1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 18 #include "blk.h" 19 #include "blk-rq-qos.h" 20 #include "blk-wbt.h" 21 22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 23 { 24 q->rq_timeout = timeout; 25 } 26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 27 28 /** 29 * blk_set_stacking_limits - set default limits for stacking devices 30 * @lim: the queue_limits structure to reset 31 * 32 * Prepare queue limits for applying limits from underlying devices using 33 * blk_stack_limits(). 34 */ 35 void blk_set_stacking_limits(struct queue_limits *lim) 36 { 37 memset(lim, 0, sizeof(*lim)); 38 lim->logical_block_size = SECTOR_SIZE; 39 lim->physical_block_size = SECTOR_SIZE; 40 lim->io_min = SECTOR_SIZE; 41 lim->discard_granularity = SECTOR_SIZE; 42 lim->dma_alignment = SECTOR_SIZE - 1; 43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 44 45 /* Inherit limits from component devices */ 46 lim->max_segments = USHRT_MAX; 47 lim->max_discard_segments = USHRT_MAX; 48 lim->max_hw_sectors = UINT_MAX; 49 lim->max_segment_size = UINT_MAX; 50 lim->max_sectors = UINT_MAX; 51 lim->max_dev_sectors = UINT_MAX; 52 lim->max_write_zeroes_sectors = UINT_MAX; 53 lim->max_hw_zone_append_sectors = UINT_MAX; 54 lim->max_user_discard_sectors = UINT_MAX; 55 } 56 EXPORT_SYMBOL(blk_set_stacking_limits); 57 58 void blk_apply_bdi_limits(struct backing_dev_info *bdi, 59 struct queue_limits *lim) 60 { 61 /* 62 * For read-ahead of large files to be effective, we need to read ahead 63 * at least twice the optimal I/O size. 64 */ 65 bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 66 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; 67 } 68 69 static int blk_validate_zoned_limits(struct queue_limits *lim) 70 { 71 if (!(lim->features & BLK_FEAT_ZONED)) { 72 if (WARN_ON_ONCE(lim->max_open_zones) || 73 WARN_ON_ONCE(lim->max_active_zones) || 74 WARN_ON_ONCE(lim->zone_write_granularity) || 75 WARN_ON_ONCE(lim->max_zone_append_sectors)) 76 return -EINVAL; 77 return 0; 78 } 79 80 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) 81 return -EINVAL; 82 83 /* 84 * Given that active zones include open zones, the maximum number of 85 * open zones cannot be larger than the maximum number of active zones. 86 */ 87 if (lim->max_active_zones && 88 lim->max_open_zones > lim->max_active_zones) 89 return -EINVAL; 90 91 if (lim->zone_write_granularity < lim->logical_block_size) 92 lim->zone_write_granularity = lim->logical_block_size; 93 94 /* 95 * The Zone Append size is limited by the maximum I/O size and the zone 96 * size given that it can't span zones. 97 * 98 * If no max_hw_zone_append_sectors limit is provided, the block layer 99 * will emulated it, else we're also bound by the hardware limit. 100 */ 101 lim->max_zone_append_sectors = 102 min_not_zero(lim->max_hw_zone_append_sectors, 103 min(lim->chunk_sectors, lim->max_hw_sectors)); 104 return 0; 105 } 106 107 static int blk_validate_integrity_limits(struct queue_limits *lim) 108 { 109 struct blk_integrity *bi = &lim->integrity; 110 111 if (!bi->tuple_size) { 112 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE || 113 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) { 114 pr_warn("invalid PI settings.\n"); 115 return -EINVAL; 116 } 117 return 0; 118 } 119 120 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) { 121 pr_warn("integrity support disabled.\n"); 122 return -EINVAL; 123 } 124 125 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE && 126 (bi->flags & BLK_INTEGRITY_REF_TAG)) { 127 pr_warn("ref tag not support without checksum.\n"); 128 return -EINVAL; 129 } 130 131 if (!bi->interval_exp) 132 bi->interval_exp = ilog2(lim->logical_block_size); 133 134 return 0; 135 } 136 137 /* 138 * Returns max guaranteed bytes which we can fit in a bio. 139 * 140 * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector), 141 * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from 142 * the first and last segments. 