xref: /linux/block/blk-settings.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "blk.h"
19 #include "blk-rq-qos.h"
20 #include "blk-wbt.h"
21 
22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 {
24 	q->rq_timeout = timeout;
25 }
26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27 
28 /**
29  * blk_set_stacking_limits - set default limits for stacking devices
30  * @lim:  the queue_limits structure to reset
31  *
32  * Prepare queue limits for applying limits from underlying devices using
33  * blk_stack_limits().
34  */
35 void blk_set_stacking_limits(struct queue_limits *lim)
36 {
37 	memset(lim, 0, sizeof(*lim));
38 	lim->logical_block_size = SECTOR_SIZE;
39 	lim->physical_block_size = SECTOR_SIZE;
40 	lim->io_min = SECTOR_SIZE;
41 	lim->discard_granularity = SECTOR_SIZE;
42 	lim->dma_alignment = SECTOR_SIZE - 1;
43 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44 
45 	/* Inherit limits from component devices */
46 	lim->max_segments = USHRT_MAX;
47 	lim->max_discard_segments = USHRT_MAX;
48 	lim->max_hw_sectors = UINT_MAX;
49 	lim->max_segment_size = UINT_MAX;
50 	lim->max_sectors = UINT_MAX;
51 	lim->max_dev_sectors = UINT_MAX;
52 	lim->max_write_zeroes_sectors = UINT_MAX;
53 	lim->max_zone_append_sectors = UINT_MAX;
54 	lim->max_user_discard_sectors = UINT_MAX;
55 }
56 EXPORT_SYMBOL(blk_set_stacking_limits);
57 
58 static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59 		struct queue_limits *lim)
60 {
61 	/*
62 	 * For read-ahead of large files to be effective, we need to read ahead
63 	 * at least twice the optimal I/O size.
64 	 */
65 	bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66 	bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67 }
68 
69 static int blk_validate_zoned_limits(struct queue_limits *lim)
70 {
71 	if (!lim->zoned) {
72 		if (WARN_ON_ONCE(lim->max_open_zones) ||
73 		    WARN_ON_ONCE(lim->max_active_zones) ||
74 		    WARN_ON_ONCE(lim->zone_write_granularity) ||
75 		    WARN_ON_ONCE(lim->max_zone_append_sectors))
76 			return -EINVAL;
77 		return 0;
78 	}
79 
80 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81 		return -EINVAL;
82 
83 	if (lim->zone_write_granularity < lim->logical_block_size)
84 		lim->zone_write_granularity = lim->logical_block_size;
85 
86 	if (lim->max_zone_append_sectors) {
87 		/*
88 		 * The Zone Append size is limited by the maximum I/O size
89 		 * and the zone size given that it can't span zones.
90 		 */
91 		lim->max_zone_append_sectors =
92 			min3(lim->max_hw_sectors,
93 			     lim->max_zone_append_sectors,
94 			     lim->chunk_sectors);
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * Check that the limits in lim are valid, initialize defaults for unset
102  * values, and cap values based on others where needed.
103  */
104 static int blk_validate_limits(struct queue_limits *lim)
105 {
106 	unsigned int max_hw_sectors;
107 	unsigned int logical_block_sectors;
108 
109 	/*
110 	 * Unless otherwise specified, default to 512 byte logical blocks and a
111 	 * physical block size equal to the logical block size.
112 	 */
113 	if (!lim->logical_block_size)
114 		lim->logical_block_size = SECTOR_SIZE;
115 	if (lim->physical_block_size < lim->logical_block_size)
116 		lim->physical_block_size = lim->logical_block_size;
117 
118 	/*
119 	 * The minimum I/O size defaults to the physical block size unless
120 	 * explicitly overridden.
121 	 */
122 	if (lim->io_min < lim->physical_block_size)
123 		lim->io_min = lim->physical_block_size;
124 
125 	/*
126 	 * max_hw_sectors has a somewhat weird default for historical reason,
127 	 * but driver really should set their own instead of relying on this
128 	 * value.
129 	 *
130 	 * The block layer relies on the fact that every driver can
131 	 * handle at lest a page worth of data per I/O, and needs the value
132 	 * aligned to the logical block size.
