1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blkdev.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 18 #include "blk.h" 19 #include "blk-wbt.h" 20 21 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 22 { 23 q->rq_timeout = timeout; 24 } 25 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 26 27 /** 28 * blk_set_default_limits - reset limits to default values 29 * @lim: the queue_limits structure to reset 30 * 31 * Description: 32 * Returns a queue_limit struct to its default state. 33 */ 34 void blk_set_default_limits(struct queue_limits *lim) 35 { 36 lim->max_segments = BLK_MAX_SEGMENTS; 37 lim->max_discard_segments = 1; 38 lim->max_integrity_segments = 0; 39 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 40 lim->virt_boundary_mask = 0; 41 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 42 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 43 lim->max_dev_sectors = 0; 44 lim->chunk_sectors = 0; 45 lim->max_write_same_sectors = 0; 46 lim->max_write_zeroes_sectors = 0; 47 lim->max_zone_append_sectors = 0; 48 lim->max_discard_sectors = 0; 49 lim->max_hw_discard_sectors = 0; 50 lim->discard_granularity = 0; 51 lim->discard_alignment = 0; 52 lim->discard_misaligned = 0; 53 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 54 lim->bounce = BLK_BOUNCE_NONE; 55 lim->alignment_offset = 0; 56 lim->io_opt = 0; 57 lim->misaligned = 0; 58 lim->zoned = BLK_ZONED_NONE; 59 lim->zone_write_granularity = 0; 60 } 61 EXPORT_SYMBOL(blk_set_default_limits); 62 63 /** 64 * blk_set_stacking_limits - set default limits for stacking devices 65 * @lim: the queue_limits structure to reset 66 * 67 * Description: 68 * Returns a queue_limit struct to its default state. Should be used 69 * by stacking drivers like DM that have no internal limits. 70 */ 71 void blk_set_stacking_limits(struct queue_limits *lim) 72 { 73 blk_set_default_limits(lim); 74 75 /* Inherit limits from component devices */ 76 lim->max_segments = USHRT_MAX; 77 lim->max_discard_segments = USHRT_MAX; 78 lim->max_hw_sectors = UINT_MAX; 79 lim->max_segment_size = UINT_MAX; 80 lim->max_sectors = UINT_MAX; 81 lim->max_dev_sectors = UINT_MAX; 82 lim->max_write_same_sectors = UINT_MAX; 83 lim->max_write_zeroes_sectors = UINT_MAX; 84 lim->max_zone_append_sectors = UINT_MAX; 85 } 86 EXPORT_SYMBOL(blk_set_stacking_limits); 87 88 /** 89 * blk_queue_bounce_limit - set bounce buffer limit for queue 90 * @q: the request queue for the device 91 * @bounce: bounce limit to enforce 92 * 93 * Description: 94 * Force bouncing for ISA DMA ranges or highmem. 95 * 96 * DEPRECATED, don't use in new code. 97 **/ 98 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce) 99 { 100 q->limits.bounce = bounce; 101 } 102 EXPORT_SYMBOL(blk_queue_bounce_limit); 103 104 /** 105 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 106 * @q: the request queue for the device 107 * @max_hw_sectors: max hardware sectors in the usual 512b unit 108 * 109 * Description: 110 * Enables a low level driver to set a hard upper limit, 111 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 112 * the device driver based upon the capabilities of the I/O 113 * controller. 114 * 115 * max_dev_sectors is a hard limit imposed by the storage device for 116 * READ/WRITE requests. It is set by the disk driver. 117 * 118 * max_sectors is a soft limit imposed by the block layer for 119 * filesystem type requests. This value can be overridden on a 120 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 121 * The soft limit can not exceed max_hw_sectors. 122 **/ 123 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 124 { 125 struct queue_limits *limits = &q->limits; 126 unsigned int max_sectors; 127 128 if ((max_hw_sectors << 9) < PAGE_SIZE) { 129 max_hw_sectors = 1 << (PAGE_SHIFT - 9); 130 printk(KERN_INFO "%s: set to minimum %d\n", 131 __func__, max_hw_sectors); 132 } 133 134 max_hw_sectors = round_down(max_hw_sectors, 135 limits->logical_block_size >> SECTOR_SHIFT); 136 limits->max_hw_sectors = max_hw_sectors; 137 138 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors); 139 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS); 140 max_sectors = round_down(max_sectors, 141 limits->logical_block_size >> SECTOR_SHIFT); 142 limits->max_sectors = max_sectors; 143 144 if (!q->disk) 145 return; 146 