1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions related to setting various queue properties from drivers 4 */ 5 #include <linux/kernel.h> 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/bio.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/pagemap.h> 11 #include <linux/backing-dev-defs.h> 12 #include <linux/gcd.h> 13 #include <linux/lcm.h> 14 #include <linux/jiffies.h> 15 #include <linux/gfp.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/t10-pi.h> 18 #include <linux/crc64.h> 19 20 #include "blk.h" 21 #include "blk-rq-qos.h" 22 #include "blk-wbt.h" 23 24 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) 25 { 26 WRITE_ONCE(q->rq_timeout, timeout); 27 } 28 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); 29 30 /** 31 * blk_set_stacking_limits - set default limits for stacking devices 32 * @lim: the queue_limits structure to reset 33 * 34 * Prepare queue limits for applying limits from underlying devices using 35 * blk_stack_limits(). 36 */ 37 void blk_set_stacking_limits(struct queue_limits *lim) 38 { 39 memset(lim, 0, sizeof(*lim)); 40 lim->logical_block_size = SECTOR_SIZE; 41 lim->physical_block_size = SECTOR_SIZE; 42 lim->io_min = SECTOR_SIZE; 43 lim->discard_granularity = SECTOR_SIZE; 44 lim->dma_alignment = SECTOR_SIZE - 1; 45 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 46 47 /* Inherit limits from component devices */ 48 lim->max_segments = USHRT_MAX; 49 lim->max_discard_segments = USHRT_MAX; 50 lim->max_hw_sectors = UINT_MAX; 51 lim->max_segment_size = UINT_MAX; 52 lim->max_sectors = UINT_MAX; 53 lim->max_dev_sectors = UINT_MAX; 54 lim->max_write_zeroes_sectors = UINT_MAX; 55 lim->max_hw_wzeroes_unmap_sectors = UINT_MAX; 56 lim->max_user_wzeroes_unmap_sectors = UINT_MAX; 57 lim->max_hw_zone_append_sectors = UINT_MAX; 58 lim->max_user_discard_sectors = UINT_MAX; 59 } 60 EXPORT_SYMBOL(blk_set_stacking_limits); 61 62 void blk_apply_bdi_limits(struct backing_dev_info *bdi, 63 struct queue_limits *lim) 64 { 65 u64 io_opt = lim->io_opt; 66 67 /* 68 * For read-ahead of large files to be effective, we need to read ahead 69 * at least twice the optimal I/O size. For rotational devices that do 70 * not report an optimal I/O size (e.g. ATA HDDs), use the maximum I/O 71 * size to avoid falling back to the (rather inefficient) small default 72 * read-ahead size. 73 * 74 * There is no hardware limitation for the read-ahead size and the user 75 * might have increased the read-ahead size through sysfs, so don't ever 76 * decrease it. 77 */ 78 if (!io_opt && (lim->features & BLK_FEAT_ROTATIONAL)) 79 io_opt = (u64)lim->max_sectors << SECTOR_SHIFT; 80 81 bdi->ra_pages = max3(bdi->ra_pages, 82 io_opt * 2 >> PAGE_SHIFT, 83 VM_READAHEAD_PAGES); 84 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT; 85 } 86 87 static int blk_validate_zoned_limits(struct queue_limits *lim) 88 { 89 if (!(lim->features & BLK_FEAT_ZONED)) { 90 if (WARN_ON_ONCE(lim->max_open_zones) || 91 WARN_ON_ONCE(lim->max_active_zones) || 92 WARN_ON_ONCE(lim->zone_write_granularity) || 93 WARN_ON_ONCE(lim->max_zone_append_sectors)) 94 return -EINVAL; 95 return 0; 96 } 97 98 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED))) 99 return -EINVAL; 100 101 /* 102 * Given that active zones include open zones, the maximum number of 103 * open zones cannot be larger than the maximum number of active zones. 104 */ 105 if (lim->max_active_zones && 106 lim->max_open_zones > lim->max_active_zones) 107 return -EINVAL; 108 109 if (lim->zone_write_granularity < lim->logical_block_size) 110 lim->zone_write_granularity = lim->logical_block_size; 111 112 /* 113 * The Zone Append size is limited by the maximum I/O size and the zone 114 * size given that it can't span zones. 