xref: /linux/block/blk-settings.c (revision 49316cbf0a9875f102f98dc8b7c80cfa142e33cf)
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 
11 #include "blk.h"
12 
13 unsigned long blk_max_low_pfn;
14 EXPORT_SYMBOL(blk_max_low_pfn);
15 
16 unsigned long blk_max_pfn;
17 
18 /**
19  * blk_queue_prep_rq - set a prepare_request function for queue
20  * @q:		queue
21  * @pfn:	prepare_request function
22  *
23  * It's possible for a queue to register a prepare_request callback which
24  * is invoked before the request is handed to the request_fn. The goal of
25  * the function is to prepare a request for I/O, it can be used to build a
26  * cdb from the request data for instance.
27  *
28  */
29 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
30 {
31 	q->prep_rq_fn = pfn;
32 }
33 EXPORT_SYMBOL(blk_queue_prep_rq);
34 
35 /**
36  * blk_queue_set_discard - set a discard_sectors function for queue
37  * @q:		queue
38  * @dfn:	prepare_discard function
39  *
40  * It's possible for a queue to register a discard callback which is used
41  * to transform a discard request into the appropriate type for the
42  * hardware. If none is registered, then discard requests are failed
43  * with %EOPNOTSUPP.
44  *
45  */
46 void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn)
47 {
48 	q->prepare_discard_fn = dfn;
49 }
50 EXPORT_SYMBOL(blk_queue_set_discard);
51 
52 /**
53  * blk_queue_merge_bvec - set a merge_bvec function for queue
54  * @q:		queue
55  * @mbfn:	merge_bvec_fn
56  *
57  * Usually queues have static limitations on the max sectors or segments that
58  * we can put in a request. Stacking drivers may have some settings that
59  * are dynamic, and thus we have to query the queue whether it is ok to
60  * add a new bio_vec to a bio at a given offset or not. If the block device
61  * has such limitations, it needs to register a merge_bvec_fn to control
62  * the size of bio's sent to it. Note that a block device *must* allow a
63  * single page to be added to an empty bio. The block device driver may want
64  * to use the bio_split() function to deal with these bio's. By default
65  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
66  * honored.
67  */
68 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
69 {
70 	q->merge_bvec_fn = mbfn;
71 }
72 EXPORT_SYMBOL(blk_queue_merge_bvec);
73 
74 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
75 {
76 	q->softirq_done_fn = fn;
77 }
78 EXPORT_SYMBOL(blk_queue_softirq_done);
79 
80 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
81 {
82 	q->rq_timeout = timeout;
83 }
84 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
85 
86 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
87 {
88 	q->rq_timed_out_fn = fn;
89 }
90 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
91 
92 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
93 {
94 	q->lld_busy_fn = fn;
95 }
96 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
97 
98 /**
99  * blk_set_default_limits - reset limits to default values
100  * @lim:  the queue_limits structure to reset
101  *
102  * Description:
103  *   Returns a queue_limit struct to its default state.  Can be used by
104  *   stacking drivers like DM that stage table swaps and reuse an
105  *   existing device queue.
106  */
107 void blk_set_default_limits(struct queue_limits *lim)
108 {
109 	lim->max_phys_segments = MAX_PHYS_SEGMENTS;
110 	lim->max_hw_segments = MAX_HW_SEGMENTS;
111 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
112 	lim->max_segment_size = MAX_SEGMENT_SIZE;
113 	lim->max_sectors = lim->max_hw_sectors = SAFE_MAX_SECTORS;
114 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
115 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
116 	lim->alignment_offset = 0;
117 	lim->io_opt = 0;
118 	lim->misaligned = 0;
119 	lim->no_cluster = 0;
120 }
121 EXPORT_SYMBOL(blk_set_default_limits);
122 
123 /**
124  * blk_queue_make_request - define an alternate make_request function for a device
125  * @q:  the request queue for the device to be affected
126  * @mfn: the alternate make_request function
127  *
128  * Description:
129  *    The normal way for &struct bios to be passed to a device
130  *    driver is for them to be collected into requests on a request
131  *    queue, and then to allow the device driver to select requests
132  *    off that queue when it is ready.  This works well for many block
133  *    devices. However some block devices (typically virtual devices
134  *    such as md or lvm) do not benefit from the processing on the
135  *    request queue, and are served best by having the requests passed
136  *    directly to them.  This can be achieved by providing a function
137  *    to blk_queue_make_request().