q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9); 147 } 148 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 149 150 /** 151 * blk_queue_chunk_sectors - set size of the chunk for this queue 152 * @q: the request queue for the device 153 * @chunk_sectors: chunk sectors in the usual 512b unit 154 * 155 * Description: 156 * If a driver doesn't want IOs to cross a given chunk size, it can set 157 * this limit and prevent merging across chunks. Note that the block layer 158 * must accept a page worth of data at any offset. So if the crossing of 159 * chunks is a hard limitation in the driver, it must still be prepared 160 * to split single page bios. 161 **/ 162 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) 163 { 164 q->limits.chunk_sectors = chunk_sectors; 165 } 166 EXPORT_SYMBOL(blk_queue_chunk_sectors); 167 168 /** 169 * blk_queue_max_discard_sectors - set max sectors for a single discard 170 * @q: the request queue for the device 171 * @max_discard_sectors: maximum number of sectors to discard 172 **/ 173 void blk_queue_max_discard_sectors(struct request_queue *q, 174 unsigned int max_discard_sectors) 175 { 176 q->limits.max_hw_discard_sectors = max_discard_sectors; 177 q->limits.max_discard_sectors = max_discard_sectors; 178 } 179 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 180 181 /** 182 * blk_queue_max_write_same_sectors - set max sectors for a single write same 183 * @q: the request queue for the device 184 * @max_write_same_sectors: maximum number of sectors to write per command 185 **/ 186 void blk_queue_max_write_same_sectors(struct request_queue *q, 187 unsigned int max_write_same_sectors) 188 { 189 q->limits.max_write_same_sectors = max_write_same_sectors; 190 } 191 EXPORT_SYMBOL(blk_queue_max_write_same_sectors); 192 193 /** 194 * blk_queue_max_write_zeroes_sectors - set max sectors for a single 195 * write zeroes 196 * @q: the request queue for the device 197 * @max_write_zeroes_sectors: maximum number of sectors to write per command 198 **/ 199 void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 200 unsigned int max_write_zeroes_sectors) 201 { 202 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors; 203 } 204 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors); 205 206 /** 207 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append 208 * @q: the request queue for the device 209 * @max_zone_append_sectors: maximum number of sectors to write per command 210 **/ 211 void blk_queue_max_zone_append_sectors(struct request_queue *q, 212 unsigned int max_zone_append_sectors) 213 { 214 unsigned int max_sectors; 215 216 if (WARN_ON(!blk_queue_is_zoned(q))) 217 return; 218 219 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors); 220 max_sectors = min(q->limits.chunk_sectors, max_sectors); 221 222 /* 223 * Signal eventual driver bugs resulting in the max_zone_append sectors limit 224 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set, 225 * or the max_hw_sectors limit not set. 226 */ 227 WARN_ON(!max_sectors); 228 229 q->limits.max_zone_append_sectors = max_sectors; 230 } 231 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors); 232 233 /** 234 * blk_queue_max_segments - set max hw segments for a request for this queue 235 * @q: the request queue for the device 236 * @max_segments: max number of segments 237 * 238 * Description: 239 * Enables a low level driver to set an upper limit on the number of 240 * hw data segments in a request. 241 **/ 242 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 243 { 244 if (!max_segments) { 245 max_segments = 1; 246 printk(KERN_INFO "%s: set to minimum %d\n", 247 __func__, max_segments); 248 } 249 250 q->limits.max_segments = max_segments; 251 } 252 EXPORT_SYMBOL(blk_queue_max_segments); 253 254 /** 255 * blk_queue_max_discard_segments - set max segments for discard requests 256 * @q: the request queue for the device 257 * @max_segments: max number of segments 258 * 259 * Description: 260 * Enables a low level driver to set an upper limit on the number of 261 * segments in a discard request. 