1 /* 2 * Functions related to setting various queue properties from drivers 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/gcd.h> 11 #include <linux/lcm.h> 12 #include <linux/jiffies.h> 13 #include <linux/gfp.h> 14 15 #include "blk.h" 16 17 unsigned long blk_max_low_pfn; 18 EXPORT_SYMBOL(blk_max_low_pfn); 19 20 unsigned long blk_max_pfn; 21 22 /** 23 * blk_queue_prep_rq - set a prepare_request function for queue 24 * @q: queue 25 * @pfn: prepare_request function 26 * 27 * It's possible for a queue to register a prepare_request callback which 28 * is invoked before the request is handed to the request_fn. The goal of 29 * the function is to prepare a request for I/O, it can be used to build a 30 * cdb from the request data for instance. 31 * 32 */ 33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 34 { 35 q->prep_rq_fn = pfn; 36 } 37 EXPORT_SYMBOL(blk_queue_prep_rq); 38 39 /** 40 * blk_queue_unprep_rq - set an unprepare_request function for queue 41 * @q: queue 42 * @ufn: unprepare_request function 43 * 44 * It's possible for a queue to register an unprepare_request callback 45 * which is invoked before the request is finally completed. The goal 46 * of the function is to deallocate any data that was allocated in the 47 * prepare_request callback. 48 * 49 */ 50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn) 51 { 52 q->unprep_rq_fn = ufn; 53 } 54 EXPORT_SYMBOL(blk_queue_unprep_rq); 55 56 /** 57 * blk_queue_merge_bvec - set a merge_bvec function for queue 58 * @q: queue 59 * @mbfn: merge_bvec_fn 60 * 61 * Usually queues have static limitations on the max sectors or segments that 62 * we can put in a request. Stacking drivers may have some settings that 63 * are dynamic, and thus we have to query the queue whether it is ok to 64 * add a new bio_vec to a bio at a given offset or not. If the block device 65 * has such limitations, it needs to register a merge_bvec_fn to control 66 * the size of bio's sent to it. Note that a block device *must* allow a 67 * single page to be added to an empty bio. The block device driver may want 68 * to use the bio_split() function to deal with these bio's. By default 69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are 70 * honored. 71 */ 72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 73 { 74 q->merge_bvec_fn = mbfn; 75 } 76 EXPORT_SYMBOL(blk_queue_merge_bvec); 77 78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 79 { 80 q->softirq_done_fn = fn; 81 } 82 EXPORT_SYMBOL(blk_queue_softirq_done); 83 84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 85 { 86 q->rq_timeout = timeout; 87 } 88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 89 90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) 91 { 92 q->rq_timed_out_fn = fn; 93 } 94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); 95 96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) 97 { 98 q->lld_busy_fn = fn; 99 } 100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy); 101 102 /** 103 * blk_set_default_limits - reset limits to default values 104 * @lim: the queue_limits structure to reset 105 * 106 * Description: 107 * Returns a queue_limit struct to its default state. 108 */ 109 void blk_set_default_limits(struct queue_limits *lim) 110 { 111 lim->max_segments = BLK_MAX_SEGMENTS; 112 lim->max_integrity_segments = 0; 113 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 114 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 115 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 116 lim->max_write_same_sectors = 0; 117 lim->max_discard_sectors = 0; 118 lim->discard_granularity = 0; 119 lim->discard_alignment = 0; 120 lim->discard_misaligned = 0; 121 lim->discard_zeroes_data = 0; 122 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; 123 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); 124 lim->alignment_offset = 0; 125 lim->io_opt = 0; 126 lim->misaligned = 0; 127 lim->cluster = 1; 128 } 129 EXPORT_SYMBOL(blk_set_default_limits); 130 131 /** 132 * blk_set_stacking_limits - set default limits for stacking devices 133 * @lim: the queue_limits structure to reset 134 * 135 * Description: 136 * Returns a queue_limit struct to its default state. Should be used 137 * by stacking drivers like DM that have no internal limits. 