133 	 */
134 	if (!lim->max_hw_sectors)
135 		lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
136 	if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
137 		return -EINVAL;
138 	logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
139 	if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
140 		return -EINVAL;
141 	lim->max_hw_sectors = round_down(lim->max_hw_sectors,
142 			logical_block_sectors);
143 
144 	/*
145 	 * The actual max_sectors value is a complex beast and also takes the
146 	 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
147 	 * value into account.  The ->max_sectors value is always calculated
148 	 * from these, so directly setting it won't have any effect.
149 	 */
150 	max_hw_sectors = min_not_zero(lim->max_hw_sectors,
151 				lim->max_dev_sectors);
152 	if (lim->max_user_sectors) {
153 		if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
154 			return -EINVAL;
155 		lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
156 	} else {
157 		lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
158 	}
159 	lim->max_sectors = round_down(lim->max_sectors,
160 			logical_block_sectors);
161 
162 	/*
163 	 * Random default for the maximum number of segments.  Driver should not
164 	 * rely on this and set their own.
165 	 */
166 	if (!lim->max_segments)
167 		lim->max_segments = BLK_MAX_SEGMENTS;
168 
169 	lim->max_discard_sectors =
170 		min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
171 
172 	if (!lim->max_discard_segments)
173 		lim->max_discard_segments = 1;
174 
175 	if (lim->discard_granularity < lim->physical_block_size)
176 		lim->discard_granularity = lim->physical_block_size;
177 
178 	/*
179 	 * By default there is no limit on the segment boundary alignment,
180 	 * but if there is one it can't be smaller than the page size as
181 	 * that would break all the normal I/O patterns.
182 	 */
183 	if (!lim->seg_boundary_mask)
184 		lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
185 	if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
186 		return -EINVAL;
187 
188 	/*
189 	 * Stacking device may have both virtual boundary and max segment
190 	 * size limit, so allow this setting now, and long-term the two
191 	 * might need to move out of stacking limits since we have immutable
192 	 * bvec and lower layer bio splitting is supposed to handle the two
193 	 * correctly.
194 	 */
195 	if (lim->virt_boundary_mask) {
196 		if (!lim->max_segment_size)
197 			lim->max_segment_size = UINT_MAX;
198 	} else {
199 		/*
200 		 * The maximum segment size has an odd historic 64k default that
201 		 * drivers probably should override.  Just like the I/O size we
202 		 * require drivers to at least handle a full page per segment.
203 		 */
204 		if (!lim->max_segment_size)
205 			lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
206 		if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
207 			return -EINVAL;
208 	}
209 
210 	/*
211 	 * We require drivers to at least do logical block aligned I/O, but
212 	 * historically could not check for that due to the separate calls
213 	 * to set the limits.  Once the transition is finished the check
214 	 * below should be narrowed down to check the logical block size.
215 	 */
216 	if (!lim->dma_alignment)
217 		lim->dma_alignment = SECTOR_SIZE - 1;
218 	if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
219 		return -EINVAL;
220 
221 	if (lim->alignment_offset) {
222 		lim->alignment_offset &= (lim->physical_block_size - 1);
223 		lim->misaligned = 0;
224 	}
225 
226 	return blk_validate_zoned_limits(lim);
227 }
228 
229 /*
230  * Set the default limits for a newly allocated queue.  @lim contains the
231  * initial limits set by the driver, which could be no limit in which case
232  * all fields are cleared to zero.
233  */
234 int blk_set_default_limits(struct queue_limits *lim)
235 {
236 	/*
237 	 * Most defaults are set by capping the bounds in blk_validate_limits,
238 	 * but max_user_discard_sectors is special and needs an explicit
239 	 * initialization to the max value here.
240 	 */
241 	lim->max_user_discard_sectors = UINT_MAX;
242 	return blk_validate_limits(lim);
243 }
244 
245 /**
246  * queue_limits_commit_update - commit an atomic update of queue limits
247  * @q:		queue to update
248  * @lim:	limits to apply
249  *
250  * Apply the limits in @lim that were obtained from queue_limits_start_update()
251  * and updated by the caller to @q.