143 */ 144 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim) 145 { 146 unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments); 147 unsigned int length; 148 149 length = min(max_segments, 2) * lim->logical_block_size; 150 if (max_segments > 2) 151 length += (max_segments - 2) * PAGE_SIZE; 152 153 return length; 154 } 155 156 static void blk_atomic_writes_update_limits(struct queue_limits *lim) 157 { 158 unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT, 159 blk_queue_max_guaranteed_bio(lim)); 160 161 unit_limit = rounddown_pow_of_two(unit_limit); 162 163 lim->atomic_write_max_sectors = 164 min(lim->atomic_write_hw_max >> SECTOR_SHIFT, 165 lim->max_hw_sectors); 166 lim->atomic_write_unit_min = 167 min(lim->atomic_write_hw_unit_min, unit_limit); 168 lim->atomic_write_unit_max = 169 min(lim->atomic_write_hw_unit_max, unit_limit); 170 lim->atomic_write_boundary_sectors = 171 lim->atomic_write_hw_boundary >> SECTOR_SHIFT; 172 } 173 174 static void blk_validate_atomic_write_limits(struct queue_limits *lim) 175 { 176 unsigned int boundary_sectors; 177 178 if (!lim->atomic_write_hw_max) 179 goto unsupported; 180 181 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min))) 182 goto unsupported; 183 184 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max))) 185 goto unsupported; 186 187 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min > 188 lim->atomic_write_hw_unit_max)) 189 goto unsupported; 190 191 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max > 192 lim->atomic_write_hw_max)) 193 goto unsupported; 194 195 boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT; 196 197 if (boundary_sectors) { 198 if (WARN_ON_ONCE(lim->atomic_write_hw_max > 199 lim->atomic_write_hw_boundary)) 200 goto unsupported; 201 /* 202 * A feature of boundary support is that it disallows bios to 203 * be merged which would result in a merged request which 204 * crosses either a chunk sector or atomic write HW boundary, 205 * even though chunk sectors may be just set for performance. 206 * For simplicity, disallow atomic writes for a chunk sector 207 * which is non-zero and smaller than atomic write HW boundary. 208 * Furthermore, chunk sectors must be a multiple of atomic 209 * write HW boundary. Otherwise boundary support becomes 210 * complicated. 211 * Devices which do not conform to these rules can be dealt 212 * with if and when they show up. 213 */ 214 if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors)) 215 goto unsupported; 216 217 /* 218 * The boundary size just needs to be a multiple of unit_max 219 * (and not necessarily a power-of-2), so this following check 220 * could be relaxed in future. 221 * Furthermore, if needed, unit_max could even be reduced so 222 * that it is compliant with a !power-of-2 boundary. 223 */ 224 if (!is_power_of_2(boundary_sectors)) 225 goto unsupported; 226 } 227 228 blk_atomic_writes_update_limits(lim); 229 return; 230 231 unsupported: 232 lim->atomic_write_max_sectors = 0; 233 lim->atomic_write_boundary_sectors = 0; 234 lim->atomic_write_unit_min = 0; 235 lim->atomic_write_unit_max = 0; 236 } 237 238 /* 239 * Check that the limits in lim are valid, initialize defaults for unset 240 * values, and cap values based on others where needed. 241 */ 242 int blk_validate_limits(struct queue_limits *lim) 243 { 244 unsigned int max_hw_sectors; 245 unsigned int logical_block_sectors; 246 int err; 247 248 /* 249 * Unless otherwise specified, default to 512 byte logical blocks and a 250 * physical block size equal to the logical block size. 251 */ 252 if (!lim->logical_block_size) 253 lim->logical_block_size = SECTOR_SIZE; 254 else if (blk_validate_block_size(lim->logical_block_size)) { 255 pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size); 256 return -EINVAL; 257 } 258 if (lim->physical_block_size < lim->logical_block_size) 259 lim->physical_block_size = lim->logical_block_size; 260 261 /* 262 * The minimum I/O size defaults to the physical block size unless 263 * explicitly overridden. 264 */ 265 if (lim->io_min < lim->physical_block_size) 266 lim->io_min = lim->physical_block_size; 267 268 /* 269 * The optimal I/O size may not be aligned to physical block size 270 * (because it may be limited by dma engines which have no clue about 271 * block size of the disks attached to them), so we round it down here. 272 */ 273 lim->io_opt = round_down(lim->io_opt, lim->physical_block_size); 274 275 /* 276 * max_hw_sectors has a somewhat weird default for historical reason, 277 * but driver really should set their own instead of relying on this 278 * value. 