138 */ 139 void blk_set_stacking_limits(struct queue_limits *lim) 140 { 141 blk_set_default_limits(lim); 142 143 /* Inherit limits from component devices */ 144 lim->discard_zeroes_data = 1; 145 lim->max_segments = USHRT_MAX; 146 lim->max_hw_sectors = UINT_MAX; 147 lim->max_sectors = UINT_MAX; 148 lim->max_write_same_sectors = UINT_MAX; 149 } 150 EXPORT_SYMBOL(blk_set_stacking_limits); 151 152 /** 153 * blk_queue_make_request - define an alternate make_request function for a device 154 * @q: the request queue for the device to be affected 155 * @mfn: the alternate make_request function 156 * 157 * Description: 158 * The normal way for &struct bios to be passed to a device 159 * driver is for them to be collected into requests on a request 160 * queue, and then to allow the device driver to select requests 161 * off that queue when it is ready. This works well for many block 162 * devices. However some block devices (typically virtual devices 163 * such as md or lvm) do not benefit from the processing on the 164 * request queue, and are served best by having the requests passed 165 * directly to them. This can be achieved by providing a function 166 * to blk_queue_make_request(). 167 * 168 * Caveat: 169 * The driver that does this *must* be able to deal appropriately 170 * with buffers in "highmemory". This can be accomplished by either calling 171 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 172 * blk_queue_bounce() to create a buffer in normal memory. 173 **/ 174 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 175 { 176 /* 177 * set defaults 178 */ 179 q->nr_requests = BLKDEV_MAX_RQ; 180 181 q->make_request_fn = mfn; 182 blk_queue_dma_alignment(q, 511); 183 blk_queue_congestion_threshold(q); 184 q->nr_batching = BLK_BATCH_REQ; 185 186 blk_set_default_limits(&q->limits); 187 188 /* 189 * by default assume old behaviour and bounce for any highmem page 190 */ 191 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 192 } 193 EXPORT_SYMBOL(blk_queue_make_request); 194 195 /** 196 * blk_queue_bounce_limit - set bounce buffer limit for queue 197 * @q: the request queue for the device 198 * @dma_mask: the maximum address the device can handle 199 * 200 * Description: 201 * Different hardware can have different requirements as to what pages 202 * it can do I/O directly to. A low level driver can call 203 * blk_queue_bounce_limit to have lower memory pages allocated as bounce 204 * buffers for doing I/O to pages residing above @dma_mask. 205 **/ 206 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask) 207 { 208 unsigned long b_pfn = dma_mask >> PAGE_SHIFT; 209 int dma = 0; 210 211 q->bounce_gfp = GFP_NOIO; 212 #if BITS_PER_LONG == 64 213 /* 214 * Assume anything <= 4GB can be handled by IOMMU. Actually 215 * some IOMMUs can handle everything, but I don't know of a 216 * way to test this here. 217 */ 218 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 219 dma = 1; 220 q->limits.bounce_pfn = max(max_low_pfn, b_pfn); 221 #else 222 if (b_pfn < blk_max_low_pfn) 223 dma = 1; 224 q->limits.bounce_pfn = b_pfn; 225 #endif 226 if (dma) { 227 init_emergency_isa_pool(); 228 q->bounce_gfp = GFP_NOIO | GFP_DMA; 229 q->limits.bounce_pfn = b_pfn; 230 } 231 } 232 EXPORT_SYMBOL(blk_queue_bounce_limit); 233 234 /** 235 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request 236 * @limits: the queue limits 237 * @max_hw_sectors: max hardware sectors in the usual 512b unit 238 * 239 * Description: 240 * Enables a low level driver to set a hard upper limit, 241 * max_hw_sectors, on the size of requests. max_hw_sectors is set by 242 * the device driver based upon the combined capabilities of I/O 243 * controller and storage device. 