252  *
253  * Returns 0 if successful, else a negative error code.
254  */
255 int queue_limits_commit_update(struct request_queue *q,
256 		struct queue_limits *lim)
257 	__releases(q->limits_lock)
258 {
259 	int error = blk_validate_limits(lim);
260 
261 	if (!error) {
262 		q->limits = *lim;
263 		if (q->disk)
264 			blk_apply_bdi_limits(q->disk->bdi, lim);
265 	}
266 	mutex_unlock(&q->limits_lock);
267 	return error;
268 }
269 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
270 
271 /**
272  * queue_limits_set - apply queue limits to queue
273  * @q:		queue to update
274  * @lim:	limits to apply
275  *
276  * Apply the limits in @lim that were freshly initialized to @q.
277  * To update existing limits use queue_limits_start_update() and
278  * queue_limits_commit_update() instead.
279  *
280  * Returns 0 if successful, else a negative error code.
281  */
282 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
283 {
284 	mutex_lock(&q->limits_lock);
285 	return queue_limits_commit_update(q, lim);
286 }
287 EXPORT_SYMBOL_GPL(queue_limits_set);
288 
289 /**
290  * blk_queue_chunk_sectors - set size of the chunk for this queue
291  * @q:  the request queue for the device
292  * @chunk_sectors:  chunk sectors in the usual 512b unit
293  *
294  * Description:
295  *    If a driver doesn't want IOs to cross a given chunk size, it can set
296  *    this limit and prevent merging across chunks. Note that the block layer
297  *    must accept a page worth of data at any offset. So if the crossing of
298  *    chunks is a hard limitation in the driver, it must still be prepared
299  *    to split single page bios.
300  **/
301 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
302 {
303 	q->limits.chunk_sectors = chunk_sectors;
304 }
305 EXPORT_SYMBOL(blk_queue_chunk_sectors);
306 
307 /**
308  * blk_queue_max_discard_sectors - set max sectors for a single discard
309  * @q:  the request queue for the device
310  * @max_discard_sectors: maximum number of sectors to discard
311  **/
312 void blk_queue_max_discard_sectors(struct request_queue *q,
313 		unsigned int max_discard_sectors)
314 {
315 	struct queue_limits *lim = &q->limits;
316 
317 	lim->max_hw_discard_sectors = max_discard_sectors;
318 	lim->max_discard_sectors =
319 		min(max_discard_sectors, lim->max_user_discard_sectors);
320 }
321 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
322 
323 /**
324  * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
325  * @q:  the request queue for the device
326  * @max_sectors: maximum number of sectors to secure_erase
327  **/
328 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
329 		unsigned int max_sectors)
330 {
331 	q->limits.max_secure_erase_sectors = max_sectors;
332 }
333 EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
334 
335 /**
336  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
337  *                                      write zeroes
338  * @q:  the request queue for the device
339  * @max_write_zeroes_sectors: maximum number of sectors to write per command
340  **/
341 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
342 		unsigned int max_write_zeroes_sectors)
343 {
344 	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
345 }
346 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
347 
348 /**
349  * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
350  * @q:  the request queue for the device
351  * @max_zone_append_sectors: maximum number of sectors to write per command
352  *
353  * Sets the maximum number of sectors allowed for zone append commands. If
354  * Specifying 0 for @max_zone_append_sectors indicates that the queue does
355  * not natively support zone append operations and that the block layer must
356  * emulate these operations using regular writes.
357  **/
358 void blk_queue_max_zone_append_sectors(struct request_queue *q,
359 		unsigned int max_zone_append_sectors)
360 {
361 	unsigned int max_sectors = 0;
362 
363 	if (WARN_ON(!blk_queue_is_zoned(q)))
364 		return;
365 
366 	if (max_zone_append_sectors) {
367 		max_sectors = min(q->limits.max_hw_sectors,
368 				  max_zone_append_sectors);
369 		max_sectors = min(q->limits.chunk_sectors, max_sectors);
370 
371 		/*
372 		 * Signal eventual driver bugs resulting in the max_zone_append
373 		 * sectors limit being 0 due to the chunk_sectors limit (zone
374 		 * size) not set or the max_hw_sectors limit not set.