279 * 280 * The block layer relies on the fact that every driver can 281 * handle at lest a page worth of data per I/O, and needs the value 282 * aligned to the logical block size. 283 */ 284 if (!lim->max_hw_sectors) 285 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 286 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) 287 return -EINVAL; 288 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT; 289 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors)) 290 return -EINVAL; 291 lim->max_hw_sectors = round_down(lim->max_hw_sectors, 292 logical_block_sectors); 293 294 /* 295 * The actual max_sectors value is a complex beast and also takes the 296 * max_dev_sectors value (set by SCSI ULPs) and a user configurable 297 * value into account. The ->max_sectors value is always calculated 298 * from these, so directly setting it won't have any effect. 299 */ 300 max_hw_sectors = min_not_zero(lim->max_hw_sectors, 301 lim->max_dev_sectors); 302 if (lim->max_user_sectors) { 303 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE) 304 return -EINVAL; 305 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); 306 } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 307 lim->max_sectors = 308 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT); 309 } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 310 lim->max_sectors = 311 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT); 312 } else { 313 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); 314 } 315 lim->max_sectors = round_down(lim->max_sectors, 316 logical_block_sectors); 317 318 /* 319 * Random default for the maximum number of segments. Driver should not 320 * rely on this and set their own. 321 */ 322 if (!lim->max_segments) 323 lim->max_segments = BLK_MAX_SEGMENTS; 324 325 lim->max_discard_sectors = 326 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); 327 328 if (!lim->max_discard_segments) 329 lim->max_discard_segments = 1; 330 331 if (lim->discard_granularity < lim->physical_block_size) 332 lim->discard_granularity = lim->physical_block_size; 333 334 /* 335 * By default there is no limit on the segment boundary alignment, 336 * but if there is one it can't be smaller than the page size as 337 * that would break all the normal I/O patterns. 338 */ 339 if (!lim->seg_boundary_mask) 340 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 341 if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1)) 342 return -EINVAL; 343 344 /* 345 * Stacking device may have both virtual boundary and max segment 346 * size limit, so allow this setting now, and long-term the two 347 * might need to move out of stacking limits since we have immutable 348 * bvec and lower layer bio splitting is supposed to handle the two 349 * correctly. 350 */ 351 if (lim->virt_boundary_mask) { 352 if (!lim->max_segment_size) 353 lim->max_segment_size = UINT_MAX; 354 } else { 355 /* 356 * The maximum segment size has an odd historic 64k default that 357 * drivers probably should override. Just like the I/O size we 358 * require drivers to at least handle a full page per segment. 359 */ 360 if (!lim->max_segment_size) 361 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 362 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE)) 363 return -EINVAL; 364 } 365 366 /* 367 * We require drivers to at least do logical block aligned I/O, but 368 * historically could not check for that due to the separate calls 369 * to set the limits. Once the transition is finished the check 370 * below should be narrowed down to check the logical block size. 371 */ 372 if (!lim->dma_alignment) 373 lim->dma_alignment = SECTOR_SIZE - 1; 374 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) 375 return -EINVAL; 376 377 if (lim->alignment_offset) { 378 lim->alignment_offset &= (lim->physical_block_size - 1); 379 lim->flags &= ~BLK_FLAG_MISALIGNED; 380 } 381 382 if (!