244 * 245 * max_sectors is a soft limit imposed by the block layer for 246 * filesystem type requests. This value can be overridden on a 247 * per-device basis in /sys/block/<device>/queue/max_sectors_kb. 248 * The soft limit can not exceed max_hw_sectors. 249 **/ 250 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors) 251 { 252 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) { 253 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 254 printk(KERN_INFO "%s: set to minimum %d\n", 255 __func__, max_hw_sectors); 256 } 257 258 limits->max_hw_sectors = max_hw_sectors; 259 limits->max_sectors = min_t(unsigned int, max_hw_sectors, 260 BLK_DEF_MAX_SECTORS); 261 } 262 EXPORT_SYMBOL(blk_limits_max_hw_sectors); 263 264 /** 265 * blk_queue_max_hw_sectors - set max sectors for a request for this queue 266 * @q: the request queue for the device 267 * @max_hw_sectors: max hardware sectors in the usual 512b unit 268 * 269 * Description: 270 * See description for blk_limits_max_hw_sectors(). 271 **/ 272 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) 273 { 274 blk_limits_max_hw_sectors(&q->limits, max_hw_sectors); 275 } 276 EXPORT_SYMBOL(blk_queue_max_hw_sectors); 277 278 /** 279 * blk_queue_max_discard_sectors - set max sectors for a single discard 280 * @q: the request queue for the device 281 * @max_discard_sectors: maximum number of sectors to discard 282 **/ 283 void blk_queue_max_discard_sectors(struct request_queue *q, 284 unsigned int max_discard_sectors) 285 { 286 q->limits.max_discard_sectors = max_discard_sectors; 287 } 288 EXPORT_SYMBOL(blk_queue_max_discard_sectors); 289 290 /** 291 * blk_queue_max_write_same_sectors - set max sectors for a single write same 292 * @q: the request queue for the device 293 * @max_write_same_sectors: maximum number of sectors to write per command 294 **/ 295 void blk_queue_max_write_same_sectors(struct request_queue *q, 296 unsigned int max_write_same_sectors) 297 { 298 q->limits.max_write_same_sectors = max_write_same_sectors; 299 } 300 EXPORT_SYMBOL(blk_queue_max_write_same_sectors); 301 302 /** 303 * blk_queue_max_segments - set max hw segments for a request for this queue 304 * @q: the request queue for the device 305 * @max_segments: max number of segments 306 * 307 * Description: 308 * Enables a low level driver to set an upper limit on the number of 309 * hw data segments in a request. 310 **/ 311 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) 312 { 313 if (!max_segments) { 314 max_segments = 1; 315 printk(KERN_INFO "%s: set to minimum %d\n", 316 __func__, max_segments); 317 } 318 319 q->limits.max_segments = max_segments; 320 } 321 EXPORT_SYMBOL(blk_queue_max_segments); 322 323 /** 324 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 325 * @q: the request queue for the device 326 * @max_size: max size of segment in bytes 327 * 328 * Description: 329 * Enables a low level driver to set an upper limit on the size of a 330 * coalesced segment 331 **/ 332 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 333 { 334 if (max_size < PAGE_CACHE_SIZE) { 335 max_size = PAGE_CACHE_SIZE; 336 printk(KERN_INFO "%s: set to minimum %d\n", 337 __func__, max_size); 338 } 339 340 q->limits.max_segment_size = max_size; 341 } 342 EXPORT_SYMBOL(blk_queue_max_segment_size); 343 344 /** 345 * blk_queue_logical_block_size - set logical block size for the queue 346 * @q: the request queue for the device 347 * @size: the logical block size, in bytes 348 * 349 * Description: 350 * This should be set to the lowest possible block size that the 351 * storage device can address. The default of 512 covers most 352 * hardware. 353 **/ 354 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) 355 { 356 q->limits.logical_block_size = size; 357 358 if (q->limits.physical_block_size < size) 359 q->limits.physical_block_size = size; 360 361 if (q->limits.io_min < q->limits.physical_block_size) 362 q->limits.io_min = q->limits.physical_block_size; 363 } 364 EXPORT_SYMBOL(blk_queue_logical_block_size); 365 366 /** 367 * blk_queue_physical_block_size - set physical block size for the queue 368 * @q: the request queue for the device 369 * @size: the physical block size, in bytes 370 * 371 * Description: 372 * This should be set to the lowest possible sector size that the 373 * hardware can operate on without reverting to read-modify-write 374 * operations. 