138  *
139  * Caveat:
140  *    The driver that does this *must* be able to deal appropriately
141  *    with buffers in "highmemory". This can be accomplished by either calling
142  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
143  *    blk_queue_bounce() to create a buffer in normal memory.
144  **/
145 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
146 {
147 	/*
148 	 * set defaults
149 	 */
150 	q->nr_requests = BLKDEV_MAX_RQ;
151 
152 	q->make_request_fn = mfn;
153 	blk_queue_dma_alignment(q, 511);
154 	blk_queue_congestion_threshold(q);
155 	q->nr_batching = BLK_BATCH_REQ;
156 
157 	q->unplug_thresh = 4;		/* hmm */
158 	q->unplug_delay = (3 * HZ) / 1000;	/* 3 milliseconds */
159 	if (q->unplug_delay == 0)
160 		q->unplug_delay = 1;
161 
162 	q->unplug_timer.function = blk_unplug_timeout;
163 	q->unplug_timer.data = (unsigned long)q;
164 
165 	blk_set_default_limits(&q->limits);
166 
167 	/*
168 	 * If the caller didn't supply a lock, fall back to our embedded
169 	 * per-queue locks
170 	 */
171 	if (!q->queue_lock)
172 		q->queue_lock = &q->__queue_lock;
173 
174 	/*
175 	 * by default assume old behaviour and bounce for any highmem page
176 	 */
177 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
178 }
179 EXPORT_SYMBOL(blk_queue_make_request);
180 
181 /**
182  * blk_queue_bounce_limit - set bounce buffer limit for queue
183  * @q: the request queue for the device
184  * @dma_mask: the maximum address the device can handle
185  *
186  * Description:
187  *    Different hardware can have different requirements as to what pages
188  *    it can do I/O directly to. A low level driver can call
189  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
190  *    buffers for doing I/O to pages residing above @dma_mask.
191  **/
192 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
193 {
194 	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
195 	int dma = 0;
196 
197 	q->bounce_gfp = GFP_NOIO;
198 #if BITS_PER_LONG == 64
199 	/*
200 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
201 	 * some IOMMUs can handle everything, but I don't know of a
202 	 * way to test this here.
203 	 */
204 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
205 		dma = 1;
206 	q->limits.bounce_pfn = max_low_pfn;
207 #else
208 	if (b_pfn < blk_max_low_pfn)
209 		dma = 1;
210 	q->limits.bounce_pfn = b_pfn;
211 #endif
212 	if (dma) {
213 		init_emergency_isa_pool();
214 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
215 		q->limits.bounce_pfn = b_pfn;
216 	}
217 }
218 EXPORT_SYMBOL(blk_queue_bounce_limit);
219 
220 /**
221  * blk_queue_max_sectors - set max sectors for a request for this queue
222  * @q:  the request queue for the device
223  * @max_sectors:  max sectors in the usual 512b unit
224  *
225  * Description:
226  *    Enables a low level driver to set an upper limit on the size of
227  *    received requests.
