xref: /linux/block/blk-settings.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14 
15 #include "blk.h"
16 
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19 
20 unsigned long blk_max_pfn;
21 
22 /**
23  * blk_queue_prep_rq - set a prepare_request function for queue
24  * @q:		queue
25  * @pfn:	prepare_request function
26  *
27  * It's possible for a queue to register a prepare_request callback which
28  * is invoked before the request is handed to the request_fn. The goal of
29  * the function is to prepare a request for I/O, it can be used to build a
30  * cdb from the request data for instance.
31  *
32  */
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 	q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38 
39 /**
40  * blk_queue_unprep_rq - set an unprepare_request function for queue
41  * @q:		queue
42  * @ufn:	unprepare_request function
43  *
44  * It's possible for a queue to register an unprepare_request callback
45  * which is invoked before the request is finally completed. The goal
46  * of the function is to deallocate any data that was allocated in the
47  * prepare_request callback.
48  *
49  */
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 	q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55 
56 /**
57  * blk_queue_merge_bvec - set a merge_bvec function for queue
58  * @q:		queue
59  * @mbfn:	merge_bvec_fn
60  *
61  * Usually queues have static limitations on the max sectors or segments that
62  * we can put in a request. Stacking drivers may have some settings that
63  * are dynamic, and thus we have to query the queue whether it is ok to
64  * add a new bio_vec to a bio at a given offset or not. If the block device
65  * has such limitations, it needs to register a merge_bvec_fn to control
66  * the size of bio's sent to it. Note that a block device *must* allow a
67  * single page to be added to an empty bio. The block device driver may want
68  * to use the bio_split() function to deal with these bio's. By default
69  * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70  * honored.
71  */
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74 	q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77 
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80 	q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83 
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86 	q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89 
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92 	q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95 
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98 	q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101 
102 /**
103  * blk_set_default_limits - reset limits to default values
104  * @lim:  the queue_limits structure to reset
105  *
106  * Description:
107  *   Returns a queue_limit struct to its default state.
108  */
109 void blk_set_default_limits(struct queue_limits *lim)
110 {
111 	lim->max_segments = BLK_MAX_SEGMENTS;
112 	lim->max_integrity_segments = 0;
113 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116 	lim->max_write_same_sectors = 0;
117 	lim->max_discard_sectors = 0;
118 	lim->discard_granularity = 0;
119 	lim->discard_alignment = 0;
120 	lim->discard_misaligned = 0;
121 	lim->discard_zeroes_data = 0;
122 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
123 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
124 	lim->alignment_offset = 0;
125 	lim->io_opt = 0;
126 	lim->misaligned = 0;
127 	lim->cluster = 1;
128 }
129 EXPORT_SYMBOL(blk_set_default_limits);
130 
131 /**
132  * blk_set_stacking_limits - set default limits for stacking devices
133  * @lim:  the queue_limits structure to reset
134  *
135  * Description:
136  *   Returns a queue_limit struct to its default state. Should be used
137  *   by stacking drivers like DM that have no internal limits.
138  */
139 void blk_set_stacking_limits(struct queue_limits *lim)
140 {
141 	blk_set_default_limits(lim);
142 
143 	/* Inherit limits from component devices */
144 	lim->discard_zeroes_data = 1;
145 	lim->max_segments = USHRT_MAX;
146 	lim->max_hw_sectors = UINT_MAX;
147 	lim->max_sectors = UINT_MAX;
148 	lim->max_write_same_sectors = UINT_MAX;
149 }
150 EXPORT_SYMBOL(blk_set_stacking_limits);
151 
152 /**
153  * blk_queue_make_request - define an alternate make_request function for a device
154  * @q:  the request queue for the device to be affected
155  * @mfn: the alternate make_request function
156  *
157  * Description:
158  *    The normal way for &struct bios to be passed to a device
159  *    driver is for them to be collected into requests on a request
160  *    queue, and then to allow the device driver to select requests
161  *    off that queue when it is ready.  This works well for many block
162  *    devices. However some block devices (typically virtual devices
163  *    such as md or lvm) do not benefit from the processing on the
164  *    request queue, and are served best by having the requests passed
165  *    directly to them.  This can be achieved by providing a function
166  *    to blk_queue_make_request().
167  *
168  * Caveat:
169  *    The driver that does this *must* be able to deal appropriately
170  *    with buffers in "highmemory". This can be accomplished by either calling
171  *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
172  *    blk_queue_bounce() to create a buffer in normal memory.
