1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 18 #include "blk.h" 19 #include "blk-rq-qos.h" 20 #include "blk-wbt.h" 21 22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 23 { 24 q->rq_timeout = timeout; 25 } 26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 27 28 /** 29 * blk_set_stacking_limits - set default limits for stacking devices 30 * @lim: the queue_limits structure to reset 31 * 32 * Prepare queue limits for applying limits from underlying devices using 33 * blk_stack_limits(). 34 */ 35 void blk_set_stacking_limits(struct queue_limits *lim) 36 { 37 memset(lim, 0, sizeof(*lim)); 38 lim->logical_block_size = SECTOR_SIZE; 39 lim->physical_block_size = SECTOR_SIZE; 40 lim->io_min = SECTOR_SIZE; 41 lim->discard_granularity = SECTOR_SIZE; 42 lim->dma_alignment = SECTOR_SIZE - 1; 43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 44 45 /* Inherit limits from component devices */ 46 lim->max_segments = USHRT_MAX; 47 lim->max_discard_segments = USHRT_MAX; 48 lim->max_hw_sectors = UINT_MAX; 49 lim->max_segment_size = UINT_MAX; 50 lim->max_sectors = UINT_MAX; 51 lim->max_dev_sectors = UINT_MAX; 52 lim->max_write_zeroes_sectors = UINT_MAX; 53 lim->max_zone_append_sectors = UINT_MAX; 54 lim->max_user_discard_sectors = UINT_MAX; 55 } 56 EXPORT_SYMBOL(blk_set_stacking_limits); 57 58 static void blk_apply_bdi_limits(struct backing_dev_info *bdi, 59 struct queue_limits *lim) 60 { 61 /* 62 * For read-ahead of large files to be effective, we need to read ahead 63 * at least twice the optimal I/O size. 64 */ 65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; 67 } 68 69 static int blk_validate_zoned_limits(struct queue_limits *lim) 70 { 71 if (!lim->zoned) { 72 if (WARN_ON_ONCE(lim->max_open_zones) || 73 WARN_ON_ONCE(lim->max_active_zones) || 74 WARN_ON_ONCE(lim->zone_write_granularity) || 75 WARN_ON_ONCE(lim->max_zone_append_sectors)) 76 return -EINVAL; 77 return 0; 78 } 79 80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) 81 return -EINVAL; 82 83 if (lim->zone_write_granularity < lim->logical_block_size) 84 lim->zone_write_granularity = lim->logical_block_size; 85 86 if (lim->max_zone_append_sectors) { 87 /* 88 * The Zone Append size is limited by the maximum I/O size 89 * and the zone size given that it can't span zones. 90 */ 91 lim->max_zone_append_sectors = 92 min3(lim->max_hw_sectors, 93 lim->max_zone_append_sectors, 94 lim->chunk_sectors); 95 } 96 97 return 0; 98 } 99 100 static int blk_validate_integrity_limits(struct queue_limits *lim) 101 { 102 struct blk_integrity *bi = &lim->integrity; 103 104 if (!bi->tuple_size) { 105 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE || 106 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) { 107 pr_warn("invalid PI settings.\n"); 108 return -EINVAL; 109 } 110 return 0; 111 } 112 113 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) { 114 pr_warn("integrity support disabled.\n"); 115 return -EINVAL; 116 } 117 118 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE && 119 (bi->flags & BLK_INTEGRITY_REF_TAG)) { 120 pr_warn("ref tag not support without checksum.\n"); 121 return -EINVAL; 122 } 123 124 if (!bi->interval_exp) 125 bi->interval_exp = ilog2(lim->logical_block_size); 126 127 return 0; 128 } 129 130 /* 131 * Check that the limits in lim are valid, initialize defaults for unset 132 * values, and cap values based on others where needed. 133 */ 134 static int blk_validate_limits(struct queue_limits *lim) 135 { 136 unsigned int max_hw_sectors; 137 unsigned int logical_block_sectors; 138 int err; 139 140 /* 141 * Unless otherwise specified, default to 512 byte logical blocks and a 142 * physical block size equal to the logical block size. 143 */ 144 if (!lim->logical_block_size) 145 lim->logical_block_size = SECTOR_SIZE; 146 if (lim->physical_block_size < lim->logical_block_size) 147 lim->physical_block_size = lim->logical_block_size; 148 149 /* 150 * The minimum I/O size defaults to the physical block size unless 151 * explicitly overridden. 