375 */ 376 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) 377 { 378 q->limits.physical_block_size = size; 379 380 if (q->limits.physical_block_size < q->limits.logical_block_size) 381 q->limits.physical_block_size = q->limits.logical_block_size; 382 383 if (q->limits.io_min < q->limits.physical_block_size) 384 q->limits.io_min = q->limits.physical_block_size; 385 } 386 EXPORT_SYMBOL(blk_queue_physical_block_size); 387 388 /** 389 * blk_queue_alignment_offset - set physical block alignment offset 390 * @q: the request queue for the device 391 * @offset: alignment offset in bytes 392 * 393 * Description: 394 * Some devices are naturally misaligned to compensate for things like 395 * the legacy DOS partition table 63-sector offset. Low-level drivers 396 * should call this function for devices whose first sector is not 397 * naturally aligned. 398 */ 399 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) 400 { 401 q->limits.alignment_offset = 402 offset & (q->limits.physical_block_size - 1); 403 q->limits.misaligned = 0; 404 } 405 EXPORT_SYMBOL(blk_queue_alignment_offset); 406 407 /** 408 * blk_limits_io_min - set minimum request size for a device 409 * @limits: the queue limits 410 * @min: smallest I/O size in bytes 411 * 412 * Description: 413 * Some devices have an internal block size bigger than the reported 414 * hardware sector size. This function can be used to signal the 415 * smallest I/O the device can perform without incurring a performance 416 * penalty. 417 */ 418 void blk_limits_io_min(struct queue_limits *limits, unsigned int min) 419 { 420 limits->io_min = min; 421 422 if (limits->io_min < limits->logical_block_size) 423 limits->io_min = limits->logical_block_size; 424 425 if (limits->io_min < limits->physical_block_size) 426 limits->io_min = limits->physical_block_size; 427 } 428 EXPORT_SYMBOL(blk_limits_io_min); 429 430 /** 431 * blk_queue_io_min - set minimum request size for the queue 432 * @q: the request queue for the device 433 * @min: smallest I/O size in bytes 434 * 435 * Description: 436 * Storage devices may report a granularity or preferred minimum I/O 437 * size which is the smallest request the device can perform without 438 * incurring a performance penalty. For disk drives this is often the 439 * physical block size. For RAID arrays it is often the stripe chunk 440 * size. A properly aligned multiple of minimum_io_size is the 441 * preferred request size for workloads where a high number of I/O 442 * operations is desired. 443 */ 444 void blk_queue_io_min(struct request_queue *q, unsigned int min) 445 { 446 blk_limits_io_min(&q->limits, min); 447 } 448 EXPORT_SYMBOL(blk_queue_io_min); 449 450 /** 451 * blk_limits_io_opt - set optimal request size for a device 452 * @limits: the queue limits 453 * @opt: smallest I/O size in bytes 454 * 455 * Description: 456 * Storage devices may report an optimal I/O size, which is the 457 * device's preferred unit for sustained I/O. This is rarely reported 458 * for disk drives. For RAID arrays it is usually the stripe width or 459 * the internal track size. A properly aligned multiple of 460 * optimal_io_size is the preferred request size for workloads where 461 * sustained throughput is desired. 462 */ 463 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) 464 { 465 limits->io_opt = opt; 466 } 467 EXPORT_SYMBOL(blk_limits_io_opt); 468 469 /** 470 * blk_queue_io_opt - set optimal request size for the queue 471 * @q: the request queue for the device 472 * @opt: optimal request size in bytes 473 * 474 * Description: 475 * Storage devices may report an optimal I/O size, which is the 476 * device's preferred unit for sustained I/O. This is rarely reported 477 * for disk drives. For RAID arrays it is usually the stripe width or 478 * the internal track size. A properly aligned multiple of 479 * optimal_io_size is the preferred request size for workloads where 480 * sustained throughput is desired. 