(lim->features & BLK_FEAT_WRITE_CACHE)) 383 lim->features &= ~BLK_FEAT_FUA; 384 385 blk_validate_atomic_write_limits(lim); 386 387 err = blk_validate_integrity_limits(lim); 388 if (err) 389 return err; 390 return blk_validate_zoned_limits(lim); 391 } 392 EXPORT_SYMBOL_GPL(blk_validate_limits); 393 394 /* 395 * Set the default limits for a newly allocated queue. @lim contains the 396 * initial limits set by the driver, which could be no limit in which case 397 * all fields are cleared to zero. 398 */ 399 int blk_set_default_limits(struct queue_limits *lim) 400 { 401 /* 402 * Most defaults are set by capping the bounds in blk_validate_limits, 403 * but max_user_discard_sectors is special and needs an explicit 404 * initialization to the max value here. 405 */ 406 lim->max_user_discard_sectors = UINT_MAX; 407 return blk_validate_limits(lim); 408 } 409 410 /** 411 * queue_limits_commit_update - commit an atomic update of queue limits 412 * @q: queue to update 413 * @lim: limits to apply 414 * 415 * Apply the limits in @lim that were obtained from queue_limits_start_update() 416 * and updated by the caller to @q. 417 * 418 * Returns 0 if successful, else a negative error code. 419 */ 420 int queue_limits_commit_update(struct request_queue *q, 421 struct queue_limits *lim) 422 { 423 int error; 424 425 error = blk_validate_limits(lim); 426 if (error) 427 goto out_unlock; 428 429 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 430 if (q->crypto_profile && lim->integrity.tag_size) { 431 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n"); 432 error = -EINVAL; 433 goto out_unlock; 434 } 435 #endif 436 437 q->limits = *lim; 438 if (q->disk) 439 blk_apply_bdi_limits(q->disk->bdi, lim); 440 out_unlock: 441 mutex_unlock(&q->limits_lock); 442 return error; 443 } 444 EXPORT_SYMBOL_GPL(queue_limits_commit_update); 445 446 /** 447 * queue_limits_set - apply queue limits to queue 448 * @q: queue to update 449 * @lim: limits to apply 450 * 451 * Apply the limits in @lim that were freshly initialized to @q. 452 * To update existing limits use queue_limits_start_update() and 453 * queue_limits_commit_update() instead. 454 * 455 * Returns 0 if successful, else a negative error code. 456 */ 457 int queue_limits_set(struct request_queue *q, struct queue_limits *lim) 458 { 459 mutex_lock(&q->limits_lock); 460 return queue_limits_commit_update(q, lim); 461 } 462 EXPORT_SYMBOL_GPL(queue_limits_set); 463 464 static int queue_limit_alignment_offset(const struct queue_limits *lim, 465 sector_t sector) 466 { 467 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 468 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 469 << SECTOR_SHIFT; 470 471 return (granularity + lim->alignment_offset - alignment) % granularity; 472 } 473 474 static unsigned int queue_limit_discard_alignment( 475 const struct queue_limits *lim, sector_t sector) 476 { 477 unsigned int alignment, granularity, offset; 478 479 if (!lim->max_discard_sectors) 480 return 0; 481 482 /* Why are these in bytes, not sectors? */ 483 alignment = lim->discard_alignment >> SECTOR_SHIFT; 484 granularity = lim->discard_granularity >> SECTOR_SHIFT; 485 486 /* Offset of the partition start in 'granularity' sectors */ 487 offset = sector_div(sector, granularity); 488 489 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 490 offset = (granularity + alignment - offset) % granularity; 491 492 /* Turn it back into bytes, gaah */ 493 return offset << SECTOR_SHIFT; 494 } 495 496 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 497 { 498 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 499 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 500 sectors = PAGE_SIZE >> SECTOR_SHIFT; 501 return sectors; 502 } 503 504 /* Check if second and later bottom devices are compliant */ 505 static bool blk_stack_atomic_writes_tail(struct queue_limits *t, 506 struct queue_limits *b) 507 { 508 /* We're not going to support different boundary sizes.. yet */ 509 if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary) 510 return false; 511 512 /* Can't support this */ 513 if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max) 514 return false; 515 516 /* Or this */ 517 if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min) 518 return false; 519 520 t->atomic_write_hw_max = min(t->atomic_write_hw_max, 521 b->atomic_write_hw_max); 522 t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min, 523 b->atomic_write_hw_unit_min); 524 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max, 525 b->atomic_write_hw_unit_max); 526 return true; 527 } 528 529 /* Check for valid boundary of first bottom device */ 530 static bool blk_stack_atomic_writes_boundary_head(struct