152 */ 153 if (lim->io_min < lim->physical_block_size) 154 lim->io_min = lim->physical_block_size; 155 156 /* 157 * max_hw_sectors has a somewhat weird default for historical reason, 158 * but driver really should set their own instead of relying on this 159 * value. 160 * 161 * The block layer relies on the fact that every driver can 162 * handle at lest a page worth of data per I/O, and needs the value 163 * aligned to the logical block size. 164 */ 165 if (!lim->max_hw_sectors) 166 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 167 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) 168 return -EINVAL; 169 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT; 170 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors)) 171 return -EINVAL; 172 lim->max_hw_sectors = round_down(lim->max_hw_sectors, 173 logical_block_sectors); 174 175 /* 176 * The actual max_sectors value is a complex beast and also takes the 177 * max_dev_sectors value (set by SCSI ULPs) and a user configurable 178 * value into account. The ->max_sectors value is always calculated 179 * from these, so directly setting it won't have any effect. 180 */ 181 max_hw_sectors = min_not_zero(lim->max_hw_sectors, 182 lim->max_dev_sectors); 183 if (lim->max_user_sectors) { 184 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE) 185 return -EINVAL; 186 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); 187 } else if (lim->io_opt) { 188 lim->max_sectors = 189 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT); 190 } else if (lim->io_min && 191 lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 192 lim->max_sectors = 193 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT); 194 } else { 195 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); 196 } 197 lim->max_sectors = round_down(lim->max_sectors, 198 logical_block_sectors); 199 200 /* 201 * Random default for the maximum number of segments. Driver should not 202 * rely on this and set their own. 203 */ 204 if (!lim->max_segments) 205 lim->max_segments = BLK_MAX_SEGMENTS; 206 207 lim->max_discard_sectors = 208 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); 209 210 if (!lim->max_discard_segments) 211 lim->max_discard_segments = 1; 212 213 if (lim->discard_granularity < lim->physical_block_size) 214 lim->discard_granularity = lim->physical_block_size; 215 216 /* 217 * By default there is no limit on the segment boundary alignment, 218 * but if there is one it can't be smaller than the page size as 219 * that would break all the normal I/O patterns. 220 */ 221 if (!lim->seg_boundary_mask) 222 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 223 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1)) 224 return -EINVAL; 225 226 /* 227 * Stacking device may have both virtual boundary and max segment 228 * size limit, so allow this setting now, and long-term the two 229 * might need to move out of stacking limits since we have immutable 230 * bvec and lower layer bio splitting is supposed to handle the two 231 * correctly. 232 */ 233 if (lim->virt_boundary_mask) { 234 if (!lim->max_segment_size) 235 lim->max_segment_size = UINT_MAX; 236 } else { 237 /* 238 * The maximum segment size has an odd historic 64k default that 239 * drivers probably should override. Just like the I/O size we 240 * require drivers to at least handle a full page per segment. 241 */ 242 if (!lim->max_segment_size) 243 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 244 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE)) 245 return -EINVAL; 246 } 247 248 /* 249 * We require drivers to at least do logical block aligned I/O, but 250 * historically could not check for that due to the separate calls 251 * to set the limits. Once the transition is finished the check 252 * below should be narrowed down to check the logical block size. 253 */ 254 if (!lim->dma_alignment) 255 lim->dma_alignment = SECTOR_SIZE - 1; 256 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) 257 return -EINVAL; 258 259 if (lim->alignment_offset) { 260 lim->alignment_offset &= (lim->physical_block_size - 1); 261 lim->misaligned = 0; 262 } 263 264 err = blk_validate_integrity_limits(lim); 265 if (err) 266 return err; 267 return blk_validate_zoned_limits(lim); 268 } 269 270 /* 271 * Set the default limits for a newly allocated queue. @lim contains the 272 * initial limits set by the driver, which could be no limit in which case 273 * all fields are cleared to zero. 274 */ 275 int blk_set_default_limits(struct queue_limits *lim) 276 { 277 /* 278 * Most defaults are set by capping the bounds in blk_validate_limits, 279 * but max_user_discard_sectors is special and needs an explicit 280 * initialization to the max value here. 281 */ 282 lim->max_user_discard_sectors = UINT_MAX; 283 return blk_validate_limits(lim); 284 } 285 286 /** 287 * queue_limits_commit_update - commit an atomic update of queue limits 288 * @q: queue to update 289 * @lim: limits to apply 290 * 291 * Apply the limits in @lim that were obtained from queue_limits_start_update() 292 * and updated by the caller to @q. 293 * 294 * Returns 0 if successful, else a negative error code. 295 */ 296 int queue_limits_commit_update(struct request_queue *q, 297 struct queue_limits *lim) 298 __releases(q->limits_lock) 299 { 300 int error; 301 302 error = blk_validate_limits(lim); 303 if (error) 304 goto out_unlock; 305 306 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 307 if (q->crypto_profile && lim->integrity.tag_size) { 308 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n"); 309 error = -EINVAL; 310 goto out_unlock; 311 } 312 #endif 313 314 q->limits = *lim; 315 if (q->disk) 316 blk_apply_bdi_limits(q->disk->bdi, lim); 317 out_unlock: 318 mutex_unlock(&q->limits_lock); 319 return error; 320 } 321 EXPORT_SYMBOL_GPL(queue_limits_commit_update); 322 323 /** 324 * queue_limits_set - apply queue limits to queue 325 * @q: queue to update 326 * @lim: limits to apply 327 * 328 * Apply the limits in @lim that were freshly initialized to @q. 329 * To update existing limits use queue_limits_start_update() and 330 * queue_limits_commit_update() instead. 331 * 332 * Returns 0 if successful, else a negative error code. 333 */ 334 int queue_limits_set(struct request_queue *q, struct queue_limits *lim) 335 { 336 mutex_lock(&q->limits_lock); 337 return queue_limits_commit_update(q, lim); 338 } 339 EXPORT_SYMBOL_GPL(queue_limits_set); 340 341 void disk_update_readahead(struct gendisk *disk) 342 { 343 blk_apply_bdi_limits(disk->bdi, &disk->queue->limits); 344 } 345 EXPORT_SYMBOL_GPL(disk_update_readahead); 346 347 /** 348 * blk_limits_io_min - set minimum request size for a device 349 * @limits: the queue limits 350 * @min: smallest I/O size in bytes 351 * 352 * Description: 353 * Some devices have an internal block size bigger than the reported 354 * hardware sector size. This function can be used to signal the 355 * smallest I/O the device can perform without incurring a performance 356 * penalty. 357 */ 358 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 359 { 360 limits->io_min = min; 361 362 if (limits->io_min < limits->logical_block_size) 363 limits->io_min = limits->logical_block_size; 364 365 if (limits->io_min < limits->physical_block_size) 366 limits->io_min = limits->physical_block_size; 367 } 368 EXPORT_SYMBOL(blk_limits_io_min); 369 370 /** 371 * blk_limits_io_opt - set optimal request size for a device 372 * @limits: the queue limits 373 * @opt: smallest I/O size in bytes 374 * 375 * Description: 376 * Storage devices may report an optimal I/O size, which is the 377 * device's preferred unit for sustained I/O. This is rarely reported 378 * for disk drives. For RAID arrays it is usually the stripe width or 379 * the internal track size. A properly aligned multiple of 380 * optimal_io_size is the preferred request size for workloads where 381 * sustained throughput is desired. 