1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 18 #include "blk.h" 19 #include "blk-rq-qos.h" 20 #include "blk-wbt.h" 21 22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 23 { 24 q->rq_timeout = timeout; 25 } 26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 27 28 /** 29 * blk_set_stacking_limits - set default limits for stacking devices 30 * @lim: the queue_limits structure to reset 31 * 32 * Prepare queue limits for applying limits from underlying devices using 33 * blk_stack_limits(). 34 */ 35 void blk_set_stacking_limits(struct queue_limits *lim) 36 { 37 memset(lim, 0, sizeof(*lim)); 38 lim->logical_block_size = SECTOR_SIZE; 39 lim->physical_block_size = SECTOR_SIZE; 40 lim->io_min = SECTOR_SIZE; 41 lim->discard_granularity = SECTOR_SIZE; 42 lim->dma_alignment = SECTOR_SIZE - 1; 43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 44 45 /* Inherit limits from component devices */ 46 lim->max_segments = USHRT_MAX; 47 lim->max_discard_segments = USHRT_MAX; 48 lim->max_hw_sectors = UINT_MAX; 49 lim->max_segment_size = UINT_MAX; 50 lim->max_sectors = UINT_MAX; 51 lim->max_dev_sectors = UINT_MAX; 52 lim->max_write_zeroes_sectors = UINT_MAX; 53 lim->max_zone_append_sectors = UINT_MAX; 54 lim->max_user_discard_sectors = UINT_MAX; 55 } 56 EXPORT_SYMBOL(blk_set_stacking_limits); 57 58 static void blk_apply_bdi_limits(struct backing_dev_info *bdi, 59 struct queue_limits *lim) 60 { 61 /* 62 * For read-ahead of large files to be effective, we need to read ahead 63 * at least twice the optimal I/O size. 64 */ 65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; 67 } 68 69 static int blk_validate_zoned_limits(struct queue_limits *lim) 70 { 71 if (!(lim->features & BLK_FEAT_ZONED)) { 72 if (WARN_ON_ONCE(lim->max_open_zones) || 73 WARN_ON_ONCE(lim->max_active_zones) || 74 WARN_ON_ONCE(lim->zone_write_granularity) || 75 WARN_ON_ONCE(lim->max_zone_append_sectors)) 76 return -EINVAL; 77 return 0; 78 } 79 80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) 81 return -EINVAL; 82 83 /* 84 * Given that active zones include open zones, the maximum number of 85 * open zones cannot be larger than the maximum number of active zones. 86 */ 87 if (lim->max_active_zones && 88 lim->max_open_zones > lim->max_active_zones) 89 return -EINVAL; 90 91 if (lim->zone_write_granularity < lim->logical_block_size) 92 lim->zone_write_granularity = lim->logical_block_size; 93 94 if (lim->max_zone_append_sectors) { 95 /* 96 * The Zone Append size is limited by the maximum I/O size 97 * and the zone size given that it can't span zones. 98 */ 99 lim->max_zone_append_sectors = 100 min3(lim->max_hw_sectors, 101 lim->max_zone_append_sectors, 102 lim->chunk_sectors); 103 } 104 105 return 0; 106 } 107 108 static int blk_validate_integrity_limits(struct queue_limits *lim) 109 { 110 struct blk_integrity *bi = &lim->integrity; 111 112 if (!bi->tuple_size) { 113 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE || 114 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) { 115 pr_warn("invalid PI settings.\n"); 116 return -EINVAL; 117 } 118 return 0; 119 } 120 121 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) { 122 pr_warn("integrity support disabled.\n"); 123 return -EINVAL; 124 } 125 126 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE && 127 (bi->flags & BLK_INTEGRITY_REF_TAG)) { 128 pr_warn("ref tag not support without checksum.\n"); 129 return -EINVAL; 130 } 131 132 if (!bi->interval_exp) 133 bi->interval_exp = ilog2(lim->logical_block_size); 134 135 return 0; 136 } 137 138 /* 139 * Check that the limits in lim are valid, initialize defaults for unset 140 * values, and cap values based on others where needed. 141 */ 142 static int blk_validate_limits(struct queue_limits *lim) 143 { 144 unsigned int max_hw_sectors; 145 unsigned int logical_block_sectors; 146 int err; 147 148 /* 149 * Unless otherwise specified, default to 512 byte logical blocks and a 150 * physical block size equal to the logical block size. 151 */ 152 if (!lim->logical_block_size) 153 lim->logical_block_size = SECTOR_SIZE; 154 if (lim->physical_block_size < lim->logical_block_size) 155 lim->physical_block_size = lim->logical_block_size; 156 157 /* 158 * The minimum I/O size defaults to the physical block size unless 159 * explicitly overridden. 