228  **/
229 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
230 {
231 	if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
232 		max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
233 		printk(KERN_INFO "%s: set to minimum %d\n",
234 		       __func__, max_sectors);
235 	}
236 
237 	if (BLK_DEF_MAX_SECTORS > max_sectors)
238 		q->limits.max_hw_sectors = q->limits.max_sectors = max_sectors;
239 	else {
240 		q->limits.max_sectors = BLK_DEF_MAX_SECTORS;
241 		q->limits.max_hw_sectors = max_sectors;
242 	}
243 }
244 EXPORT_SYMBOL(blk_queue_max_sectors);
245 
246 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_sectors)
247 {
248 	if (BLK_DEF_MAX_SECTORS > max_sectors)
249 		q->limits.max_hw_sectors = BLK_DEF_MAX_SECTORS;
250 	else
251 		q->limits.max_hw_sectors = max_sectors;
252 }
253 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
254 
255 /**
256  * blk_queue_max_phys_segments - set max phys segments for a request for this queue
257  * @q:  the request queue for the device
258  * @max_segments:  max number of segments
259  *
260  * Description:
261  *    Enables a low level driver to set an upper limit on the number of
262  *    physical data segments in a request.  This would be the largest sized
263  *    scatter list the driver could handle.
264  **/
265 void blk_queue_max_phys_segments(struct request_queue *q,
266 				 unsigned short max_segments)
267 {
268 	if (!max_segments) {
269 		max_segments = 1;
270 		printk(KERN_INFO "%s: set to minimum %d\n",
271 		       __func__, max_segments);
272 	}
273 
274 	q->limits.max_phys_segments = max_segments;
275 }
276 EXPORT_SYMBOL(blk_queue_max_phys_segments);
277 
278 /**
279  * blk_queue_max_hw_segments - set max hw segments for a request for this queue
280  * @q:  the request queue for the device
281  * @max_segments:  max number of segments
282  *
283  * Description:
284  *    Enables a low level driver to set an upper limit on the number of
285  *    hw data segments in a request.  This would be the largest number of
286  *    address/length pairs the host adapter can actually give at once
287  *    to the device.
288  **/
289 void blk_queue_max_hw_segments(struct request_queue *q,
290 			       unsigned short max_segments)
291 {
292 	if (!max_segments) {
293 		max_segments = 1;
294 		printk(KERN_INFO "%s: set to minimum %d\n",
295 		       __func__, max_segments);
296 	}
297 
298 	q->limits.max_hw_segments = max_segments;
299 }
300 EXPORT_SYMBOL(blk_queue_max_hw_segments);
301 
302 /**
303  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
304  * @q:  the request queue for the device
305  * @max_size:  max size of segment in bytes
306  *
307  * Description:
308  *    Enables a low level driver to set an upper limit on the size of a
309  *    coalesced segment
310  **/
311 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
312 {
313 	if (max_size < PAGE_CACHE_SIZE) {
314 		max_size = PAGE_CACHE_SIZE;
315 		printk(KERN_INFO "%s: set to minimum %d\n",
316 		       __func__, max_size);
317 	}
318 
319 	q->limits.max_segment_size = max_size;
320 }
321 EXPORT_SYMBOL(blk_queue_max_segment_size);
322 
323 /**
324  * blk_queue_logical_block_size - set logical block size for the queue
325  * @q:  the request queue for the device
326  * @size:  the logical block size, in bytes
327  *
328  * Description:
329  *   This should be set to the lowest possible block size that the
330  *   storage device can address.  The default of 512 covers most
331  *   hardware.
332  **/
333 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
334 {
335 	q->limits.logical_block_size = size;
336 
337 	if (q->limits.physical_block_size < size)
338 		q->limits.physical_block_size = size;
339 
340 	if (q->limits.io_min < q->limits.physical_block_size)
341 		q->limits.io_min = q->limits.physical_block_size;
342 }
343 EXPORT_SYMBOL(blk_queue_logical_block_size);
344 
345 /**
346  * blk_queue_physical_block_size - set physical block size for the queue
347  * @q:  the request queue for the device
348  * @size:  the physical block size, in bytes
349  *
350  * Description:
351  *   This should be set to the lowest possible sector size that the
352  *   hardware can operate on without reverting to read-modify-write
353  *   operations.