173  **/
174 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
175 {
176 	/*
177 	 * set defaults
178 	 */
179 	q->nr_requests = BLKDEV_MAX_RQ;
180 
181 	q->make_request_fn = mfn;
182 	blk_queue_dma_alignment(q, 511);
183 	blk_queue_congestion_threshold(q);
184 	q->nr_batching = BLK_BATCH_REQ;
185 
186 	blk_set_default_limits(&q->limits);
187 
188 	/*
189 	 * by default assume old behaviour and bounce for any highmem page
190 	 */
191 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
192 }
193 EXPORT_SYMBOL(blk_queue_make_request);
194 
195 /**
196  * blk_queue_bounce_limit - set bounce buffer limit for queue
197  * @q: the request queue for the device
198  * @dma_mask: the maximum address the device can handle
199  *
200  * Description:
201  *    Different hardware can have different requirements as to what pages
202  *    it can do I/O directly to. A low level driver can call
203  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
204  *    buffers for doing I/O to pages residing above @dma_mask.
205  **/
206 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
207 {
208 	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
209 	int dma = 0;
210 
211 	q->bounce_gfp = GFP_NOIO;
212 #if BITS_PER_LONG == 64
213 	/*
214 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
215 	 * some IOMMUs can handle everything, but I don't know of a
216 	 * way to test this here.
217 	 */
218 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
219 		dma = 1;
220 	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
221 #else
222 	if (b_pfn < blk_max_low_pfn)
223 		dma = 1;
224 	q->limits.bounce_pfn = b_pfn;
225 #endif
226 	if (dma) {
227 		init_emergency_isa_pool();
228 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
229 		q->limits.bounce_pfn = b_pfn;
230 	}
231 }
232 EXPORT_SYMBOL(blk_queue_bounce_limit);
233 
234 /**
235  * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
236  * @limits: the queue limits
237  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
238  *
239  * Description:
240  *    Enables a low level driver to set a hard upper limit,
241  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
242  *    the device driver based upon the combined capabilities of I/O
243  *    controller and storage device.
244  *
245  *    max_sectors is a soft limit imposed by the block layer for
246  *    filesystem type requests.  This value can be overridden on a
247  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
248  *    The soft limit can not exceed max_hw_sectors.
249  **/
250 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
251 {
252 	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
253 		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
254 		printk(KERN_INFO "%s: set to minimum %d\n",
255 		       __func__, max_hw_sectors);
256 	}
257 
258 	limits->max_hw_sectors = max_hw_sectors;
259 	limits->max_sectors = min_t(unsigned int, max_hw_sectors,
260 				    BLK_DEF_MAX_SECTORS);
261 }
262 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
263 
264 /**
265  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
266  * @q:  the request queue for the device
267  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
268  *
269  * Description:
270  *    See description for blk_limits_max_hw_sectors().
271  **/
272 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
273 {
274 	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
275 }
276 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
277 
278 /**
279  * blk_queue_max_discard_sectors - set max sectors for a single discard
280  * @q:  the request queue for the device
281  * @max_discard_sectors: maximum number of sectors to discard
282  **/
283 void blk_queue_max_discard_sectors(struct request_queue *q,
284 		unsigned int max_discard_sectors)
285 {
286 	q->limits.max_discard_sectors = max_discard_sectors;
287 }
288 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
289 
290 /**
291  * blk_queue_max_write_same_sectors - set max sectors for a single write same
292  * @q:  the request queue for the device
293  * @max_write_same_sectors: maximum number of sectors to write per command
294  **/
295 void blk_queue_max_write_same_sectors(struct request_queue *q,
296 				      unsigned int max_write_same_sectors)
297 {
298 	q->limits.max_write_same_sectors = max_write_same_sectors;
299 }
300 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
301 
302 /**
303  * blk_queue_max_segments - set max hw segments for a request for this queue
304  * @q:  the request queue for the device
305  * @max_segments:  max number of segments
306  *
307  * Description:
308  *    Enables a low level driver to set an upper limit on the number of
309  *    hw data segments in a request.