382 */ 383 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 384 { 385 limits->io_opt = opt; 386 } 387 EXPORT_SYMBOL(blk_limits_io_opt); 388 389 static int queue_limit_alignment_offset(const struct queue_limits *lim, 390 sector_t sector) 391 { 392 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 393 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 394 << SECTOR_SHIFT; 395 396 return (granularity + lim->alignment_offset - alignment) % granularity; 397 } 398 399 static unsigned int queue_limit_discard_alignment( 400 const struct queue_limits *lim, sector_t sector) 401 { 402 unsigned int alignment, granularity, offset; 403 404 if (!lim->max_discard_sectors) 405 return 0; 406 407 /* Why are these in bytes, not sectors? */ 408 alignment = lim->discard_alignment >> SECTOR_SHIFT; 409 granularity = lim->discard_granularity >> SECTOR_SHIFT; 410 if (!granularity) 411 return 0; 412 413 /* Offset of the partition start in 'granularity' sectors */ 414 offset = sector_div(sector, granularity); 415 416 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 417 offset = (granularity + alignment - offset) % granularity; 418 419 /* Turn it back into bytes, gaah */ 420 return offset << SECTOR_SHIFT; 421 } 422 423 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 424 { 425 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 426 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 427 sectors = PAGE_SIZE >> SECTOR_SHIFT; 428 return sectors; 429 } 430 431 /** 432 * blk_stack_limits - adjust queue_limits for stacked devices 433 * @t: the stacking driver limits (top device) 434 * @b: the underlying queue limits (bottom, component device) 435 * @start: first data sector within component device 436 * 437 * Description: 438 * This function is used by stacking drivers like MD and DM to ensure 439 * that all component devices have compatible block sizes and 440 * alignments. The stacking driver must provide a queue_limits 441 * struct (top) and then iteratively call the stacking function for 442 * all component (bottom) devices. The stacking function will 443 * attempt to combine the values and ensure proper alignment. 444 * 445 * Returns 0 if the top and bottom queue_limits are compatible. The 446 * top device's block sizes and alignment offsets may be adjusted to 447 * ensure alignment with the bottom device. If no compatible sizes 448 * and alignments exist, -1 is returned and the resulting top 449 * queue_limits will have the misaligned flag set to indicate that 450 * the alignment_offset is undefined. 451 */ 452 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 453 sector_t start) 454 { 455 unsigned int top, bottom, alignment, ret = 0; 456 457 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 458 t->max_user_sectors = min_not_zero(t->max_user_sectors, 459 b->max_user_sectors); 460 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 461 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 462 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 463 b->max_write_zeroes_sectors); 464 t->max_zone_append_sectors = min(queue_limits_max_zone_append_sectors(t), 465 queue_limits_max_zone_append_sectors(b)); 466 t->bounce = max(t->bounce, b->bounce); 467 468 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 469 b->seg_boundary_mask); 470 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 471 b->virt_boundary_mask); 472 473 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 474 t->max_discard_segments = min_not_zero(t->max_discard_segments, 475 b->max_discard_segments); 476 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 477 b->max_integrity_segments); 478 479 t->max_segment_size = min_not_zero(t->max_segment_size, 480 b->max_segment_size); 481 482 t->misaligned |= b->misaligned; 483 484 alignment = queue_limit_alignment_offset(b, start); 485 486 /* Bottom device has different alignment. Check that it is 487 * compatible with the current top alignment. 