262 **/ 263 void blk_queue_max_discard_segments(struct request_queue *q, 264 unsigned short max_segments) 265 { 266 q->limits.max_discard_segments = max_segments; 267 } 268 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments); 269 270 /** 271 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 272 * @q: the request queue for the device 273 * @max_size: max size of segment in bytes 274 * 275 * Description: 276 * Enables a low level driver to set an upper limit on the size of a 277 * coalesced segment 278 **/ 279 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 280 { 281 if (max_size < PAGE_SIZE) { 282 max_size = PAGE_SIZE; 283 printk(KERN_INFO "%s: set to minimum %d\n", 284 __func__, max_size); 285 } 286 287 /* see blk_queue_virt_boundary() for the explanation */ 288 WARN_ON_ONCE(q->limits.virt_boundary_mask); 289 290 q->limits.max_segment_size = max_size; 291 } 292 EXPORT_SYMBOL(blk_queue_max_segment_size); 293 294 /** 295 * blk_queue_logical_block_size - set logical block size for the queue 296 * @q: the request queue for the device 297 * @size: the logical block size, in bytes 298 * 299 * Description: 300 * This should be set to the lowest possible block size that the 301 * storage device can address. The default of 512 covers most 302 * hardware. 303 **/ 304 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size) 305 { 306 struct queue_limits *limits = &q->limits; 307 308 limits->logical_block_size = size; 309 310 if (limits->physical_block_size < size) 311 limits->physical_block_size = size; 312 313 if (limits->io_min < limits->physical_block_size) 314 limits->io_min = limits->physical_block_size; 315 316 limits->max_hw_sectors = 317 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT); 318 limits->max_sectors = 319 round_down(limits->max_sectors, size >> SECTOR_SHIFT); 320 } 321 EXPORT_SYMBOL(blk_queue_logical_block_size); 322 323 /** 324 * blk_queue_physical_block_size - set physical block size for the queue 325 * @q: the request queue for the device 326 * @size: the physical block size, in bytes 327 * 328 * Description: 329 * This should be set to the lowest possible sector size that the 330 * hardware can operate on without reverting to read-modify-write 331 * operations. 332 */ 333 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 334 { 335 q->limits.physical_block_size = size; 336 337 if (q->limits.physical_block_size < q->limits.logical_block_size) 338 q->limits.physical_block_size = q->limits.logical_block_size; 339 340 if (q->limits.io_min < q->limits.physical_block_size) 341 q->limits.io_min = q->limits.physical_block_size; 342 } 343 EXPORT_SYMBOL(blk_queue_physical_block_size); 344 345 /** 346 * blk_queue_zone_write_granularity - set zone write granularity for the queue 347 * @q: the request queue for the zoned device 348 * @size: the zone write granularity size, in bytes 349 * 350 * Description: 351 * This should be set to the lowest possible size allowing to write in 352 * sequential zones of a zoned block device. 353 */ 354 void blk_queue_zone_write_granularity(struct request_queue *q, 355 unsigned int size) 356 { 357 if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) 358 return; 359 360 q->limits.zone_write_granularity = size; 361 362 if (q->limits.zone_write_granularity < q->limits.logical_block_size) 363 q->limits.zone_write_granularity = q->limits.logical_block_size; 364 } 365 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity); 366 367 /** 368 * blk_queue_alignment_offset - set physical block alignment offset 369 * @q: the request queue for the device 370 * @offset: alignment offset in bytes 371 * 372 * Description: 373 * Some devices are naturally misaligned to compensate for things like 374 * the legacy DOS partition table 63-sector offset. Low-level drivers 375 * should call this function for devices whose first sector is not 376 * naturally aligned. 377 */ 378 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 379 { 380 q->limits.alignment_offset = 381 offset & (q->limits.physical_block_size - 1); 382 q->limits.misaligned = 0; 383 } 384 EXPORT_SYMBOL(blk_queue_alignment_offset); 385 386 void disk_update_readahead(struct gendisk *disk) 387 { 388 struct request_queue *q = disk->queue; 389 390 /* 391 * For read-ahead of large files to be effective, we need to read ahead 392 * at least twice the optimal I/O size. 393 */ 394 disk->bdi->ra_pages = 395 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 396 disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9); 397 } 398 EXPORT_SYMBOL_GPL(disk_update_readahead); 399 400 /** 401 * blk_limits_io_min - set minimum request size for a device 402 * @limits: the queue limits 403 * @min: smallest I/O size in bytes 404 * 405 * Description: 406 * Some devices have an internal block size bigger than the reported 407 * hardware sector size. This function can be used to signal the 408 * smallest I/O the device can perform without incurring a performance 409 * penalty. 