481 */ 482 void blk_queue_io_opt(struct request_queue *q, unsigned int opt) 483 { 484 blk_limits_io_opt(&q->limits, opt); 485 } 486 EXPORT_SYMBOL(blk_queue_io_opt); 487 488 /** 489 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 490 * @t: the stacking driver (top) 491 * @b: the underlying device (bottom) 492 **/ 493 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 494 { 495 blk_stack_limits(&t->limits, &b->limits, 0); 496 } 497 EXPORT_SYMBOL(blk_queue_stack_limits); 498 499 /** 500 * blk_stack_limits - adjust queue_limits for stacked devices 501 * @t: the stacking driver limits (top device) 502 * @b: the underlying queue limits (bottom, component device) 503 * @start: first data sector within component device 504 * 505 * Description: 506 * This function is used by stacking drivers like MD and DM to ensure 507 * that all component devices have compatible block sizes and 508 * alignments. The stacking driver must provide a queue_limits 509 * struct (top) and then iteratively call the stacking function for 510 * all component (bottom) devices. The stacking function will 511 * attempt to combine the values and ensure proper alignment. 512 * 513 * Returns 0 if the top and bottom queue_limits are compatible. The 514 * top device's block sizes and alignment offsets may be adjusted to 515 * ensure alignment with the bottom device. If no compatible sizes 516 * and alignments exist, -1 is returned and the resulting top 517 * queue_limits will have the misaligned flag set to indicate that 518 * the alignment_offset is undefined. 519 */ 520 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 521 sector_t start) 522 { 523 unsigned int top, bottom, alignment, ret = 0; 524 525 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 526 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 527 t->max_write_same_sectors = min(t->max_write_same_sectors, 528 b->max_write_same_sectors); 529 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); 530 531 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 532 b->seg_boundary_mask); 533 534 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 535 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 536 b->max_integrity_segments); 537 538 t->max_segment_size = min_not_zero(t->max_segment_size, 539 b->max_segment_size); 540 541 t->misaligned |= b->misaligned; 542 543 alignment = queue_limit_alignment_offset(b, start); 544 545 /* Bottom device has different alignment. Check that it is 546 * compatible with the current top alignment. 547 */ 548 if (t->alignment_offset != alignment) { 549 550 top = max(t->physical_block_size, t->io_min) 551 + t->alignment_offset; 552 bottom = max(b->physical_block_size, b->io_min) + alignment; 553 554 /* Verify that top and bottom intervals line up */ 555 if (max(top, bottom) & (min(top, bottom) - 1)) { 556 t->misaligned = 1; 557 ret = -1; 558 } 559 } 560 561 t->logical_block_size = max(t->logical_block_size, 562 b->logical_block_size); 563 564 t->physical_block_size = max(t->physical_block_size, 565 b->physical_block_size); 566 567 t->io_min = max(t->io_min, b->io_min); 568 t->io_opt = lcm(t->io_opt, b->io_opt); 569 570 t->cluster &= b->cluster; 571 t->discard_zeroes_data &= b->discard_zeroes_data; 572 573 /* Physical block size a multiple of the logical block size? */ 574 if (t->physical_block_size & (t->logical_block_size - 1)) { 575 t->physical_block_size = t->logical_block_size; 576 t->misaligned = 1; 577 ret = -1; 578 } 579 580 /* Minimum I/O a multiple of the physical block size? */ 581 if (t->io_min & (t->physical_block_size - 1)) { 582 t->io_min = t->physical_block_size; 583 t->misaligned = 1; 584 ret = -1; 585 } 586 587 /* Optimal I/O a multiple of the physical block size? */ 588 if (t->io_opt & (t->physical_block_size - 1)) { 589 t->io_opt = 0; 590 t->misaligned = 1; 591 ret = -1; 592 } 593 594 /* Find lowest