310  **/
311 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
312 {
313 	if (!max_segments) {
314 		max_segments = 1;
315 		printk(KERN_INFO "%s: set to minimum %d\n",
316 		       __func__, max_segments);
317 	}
318 
319 	q->limits.max_segments = max_segments;
320 }
321 EXPORT_SYMBOL(blk_queue_max_segments);
322 
323 /**
324  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
325  * @q:  the request queue for the device
326  * @max_size:  max size of segment in bytes
327  *
328  * Description:
329  *    Enables a low level driver to set an upper limit on the size of a
330  *    coalesced segment
331  **/
332 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
333 {
334 	if (max_size < PAGE_CACHE_SIZE) {
335 		max_size = PAGE_CACHE_SIZE;
336 		printk(KERN_INFO "%s: set to minimum %d\n",
337 		       __func__, max_size);
338 	}
339 
340 	q->limits.max_segment_size = max_size;
341 }
342 EXPORT_SYMBOL(blk_queue_max_segment_size);
343 
344 /**
345  * blk_queue_logical_block_size - set logical block size for the queue
346  * @q:  the request queue for the device
347  * @size:  the logical block size, in bytes
348  *
349  * Description:
350  *   This should be set to the lowest possible block size that the
351  *   storage device can address.  The default of 512 covers most
352  *   hardware.
353  **/
354 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
355 {
356 	q->limits.logical_block_size = size;
357 
358 	if (q->limits.physical_block_size < size)
359 		q->limits.physical_block_size = size;
360 
361 	if (q->limits.io_min < q->limits.physical_block_size)
362 		q->limits.io_min = q->limits.physical_block_size;
363 }
364 EXPORT_SYMBOL(blk_queue_logical_block_size);
365 
366 /**
367  * blk_queue_physical_block_size - set physical block size for the queue
368  * @q:  the request queue for the device
369  * @size:  the physical block size, in bytes
370  *
371  * Description:
372  *   This should be set to the lowest possible sector size that the
373  *   hardware can operate on without reverting to read-modify-write
374  *   operations.
375  */
376 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
377 {
378 	q->limits.physical_block_size = size;
379 
380 	if (q->limits.physical_block_size < q->limits.logical_block_size)
381 		q->limits.physical_block_size = q->limits.logical_block_size;
382 
383 	if (q->limits.io_min < q->limits.physical_block_size)
384 		q->limits.io_min = q->limits.physical_block_size;
385 }
386 EXPORT_SYMBOL(blk_queue_physical_block_size);
387 
388 /**
389  * blk_queue_alignment_offset - set physical block alignment offset
390  * @q:	the request queue for the device
391  * @offset: alignment offset in bytes
392  *
393  * Description:
394  *   Some devices are naturally misaligned to compensate for things like
395  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
396  *   should call this function for devices whose first sector is not
397  *   naturally aligned.
398  */
399 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
400 {
401 	q->limits.alignment_offset =
402 		offset & (q->limits.physical_block_size - 1);
403 	q->limits.misaligned = 0;
404 }
405 EXPORT_SYMBOL(blk_queue_alignment_offset);
406 
407 /**
408  * blk_limits_io_min - set minimum request size for a device
409  * @limits: the queue limits
410  * @min:  smallest I/O size in bytes
411  *
412  * Description:
413  *   Some devices have an internal block size bigger than the reported
414  *   hardware sector size.  This function can be used to signal the
415  *   smallest I/O the device can perform without incurring a performance
416  *   penalty.
417  */
418 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
419 {
420 	limits->io_min = min;
421 
422 	if (limits->io_min < limits->logical_block_size)
423 		limits->io_min = limits->logical_block_size;
424 
425 	if (limits->io_min < limits->physical_block_size)
426 		limits->io_min = limits->physical_block_size;
427 }
428 EXPORT_SYMBOL(blk_limits_io_min);
429 
430 /**
431  * blk_queue_io_min - set minimum request size for the queue
432  * @q:	the request queue for the device
433  * @min:  smallest I/O size in bytes
434  *
435  * Description:
436  *   Storage devices may report a granularity or preferred minimum I/O
437  *   size which is the smallest request the device can perform without
438  *   incurring a performance penalty.  For disk drives this is often the
439  *   physical block size.  For RAID arrays it is often the stripe chunk
440  *   size.  A properly aligned multiple of minimum_io_size is the
441  *   preferred request size for workloads where a high number of I/O
442  *   operations is desired.