115 * 116 * If no max_hw_zone_append_sectors limit is provided, the block layer 117 * will emulated it, else we're also bound by the hardware limit. 118 */ 119 lim->max_zone_append_sectors = 120 min_not_zero(lim->max_hw_zone_append_sectors, 121 min(lim->chunk_sectors, lim->max_hw_sectors)); 122 return 0; 123 } 124 125 static int blk_validate_integrity_limits(struct queue_limits *lim) 126 { 127 struct blk_integrity *bi = &lim->integrity; 128 129 if (!bi->metadata_size) { 130 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE || 131 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) { 132 pr_warn("invalid PI settings.\n"); 133 return -EINVAL; 134 } 135 bi->flags |= BLK_INTEGRITY_NOGENERATE | BLK_INTEGRITY_NOVERIFY; 136 return 0; 137 } 138 139 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) { 140 pr_warn("integrity support disabled.\n"); 141 return -EINVAL; 142 } 143 144 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE && 145 (bi->flags & BLK_INTEGRITY_REF_TAG)) { 146 pr_warn("ref tag not support without checksum.\n"); 147 return -EINVAL; 148 } 149 150 if (bi->pi_tuple_size > bi->metadata_size) { 151 pr_warn("pi_tuple_size (%u) exceeds metadata_size (%u)\n", 152 bi->pi_tuple_size, 153 bi->metadata_size); 154 return -EINVAL; 155 } 156 157 switch (bi->csum_type) { 158 case BLK_INTEGRITY_CSUM_NONE: 159 if (bi->pi_tuple_size) { 160 pr_warn("pi_tuple_size must be 0 when checksum type is none\n"); 161 return -EINVAL; 162 } 163 break; 164 case BLK_INTEGRITY_CSUM_CRC: 165 case BLK_INTEGRITY_CSUM_IP: 166 if (bi->pi_tuple_size != sizeof(struct t10_pi_tuple)) { 167 pr_warn("pi_tuple_size mismatch for T10 PI: expected %zu, got %u\n", 168 sizeof(struct t10_pi_tuple), 169 bi->pi_tuple_size); 170 return -EINVAL; 171 } 172 break; 173 case BLK_INTEGRITY_CSUM_CRC64: 174 if (bi->pi_tuple_size != sizeof(struct crc64_pi_tuple)) { 175 pr_warn("pi_tuple_size mismatch for CRC64 PI: expected %zu, got %u\n", 176 sizeof(struct crc64_pi_tuple), 177 bi->pi_tuple_size); 178 return -EINVAL; 179 } 180 break; 181 } 182 183 if (!bi->interval_exp) 184 bi->interval_exp = ilog2(lim->logical_block_size); 185 186 return 0; 187 } 188 189 /* 190 * Returns max guaranteed bytes which we can fit in a bio. 191 * 192 * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector), 193 * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from 194 * the first and last segments. 195 */ 196 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim) 197 { 198 unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments); 199 unsigned int length; 200 201 length = min(max_segments, 2) * lim->logical_block_size; 202 if (max_segments > 2) 203 length += (max_segments - 2) * PAGE_SIZE; 204 205 return length; 206 } 207 208 static void blk_atomic_writes_update_limits(struct queue_limits *lim) 209 { 210 unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT, 211 blk_queue_max_guaranteed_bio(lim)); 212 213 unit_limit = rounddown_pow_of_two(unit_limit); 214 215 lim->atomic_write_max_sectors = 216 min(lim->atomic_write_hw_max >> SECTOR_SHIFT, 217 lim->max_hw_sectors); 218 lim->atomic_write_unit_min = 219 min(lim->atomic_write_hw_unit_min, unit_limit); 220 lim->atomic_write_unit_max = 221 min(lim->atomic_write_hw_unit_max, unit_limit); 222 lim->atomic_write_boundary_sectors = 223 lim->atomic_write_hw_boundary >> SECTOR_SHIFT; 224 } 225 226 static void blk_validate_atomic_write_limits(struct queue_limits *lim) 227 { 228 unsigned int boundary_sectors; 229 unsigned int atomic_write_hw_max_sectors = 230 lim->atomic_write_hw_max >> SECTOR_SHIFT; 231 232 if (!