entry for each 963 * page (which might not be idential to the Linux PAGE_SIZE). Because 964 * of that they are not limited by our notion of "segment size". 965 */ 966 if (mask) 967 q->limits.max_segment_size = UINT_MAX; 968 } 969 EXPORT_SYMBOL(blk_queue_virt_boundary); 970 971 /** 972 * blk_queue_dma_alignment - set dma length and memory alignment 973 * @q: the request queue for the device 974 * @mask: alignment mask 975 * 976 * description: 977 * set required memory and length alignment for direct dma transactions. 978 * this is used when building direct io requests for the queue. 979 * 980 **/ 981 void blk_queue_dma_alignment(struct request_queue *q, int mask) 982 { 983 q->limits.dma_alignment = mask; 984 } 985 EXPORT_SYMBOL(blk_queue_dma_alignment); 986 987 /** 988 * blk_queue_update_dma_alignment - update dma length and memory alignment 989 * @q: the request queue for the device 990 * @mask: alignment mask 991 * 992 * description: 993 * update required memory and length alignment for direct dma transactions. 994 * If the requested alignment is larger than the current alignment, then 995 * the current queue alignment is updated to the new value, otherwise it 996 * is left alone. The design of this is to allow multiple objects 997 * (driver, device, transport etc) to set their respective 998 * alignments without having them interfere. 999 * 1000 **/ 1001 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 1002 { 1003 BUG_ON(mask > PAGE_SIZE); 1004 1005 if (mask > q->limits.dma_alignment) 1006 q->limits.dma_alignment = mask; 1007 } 1008 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 1009 1010 /** 1011 * blk_set_queue_depth - tell the block layer about the device queue depth 1012 * @q: the request queue for the device 1013 * @depth: queue depth 1014 * 1015 */ 1016 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 1017 { 1018 q->queue_depth = depth; 1019 rq_qos_queue_depth_changed(q); 1020 } 1021 EXPORT_SYMBOL(blk_set_queue_depth); 1022 1023 /** 1024 * blk_queue_write_cache - configure queue's write cache 1025 * @q: the request queue for the device 1026 * @wc: write back cache on or off 1027 * @fua: device supports FUA writes, if true 1028 * 1029 * Tell the block layer about the write cache of @q. 1030 */ 1031 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) 1032 { 1033 if (wc) { 1034 blk_queue_flag_set(QUEUE_FLAG_HW_WC, q); 1035 blk_queue_flag_set(QUEUE_FLAG_WC, q); 1036 } else { 1037 blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q); 1038 blk_queue_flag_clear(QUEUE_FLAG_WC, q); 1039 } 1040 if (fua) 1041 blk_queue_flag_set(QUEUE_FLAG_FUA, q); 1042 else 1043 blk_queue_flag_clear(QUEUE_FLAG_FUA, q); 1044 } 1045 EXPORT_SYMBOL_GPL(blk_queue_write_cache); 1046 1047 /** 1048 * blk_queue_required_elevator_features - Set a queue required elevator features 1049 * @q: the request queue for the target device 1050 * @features: Required elevator features OR'ed together 1051 * 1052 * Tell the block layer that for the device controlled through @q, only the 1053 * only elevators that can be used are those that implement at least the set of 1054 * features specified by @features. 1055 */ 1056 void blk_queue_required_elevator_features(struct request_queue *q, 1057 unsigned int features) 1058 { 1059 q->required_elevator_features = features; 1060 } 1061 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features); 1062 1063 /** 1064 * blk_queue_can_use_dma_map_merging - configure queue for merging segments. 1065 * @q: the request queue for the device 1066 * @dev: the device pointer for dma 1067 * 1068 * Tell the block layer about merging the segments by dma map of @q. 1069 */ 1070 bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1071 struct device *dev) 1072 { 1073 unsigned long boundary = dma_get_merge_boundary(dev); 1074 1075 if (!boundary) 1076 return false; 1077 1078 /* No need to update max_segment_size. see blk_queue_virt_boundary() */ 1079 blk_queue_virt_boundary(q, boundary); 1080 1081 return true; 1082 } 1083 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging); 1084 1085 /** 1086 * disk_set_zoned - inidicate a zoned device 1087 * @disk: gendisk to configure 1088 */ 1089 void disk_set_zoned(struct gendisk *disk) 1090 { 1091 struct request_queue *q = disk->queue; 1092 1093 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)); 1094 1095 /* 1096 * Set the zone write granularity to the device logical block 1097 * size by default. The driver can change this value if needed. 1098 */ 1099 q->limits.zoned = true; 1100 blk_queue_zone_write_granularity(q, queue_logical_block_size(q)); 1101 } 1102 EXPORT_SYMBOL_GPL(disk_set_zoned); 1103 1104 int bdev_alignment_offset(struct block_device *bdev) 1105 { 1106 struct request_queue *q = bdev_get_queue(bdev); 1107 1108 if (q->limits.misaligned) 1109 return -1; 1110 if (bdev_is_partition(bdev)) 1111 return queue_limit_alignment_offset(&q->limits, 1112 bdev->bd_start_sect); 1113 return q->limits.alignment_offset; 1114 } 1115 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 1116 1117 unsigned int bdev_discard_alignment(struct block_device *bdev) 1118 { 1119 struct request_queue *q = bdev_get_queue(bdev); 1120 1121 if (bdev_is_partition(bdev)) 1122 return queue_limit_discard_alignment(&q->limits, 1123 bdev->bd_start_sect); 1124 return q->limits.discard_alignment; 1125 } 1126 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 1127