410 */ 411 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 412 { 413 limits->io_min = min; 414 415 if (limits->io_min < limits->logical_block_size) 416 limits->io_min = limits->logical_block_size; 417 418 if (limits->io_min < limits->physical_block_size) 419 limits->io_min = limits->physical_block_size; 420 } 421 EXPORT_SYMBOL(blk_limits_io_min); 422 423 /** 424 * blk_queue_io_min - set minimum request size for the queue 425 * @q: the request queue for the device 426 * @min: smallest I/O size in bytes 427 * 428 * Description: 429 * Storage devices may report a granularity or preferred minimum I/O 430 * size which is the smallest request the device can perform without 431 * incurring a performance penalty. For disk drives this is often the 432 * physical block size. For RAID arrays it is often the stripe chunk 433 * size. A properly aligned multiple of minimum_io_size is the 434 * preferred request size for workloads where a high number of I/O 435 * operations is desired. 436 */ 437 void blk_queue_io_min(struct request_queue *q, unsigned int min) 438 { 439 blk_limits_io_min(&q->limits, min); 440 } 441 EXPORT_SYMBOL(blk_queue_io_min); 442 443 /** 444 * blk_limits_io_opt - set optimal request size for a device 445 * @limits: the queue limits 446 * @opt: smallest I/O size in bytes 447 * 448 * Description: 449 * Storage devices may report an optimal I/O size, which is the 450 * device's preferred unit for sustained I/O. This is rarely reported 451 * for disk drives. For RAID arrays it is usually the stripe width or 452 * the internal track size. A properly aligned multiple of 453 * optimal_io_size is the preferred request size for workloads where 454 * sustained throughput is desired. 455 */ 456 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 457 { 458 limits->io_opt = opt; 459 } 460 EXPORT_SYMBOL(blk_limits_io_opt); 461 462 /** 463 * blk_queue_io_opt - set optimal request size for the queue 464 * @q: the request queue for the device 465 * @opt: optimal request size in bytes 466 * 467 * Description: 468 * Storage devices may report an optimal I/O size, which is the 469 * device's preferred unit for sustained I/O. This is rarely reported 470 * for disk drives. For RAID arrays it is usually the stripe width or 471 * the internal track size. A properly aligned multiple of 472 * optimal_io_size is the preferred request size for workloads where 473 * sustained throughput is desired. 474 */ 475 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 476 { 477 blk_limits_io_opt(&q->limits, opt); 478 if (!q->disk) 479 return; 480 q->disk->bdi->ra_pages = 481 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); 482 } 483 EXPORT_SYMBOL(blk_queue_io_opt); 484 485 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 486 { 487 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 488 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 489 sectors = PAGE_SIZE >> SECTOR_SHIFT; 490 return sectors; 491 } 492 493 /** 494 * blk_stack_limits - adjust queue_limits for stacked devices 495 * @t: the stacking driver limits (top device) 496 * @b: the underlying queue limits (bottom, component device) 497 * @start: first data sector within component device 498 * 499 * Description: 500 * This function is used by stacking drivers like MD and DM to ensure 501 * that all component devices have compatible block sizes and 502 * alignments. The stacking driver must provide a queue_limits 503 * struct (top) and then iteratively call the stacking function for 504 * all component (bottom) devices. The stacking function will 505 * attempt to combine the values and ensure proper alignment. 506 * 507 * Returns 0 if the top and bottom queue_limits are compatible. The 508 * top device's block sizes and alignment offsets may be adjusted to 509 * ensure alignment with the bottom device. If no compatible sizes 510 * and alignments exist, -1 is returned and the resulting top 511 * queue_limits will have the misaligned flag set to indicate that 512 * the alignment_offset is undefined. 