(lim->features & BLK_FEAT_ATOMIC_WRITES)) 233 goto unsupported; 234 235 if (!lim->atomic_write_hw_max) 236 goto unsupported; 237 238 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min))) 239 goto unsupported; 240 241 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max))) 242 goto unsupported; 243 244 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min > 245 lim->atomic_write_hw_unit_max)) 246 goto unsupported; 247 248 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max > 249 lim->atomic_write_hw_max)) 250 goto unsupported; 251 252 if (WARN_ON_ONCE(lim->chunk_sectors && 253 atomic_write_hw_max_sectors > lim->chunk_sectors)) 254 goto unsupported; 255 256 boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT; 257 258 if (boundary_sectors) { 259 if (WARN_ON_ONCE(lim->atomic_write_hw_max > 260 lim->atomic_write_hw_boundary)) 261 goto unsupported; 262 /* 263 * A feature of boundary support is that it disallows bios to 264 * be merged which would result in a merged request which 265 * crosses either a chunk sector or atomic write HW boundary, 266 * even though chunk sectors may be just set for performance. 267 * For simplicity, disallow atomic writes for a chunk sector 268 * which is non-zero and smaller than atomic write HW boundary. 269 * Furthermore, chunk sectors must be a multiple of atomic 270 * write HW boundary. Otherwise boundary support becomes 271 * complicated. 272 * Devices which do not conform to these rules can be dealt 273 * with if and when they show up. 274 */ 275 if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors)) 276 goto unsupported; 277 278 /* 279 * The boundary size just needs to be a multiple of unit_max 280 * (and not necessarily a power-of-2), so this following check 281 * could be relaxed in future. 282 * Furthermore, if needed, unit_max could even be reduced so 283 * that it is compliant with a !power-of-2 boundary. 284 */ 285 if (!is_power_of_2(boundary_sectors)) 286 goto unsupported; 287 } 288 289 blk_atomic_writes_update_limits(lim); 290 return; 291 292 unsupported: 293 lim->atomic_write_max_sectors = 0; 294 lim->atomic_write_boundary_sectors = 0; 295 lim->atomic_write_unit_min = 0; 296 lim->atomic_write_unit_max = 0; 297 } 298 299 /* 300 * Check that the limits in lim are valid, initialize defaults for unset 301 * values, and cap values based on others where needed. 302 */ 303 int blk_validate_limits(struct queue_limits *lim) 304 { 305 unsigned int max_hw_sectors; 306 unsigned int logical_block_sectors; 307 unsigned long seg_size; 308 int err; 309 310 /* 311 * Unless otherwise specified, default to 512 byte logical blocks and a 312 * physical block size equal to the logical block size. 313 */ 314 if (!lim->logical_block_size) 315 lim->logical_block_size = SECTOR_SIZE; 316 else if (blk_validate_block_size(lim->logical_block_size)) { 317 pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size); 318 return -EINVAL; 319 } 320 if (lim->physical_block_size < lim->logical_block_size) { 321 lim->physical_block_size = lim->logical_block_size; 322 } else if (!is_power_of_2(lim->physical_block_size)) { 323 pr_warn("Invalid physical block size (%d)\n", lim->physical_block_size); 324 return -EINVAL; 325 } 326 327 /* 328 * The minimum I/O size defaults to the physical block size unless 329 * explicitly overridden. 330 */ 331 if (lim->io_min < lim->physical_block_size) 332 lim->io_min = lim->physical_block_size; 333 334 /* 335 * The optimal I/O size may not be aligned to physical block size 336 * (because it may be limited by dma engines which have no clue about 337 * block size of the disks attached to them), so we round it down here. 338 */ 339 lim->io_opt = round_down(lim->io_opt, lim->physical_block_size); 340 341 /* 342 * max_hw_sectors has a somewhat weird default for historical reason, 343 * but driver really should set their own instead of relying on this 344 * value. 