354  */
355 void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
356 {
357 	q->limits.physical_block_size = size;
358 
359 	if (q->limits.physical_block_size < q->limits.logical_block_size)
360 		q->limits.physical_block_size = q->limits.logical_block_size;
361 
362 	if (q->limits.io_min < q->limits.physical_block_size)
363 		q->limits.io_min = q->limits.physical_block_size;
364 }
365 EXPORT_SYMBOL(blk_queue_physical_block_size);
366 
367 /**
368  * blk_queue_alignment_offset - set physical block alignment offset
369  * @q:	the request queue for the device
370  * @offset: alignment offset in bytes
371  *
372  * Description:
373  *   Some devices are naturally misaligned to compensate for things like
374  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
375  *   should call this function for devices whose first sector is not
376  *   naturally aligned.
377  */
378 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
379 {
380 	q->limits.alignment_offset =
381 		offset & (q->limits.physical_block_size - 1);
382 	q->limits.misaligned = 0;
383 }
384 EXPORT_SYMBOL(blk_queue_alignment_offset);
385 
386 /**
387  * blk_queue_io_min - set minimum request size for the queue
388  * @q:	the request queue for the device
389  * @min:  smallest I/O size in bytes
390  *
391  * Description:
392  *   Some devices have an internal block size bigger than the reported
393  *   hardware sector size.  This function can be used to signal the
394  *   smallest I/O the device can perform without incurring a performance
395  *   penalty.
396  */
397 void blk_queue_io_min(struct request_queue *q, unsigned int min)
398 {
399 	q->limits.io_min = min;
400 
401 	if (q->limits.io_min < q->limits.logical_block_size)
402 		q->limits.io_min = q->limits.logical_block_size;
403 
404 	if (q->limits.io_min < q->limits.physical_block_size)
405 		q->limits.io_min = q->limits.physical_block_size;
406 }
407 EXPORT_SYMBOL(blk_queue_io_min);
408 
409 /**
410  * blk_queue_io_opt - set optimal request size for the queue
411  * @q:	the request queue for the device
412  * @opt:  optimal request size in bytes
413  *
414  * Description:
415  *   Drivers can call this function to set the preferred I/O request
416  *   size for devices that report such a value.
417  */
418 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
419 {
420 	q->limits.io_opt = opt;
421 }
422 EXPORT_SYMBOL(blk_queue_io_opt);
423 
424 /*
425  * Returns the minimum that is _not_ zero, unless both are zero.
426  */
427 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
428 
429 /**
430  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
431  * @t:	the stacking driver (top)
432  * @b:  the underlying device (bottom)
433  **/
434 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
435 {
436 	/* zero is "infinity" */
437 	t->limits.max_sectors = min_not_zero(queue_max_sectors(t),
438 					     queue_max_sectors(b));
439 
440 	t->limits.max_hw_sectors = min_not_zero(queue_max_hw_sectors(t),
441 						queue_max_hw_sectors(b));
442 
443 	t->limits.seg_boundary_mask = min_not_zero(queue_segment_boundary(t),
444 						   queue_segment_boundary(b));
445 
446 	t->limits.max_phys_segments = min_not_zero(queue_max_phys_segments(t),
447 						   queue_max_phys_segments(b));
448 
449 	t->limits.max_hw_segments = min_not_zero(queue_max_hw_segments(t),
450 						 queue_max_hw_segments(b));
451 
452 	t->limits.max_segment_size = min_not_zero(queue_max_segment_size(t),
453 						  queue_max_segment_size(b));
454 
455 	t->limits.logical_block_size = max(queue_logical_block_size(t),
456 					   queue_logical_block_size(b));
457 
458 	if (!t->queue_lock)
459 		WARN_ON_ONCE(1);
460 	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
461 		unsigned long flags;
462 		spin_lock_irqsave(t->queue_lock, flags);
463 		queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
464 		spin_unlock_irqrestore(t->queue_lock, flags);
465 	}
466 }
467 EXPORT_SYMBOL(blk_queue_stack_limits);
468 
469 /**
470  * blk_stack_limits - adjust queue_limits for stacked devices
471  * @t:	the stacking driver limits (top)
472  * @b:  the underlying queue limits (bottom)
473  * @offset:  offset to beginning of data within component device
474  *
475  * Description:
476  *    Merges two queue_limit structs.  Returns 0 if alignment didn't
477  *    change.  Returns -1 if adding the bottom device caused
478  *    misalignment.