513 */ 514 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 515 sector_t start) 516 { 517 unsigned int top, bottom, alignment, ret = 0; 518 519 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 520 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 521 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 522 t->max_write_same_sectors = min(t->max_write_same_sectors, 523 b->max_write_same_sectors); 524 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 525 b->max_write_zeroes_sectors); 526 t->max_zone_append_sectors = min(t->max_zone_append_sectors, 527 b->max_zone_append_sectors); 528 t->bounce = max(t->bounce, b->bounce); 529 530 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 531 b->seg_boundary_mask); 532 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 533 b->virt_boundary_mask); 534 535 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 536 t->max_discard_segments = min_not_zero(t->max_discard_segments, 537 b->max_discard_segments); 538 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 539 b->max_integrity_segments); 540 541 t->max_segment_size = min_not_zero(t->max_segment_size, 542 b->max_segment_size); 543 544 t->misaligned |= b->misaligned; 545 546 alignment = queue_limit_alignment_offset(b, start); 547 548 /* Bottom device has different alignment. Check that it is 549 * compatible with the current top alignment. 550 */ 551 if (t->alignment_offset != alignment) { 552 553 top = max(t->physical_block_size, t->io_min) 554 + t->alignment_offset; 555 bottom = max(b->physical_block_size, b->io_min) + alignment; 556 557 /* Verify that top and bottom intervals line up */ 558 if (max(top, bottom) % min(top, bottom)) { 559 t->misaligned = 1; 560 ret = -1; 561 } 562 } 563 564 t->logical_block_size = max(t->logical_block_size, 565 b->logical_block_size); 566 567 t->physical_block_size = max(t->physical_block_size, 568 b->physical_block_size); 569 570 t->io_min = max(t->io_min, b->io_min); 571 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 572 573 /* Set non-power-of-2 compatible chunk_sectors boundary */ 574 if (b->chunk_sectors) 575 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 576 577 /* Physical block size a multiple of the logical block size? */ 578 if (t->physical_block_size & (t->logical_block_size - 1)) { 579 t->physical_block_size = t->logical_block_size; 580 t->misaligned = 1; 581 ret = -1; 582 } 583 584 /* Minimum I/O a multiple of the physical block size? */ 585 if (t->io_min & (t->physical_block_size - 1)) { 586 t->io_min = t->physical_block_size; 587 t->misaligned = 1; 588 ret = -1; 589 } 590 591 /* Optimal I/O a multiple of the physical block size? */ 592 if (t->io_opt & (t->physical_block_size - 1)) { 593 t->io_opt = 0; 594 t->misaligned = 1; 595 ret = -1; 596 } 597 598 /* chunk_sectors a multiple of the physical block size? */ 599 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { 600 t->chunk_sectors = 0; 601 t->misaligned = 1; 602 ret = -1; 603 } 604 605 t->raid_partial_stripes_expensive = 606 max(t->raid_partial_stripes_expensive, 607 b->raid_partial_stripes_expensive); 608 609 /* Find lowest common alignment_offset */ 610 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 611 % max(t->physical_block_size, t->io_min); 612 613 /* Verify that new alignment_offset is on a logical block boundary */ 614 if (t->alignment_offset & (t->logical_block_size - 1)) { 615 t->misaligned = 1; 616 ret = -1; 617 } 618 619 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 620 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 621 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 622 623 /* Discard alignment and granularity */ 624 if (b->discard_granularity) { 625 alignment = queue_limit_discard_alignment(b, start); 626 627 if (t->discard_granularity != 0 && 628 t->discard_alignment != alignment) { 629 top = t->discard_granularity + t->discard_alignment; 630 bottom = b->discard_granularity + alignment; 631 632 /* Verify that top and bottom intervals line up */ 633 if ((max(top, bottom) % min(top, bottom)) != 0) 634 t->discard_misaligned = 1; 635 } 636 637 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 638 b->max_discard_sectors); 639 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 640 b->max_hw_discard_sectors); 641 t->discard_granularity = max(t->discard_granularity, 