375 		 */
376 		WARN_ON_ONCE(!max_sectors);
377 	}
378 
379 	q->limits.max_zone_append_sectors = max_sectors;
380 }
381 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
382 
383 /**
384  * blk_queue_logical_block_size - set logical block size for the queue
385  * @q:  the request queue for the device
386  * @size:  the logical block size, in bytes
387  *
388  * Description:
389  *   This should be set to the lowest possible block size that the
390  *   storage device can address.  The default of 512 covers most
391  *   hardware.
392  **/
393 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
394 {
395 	struct queue_limits *limits = &q->limits;
396 
397 	limits->logical_block_size = size;
398 
399 	if (limits->discard_granularity < limits->logical_block_size)
400 		limits->discard_granularity = limits->logical_block_size;
401 
402 	if (limits->physical_block_size < size)
403 		limits->physical_block_size = size;
404 
405 	if (limits->io_min < limits->physical_block_size)
406 		limits->io_min = limits->physical_block_size;
407 
408 	limits->max_hw_sectors =
409 		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
410 	limits->max_sectors =
411 		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
412 }
413 EXPORT_SYMBOL(blk_queue_logical_block_size);
414 
415 /**
416  * blk_queue_physical_block_size - set physical block size for the queue
417  * @q:  the request queue for the device
418  * @size:  the physical block size, in bytes
419  *
420  * Description:
421  *   This should be set to the lowest possible sector size that the
422  *   hardware can operate on without reverting to read-modify-write
423  *   operations.
424  */
425 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
426 {
427 	q->limits.physical_block_size = size;
428 
429 	if (q->limits.physical_block_size < q->limits.logical_block_size)
430 		q->limits.physical_block_size = q->limits.logical_block_size;
431 
432 	if (q->limits.discard_granularity < q->limits.physical_block_size)
433 		q->limits.discard_granularity = q->limits.physical_block_size;
434 
435 	if (q->limits.io_min < q->limits.physical_block_size)
436 		q->limits.io_min = q->limits.physical_block_size;
437 }
438 EXPORT_SYMBOL(blk_queue_physical_block_size);
439 
440 /**
441  * blk_queue_zone_write_granularity - set zone write granularity for the queue
442  * @q:  the request queue for the zoned device
443  * @size:  the zone write granularity size, in bytes
444  *
445  * Description:
446  *   This should be set to the lowest possible size allowing to write in
447  *   sequential zones of a zoned block device.
448  */
449 void blk_queue_zone_write_granularity(struct request_queue *q,
450 				      unsigned int size)
451 {
452 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
453 		return;
454 
455 	q->limits.zone_write_granularity = size;
456 
457 	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
458 		q->limits.zone_write_granularity = q->limits.logical_block_size;
459 }
460 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
461 
462 /**
463  * blk_queue_alignment_offset - set physical block alignment offset
464  * @q:	the request queue for the device
465  * @offset: alignment offset in bytes
466  *
467  * Description:
468  *   Some devices are naturally misaligned to compensate for things like
469  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
470  *   should call this function for devices whose first sector is not
471  *   naturally aligned.
472  */
473 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
474 {
475 	q->limits.alignment_offset =
476 		offset & (q->limits.physical_block_size - 1);
477 	q->limits.misaligned = 0;
478 }
479 EXPORT_SYMBOL(blk_queue_alignment_offset);
480 
481 void disk_update_readahead(struct gendisk *disk)
482 {
483 	blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
484 }
485 EXPORT_SYMBOL_GPL(disk_update_readahead);
486 
487 /**
488  * blk_limits_io_min - set minimum request size for a device
489  * @limits: the queue limits
490  * @min:  smallest I/O size in bytes
491  *
492  * Description:
493  *   Some devices have an internal block size bigger than the reported
494  *   hardware sector size.  This function can be used to signal the
495  *   smallest I/O the device can perform without incurring a performance
496  *   penalty.