443  */
444 void blk_queue_io_min(struct request_queue *q, unsigned int min)
445 {
446 	blk_limits_io_min(&q->limits, min);
447 }
448 EXPORT_SYMBOL(blk_queue_io_min);
449 
450 /**
451  * blk_limits_io_opt - set optimal request size for a device
452  * @limits: the queue limits
453  * @opt:  smallest I/O size in bytes
454  *
455  * Description:
456  *   Storage devices may report an optimal I/O size, which is the
457  *   device's preferred unit for sustained I/O.  This is rarely reported
458  *   for disk drives.  For RAID arrays it is usually the stripe width or
459  *   the internal track size.  A properly aligned multiple of
460  *   optimal_io_size is the preferred request size for workloads where
461  *   sustained throughput is desired.
462  */
463 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
464 {
465 	limits->io_opt = opt;
466 }
467 EXPORT_SYMBOL(blk_limits_io_opt);
468 
469 /**
470  * blk_queue_io_opt - set optimal request size for the queue
471  * @q:	the request queue for the device
472  * @opt:  optimal request size in bytes
473  *
474  * Description:
475  *   Storage devices may report an optimal I/O size, which is the
476  *   device's preferred unit for sustained I/O.  This is rarely reported
477  *   for disk drives.  For RAID arrays it is usually the stripe width or
478  *   the internal track size.  A properly aligned multiple of
479  *   optimal_io_size is the preferred request size for workloads where
480  *   sustained throughput is desired.
481  */
482 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
483 {
484 	blk_limits_io_opt(&q->limits, opt);
485 }
486 EXPORT_SYMBOL(blk_queue_io_opt);
487 
488 /**
489  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
490  * @t:	the stacking driver (top)
491  * @b:  the underlying device (bottom)
492  **/
493 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
494 {
495 	blk_stack_limits(&t->limits, &b->limits, 0);
496 }
497 EXPORT_SYMBOL(blk_queue_stack_limits);
498 
499 /**
500  * blk_stack_limits - adjust queue_limits for stacked devices
501  * @t:	the stacking driver limits (top device)
502  * @b:  the underlying queue limits (bottom, component device)
503  * @start:  first data sector within component device
504  *
505  * Description:
506  *    This function is used by stacking drivers like MD and DM to ensure
507  *    that all component devices have compatible block sizes and
508  *    alignments.  The stacking driver must provide a queue_limits
509  *    struct (top) and then iteratively call the stacking function for
510  *    all component (bottom) devices.  The stacking function will
511  *    attempt to combine the values and ensure proper alignment.
512  *
513  *    Returns 0 if the top and bottom queue_limits are compatible.  The
514  *    top device's block sizes and alignment offsets may be adjusted to
515  *    ensure alignment with the bottom device. If no compatible sizes
516  *    and alignments exist, -1 is returned and the resulting top
517  *    queue_limits will have the misaligned flag set to indicate that
518  *    the alignment_offset is undefined.
519  */
520 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
521 		     sector_t start)
522 {
523 	unsigned int top, bottom, alignment, ret = 0;
524 
525 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
526 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
527 	t->max_write_same_sectors = min(t->max_write_same_sectors,
528 					b->max_write_same_sectors);
529 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
530 
531 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
532 					    b->seg_boundary_mask);
533 
534 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
535 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
536 						 b->max_integrity_segments);
537 
538 	t->max_segment_size = min_not_zero(t->max_segment_size,
539 					   b->max_segment_size);
540 
541 	t->misaligned |= b->misaligned;
542 
543 	alignment = queue_limit_alignment_offset(b, start);
544 
545 	/* Bottom device has different alignment.  Check that it is
546 	 * compatible with the current top alignment.