642 b->discard_granularity); 643 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 644 t->discard_granularity; 645 } 646 647 t->zone_write_granularity = max(t->zone_write_granularity, 648 b->zone_write_granularity); 649 t->zoned = max(t->zoned, b->zoned); 650 return ret; 651 } 652 EXPORT_SYMBOL(blk_stack_limits); 653 654 /** 655 * disk_stack_limits - adjust queue limits for stacked drivers 656 * @disk: MD/DM gendisk (top) 657 * @bdev: the underlying block device (bottom) 658 * @offset: offset to beginning of data within component device 659 * 660 * Description: 661 * Merges the limits for a top level gendisk and a bottom level 662 * block_device. 663 */ 664 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 665 sector_t offset) 666 { 667 struct request_queue *t = disk->queue; 668 669 if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits, 670 get_start_sect(bdev) + (offset >> 9)) < 0) 671 pr_notice("%s: Warning: Device %pg is misaligned\n", 672 disk->disk_name, bdev); 673 674 disk_update_readahead(disk); 675 } 676 EXPORT_SYMBOL(disk_stack_limits); 677 678 /** 679 * blk_queue_update_dma_pad - update pad mask 680 * @q: the request queue for the device 681 * @mask: pad mask 682 * 683 * Update dma pad mask. 684 * 685 * Appending pad buffer to a request modifies the last entry of a 686 * scatter list such that it includes the pad buffer. 687 **/ 688 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 689 { 690 if (mask > q->dma_pad_mask) 691 q->dma_pad_mask = mask; 692 } 693 EXPORT_SYMBOL(blk_queue_update_dma_pad); 694 695 /** 696 * blk_queue_segment_boundary - set boundary rules for segment merging 697 * @q: the request queue for the device 698 * @mask: the memory boundary mask 699 **/ 700 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 701 { 702 if (mask < PAGE_SIZE - 1) { 703 mask = PAGE_SIZE - 1; 704 printk(KERN_INFO "%s: set to minimum %lx\n", 705 __func__, mask); 706 } 707 708 q->limits.seg_boundary_mask = mask; 709 } 710 EXPORT_SYMBOL(blk_queue_segment_boundary); 711 712 /** 713 * blk_queue_virt_boundary - set boundary rules for bio merging 714 * @q: the request queue for the device 715 * @mask: the memory boundary mask 716 **/ 717 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask) 718 { 719 q->limits.virt_boundary_mask = mask; 720 721 /* 722 * Devices that require a virtual boundary do not support scatter/gather 723 * I/O natively, but instead require a descriptor list entry for each 724 * page (which might not be idential to the Linux PAGE_SIZE). Because 725 * of that they are not limited by our notion of "segment size". 726 */ 727 if (mask) 728 q->limits.max_segment_size = UINT_MAX; 729 } 730 EXPORT_SYMBOL(blk_queue_virt_boundary); 731 732 /** 733 * blk_queue_dma_alignment - set dma length and memory alignment 734 * @q: the request queue for the device 735 * @mask: alignment mask 736 * 737 * description: 738 * set required memory and length alignment for direct dma transactions. 739 * this is used when building direct io requests for the queue. 740 * 741 **/ 742 void blk_queue_dma_alignment(struct request_queue *q, int mask) 743 { 744 q->dma_alignment = mask; 745 } 746 EXPORT_SYMBOL(blk_queue_dma_alignment); 747 748 /** 749 * blk_queue_update_dma_alignment - update dma length and memory alignment 750 * @q: the request queue for the device 751 * @mask: alignment mask 752 * 753 * description: 754 * update required memory and length alignment for direct dma transactions. 755 * If the requested alignment is larger than the current alignment, then 756 * the current queue alignment is updated to the new value, otherwise it 757 * is left alone. The design of this is to allow multiple objects 758 * (driver, device, transport etc) to set their respective 759 * alignments without having them interfere. 