160 */ 161 if (lim->io_min < lim->physical_block_size) 162 lim->io_min = lim->physical_block_size; 163 164 /* 165 * max_hw_sectors has a somewhat weird default for historical reason, 166 * but driver really should set their own instead of relying on this 167 * value. 168 * 169 * The block layer relies on the fact that every driver can 170 * handle at lest a page worth of data per I/O, and needs the value 171 * aligned to the logical block size. 172 */ 173 if (!lim->max_hw_sectors) 174 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 175 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) 176 return -EINVAL; 177 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT; 178 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors)) 179 return -EINVAL; 180 lim->max_hw_sectors = round_down(lim->max_hw_sectors, 181 logical_block_sectors); 182 183 /* 184 * The actual max_sectors value is a complex beast and also takes the 185 * max_dev_sectors value (set by SCSI ULPs) and a user configurable 186 * value into account. The ->max_sectors value is always calculated 187 * from these, so directly setting it won't have any effect. 188 */ 189 max_hw_sectors = min_not_zero(lim->max_hw_sectors, 190 lim->max_dev_sectors); 191 if (lim->max_user_sectors) { 192 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE) 193 return -EINVAL; 194 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); 195 } else if (lim->io_opt) { 196 lim->max_sectors = 197 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT); 198 } else if (lim->io_min && 199 lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 200 lim->max_sectors = 201 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT); 202 } else { 203 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); 204 } 205 lim->max_sectors = round_down(lim->max_sectors, 206 logical_block_sectors); 207 208 /* 209 * Random default for the maximum number of segments. Driver should not 210 * rely on this and set their own. 211 */ 212 if (!lim->max_segments) 213 lim->max_segments = BLK_MAX_SEGMENTS; 214 215 lim->max_discard_sectors = 216 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); 217 218 if (!lim->max_discard_segments) 219 lim->max_discard_segments = 1; 220 221 if (lim->discard_granularity < lim->physical_block_size) 222 lim->discard_granularity = lim->physical_block_size; 223 224 /* 225 * By default there is no limit on the segment boundary alignment, 226 * but if there is one it can't be smaller than the page size as 227 * that would break all the normal I/O patterns. 228 */ 229 if (!lim->seg_boundary_mask) 230 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 231 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1)) 232 return -EINVAL; 233 234 /* 235 * Stacking device may have both virtual boundary and max segment 236 * size limit, so allow this setting now, and long-term the two 237 * might need to move out of stacking limits since we have immutable 238 * bvec and lower layer bio splitting is supposed to handle the two 239 * correctly. 240 */ 241 if (lim->virt_boundary_mask) { 242 if (!lim->max_segment_size) 243 lim->max_segment_size = UINT_MAX; 244 } else { 245 /* 246 * The maximum segment size has an odd historic 64k default that 247 * drivers probably should override. Just like the I/O size we 248 * require drivers to at least handle a full page per segment. 249 */ 250 if (!lim->max_segment_size) 251 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 252 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE)) 253 return -EINVAL; 254 } 255 256 /* 257 * We require drivers to at least do logical block aligned I/O, but 258 * historically could not check for that due to the separate calls 259 * to set the limits. Once the transition is finished the check 260 * below should be narrowed down to check the logical block size. 261 */ 262 if (!lim->dma_alignment) 263 lim->dma_alignment = SECTOR_SIZE - 1; 264 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) 265 return -EINVAL; 266 267 if (lim->alignment_offset) { 268 lim->alignment_offset &= (lim->physical_block_size - 1); 269 lim->misaligned = 0; 270 } 271 272 if (!