345 * 346 * The block layer relies on the fact that every driver can 347 * handle at lest a page worth of data per I/O, and needs the value 348 * aligned to the logical block size. 349 */ 350 if (!lim->max_hw_sectors) 351 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; 352 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS)) 353 return -EINVAL; 354 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT; 355 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors)) 356 return -EINVAL; 357 lim->max_hw_sectors = round_down(lim->max_hw_sectors, 358 logical_block_sectors); 359 360 /* 361 * The actual max_sectors value is a complex beast and also takes the 362 * max_dev_sectors value (set by SCSI ULPs) and a user configurable 363 * value into account. The ->max_sectors value is always calculated 364 * from these, so directly setting it won't have any effect. 365 */ 366 max_hw_sectors = min_not_zero(lim->max_hw_sectors, 367 lim->max_dev_sectors); 368 if (lim->max_user_sectors) { 369 if (lim->max_user_sectors < BLK_MIN_SEGMENT_SIZE / SECTOR_SIZE) 370 return -EINVAL; 371 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors); 372 } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 373 lim->max_sectors = 374 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT); 375 } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) { 376 lim->max_sectors = 377 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT); 378 } else { 379 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP); 380 } 381 lim->max_sectors = round_down(lim->max_sectors, 382 logical_block_sectors); 383 384 /* 385 * Random default for the maximum number of segments. Driver should not 386 * rely on this and set their own. 387 */ 388 if (!lim->max_segments) 389 lim->max_segments = BLK_MAX_SEGMENTS; 390 391 if (lim->max_hw_wzeroes_unmap_sectors && 392 lim->max_hw_wzeroes_unmap_sectors != lim->max_write_zeroes_sectors) 393 return -EINVAL; 394 lim->max_wzeroes_unmap_sectors = min(lim->max_hw_wzeroes_unmap_sectors, 395 lim->max_user_wzeroes_unmap_sectors); 396 397 lim->max_discard_sectors = 398 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors); 399 400 /* 401 * When discard is not supported, discard_granularity should be reported 402 * as 0 to userspace. 403 */ 404 if (lim->max_discard_sectors) 405 lim->discard_granularity = 406 max(lim->discard_granularity, lim->physical_block_size); 407 else 408 lim->discard_granularity = 0; 409 410 if (!lim->max_discard_segments) 411 lim->max_discard_segments = 1; 412 413 /* 414 * By default there is no limit on the segment boundary alignment, 415 * but if there is one it can't be smaller than the page size as 416 * that would break all the normal I/O patterns. 417 */ 418 if (!lim->seg_boundary_mask) 419 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 420 if (WARN_ON_ONCE(lim->seg_boundary_mask < BLK_MIN_SEGMENT_SIZE - 1)) 421 return -EINVAL; 422 423 /* 424 * Stacking device may have both virtual boundary and max segment 425 * size limit, so allow this setting now, and long-term the two 426 * might need to move out of stacking limits since we have immutable 427 * bvec and lower layer bio splitting is supposed to handle the two 428 * correctly. 429 */ 430 if (lim->virt_boundary_mask) { 431 if (!lim->max_segment_size) 432 lim->max_segment_size = UINT_MAX; 433 } else { 434 /* 435 * The maximum segment size has an odd historic 64k default that 436 * drivers probably should override. Just like the I/O size we 437 * require drivers to at least handle a full page per segment. 