760 * 761 **/ 762 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 763 { 764 BUG_ON(mask > PAGE_SIZE); 765 766 if (mask > q->dma_alignment) 767 q->dma_alignment = mask; 768 } 769 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 770 771 /** 772 * blk_set_queue_depth - tell the block layer about the device queue depth 773 * @q: the request queue for the device 774 * @depth: queue depth 775 * 776 */ 777 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 778 { 779 q->queue_depth = depth; 780 rq_qos_queue_depth_changed(q); 781 } 782 EXPORT_SYMBOL(blk_set_queue_depth); 783 784 /** 785 * blk_queue_write_cache - configure queue's write cache 786 * @q: the request queue for the device 787 * @wc: write back cache on or off 788 * @fua: device supports FUA writes, if true 789 * 790 * Tell the block layer about the write cache of @q. 791 */ 792 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) 793 { 794 if (wc) 795 blk_queue_flag_set(QUEUE_FLAG_WC, q); 796 else 797 blk_queue_flag_clear(QUEUE_FLAG_WC, q); 798 if (fua) 799 blk_queue_flag_set(QUEUE_FLAG_FUA, q); 800 else 801 blk_queue_flag_clear(QUEUE_FLAG_FUA, q); 802 803 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); 804 } 805 EXPORT_SYMBOL_GPL(blk_queue_write_cache); 806 807 /** 808 * blk_queue_required_elevator_features - Set a queue required elevator features 809 * @q: the request queue for the target device 810 * @features: Required elevator features OR'ed together 811 * 812 * Tell the block layer that for the device controlled through @q, only the 813 * only elevators that can be used are those that implement at least the set of 814 * features specified by @features. 815 */ 816 void blk_queue_required_elevator_features(struct request_queue *q, 817 unsigned int features) 818 { 819 q->required_elevator_features = features; 820 } 821 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features); 822 823 /** 824 * blk_queue_can_use_dma_map_merging - configure queue for merging segments. 825 * @q: the request queue for the device 826 * @dev: the device pointer for dma 827 * 828 * Tell the block layer about merging the segments by dma map of @q. 829 */ 830 bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 831 struct device *dev) 832 { 833 unsigned long boundary = dma_get_merge_boundary(dev); 834 835 if (!boundary) 836 return false; 837 838 /* No need to update max_segment_size. see blk_queue_virt_boundary() */ 839 blk_queue_virt_boundary(q, boundary); 840 841 return true; 842 } 843 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging); 844 845 static bool disk_has_partitions(struct gendisk *disk) 846 { 847 unsigned long idx; 848 struct block_device *part; 849 bool ret = false; 850 851 rcu_read_lock(); 852 xa_for_each(&disk->part_tbl, idx, part) { 853 if (bdev_is_partition(part)) { 854 ret = true; 855 break; 856 } 857 } 858 rcu_read_unlock(); 859 860 return ret; 861 } 862 863 /** 864 * blk_queue_set_zoned - configure a disk queue zoned model. 865 * @disk: the gendisk of the queue to configure 866 * @model: the zoned model to set 867 * 868 * Set the zoned model of the request queue of @disk according to @model. 869 * When @model is BLK_ZONED_HM (host managed), this should be called only 870 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option). 871 * If @model specifies BLK_ZONED_HA (host aware), the effective model used 872 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions 873 * on the disk. 874 */ 875 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model) 876 { 877 struct request_queue *q = disk->queue; 878 879 switch (model) { 880 case BLK_ZONED_HM: 881 /* 882 * Host managed devices are supported only if 883 * CONFIG_BLK_DEV_ZONED is enabled. 884 */ 885 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)); 886 break; 887 case BLK_ZONED_HA: 888 /* 889 * Host aware devices can be treated either as regular block 890 * devices (similar to drive managed devices) or as zoned block 891 * devices to take advantage of the zone command set, similarly 892 * to host managed devices. We try the latter if there are no 893 * partitions and zoned block device support is enabled, else 894 * we do nothing special as far as the block layer is concerned. 895 */ 896 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) || 897 disk_has_partitions(disk)) 898 model = BLK_ZONED_NONE; 899 break; 900 case BLK_ZONED_NONE: 901 default: 902 if (WARN_ON_ONCE(model != BLK_ZONED_NONE)) 903 model = BLK_ZONED_NONE; 904 break; 905 } 906 907 q->limits.zoned = model; 908 if (model != BLK_ZONED_NONE) { 909 /* 910 * Set the zone write granularity to the device logical block 911 * size by default. The driver can change this value if needed. 912 */ 913 blk_queue_zone_write_granularity(q, 914 queue_logical_block_size(q)); 915 } else { 916 blk_queue_clear_zone_settings(q); 917 } 918 } 919 EXPORT_SYMBOL_GPL(blk_queue_set_zoned); 920