488 */ 489 if (t->alignment_offset != alignment) { 490 491 top = max(t->physical_block_size, t->io_min) 492 + t->alignment_offset; 493 bottom = max(b->physical_block_size, b->io_min) + alignment; 494 495 /* Verify that top and bottom intervals line up */ 496 if (max(top, bottom) % min(top, bottom)) { 497 t->misaligned = 1; 498 ret = -1; 499 } 500 } 501 502 t->logical_block_size = max(t->logical_block_size, 503 b->logical_block_size); 504 505 t->physical_block_size = max(t->physical_block_size, 506 b->physical_block_size); 507 508 t->io_min = max(t->io_min, b->io_min); 509 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 510 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 511 512 /* Set non-power-of-2 compatible chunk_sectors boundary */ 513 if (b->chunk_sectors) 514 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 515 516 /* Physical block size a multiple of the logical block size? */ 517 if (t->physical_block_size & (t->logical_block_size - 1)) { 518 t->physical_block_size = t->logical_block_size; 519 t->misaligned = 1; 520 ret = -1; 521 } 522 523 /* Minimum I/O a multiple of the physical block size? */ 524 if (t->io_min & (t->physical_block_size - 1)) { 525 t->io_min = t->physical_block_size; 526 t->misaligned = 1; 527 ret = -1; 528 } 529 530 /* Optimal I/O a multiple of the physical block size? */ 531 if (t->io_opt & (t->physical_block_size - 1)) { 532 t->io_opt = 0; 533 t->misaligned = 1; 534 ret = -1; 535 } 536 537 /* chunk_sectors a multiple of the physical block size? */ 538 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { 539 t->chunk_sectors = 0; 540 t->misaligned = 1; 541 ret = -1; 542 } 543 544 t->raid_partial_stripes_expensive = 545 max(t->raid_partial_stripes_expensive, 546 b->raid_partial_stripes_expensive); 547 548 /* Find lowest common alignment_offset */ 549 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 550 % max(t->physical_block_size, t->io_min); 551 552 /* Verify that new alignment_offset is on a logical block boundary */ 553 if (t->alignment_offset & (t->logical_block_size - 1)) { 554 t->misaligned = 1; 555 ret = -1; 556 } 557 558 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 559 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 560 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 561 562 /* Discard alignment and granularity */ 563 if (b->discard_granularity) { 564 alignment = queue_limit_discard_alignment(b, start); 565 566 if (t->discard_granularity != 0 && 567 t->discard_alignment != alignment) { 568 top = t->discard_granularity + t->discard_alignment; 569 bottom = b->discard_granularity + alignment; 570 571 /* Verify that top and bottom intervals line up */ 572 if ((max(top, bottom) % min(top, bottom)) != 0) 573 t->discard_misaligned = 1; 574 } 575 576 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 577 b->max_discard_sectors); 578 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 579 b->max_hw_discard_sectors); 580 t->discard_granularity = max(t->discard_granularity, 581 b->discard_granularity); 582 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 583 t->discard_granularity; 584 } 585 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 586 b->max_secure_erase_sectors); 587 t->zone_write_granularity = max(t->zone_write_granularity, 588 b->zone_write_granularity); 589 t->zoned = max(t->zoned, b->zoned); 590 if (!t->zoned) { 591 t->zone_write_granularity = 0; 592 t->max_zone_append_sectors = 0; 593 } 594 return ret; 595 } 596 EXPORT_SYMBOL(blk_stack_limits); 597 598 /** 599 * queue_limits_stack_bdev - adjust queue_limits for stacked devices 600 * @t: the stacking driver limits (top device) 601 * @bdev: the underlying block device (bottom) 602 * @offset: offset to beginning of data within component device 603 * @pfx: prefix to use for warnings logged 604 * 605 * Description: 606 * This function is used by stacking drivers like MD and DM to ensure 607 * that all component devices have compatible block sizes and 608 * alignments. The stacking driver must provide a queue_limits 609 * struct (top) and then iteratively call the stacking function for 610 * all component (bottom) devices. The stacking function will 611 * attempt to combine the values and ensure proper alignment. 