497  */
498 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
499 {
500 	limits->io_min = min;
501 
502 	if (limits->io_min < limits->logical_block_size)
503 		limits->io_min = limits->logical_block_size;
504 
505 	if (limits->io_min < limits->physical_block_size)
506 		limits->io_min = limits->physical_block_size;
507 }
508 EXPORT_SYMBOL(blk_limits_io_min);
509 
510 /**
511  * blk_queue_io_min - set minimum request size for the queue
512  * @q:	the request queue for the device
513  * @min:  smallest I/O size in bytes
514  *
515  * Description:
516  *   Storage devices may report a granularity or preferred minimum I/O
517  *   size which is the smallest request the device can perform without
518  *   incurring a performance penalty.  For disk drives this is often the
519  *   physical block size.  For RAID arrays it is often the stripe chunk
520  *   size.  A properly aligned multiple of minimum_io_size is the
521  *   preferred request size for workloads where a high number of I/O
522  *   operations is desired.
523  */
524 void blk_queue_io_min(struct request_queue *q, unsigned int min)
525 {
526 	blk_limits_io_min(&q->limits, min);
527 }
528 EXPORT_SYMBOL(blk_queue_io_min);
529 
530 /**
531  * blk_limits_io_opt - set optimal request size for a device
532  * @limits: the queue limits
533  * @opt:  smallest I/O size in bytes
534  *
535  * Description:
536  *   Storage devices may report an optimal I/O size, which is the
537  *   device's preferred unit for sustained I/O.  This is rarely reported
538  *   for disk drives.  For RAID arrays it is usually the stripe width or
539  *   the internal track size.  A properly aligned multiple of
540  *   optimal_io_size is the preferred request size for workloads where
541  *   sustained throughput is desired.
542  */
543 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
544 {
545 	limits->io_opt = opt;
546 }
547 EXPORT_SYMBOL(blk_limits_io_opt);
548 
549 static int queue_limit_alignment_offset(const struct queue_limits *lim,
550 		sector_t sector)
551 {
552 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
553 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
554 		<< SECTOR_SHIFT;
555 
556 	return (granularity + lim->alignment_offset - alignment) % granularity;
557 }
558 
559 static unsigned int queue_limit_discard_alignment(
560 		const struct queue_limits *lim, sector_t sector)
561 {
562 	unsigned int alignment, granularity, offset;
563 
564 	if (!lim->max_discard_sectors)
565 		return 0;
566 
567 	/* Why are these in bytes, not sectors? */
568 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
569 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
570 	if (!granularity)
571 		return 0;
572 
573 	/* Offset of the partition start in 'granularity' sectors */
574 	offset = sector_div(sector, granularity);
575 
576 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
577 	offset = (granularity + alignment - offset) % granularity;
578 
579 	/* Turn it back into bytes, gaah */
580 	return offset << SECTOR_SHIFT;
581 }
582 
583 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
584 {
585 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
586 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
587 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
588 	return sectors;
589 }
590 
591 /**
592  * blk_stack_limits - adjust queue_limits for stacked devices
593  * @t:	the stacking driver limits (top device)
594  * @b:  the underlying queue limits (bottom, component device)
595  * @start:  first data sector within component device
596  *
597  * Description:
598  *    This function is used by stacking drivers like MD and DM to ensure
599  *    that all component devices have compatible block sizes and
600  *    alignments.  The stacking driver must provide a queue_limits
601  *    struct (top) and then iteratively call the stacking function for
602  *    all component (bottom) devices.  The stacking function will
603  *    attempt to combine the values and ensure proper alignment.
604  *
605  *    Returns 0 if the top and bottom queue_limits are compatible.  The
606  *    top device's block sizes and alignment offsets may be adjusted to
607  *    ensure alignment with the bottom device. If no compatible sizes
608  *    and alignments exist, -1 is returned and the resulting top
609  *    queue_limits will have the misaligned flag set to indicate that
610  *    the alignment_offset is undefined.