(lim->features & BLK_FEAT_WRITE_CACHE)) 273 lim->features &= ~BLK_FEAT_FUA; 274 275 err = blk_validate_integrity_limits(lim); 276 if (err) 277 return err; 278 return blk_validate_zoned_limits(lim); 279 } 280 281 /* 282 * Set the default limits for a newly allocated queue. @lim contains the 283 * initial limits set by the driver, which could be no limit in which case 284 * all fields are cleared to zero. 285 */ 286 int blk_set_default_limits(struct queue_limits *lim) 287 { 288 /* 289 * Most defaults are set by capping the bounds in blk_validate_limits, 290 * but max_user_discard_sectors is special and needs an explicit 291 * initialization to the max value here. 292 */ 293 lim->max_user_discard_sectors = UINT_MAX; 294 return blk_validate_limits(lim); 295 } 296 297 /** 298 * queue_limits_commit_update - commit an atomic update of queue limits 299 * @q: queue to update 300 * @lim: limits to apply 301 * 302 * Apply the limits in @lim that were obtained from queue_limits_start_update() 303 * and updated by the caller to @q. 304 * 305 * Returns 0 if successful, else a negative error code. 306 */ 307 int queue_limits_commit_update(struct request_queue *q, 308 struct queue_limits *lim) 309 { 310 int error; 311 312 error = blk_validate_limits(lim); 313 if (error) 314 goto out_unlock; 315 316 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 317 if (q->crypto_profile && lim->integrity.tag_size) { 318 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n"); 319 error = -EINVAL; 320 goto out_unlock; 321 } 322 #endif 323 324 q->limits = *lim; 325 if (q->disk) 326 blk_apply_bdi_limits(q->disk->bdi, lim); 327 out_unlock: 328 mutex_unlock(&q->limits_lock); 329 return error; 330 } 331 EXPORT_SYMBOL_GPL(queue_limits_commit_update); 332 333 /** 334 * queue_limits_set - apply queue limits to queue 335 * @q: queue to update 336 * @lim: limits to apply 337 * 338 * Apply the limits in @lim that were freshly initialized to @q. 339 * To update existing limits use queue_limits_start_update() and 340 * queue_limits_commit_update() instead. 341 * 342 * Returns 0 if successful, else a negative error code. 343 */ 344 int queue_limits_set(struct request_queue *q, struct queue_limits *lim) 345 { 346 mutex_lock(&q->limits_lock); 347 return queue_limits_commit_update(q, lim); 348 } 349 EXPORT_SYMBOL_GPL(queue_limits_set); 350 351 void disk_update_readahead(struct gendisk *disk) 352 { 353 blk_apply_bdi_limits(disk->bdi, &disk->queue->limits); 354 } 355 EXPORT_SYMBOL_GPL(disk_update_readahead); 356 357 /** 358 * blk_limits_io_min - set minimum request size for a device 359 * @limits: the queue limits 360 * @min: smallest I/O size in bytes 361 * 362 * Description: 363 * Some devices have an internal block size bigger than the reported 364 * hardware sector size. This function can be used to signal the 365 * smallest I/O the device can perform without incurring a performance 366 * penalty. 367 */ 368 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 369 { 370 limits->io_min = min; 371 372 if (limits->io_min < limits->logical_block_size) 373 limits->io_min = limits->logical_block_size; 374 375 if (limits->io_min < limits->physical_block_size) 376 limits->io_min = limits->physical_block_size; 377 } 378 EXPORT_SYMBOL(blk_limits_io_min); 379 380 /** 381 * blk_limits_io_opt - set optimal request size for a device 382 * @limits: the queue limits 383 * @opt: smallest I/O size in bytes 384 * 385 * Description: 386 * Storage devices may report an optimal I/O size, which is the 387 * device's preferred unit for sustained I/O. This is rarely reported 388 * for disk drives. For RAID arrays it is usually the stripe width or 389 * the internal track size. A properly aligned multiple of 390 * optimal_io_size is the preferred request size for workloads where 391 * sustained throughput is desired. 