612 */ 613 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 614 sector_t offset, const char *pfx) 615 { 616 if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits, 617 get_start_sect(bdev) + offset)) 618 pr_notice("%s: Warning: Device %pg is misaligned\n", 619 pfx, bdev); 620 } 621 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); 622 623 /** 624 * queue_limits_stack_integrity - stack integrity profile 625 * @t: target queue limits 626 * @b: base queue limits 627 * 628 * Check if the integrity profile in the @b can be stacked into the 629 * target @t. Stacking is possible if either: 630 * 631 * a) does not have any integrity information stacked into it yet 632 * b) the integrity profile in @b is identical to the one in @t 633 * 634 * If @b can be stacked into @t, return %true. Else return %false and clear the 635 * integrity information in @t. 636 */ 637 bool queue_limits_stack_integrity(struct queue_limits *t, 638 struct queue_limits *b) 639 { 640 struct blk_integrity *ti = &t->integrity; 641 struct blk_integrity *bi = &b->integrity; 642 643 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 644 return true; 645 646 if (!ti->tuple_size) { 647 /* inherit the settings from the first underlying device */ 648 if (!(ti->flags & BLK_INTEGRITY_STACKED)) { 649 ti->flags = BLK_INTEGRITY_DEVICE_CAPABLE | 650 (bi->flags & BLK_INTEGRITY_REF_TAG); 651 ti->csum_type = bi->csum_type; 652 ti->tuple_size = bi->tuple_size; 653 ti->pi_offset = bi->pi_offset; 654 ti->interval_exp = bi->interval_exp; 655 ti->tag_size = bi->tag_size; 656 goto done; 657 } 658 if (!bi->tuple_size) 659 goto done; 660 } 661 662 if (ti->tuple_size != bi->tuple_size) 663 goto incompatible; 664 if (ti->interval_exp != bi->interval_exp) 665 goto incompatible; 666 if (ti->tag_size != bi->tag_size) 667 goto incompatible; 668 if (ti->csum_type != bi->csum_type) 669 goto incompatible; 670 if ((ti->flags & BLK_INTEGRITY_REF_TAG) != 671 (bi->flags & BLK_INTEGRITY_REF_TAG)) 672 goto incompatible; 673 674 done: 675 ti->flags |= BLK_INTEGRITY_STACKED; 676 return true; 677 678 incompatible: 679 memset(ti, 0, sizeof(*ti)); 680 return false; 681 } 682 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity); 683 684 /** 685 * blk_queue_update_dma_pad - update pad mask 686 * @q: the request queue for the device 687 * @mask: pad mask 688 * 689 * Update dma pad mask. 690 * 691 * Appending pad buffer to a request modifies the last entry of a 692 * scatter list such that it includes the pad buffer. 693 **/ 694 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 695 { 696 if (mask > q->dma_pad_mask) 697 q->dma_pad_mask = mask; 698 } 699 EXPORT_SYMBOL(blk_queue_update_dma_pad); 700 701 /** 702 * blk_set_queue_depth - tell the block layer about the device queue depth 703 * @q: the request queue for the device 704 * @depth: queue depth 705 * 706 */ 707 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 708 { 709 q->queue_depth = depth; 710 rq_qos_queue_depth_changed(q); 711 } 712 EXPORT_SYMBOL(blk_set_queue_depth); 713 714 /** 715 * blk_queue_write_cache - configure queue's write cache 716 * @q: the request queue for the device 717 * @wc: write back cache on or off 718 * @fua: device supports FUA writes, if true 719 * 720 * Tell the block layer about the write cache of @q. 721 */ 722 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) 723 { 724 if (wc) { 725 blk_queue_flag_set(QUEUE_FLAG_HW_WC, q); 726 blk_queue_flag_set(QUEUE_FLAG_WC, q); 727 } else { 728 blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q); 729 blk_queue_flag_clear(QUEUE_FLAG_WC, q); 730 } 731 if (fua) 732 blk_queue_flag_set(QUEUE_FLAG_FUA, q); 733 else 734 blk_queue_flag_clear(QUEUE_FLAG_FUA, q); 735 } 736 EXPORT_SYMBOL_GPL(blk_queue_write_cache); 737 738 int bdev_alignment_offset(struct block_device *bdev) 739 { 740 struct request_queue *q = bdev_get_queue(bdev); 741 742 if (q->limits.misaligned) 743 return -1; 744 if (bdev_is_partition(bdev)) 745 return queue_limit_alignment_offset(&q->limits, 746 bdev->bd_start_sect); 747 return q->limits.alignment_offset; 748 } 749 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 750 751 unsigned int bdev_discard_alignment(struct block_device *bdev) 752 { 753 struct request_queue *q = bdev_get_queue(bdev); 754 755 if (bdev_is_partition(bdev)) 756 return queue_limit_discard_alignment(&q->limits, 757 bdev->bd_start_sect); 758 return q->limits.discard_alignment; 759 } 760 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 761