common alignment_offset */ 595 t->alignment_offset = lcm(t->alignment_offset, alignment) 596 & (max(t->physical_block_size, t->io_min) - 1); 597 598 /* Verify that new alignment_offset is on a logical block boundary */ 599 if (t->alignment_offset & (t->logical_block_size - 1)) { 600 t->misaligned = 1; 601 ret = -1; 602 } 603 604 /* Discard alignment and granularity */ 605 if (b->discard_granularity) { 606 alignment = queue_limit_discard_alignment(b, start); 607 608 if (t->discard_granularity != 0 && 609 t->discard_alignment != alignment) { 610 top = t->discard_granularity + t->discard_alignment; 611 bottom = b->discard_granularity + alignment; 612 613 /* Verify that top and bottom intervals line up */ 614 if ((max(top, bottom) % min(top, bottom)) != 0) 615 t->discard_misaligned = 1; 616 } 617 618 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 619 b->max_discard_sectors); 620 t->discard_granularity = max(t->discard_granularity, 621 b->discard_granularity); 622 t->discard_alignment = lcm(t->discard_alignment, alignment) % 623 t->discard_granularity; 624 } 625 626 return ret; 627 } 628 EXPORT_SYMBOL(blk_stack_limits); 629 630 /** 631 * bdev_stack_limits - adjust queue limits for stacked drivers 632 * @t: the stacking driver limits (top device) 633 * @bdev: the component block_device (bottom) 634 * @start: first data sector within component device 635 * 636 * Description: 637 * Merges queue limits for a top device and a block_device. Returns 638 * 0 if alignment didn't change. Returns -1 if adding the bottom 639 * device caused misalignment. 640 */ 641 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 642 sector_t start) 643 { 644 struct request_queue *bq = bdev_get_queue(bdev); 645 646 start += get_start_sect(bdev); 647 648 return blk_stack_limits(t, &bq->limits, start); 649 } 650 EXPORT_SYMBOL(bdev_stack_limits); 651 652 /** 653 * disk_stack_limits - adjust queue limits for stacked drivers 654 * @disk: MD/DM gendisk (top) 655 * @bdev: the underlying block device (bottom) 656 * @offset: offset to beginning of data within component device 657 * 658 * Description: 659 * Merges the limits for a top level gendisk and a bottom level 660 * block_device. 661 */ 662 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 663 sector_t offset) 664 { 665 struct request_queue *t = disk->queue; 666 667 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) { 668 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; 669 670 disk_name(disk, 0, top); 671 bdevname(bdev, bottom); 672 673 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", 674 top, bottom); 675 } 676 } 677 EXPORT_SYMBOL(disk_stack_limits); 678 679 /** 680 * blk_queue_dma_pad - set pad mask 681 * @q: the request queue for the device 682 * @mask: pad mask 683 * 684 * Set dma pad mask. 685 * 686 * Appending pad buffer to a request modifies the last entry of a 687 * scatter list such that it includes the pad buffer. 688 **/ 689 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 690 { 691 q->dma_pad_mask = mask; 692 } 693 EXPORT_SYMBOL(blk_queue_dma_pad); 694 695 /** 696 * blk_queue_update_dma_pad - update pad mask 697 * @q: the request queue for the device 698 * @mask: pad mask 699 * 700 * Update dma pad mask. 701 * 702 * Appending pad buffer to a request modifies the last entry of a 703 * scatter list such that it includes the pad buffer. 704 **/ 705 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) 706 { 707 if (mask > q->dma_pad_mask) 708 q->dma_pad_mask = mask; 709 } 710 EXPORT_SYMBOL(blk_queue_update_dma_pad); 711 712 /** 713 * blk_queue_dma_drain - Set up a drain buffer for excess dma. 714 * @q: the request queue for the device 715 * @dma_drain_needed: fn which returns non-zero if drain is necessary 716 * @buf: physically contiguous buffer 717 * @size: size of the buffer in bytes 718 * 719 * Some devices have excess DMA problems and can't simply discard (or 720 * zero fill) the unwanted piece of the transfer. They have to have a 721 * real area of memory to transfer it into. The use case for this is 722 * ATAPI devices in DMA mode. If the packet command causes a transfer 723 * bigger than the transfer size some HBAs will lock up if there 724 * aren't DMA elements to contain the excess transfer. What this API 725 * does is adjust the queue so that the buf is always appended 726 * silently to the scatterlist. 