392 */ 393 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 394 { 395 limits->io_opt = opt; 396 } 397 EXPORT_SYMBOL(blk_limits_io_opt); 398 399 static int queue_limit_alignment_offset(const struct queue_limits *lim, 400 sector_t sector) 401 { 402 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 403 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 404 << SECTOR_SHIFT; 405 406 return (granularity + lim->alignment_offset - alignment) % granularity; 407 } 408 409 static unsigned int queue_limit_discard_alignment( 410 const struct queue_limits *lim, sector_t sector) 411 { 412 unsigned int alignment, granularity, offset; 413 414 if (!lim->max_discard_sectors) 415 return 0; 416 417 /* Why are these in bytes, not sectors? */ 418 alignment = lim->discard_alignment >> SECTOR_SHIFT; 419 granularity = lim->discard_granularity >> SECTOR_SHIFT; 420 if (!granularity) 421 return 0; 422 423 /* Offset of the partition start in 'granularity' sectors */ 424 offset = sector_div(sector, granularity); 425 426 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 427 offset = (granularity + alignment - offset) % granularity; 428 429 /* Turn it back into bytes, gaah */ 430 return offset << SECTOR_SHIFT; 431 } 432 433 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 434 { 435 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 436 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 437 sectors = PAGE_SIZE >> SECTOR_SHIFT; 438 return sectors; 439 } 440 441 /** 442 * blk_stack_limits - adjust queue_limits for stacked devices 443 * @t: the stacking driver limits (top device) 444 * @b: the underlying queue limits (bottom, component device) 445 * @start: first data sector within component device 446 * 447 * Description: 448 * This function is used by stacking drivers like MD and DM to ensure 449 * that all component devices have compatible block sizes and 450 * alignments. The stacking driver must provide a queue_limits 451 * struct (top) and then iteratively call the stacking function for 452 * all component (bottom) devices. The stacking function will 453 * attempt to combine the values and ensure proper alignment. 454 * 455 * Returns 0 if the top and bottom queue_limits are compatible. The 456 * top device's block sizes and alignment offsets may be adjusted to 457 * ensure alignment with the bottom device. If no compatible sizes 458 * and alignments exist, -1 is returned and the resulting top 459 * queue_limits will have the misaligned flag set to indicate that 460 * the alignment_offset is undefined. 461 */ 462 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 463 sector_t start) 464 { 465 unsigned int top, bottom, alignment, ret = 0; 466 467 t->features |= (b->features & BLK_FEAT_INHERIT_MASK); 468 469 /* 470 * BLK_FEAT_NOWAIT and BLK_FEAT_POLL need to be supported both by the 471 * stacking driver and all underlying devices. The stacking driver sets 472 * the flags before stacking the limits, and this will clear the flags 473 * if any of the underlying devices does not support it. 474 */ 475 if (!(b->features & BLK_FEAT_NOWAIT)) 476 t->features &= ~BLK_FEAT_NOWAIT; 477 if (!(b->features & BLK_FEAT_POLL)) 478 t->features &= ~BLK_FEAT_POLL; 479 480 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 481 t->max_user_sectors = min_not_zero(t->max_user_sectors, 482 b->max_user_sectors); 483 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 484 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 485 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 486 b->max_write_zeroes_sectors); 487 t->max_zone_append_sectors = min(queue_limits_max_zone_append_sectors(t), 488 queue_limits_max_zone_append_sectors(b)); 489 490 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 491 b->seg_boundary_mask); 492 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 493 b->virt_boundary_mask); 494 495 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 496 t->max_discard_segments = min_not_zero(t->max_discard_segments, 497 b->max_discard_segments); 498 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 499 b->max_integrity_segments); 500 501 t->max_segment_size = min_not_zero(t->max_segment_size, 502 b->max_segment_size); 503 504 t->misaligned |= b->misaligned; 505 506 alignment = queue_limit_alignment_offset(b, start); 507 508 /* Bottom device has different alignment. Check that it is 509 * compatible with the current top alignment. 