547 	 */
548 	if (t->alignment_offset != alignment) {
549 
550 		top = max(t->physical_block_size, t->io_min)
551 			+ t->alignment_offset;
552 		bottom = max(b->physical_block_size, b->io_min) + alignment;
553 
554 		/* Verify that top and bottom intervals line up */
555 		if (max(top, bottom) & (min(top, bottom) - 1)) {
556 			t->misaligned = 1;
557 			ret = -1;
558 		}
559 	}
560 
561 	t->logical_block_size = max(t->logical_block_size,
562 				    b->logical_block_size);
563 
564 	t->physical_block_size = max(t->physical_block_size,
565 				     b->physical_block_size);
566 
567 	t->io_min = max(t->io_min, b->io_min);
568 	t->io_opt = lcm(t->io_opt, b->io_opt);
569 
570 	t->cluster &= b->cluster;
571 	t->discard_zeroes_data &= b->discard_zeroes_data;
572 
573 	/* Physical block size a multiple of the logical block size? */
574 	if (t->physical_block_size & (t->logical_block_size - 1)) {
575 		t->physical_block_size = t->logical_block_size;
576 		t->misaligned = 1;
577 		ret = -1;
578 	}
579 
580 	/* Minimum I/O a multiple of the physical block size? */
581 	if (t->io_min & (t->physical_block_size - 1)) {
582 		t->io_min = t->physical_block_size;
583 		t->misaligned = 1;
584 		ret = -1;
585 	}
586 
587 	/* Optimal I/O a multiple of the physical block size? */
588 	if (t->io_opt & (t->physical_block_size - 1)) {
589 		t->io_opt = 0;
590 		t->misaligned = 1;
591 		ret = -1;
592 	}
593 
594 	/* Find lowest common alignment_offset */
595 	t->alignment_offset = lcm(t->alignment_offset, alignment)
596 		& (max(t->physical_block_size, t->io_min) - 1);
597 
598 	/* Verify that new alignment_offset is on a logical block boundary */
599 	if (t->alignment_offset & (t->logical_block_size - 1)) {
600 		t->misaligned = 1;
601 		ret = -1;
602 	}
603 
604 	/* Discard alignment and granularity */
605 	if (b->discard_granularity) {
606 		alignment = queue_limit_discard_alignment(b, start);
607 
608 		if (t->discard_granularity != 0 &&
609 		    t->discard_alignment != alignment) {
610 			top = t->discard_granularity + t->discard_alignment;
611 			bottom = b->discard_granularity + alignment;
612 
613 			/* Verify that top and bottom intervals line up */
614 			if ((max(top, bottom) % min(top, bottom)) != 0)
615 				t->discard_misaligned = 1;
616 		}
617 
618 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
619 						      b->max_discard_sectors);
620 		t->discard_granularity = max(t->discard_granularity,
621 					     b->discard_granularity);
622 		t->discard_alignment = lcm(t->discard_alignment, alignment) %
623 			t->discard_granularity;
624 	}
625 
626 	return ret;
627 }
628 EXPORT_SYMBOL(blk_stack_limits);
629 
630 /**
631  * bdev_stack_limits - adjust queue limits for stacked drivers
632  * @t:	the stacking driver limits (top device)
633  * @bdev:  the component block_device (bottom)
634  * @start:  first data sector within component device
635  *
636  * Description:
637  *    Merges queue limits for a top device and a block_device.  Returns
638  *    0 if alignment didn't change.  Returns -1 if adding the bottom
639  *    device caused misalignment.
640  */
641 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
642 		      sector_t start)
643 {
644 	struct request_queue *bq = bdev_get_queue(bdev);
645 
646 	start += get_start_sect(bdev);
647 
648 	return blk_stack_limits(t, &bq->limits, start);
649 }
650 EXPORT_SYMBOL(bdev_stack_limits);
651 
652 /**
653  * disk_stack_limits - adjust queue limits for stacked drivers
654  * @disk:  MD/DM gendisk (top)
655  * @bdev:  the underlying block device (bottom)
656  * @offset:  offset to beginning of data within component device
657  *
658  * Description:
659  *    Merges the limits for a top level gendisk and a bottom level
660  *    block_device.
661  */
662 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
663 		       sector_t offset)
664 {
665 	struct request_queue *t = disk->queue;
666 
667 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
668 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
669 
670 		disk_name(disk, 0, top);
671 		bdevname(bdev, bottom);
672 
673 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
674 		       top, bottom);
675 	}
676 }
677 EXPORT_SYMBOL(disk_stack_limits);
678 
679 /**
680  * blk_queue_dma_pad - set pad mask
681  * @q:     the request queue for the device
682  * @mask:  pad mask
683  *
684  * Set dma pad mask.
685  *
686  * Appending pad buffer to a request modifies the last entry of a
687  * scatter list such that it includes the pad buffer.
688  **/
689 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
690 {
691 	q->dma_pad_mask = mask;
692 }
693 EXPORT_SYMBOL(blk_queue_dma_pad);
694 
695 /**
696  * blk_queue_update_dma_pad - update pad mask
697  * @q:     the request queue for the device
698  * @mask:  pad mask
699  *
700  * Update dma pad mask.
701  *
702  * Appending pad buffer to a request modifies the last entry of a
703  * scatter list such that it includes the pad buffer.