727 * 728 * Note: This routine adjusts max_hw_segments to make room for appending 729 * the drain buffer. If you call blk_queue_max_segments() after calling 730 * this routine, you must set the limit to one fewer than your device 731 * can support otherwise there won't be room for the drain buffer. 732 */ 733 int blk_queue_dma_drain(struct request_queue *q, 734 dma_drain_needed_fn *dma_drain_needed, 735 void *buf, unsigned int size) 736 { 737 if (queue_max_segments(q) < 2) 738 return -EINVAL; 739 /* make room for appending the drain */ 740 blk_queue_max_segments(q, queue_max_segments(q) - 1); 741 q->dma_drain_needed = dma_drain_needed; 742 q->dma_drain_buffer = buf; 743 q->dma_drain_size = size; 744 745 return 0; 746 } 747 EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 748 749 /** 750 * blk_queue_segment_boundary - set boundary rules for segment merging 751 * @q: the request queue for the device 752 * @mask: the memory boundary mask 753 **/ 754 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 755 { 756 if (mask < PAGE_CACHE_SIZE - 1) { 757 mask = PAGE_CACHE_SIZE - 1; 758 printk(KERN_INFO "%s: set to minimum %lx\n", 759 __func__, mask); 760 } 761 762 q->limits.seg_boundary_mask = mask; 763 } 764 EXPORT_SYMBOL(blk_queue_segment_boundary); 765 766 /** 767 * blk_queue_dma_alignment - set dma length and memory alignment 768 * @q: the request queue for the device 769 * @mask: alignment mask 770 * 771 * description: 772 * set required memory and length alignment for direct dma transactions. 773 * this is used when building direct io requests for the queue. 774 * 775 **/ 776 void blk_queue_dma_alignment(struct request_queue *q, int mask) 777 { 778 q->dma_alignment = mask; 779 } 780 EXPORT_SYMBOL(blk_queue_dma_alignment); 781 782 /** 783 * blk_queue_update_dma_alignment - update dma length and memory alignment 784 * @q: the request queue for the device 785 * @mask: alignment mask 786 * 787 * description: 788 * update required memory and length alignment for direct dma transactions. 789 * If the requested alignment is larger than the current alignment, then 790 * the current queue alignment is updated to the new value, otherwise it 791 * is left alone. The design of this is to allow multiple objects 792 * (driver, device, transport etc) to set their respective 793 * alignments without having them interfere. 794 * 795 **/ 796 void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 797 { 798 BUG_ON(mask > PAGE_SIZE); 799 800 if (mask > q->dma_alignment) 801 q->dma_alignment = mask; 802 } 803 EXPORT_SYMBOL(blk_queue_update_dma_alignment); 804 805 /** 806 * blk_queue_flush - configure queue's cache flush capability 807 * @q: the request queue for the device 808 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA 809 * 810 * Tell block layer cache flush capability of @q. If it supports 811 * flushing, REQ_FLUSH should be set. If it supports bypassing 812 * write cache for individual writes, REQ_FUA should be set. 813 */ 814 void blk_queue_flush(struct request_queue *q, unsigned int flush) 815 { 816 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA)); 817 818 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA))) 819 flush &= ~REQ_FUA; 820 821 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA); 822 } 823 EXPORT_SYMBOL_GPL(blk_queue_flush); 824 825 void blk_queue_flush_queueable(struct request_queue *q, bool queueable) 826 { 827 q->flush_not_queueable = !queueable; 828 } 829 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable); 830 831 static int __init blk_settings_init(void) 832 { 833 blk_max_low_pfn = max_low_pfn - 1; 834 blk_max_pfn = max_pfn - 1; 835 return 0; 836 } 837 subsys_initcall(blk_settings_init); 838