611  */
612 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
613 		     sector_t start)
614 {
615 	unsigned int top, bottom, alignment, ret = 0;
616 
617 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
618 	t->max_user_sectors = min_not_zero(t->max_user_sectors,
619 			b->max_user_sectors);
620 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
621 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
622 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
623 					b->max_write_zeroes_sectors);
624 	t->max_zone_append_sectors = min(queue_limits_max_zone_append_sectors(t),
625 					 queue_limits_max_zone_append_sectors(b));
626 	t->bounce = max(t->bounce, b->bounce);
627 
628 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
629 					    b->seg_boundary_mask);
630 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
631 					    b->virt_boundary_mask);
632 
633 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
634 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
635 					       b->max_discard_segments);
636 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
637 						 b->max_integrity_segments);
638 
639 	t->max_segment_size = min_not_zero(t->max_segment_size,
640 					   b->max_segment_size);
641 
642 	t->misaligned |= b->misaligned;
643 
644 	alignment = queue_limit_alignment_offset(b, start);
645 
646 	/* Bottom device has different alignment.  Check that it is
647 	 * compatible with the current top alignment.
648 	 */
649 	if (t->alignment_offset != alignment) {
650 
651 		top = max(t->physical_block_size, t->io_min)
652 			+ t->alignment_offset;
653 		bottom = max(b->physical_block_size, b->io_min) + alignment;
654 
655 		/* Verify that top and bottom intervals line up */
656 		if (max(top, bottom) % min(top, bottom)) {
657 			t->misaligned = 1;
658 			ret = -1;
659 		}
660 	}
661 
662 	t->logical_block_size = max(t->logical_block_size,
663 				    b->logical_block_size);
664 
665 	t->physical_block_size = max(t->physical_block_size,
666 				     b->physical_block_size);
667 
668 	t->io_min = max(t->io_min, b->io_min);
669 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
670 	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
671 
672 	/* Set non-power-of-2 compatible chunk_sectors boundary */
673 	if (b->chunk_sectors)
674 		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
675 
676 	/* Physical block size a multiple of the logical block size? */
677 	if (t->physical_block_size & (t->logical_block_size - 1)) {
678 		t->physical_block_size = t->logical_block_size;
679 		t->misaligned = 1;
680 		ret = -1;
681 	}
682 
683 	/* Minimum I/O a multiple of the physical block size? */
684 	if (t->io_min & (t->physical_block_size - 1)) {
685 		t->io_min = t->physical_block_size;
686 		t->misaligned = 1;
687 		ret = -1;
688 	}
689 
690 	/* Optimal I/O a multiple of the physical block size? */
691 	if (t->io_opt & (t->physical_block_size - 1)) {
692 		t->io_opt = 0;
693 		t->misaligned = 1;
694 		ret = -1;
695 	}
696 
697 	/* chunk_sectors a multiple of the physical block size? */
698 	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
699 		t->chunk_sectors = 0;
700 		t->misaligned = 1;
701 		ret = -1;
702 	}
703 
704 	t->raid_partial_stripes_expensive =
705 		max(t->raid_partial_stripes_expensive,
706 		    b->raid_partial_stripes_expensive);
707 
708 	/* Find lowest common alignment_offset */
709 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
710 		% max(t->physical_block_size, t->io_min);
711 
712 	/* Verify that new alignment_offset is on a logical block boundary */
713 	if (t->alignment_offset & (t->logical_block_size - 1)) {
714 		t->misaligned = 1;
715 		ret = -1;
716 	}
717 
718 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
719 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
720 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
721 
722 	/* Discard alignment and granularity */
723 	if (b->discard_granularity) {
724 		alignment = queue_limit_discard_alignment(b, start);
725 
726 		if (t->discard_granularity != 0 &&
727 		    t->discard_alignment != alignment) {
728 			top = t->discard_granularity + t->discard_alignment;
729 			bottom = b->discard_granularity + alignment;
730 
731 			/* Verify that top and bottom intervals line up */
732 			if ((max(top, bottom) % min(top, bottom)) != 0)
733 				t->discard_misaligned = 1;
734 		}
735 
736 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
737 						      b->max_discard_sectors);
738 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
739 							 b->max_hw_discard_sectors);
740 		t->discard_granularity = max(t->discard_granularity,
741 					     b->discard_granularity);
742 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
743 			t->discard_granularity;
744 	}
745 	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
746 						   b->max_secure_erase_sectors);
747 	t->zone_write_granularity = max(t->zone_write_granularity,
748 					b->zone_write_granularity);
749 	t->zoned = max(t->zoned, b->zoned);
750 	if (!t->zoned) {
751 		t->zone_write_granularity = 0;
752 		t->max_zone_append_sectors = 0;
753 	}
754 	return ret;
755 }
756 EXPORT_SYMBOL(blk_stack_limits);
757 
758 /**
759  * queue_limits_stack_bdev - adjust queue_limits for stacked devices
760  * @t:	the stacking driver limits (top device)
761  * @bdev:  the underlying block device (bottom)
762  * @offset:  offset to beginning of data within component device
763  * @pfx: prefix to use for warnings logged
764  *
765  * Description:
766  *    This function is used by stacking drivers like MD and DM to ensure
767  *    that all component devices have compatible block sizes and
768  *    alignments.  The stacking driver must provide a queue_limits
769  *    struct (top) and then iteratively call the stacking function for
770  *    all component (bottom) devices.  The stacking function will
771  *    attempt to combine the values and ensure proper alignment.