704  **/
705 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
706 {
707 	if (mask > q->dma_pad_mask)
708 		q->dma_pad_mask = mask;
709 }
710 EXPORT_SYMBOL(blk_queue_update_dma_pad);
711 
712 /**
713  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
714  * @q:  the request queue for the device
715  * @dma_drain_needed: fn which returns non-zero if drain is necessary
716  * @buf:	physically contiguous buffer
717  * @size:	size of the buffer in bytes
718  *
719  * Some devices have excess DMA problems and can't simply discard (or
720  * zero fill) the unwanted piece of the transfer.  They have to have a
721  * real area of memory to transfer it into.  The use case for this is
722  * ATAPI devices in DMA mode.  If the packet command causes a transfer
723  * bigger than the transfer size some HBAs will lock up if there
724  * aren't DMA elements to contain the excess transfer.  What this API
725  * does is adjust the queue so that the buf is always appended
726  * silently to the scatterlist.
727  *
728  * Note: This routine adjusts max_hw_segments to make room for appending
729  * the drain buffer.  If you call blk_queue_max_segments() after calling
730  * this routine, you must set the limit to one fewer than your device
731  * can support otherwise there won't be room for the drain buffer.
732  */
733 int blk_queue_dma_drain(struct request_queue *q,
734 			       dma_drain_needed_fn *dma_drain_needed,
735 			       void *buf, unsigned int size)
736 {
737 	if (queue_max_segments(q) < 2)
738 		return -EINVAL;
739 	/* make room for appending the drain */
740 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
741 	q->dma_drain_needed = dma_drain_needed;
742 	q->dma_drain_buffer = buf;
743 	q->dma_drain_size = size;
744 
745 	return 0;
746 }
747 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
748 
749 /**
750  * blk_queue_segment_boundary - set boundary rules for segment merging
751  * @q:  the request queue for the device
752  * @mask:  the memory boundary mask
753  **/
754 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
755 {
756 	if (mask < PAGE_CACHE_SIZE - 1) {
757 		mask = PAGE_CACHE_SIZE - 1;
758 		printk(KERN_INFO "%s: set to minimum %lx\n",
759 		       __func__, mask);
760 	}
761 
762 	q->limits.seg_boundary_mask = mask;
763 }
764 EXPORT_SYMBOL(blk_queue_segment_boundary);
765 
766 /**
767  * blk_queue_dma_alignment - set dma length and memory alignment
768  * @q:     the request queue for the device
769  * @mask:  alignment mask
770  *
771  * description:
772  *    set required memory and length alignment for direct dma transactions.
773  *    this is used when building direct io requests for the queue.
774  *
775  **/
776 void blk_queue_dma_alignment(struct request_queue *q, int mask)
777 {
778 	q->dma_alignment = mask;
779 }
780 EXPORT_SYMBOL(blk_queue_dma_alignment);
781 
782 /**
783  * blk_queue_update_dma_alignment - update dma length and memory alignment
784  * @q:     the request queue for the device
785  * @mask:  alignment mask
786  *
787  * description:
788  *    update required memory and length alignment for direct dma transactions.
789  *    If the requested alignment is larger than the current alignment, then
790  *    the current queue alignment is updated to the new value, otherwise it
791  *    is left alone.  The design of this is to allow multiple objects
792  *    (driver, device, transport etc) to set their respective
793  *    alignments without having them interfere.
794  *
795  **/
796 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
797 {
798 	BUG_ON(mask > PAGE_SIZE);
799 
800 	if (mask > q->dma_alignment)
801 		q->dma_alignment = mask;
802 }
803 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
804 
805 /**
806  * blk_queue_flush - configure queue's cache flush capability
807  * @q:		the request queue for the device
808  * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
809  *
810  * Tell block layer cache flush capability of @q.  If it supports
811  * flushing, REQ_FLUSH should be set.  If it supports bypassing
812  * write cache for individual writes, REQ_FUA should be set.
813  */
814 void blk_queue_flush(struct request_queue *q, unsigned int flush)
815 {
816 	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
817 
818 	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
819 		flush &= ~REQ_FUA;
820 
821 	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
822 }
823 EXPORT_SYMBOL_GPL(blk_queue_flush);
824 
825 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
826 {
827 	q->flush_not_queueable = !queueable;
828 }
829 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
830 
831 static int __init blk_settings_init(void)
832 {
833 	blk_max_low_pfn = max_low_pfn - 1;
834 	blk_max_pfn = max_pfn - 1;
835 	return 0;
836 }
837 subsys_initcall(blk_settings_init);
838