queue_limits *t, 531 struct queue_limits *b) 532 { 533 /* 534 * Ensure atomic write boundary is aligned with chunk sectors. Stacked 535 * devices store chunk sectors in t->io_min. 536 */ 537 if (b->atomic_write_hw_boundary > t->io_min && 538 b->atomic_write_hw_boundary % t->io_min) 539 return false; 540 if (t->io_min > b->atomic_write_hw_boundary && 541 t->io_min % b->atomic_write_hw_boundary) 542 return false; 543 544 t->atomic_write_hw_boundary = b->atomic_write_hw_boundary; 545 return true; 546 } 547 548 549 /* Check stacking of first bottom device */ 550 static bool blk_stack_atomic_writes_head(struct queue_limits *t, 551 struct queue_limits *b) 552 { 553 if (b->atomic_write_hw_boundary && 554 !blk_stack_atomic_writes_boundary_head(t, b)) 555 return false; 556 557 if (t->io_min <= SECTOR_SIZE) { 558 /* No chunk sectors, so use bottom device values directly */ 559 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max; 560 t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min; 561 t->atomic_write_hw_max = b->atomic_write_hw_max; 562 return true; 563 } 564 565 /* 566 * Find values for limits which work for chunk size. 567 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk 568 * size (t->io_min), as chunk size is not restricted to a power-of-2. 569 * So we need to find highest power-of-2 which works for the chunk 570 * size. 571 * As an example scenario, we could have b->unit_max = 16K and 572 * t->io_min = 24K. For this case, reduce t->unit_max to a value 573 * aligned with both limits, i.e. 8K in this example. 574 */ 575 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max; 576 while (t->io_min % t->atomic_write_hw_unit_max) 577 t->atomic_write_hw_unit_max /= 2; 578 579 t->atomic_write_hw_unit_min = min(b->atomic_write_hw_unit_min, 580 t->atomic_write_hw_unit_max); 581 t->atomic_write_hw_max = min(b->atomic_write_hw_max, t->io_min); 582 583 return true; 584 } 585 586 static void blk_stack_atomic_writes_limits(struct queue_limits *t, 587 struct queue_limits *b) 588 { 589 if (!(t->features & BLK_FEAT_ATOMIC_WRITES_STACKED)) 590 goto unsupported; 591 592 if (!b->atomic_write_unit_min) 593 goto unsupported; 594 595 /* 596 * If atomic_write_hw_max is set, we have already stacked 1x bottom 597 * device, so check for compliance. 598 */ 599 if (t->atomic_write_hw_max) { 600 if (!blk_stack_atomic_writes_tail(t, b)) 601 goto unsupported; 602 return; 603 } 604 605 if (!blk_stack_atomic_writes_head(t, b)) 606 goto unsupported; 607 return; 608 609 unsupported: 610 t->atomic_write_hw_max = 0; 611 t->atomic_write_hw_unit_max = 0; 612 t->atomic_write_hw_unit_min = 0; 613 t->atomic_write_hw_boundary = 0; 614 t->features &= ~BLK_FEAT_ATOMIC_WRITES_STACKED; 615 } 616 617 /** 618 * blk_stack_limits - adjust queue_limits for stacked devices 619 * @t: the stacking driver limits (top device) 620 * @b: the underlying queue limits (bottom, component device) 621 * @start: first data sector within component device 622 * 623 * Description: 624 * This function is used by stacking drivers like MD and DM to ensure 625 * that all component devices have compatible block sizes and 626 * alignments. The stacking driver must provide a queue_limits 627 * struct (top) and then iteratively call the stacking function for 628 * all component (bottom) devices. The stacking function will 629 * attempt to combine the values and ensure proper alignment. 630 * 631 * Returns 0 if the top and bottom queue_limits are compatible. The 632 * top device's block sizes and alignment offsets may be adjusted to 633 * ensure alignment with the bottom device. If no compatible sizes 634 * and alignments exist, -1 is returned and the resulting top 635 * queue_limits will have the misaligned flag set to indicate that 636 * the alignment_offset is undefined. 637 */ 638 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 639 sector_t start) 640 { 641 unsigned int top, bottom, alignment, ret = 0; 642 643 t->features |= (b->features & BLK_FEAT_INHERIT_MASK); 644 645 /* 646 * Some feaures need to be supported both by the stacking driver and all 647 * underlying devices. The stacking driver sets these flags before 648 * stacking the limits, and this will clear the flags if any of the 649 * underlying devices does not support it. 650 */ 651 if (!