479  */
480 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
481 		     sector_t offset)
482 {
483 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
484 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
485 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
486 
487 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
488 					    b->seg_boundary_mask);
489 
490 	t->max_phys_segments = min_not_zero(t->max_phys_segments,
491 					    b->max_phys_segments);
492 
493 	t->max_hw_segments = min_not_zero(t->max_hw_segments,
494 					  b->max_hw_segments);
495 
496 	t->max_segment_size = min_not_zero(t->max_segment_size,
497 					   b->max_segment_size);
498 
499 	t->logical_block_size = max(t->logical_block_size,
500 				    b->logical_block_size);
501 
502 	t->physical_block_size = max(t->physical_block_size,
503 				     b->physical_block_size);
504 
505 	t->io_min = max(t->io_min, b->io_min);
506 	t->no_cluster |= b->no_cluster;
507 
508 	/* Bottom device offset aligned? */
509 	if (offset &&
510 	    (offset & (b->physical_block_size - 1)) != b->alignment_offset) {
511 		t->misaligned = 1;
512 		return -1;
513 	}
514 
515 	/* If top has no alignment offset, inherit from bottom */
516 	if (!t->alignment_offset)
517 		t->alignment_offset =
518 			b->alignment_offset & (b->physical_block_size - 1);
519 
520 	/* Top device aligned on logical block boundary? */
521 	if (t->alignment_offset & (t->logical_block_size - 1)) {
522 		t->misaligned = 1;
523 		return -1;
524 	}
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL(blk_stack_limits);
529 
530 /**
531  * disk_stack_limits - adjust queue limits for stacked drivers
532  * @disk:  MD/DM gendisk (top)
533  * @bdev:  the underlying block device (bottom)
534  * @offset:  offset to beginning of data within component device
535  *
536  * Description:
537  *    Merges the limits for two queues.  Returns 0 if alignment
538  *    didn't change.  Returns -1 if adding the bottom device caused
539  *    misalignment.
540  */
541 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
542 		       sector_t offset)
543 {
544 	struct request_queue *t = disk->queue;
545 	struct request_queue *b = bdev_get_queue(bdev);
546 
547 	offset += get_start_sect(bdev) << 9;
548 
549 	if (blk_stack_limits(&t->limits, &b->limits, offset) < 0) {
550 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
551 
552 		disk_name(disk, 0, top);
553 		bdevname(bdev, bottom);
554 
555 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
556 		       top, bottom);
557 	}
558 
559 	if (!t->queue_lock)
560 		WARN_ON_ONCE(1);
561 	else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
562 		unsigned long flags;
563 
564 		spin_lock_irqsave(t->queue_lock, flags);
565 		if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
566 			queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
567 		spin_unlock_irqrestore(t->queue_lock, flags);
568 	}
569 }
570 EXPORT_SYMBOL(disk_stack_limits);
571 
572 /**
573  * blk_queue_dma_pad - set pad mask
574  * @q:     the request queue for the device
575  * @mask:  pad mask
576  *
577  * Set dma pad mask.
578  *
579  * Appending pad buffer to a request modifies the last entry of a
580  * scatter list such that it includes the pad buffer.
581  **/
582 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
583 {
584 	q->dma_pad_mask = mask;
585 }
586 EXPORT_SYMBOL(blk_queue_dma_pad);
587 
588 /**
589  * blk_queue_update_dma_pad - update pad mask
590  * @q:     the request queue for the device
591  * @mask:  pad mask
592  *
593  * Update dma pad mask.
594  *
595  * Appending pad buffer to a request modifies the last entry of a
596  * scatter list such that it includes the pad buffer.