772  */
773 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
774 		sector_t offset, const char *pfx)
775 {
776 	if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
777 			get_start_sect(bdev) + offset))
778 		pr_notice("%s: Warning: Device %pg is misaligned\n",
779 			pfx, bdev);
780 }
781 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
782 
783 /**
784  * blk_queue_update_dma_pad - update pad mask
785  * @q:     the request queue for the device
786  * @mask:  pad mask
787  *
788  * Update dma pad mask.
789  *
790  * Appending pad buffer to a request modifies the last entry of a
791  * scatter list such that it includes the pad buffer.
792  **/
793 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
794 {
795 	if (mask > q->dma_pad_mask)
796 		q->dma_pad_mask = mask;
797 }
798 EXPORT_SYMBOL(blk_queue_update_dma_pad);
799 
800 /**
801  * blk_set_queue_depth - tell the block layer about the device queue depth
802  * @q:		the request queue for the device
803  * @depth:		queue depth
804  *
805  */
806 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
807 {
808 	q->queue_depth = depth;
809 	rq_qos_queue_depth_changed(q);
810 }
811 EXPORT_SYMBOL(blk_set_queue_depth);
812 
813 /**
814  * blk_queue_write_cache - configure queue's write cache
815  * @q:		the request queue for the device
816  * @wc:		write back cache on or off
817  * @fua:	device supports FUA writes, if true
818  *
819  * Tell the block layer about the write cache of @q.
820  */
821 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
822 {
823 	if (wc) {
824 		blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
825 		blk_queue_flag_set(QUEUE_FLAG_WC, q);
826 	} else {
827 		blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
828 		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
829 	}
830 	if (fua)
831 		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
832 	else
833 		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
834 }
835 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
836 
837 /**
838  * disk_set_zoned - inidicate a zoned device
839  * @disk:	gendisk to configure
840  */
841 void disk_set_zoned(struct gendisk *disk)
842 {
843 	struct request_queue *q = disk->queue;
844 
845 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
846 
847 	/*
848 	 * Set the zone write granularity to the device logical block
849 	 * size by default. The driver can change this value if needed.
850 	 */
851 	q->limits.zoned = true;
852 	blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
853 }
854 EXPORT_SYMBOL_GPL(disk_set_zoned);
855 
856 int bdev_alignment_offset(struct block_device *bdev)
857 {
858 	struct request_queue *q = bdev_get_queue(bdev);
859 
860 	if (q->limits.misaligned)
861 		return -1;
862 	if (bdev_is_partition(bdev))
863 		return queue_limit_alignment_offset(&q->limits,
864 				bdev->bd_start_sect);
865 	return q->limits.alignment_offset;
866 }
867 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
868 
869 unsigned int bdev_discard_alignment(struct block_device *bdev)
870 {
871 	struct request_queue *q = bdev_get_queue(bdev);
872 
873 	if (bdev_is_partition(bdev))
874 		return queue_limit_discard_alignment(&q->limits,
875 				bdev->bd_start_sect);
876 	return q->limits.discard_alignment;
877 }
878 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
879