510 */ 511 if (t->alignment_offset != alignment) { 512 513 top = max(t->physical_block_size, t->io_min) 514 + t->alignment_offset; 515 bottom = max(b->physical_block_size, b->io_min) + alignment; 516 517 /* Verify that top and bottom intervals line up */ 518 if (max(top, bottom) % min(top, bottom)) { 519 t->misaligned = 1; 520 ret = -1; 521 } 522 } 523 524 t->logical_block_size = max(t->logical_block_size, 525 b->logical_block_size); 526 527 t->physical_block_size = max(t->physical_block_size, 528 b->physical_block_size); 529 530 t->io_min = max(t->io_min, b->io_min); 531 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 532 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 533 534 /* Set non-power-of-2 compatible chunk_sectors boundary */ 535 if (b->chunk_sectors) 536 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 537 538 /* Physical block size a multiple of the logical block size? */ 539 if (t->physical_block_size & (t->logical_block_size - 1)) { 540 t->physical_block_size = t->logical_block_size; 541 t->misaligned = 1; 542 ret = -1; 543 } 544 545 /* Minimum I/O a multiple of the physical block size? */ 546 if (t->io_min & (t->physical_block_size - 1)) { 547 t->io_min = t->physical_block_size; 548 t->misaligned = 1; 549 ret = -1; 550 } 551 552 /* Optimal I/O a multiple of the physical block size? */ 553 if (t->io_opt & (t->physical_block_size - 1)) { 554 t->io_opt = 0; 555 t->misaligned = 1; 556 ret = -1; 557 } 558 559 /* chunk_sectors a multiple of the physical block size? */ 560 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { 561 t->chunk_sectors = 0; 562 t->misaligned = 1; 563 ret = -1; 564 } 565 566 t->raid_partial_stripes_expensive = 567 max(t->raid_partial_stripes_expensive, 568 b->raid_partial_stripes_expensive); 569 570 /* Find lowest common alignment_offset */ 571 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 572 % max(t->physical_block_size, t->io_min); 573 574 /* Verify that new alignment_offset is on a logical block boundary */ 575 if (t->alignment_offset & (t->logical_block_size - 1)) { 576 t->misaligned = 1; 577 ret = -1; 578 } 579 580 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 581 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 582 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 583 584 /* Discard alignment and granularity */ 585 if (b->discard_granularity) { 586 alignment = queue_limit_discard_alignment(b, start); 587 588 if (t->discard_granularity != 0 && 589 t->discard_alignment != alignment) { 590 top = t->discard_granularity + t->discard_alignment; 591 bottom = b->discard_granularity + alignment; 592 593 /* Verify that top and bottom intervals line up */ 594 if ((max(top, bottom) % min(top, bottom)) != 0) 595 t->discard_misaligned = 1; 596 } 597 598 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 599 b->max_discard_sectors); 600 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 601 b->max_hw_discard_sectors); 602 t->discard_granularity = max(t->discard_granularity, 603 b->discard_granularity); 604 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 605 t->discard_granularity; 606 } 607 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 608 b->max_secure_erase_sectors); 609 t->zone_write_granularity = max(t->zone_write_granularity, 610 b->zone_write_granularity); 611 if (!(t->features & BLK_FEAT_ZONED)) { 612 t->zone_write_granularity = 0; 613 t->max_zone_append_sectors = 0; 614 } 615 return ret; 616 } 617 EXPORT_SYMBOL(blk_stack_limits); 618 619 /** 620 * queue_limits_stack_bdev - adjust queue_limits for stacked devices 621 * @t: the stacking driver limits (top device) 622 * @bdev: the underlying block device (bottom) 623 * @offset: offset to beginning of data within component device 624 * @pfx: prefix to use for warnings logged 625 * 626 * Description: 627 * This function is used by stacking drivers like MD and DM to ensure 628 * that all component devices have compatible block sizes and 629 * alignments. The stacking driver must provide a queue_limits 630 * struct (top) and then iteratively call the stacking function for 631 * all component (bottom) devices. The stacking function will 632 * attempt to combine the values and ensure proper alignment. 