597  **/
598 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
599 {
600 	if (mask > q->dma_pad_mask)
601 		q->dma_pad_mask = mask;
602 }
603 EXPORT_SYMBOL(blk_queue_update_dma_pad);
604 
605 /**
606  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
607  * @q:  the request queue for the device
608  * @dma_drain_needed: fn which returns non-zero if drain is necessary
609  * @buf:	physically contiguous buffer
610  * @size:	size of the buffer in bytes
611  *
612  * Some devices have excess DMA problems and can't simply discard (or
613  * zero fill) the unwanted piece of the transfer.  They have to have a
614  * real area of memory to transfer it into.  The use case for this is
615  * ATAPI devices in DMA mode.  If the packet command causes a transfer
616  * bigger than the transfer size some HBAs will lock up if there
617  * aren't DMA elements to contain the excess transfer.  What this API
618  * does is adjust the queue so that the buf is always appended
619  * silently to the scatterlist.
620  *
621  * Note: This routine adjusts max_hw_segments to make room for
622  * appending the drain buffer.  If you call
623  * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
624  * calling this routine, you must set the limit to one fewer than your
625  * device can support otherwise there won't be room for the drain
626  * buffer.
627  */
628 int blk_queue_dma_drain(struct request_queue *q,
629 			       dma_drain_needed_fn *dma_drain_needed,
630 			       void *buf, unsigned int size)
631 {
632 	if (queue_max_hw_segments(q) < 2 || queue_max_phys_segments(q) < 2)
633 		return -EINVAL;
634 	/* make room for appending the drain */
635 	blk_queue_max_hw_segments(q, queue_max_hw_segments(q) - 1);
636 	blk_queue_max_phys_segments(q, queue_max_phys_segments(q) - 1);
637 	q->dma_drain_needed = dma_drain_needed;
638 	q->dma_drain_buffer = buf;
639 	q->dma_drain_size = size;
640 
641 	return 0;
642 }
643 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
644 
645 /**
646  * blk_queue_segment_boundary - set boundary rules for segment merging
647  * @q:  the request queue for the device
648  * @mask:  the memory boundary mask
649  **/
650 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
651 {
652 	if (mask < PAGE_CACHE_SIZE - 1) {
653 		mask = PAGE_CACHE_SIZE - 1;
654 		printk(KERN_INFO "%s: set to minimum %lx\n",
655 		       __func__, mask);
656 	}
657 
658 	q->limits.seg_boundary_mask = mask;
659 }
660 EXPORT_SYMBOL(blk_queue_segment_boundary);
661 
662 /**
663  * blk_queue_dma_alignment - set dma length and memory alignment
664  * @q:     the request queue for the device
665  * @mask:  alignment mask
666  *
667  * description:
668  *    set required memory and length alignment for direct dma transactions.
669  *    this is used when building direct io requests for the queue.
670  *
671  **/
672 void blk_queue_dma_alignment(struct request_queue *q, int mask)
673 {
674 	q->dma_alignment = mask;
675 }
676 EXPORT_SYMBOL(blk_queue_dma_alignment);
677 
678 /**
679  * blk_queue_update_dma_alignment - update dma length and memory alignment
680  * @q:     the request queue for the device
681  * @mask:  alignment mask
682  *
683  * description:
684  *    update required memory and length alignment for direct dma transactions.
685  *    If the requested alignment is larger than the current alignment, then
686  *    the current queue alignment is updated to the new value, otherwise it
687  *    is left alone.  The design of this is to allow multiple objects
688  *    (driver, device, transport etc) to set their respective
689  *    alignments without having them interfere.
690  *
691  **/
692 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
693 {
694 	BUG_ON(mask > PAGE_SIZE);
695 
696 	if (mask > q->dma_alignment)
697 		q->dma_alignment = mask;
698 }
699 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
700 
701 static int __init blk_settings_init(void)
702 {
703 	blk_max_low_pfn = max_low_pfn - 1;
704 	blk_max_pfn = max_pfn - 1;
705 	return 0;
706 }
707 subsys_initcall(blk_settings_init);
708