(b->features & BLK_FEAT_NOWAIT)) 652 t->features &= ~BLK_FEAT_NOWAIT; 653 if (!(b->features & BLK_FEAT_POLL)) 654 t->features &= ~BLK_FEAT_POLL; 655 656 t->flags |= (b->flags & BLK_FLAG_MISALIGNED); 657 658 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 659 t->max_user_sectors = min_not_zero(t->max_user_sectors, 660 b->max_user_sectors); 661 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 662 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 663 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 664 b->max_write_zeroes_sectors); 665 t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors, 666 b->max_hw_zone_append_sectors); 667 668 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 669 b->seg_boundary_mask); 670 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 671 b->virt_boundary_mask); 672 673 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 674 t->max_discard_segments = min_not_zero(t->max_discard_segments, 675 b->max_discard_segments); 676 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 677 b->max_integrity_segments); 678 679 t->max_segment_size = min_not_zero(t->max_segment_size, 680 b->max_segment_size); 681 682 alignment = queue_limit_alignment_offset(b, start); 683 684 /* Bottom device has different alignment. Check that it is 685 * compatible with the current top alignment. 686 */ 687 if (t->alignment_offset != alignment) { 688 689 top = max(t->physical_block_size, t->io_min) 690 + t->alignment_offset; 691 bottom = max(b->physical_block_size, b->io_min) + alignment; 692 693 /* Verify that top and bottom intervals line up */ 694 if (max(top, bottom) % min(top, bottom)) { 695 t->flags |= BLK_FLAG_MISALIGNED; 696 ret = -1; 697 } 698 } 699 700 t->logical_block_size = max(t->logical_block_size, 701 b->logical_block_size); 702 703 t->physical_block_size = max(t->physical_block_size, 704 b->physical_block_size); 705 706 t->io_min = max(t->io_min, b->io_min); 707 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 708 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 709 710 /* Set non-power-of-2 compatible chunk_sectors boundary */ 711 if (b->chunk_sectors) 712 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 713 714 /* Physical block size a multiple of the logical block size? */ 715 if (t->physical_block_size & (t->logical_block_size - 1)) { 716 t->physical_block_size = t->logical_block_size; 717 t->flags |= BLK_FLAG_MISALIGNED; 718 ret = -1; 719 } 720 721 /* Minimum I/O a multiple of the physical block size? */ 722 if (t->io_min & (t->physical_block_size - 1)) { 723 t->io_min = t->physical_block_size; 724 t->flags |= BLK_FLAG_MISALIGNED; 725 ret = -1; 726 } 727 728 /* Optimal I/O a multiple of the physical block size? */ 729 if (t->io_opt & (t->physical_block_size - 1)) { 730 t->io_opt = 0; 731 t->flags |= BLK_FLAG_MISALIGNED; 732 ret = -1; 733 } 734 735 /* chunk_sectors a multiple of the physical block size? */ 736 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { 737 t->chunk_sectors = 0; 738 t->flags |= BLK_FLAG_MISALIGNED; 739 ret = -1; 740 } 741 742 /* Find lowest common alignment_offset */ 743 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 744 % max(t->physical_block_size, t->io_min); 745 746 /* Verify that new alignment_offset is on a logical block boundary */ 747 if (t->alignment_offset & (t->logical_block_size - 1)) { 748 t->flags |= BLK_FLAG_MISALIGNED; 749 ret = -1; 750 } 751 752 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 753 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 754 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 755 756 /* Discard alignment and granularity */ 757 if (b->discard_granularity) { 758 alignment = queue_limit_discard_alignment(b, start); 759 760 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 761 b->max_discard_sectors); 762 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 763 b->max_hw_discard_sectors); 764 t->discard_granularity = max(t->discard_granularity, 765 b->discard_granularity); 766 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 767 t->discard_granularity; 768 } 769 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 770 b->max_secure_erase_sectors); 771 t->zone_write_granularity = max(t->zone_write_granularity, 772 b->zone_write_granularity); 773 if (!