633 */ 634 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 635 sector_t offset, const char *pfx) 636 { 637 if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits, 638 get_start_sect(bdev) + offset)) 639 pr_notice("%s: Warning: Device %pg is misaligned\n", 640 pfx, bdev); 641 } 642 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); 643 644 /** 645 * queue_limits_stack_integrity - stack integrity profile 646 * @t: target queue limits 647 * @b: base queue limits 648 * 649 * Check if the integrity profile in the @b can be stacked into the 650 * target @t. Stacking is possible if either: 651 * 652 * a) does not have any integrity information stacked into it yet 653 * b) the integrity profile in @b is identical to the one in @t 654 * 655 * If @b can be stacked into @t, return %true. Else return %false and clear the 656 * integrity information in @t. 657 */ 658 bool queue_limits_stack_integrity(struct queue_limits *t, 659 struct queue_limits *b) 660 { 661 struct blk_integrity *ti = &t->integrity; 662 struct blk_integrity *bi = &b->integrity; 663 664 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 665 return true; 666 667 if (!ti->tuple_size) { 668 /* inherit the settings from the first underlying device */ 669 if (!(ti->flags & BLK_INTEGRITY_STACKED)) { 670 ti->flags = BLK_INTEGRITY_DEVICE_CAPABLE | 671 (bi->flags & BLK_INTEGRITY_REF_TAG); 672 ti->csum_type = bi->csum_type; 673 ti->tuple_size = bi->tuple_size; 674 ti->pi_offset = bi->pi_offset; 675 ti->interval_exp = bi->interval_exp; 676 ti->tag_size = bi->tag_size; 677 goto done; 678 } 679 if (!bi->tuple_size) 680 goto done; 681 } 682 683 if (ti->tuple_size != bi->tuple_size) 684 goto incompatible; 685 if (ti->interval_exp != bi->interval_exp) 686 goto incompatible; 687 if (ti->tag_size != bi->tag_size) 688 goto incompatible; 689 if (ti->csum_type != bi->csum_type) 690 goto incompatible; 691 if ((ti->flags & BLK_INTEGRITY_REF_TAG) != 692 (bi->flags & BLK_INTEGRITY_REF_TAG)) 693 goto incompatible; 694 695 done: 696 ti->flags |= BLK_INTEGRITY_STACKED; 697 return true; 698 699 incompatible: 700 memset(ti, 0, sizeof(*ti)); 701 return false; 702 } 703 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity); 704 705 /** 706 * blk_queue_update_dma_pad - update pad mask 707 * @q: the request queue for the device 708 * @mask: pad mask 709 * 710 * Update dma pad mask. 711 * 712 * Appending pad buffer to a request modifies the last entry of a 713 * scatter list such that it includes the pad buffer. 714 **/ 715 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 716 { 717 if (mask > q->dma_pad_mask) 718 q->dma_pad_mask = mask; 719 } 720 EXPORT_SYMBOL(blk_queue_update_dma_pad); 721 722 /** 723 * blk_set_queue_depth - tell the block layer about the device queue depth 724 * @q: the request queue for the device 725 * @depth: queue depth 726 * 727 */ 728 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 729 { 730 q->queue_depth = depth; 731 rq_qos_queue_depth_changed(q); 732 } 733 EXPORT_SYMBOL(blk_set_queue_depth); 734 735 int bdev_alignment_offset(struct block_device *bdev) 736 { 737 struct request_queue *q = bdev_get_queue(bdev); 738 739 if (q->limits.misaligned) 740 return -1; 741 if (bdev_is_partition(bdev)) 742 return queue_limit_alignment_offset(&q->limits, 743 bdev->bd_start_sect); 744 return q->limits.alignment_offset; 745 } 746 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 747 748 unsigned int bdev_discard_alignment(struct block_device *bdev) 749 { 750 struct request_queue *q = bdev_get_queue(bdev); 751 752 if (bdev_is_partition(bdev)) 753 return queue_limit_discard_alignment(&q->limits, 754 bdev->bd_start_sect); 755 return q->limits.discard_alignment; 756 } 757 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 758