(t->features & BLK_FEAT_ZONED)) { 774 t->zone_write_granularity = 0; 775 t->max_zone_append_sectors = 0; 776 } 777 blk_stack_atomic_writes_limits(t, b); 778 779 return ret; 780 } 781 EXPORT_SYMBOL(blk_stack_limits); 782 783 /** 784 * queue_limits_stack_bdev - adjust queue_limits for stacked devices 785 * @t: the stacking driver limits (top device) 786 * @bdev: the underlying block device (bottom) 787 * @offset: offset to beginning of data within component device 788 * @pfx: prefix to use for warnings logged 789 * 790 * Description: 791 * This function is used by stacking drivers like MD and DM to ensure 792 * that all component devices have compatible block sizes and 793 * alignments. The stacking driver must provide a queue_limits 794 * struct (top) and then iteratively call the stacking function for 795 * all component (bottom) devices. The stacking function will 796 * attempt to combine the values and ensure proper alignment. 797 */ 798 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 799 sector_t offset, const char *pfx) 800 { 801 if (blk_stack_limits(t, bdev_limits(bdev), 802 get_start_sect(bdev) + offset)) 803 pr_notice("%s: Warning: Device %pg is misaligned\n", 804 pfx, bdev); 805 } 806 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); 807 808 /** 809 * queue_limits_stack_integrity - stack integrity profile 810 * @t: target queue limits 811 * @b: base queue limits 812 * 813 * Check if the integrity profile in the @b can be stacked into the 814 * target @t. Stacking is possible if either: 815 * 816 * a) does not have any integrity information stacked into it yet 817 * b) the integrity profile in @b is identical to the one in @t 818 * 819 * If @b can be stacked into @t, return %true. Else return %false and clear the 820 * integrity information in @t. 821 */ 822 bool queue_limits_stack_integrity(struct queue_limits *t, 823 struct queue_limits *b) 824 { 825 struct blk_integrity *ti = &t->integrity; 826 struct blk_integrity *bi = &b->integrity; 827 828 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 829 return true; 830 831 if (!ti->tuple_size) { 832 /* inherit the settings from the first underlying device */ 833 if (!(ti->flags & BLK_INTEGRITY_STACKED)) { 834 ti->flags = BLK_INTEGRITY_DEVICE_CAPABLE | 835 (bi->flags & BLK_INTEGRITY_REF_TAG); 836 ti->csum_type = bi->csum_type; 837 ti->tuple_size = bi->tuple_size; 838 ti->pi_offset = bi->pi_offset; 839 ti->interval_exp = bi->interval_exp; 840 ti->tag_size = bi->tag_size; 841 goto done; 842 } 843 if (!bi->tuple_size) 844 goto done; 845 } 846 847 if (ti->tuple_size != bi->tuple_size) 848 goto incompatible; 849 if (ti->interval_exp != bi->interval_exp) 850 goto incompatible; 851 if (ti->tag_size != bi->tag_size) 852 goto incompatible; 853 if (ti->csum_type != bi->csum_type) 854 goto incompatible; 855 if ((ti->flags & BLK_INTEGRITY_REF_TAG) != 856 (bi->flags & BLK_INTEGRITY_REF_TAG)) 857 goto incompatible; 858 859 done: 860 ti->flags |= BLK_INTEGRITY_STACKED; 861 return true; 862 863 incompatible: 864 memset(ti, 0, sizeof(*ti)); 865 return false; 866 } 867 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity); 868 869 /** 870 * blk_set_queue_depth - tell the block layer about the device queue depth 871 * @q: the request queue for the device 872 * @depth: queue depth 873 * 874 */ 875 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 876 { 877 q->queue_depth = depth; 878 rq_qos_queue_depth_changed(q); 879 } 880 EXPORT_SYMBOL(blk_set_queue_depth); 881 882 int bdev_alignment_offset(struct block_device *bdev) 883 { 884 struct request_queue *q = bdev_get_queue(bdev); 885 886 if (q->limits.flags & BLK_FLAG_MISALIGNED) 887 return -1; 888 if (bdev_is_partition(bdev)) 889 return queue_limit_alignment_offset(&q->limits, 890 bdev->bd_start_sect); 891 return q->limits.alignment_offset; 892 } 893 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 894 895 unsigned int bdev_discard_alignment(struct block_device *bdev) 896 { 897 struct request_queue *q = bdev_get_queue(bdev); 898 899 if (bdev_is_partition(bdev)) 900 return queue_limit_discard_alignment(&q->limits, 901 bdev->bd_start_sect); 902 return q->limits.discard_alignment; 903 } 904 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 905