438 */ 439 if (!lim->max_segment_size) 440 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; 441 if (WARN_ON_ONCE(lim->max_segment_size < BLK_MIN_SEGMENT_SIZE)) 442 return -EINVAL; 443 } 444 445 /* setup min segment size for building new segment in fast path */ 446 if (lim->seg_boundary_mask > lim->max_segment_size - 1) 447 seg_size = lim->max_segment_size; 448 else 449 seg_size = lim->seg_boundary_mask + 1; 450 lim->min_segment_size = min_t(unsigned int, seg_size, PAGE_SIZE); 451 452 /* 453 * We require drivers to at least do logical block aligned I/O, but 454 * historically could not check for that due to the separate calls 455 * to set the limits. Once the transition is finished the check 456 * below should be narrowed down to check the logical block size. 457 */ 458 if (!lim->dma_alignment) 459 lim->dma_alignment = SECTOR_SIZE - 1; 460 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE)) 461 return -EINVAL; 462 463 if (lim->alignment_offset) { 464 lim->alignment_offset &= (lim->physical_block_size - 1); 465 lim->flags &= ~BLK_FLAG_MISALIGNED; 466 } 467 468 if (!(lim->features & BLK_FEAT_WRITE_CACHE)) 469 lim->features &= ~BLK_FEAT_FUA; 470 471 blk_validate_atomic_write_limits(lim); 472 473 err = blk_validate_integrity_limits(lim); 474 if (err) 475 return err; 476 return blk_validate_zoned_limits(lim); 477 } 478 EXPORT_SYMBOL_GPL(blk_validate_limits); 479 480 /* 481 * Set the default limits for a newly allocated queue. @lim contains the 482 * initial limits set by the driver, which could be no limit in which case 483 * all fields are cleared to zero. 484 */ 485 int blk_set_default_limits(struct queue_limits *lim) 486 { 487 /* 488 * Most defaults are set by capping the bounds in blk_validate_limits, 489 * but these limits are special and need an explicit initialization to 490 * the max value here. 491 */ 492 lim->max_user_discard_sectors = UINT_MAX; 493 lim->max_user_wzeroes_unmap_sectors = UINT_MAX; 494 return blk_validate_limits(lim); 495 } 496 497 /** 498 * queue_limits_commit_update - commit an atomic update of queue limits 499 * @q: queue to update 500 * @lim: limits to apply 501 * 502 * Apply the limits in @lim that were obtained from queue_limits_start_update() 503 * and updated by the caller to @q. The caller must have frozen the queue or 504 * ensure that there are no outstanding I/Os by other means. 505 * 506 * Returns 0 if successful, else a negative error code. 507 */ 508 int queue_limits_commit_update(struct request_queue *q, 509 struct queue_limits *lim) 510 { 511 int error; 512 513 error = blk_validate_limits(lim); 514 if (error) 515 goto out_unlock; 516 517 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 518 if (q->crypto_profile && lim->integrity.tag_size) { 519 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n"); 520 error = -EINVAL; 521 goto out_unlock; 522 } 523 #endif 524 525 q->limits = *lim; 526 if (q->disk) 527 blk_apply_bdi_limits(q->disk->bdi, lim); 528 out_unlock: 529 mutex_unlock(&q->limits_lock); 530 return error; 531 } 532 EXPORT_SYMBOL_GPL(queue_limits_commit_update); 533 534 /** 535 * queue_limits_commit_update_frozen - commit an atomic update of queue limits 536 * @q: queue to update 537 * @lim: limits to apply 538 * 539 * Apply the limits in @lim that were obtained from queue_limits_start_update() 540 * and updated with the new values by the caller to @q. Freezes the queue 541 * before the update and unfreezes it after. 542 * 543 * Returns 0 if successful, else a negative error code. 544 */ 545 int queue_limits_commit_update_frozen(struct request_queue *q, 546 struct queue_limits *lim) 547 { 548 unsigned int memflags; 549 int ret; 550 551 memflags = blk_mq_freeze_queue(q); 552 ret = queue_limits_commit_update(q, lim); 553 blk_mq_unfreeze_queue(q, memflags); 554 555 return ret; 556 } 557 EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen); 558 559 /** 560 * queue_limits_set - apply queue limits to queue 561 * @q: queue to update 562 * @lim: limits to apply 563 * 564 * Apply the limits in @lim that were freshly initialized to @q. 565 * To update existing limits use queue_limits_start_update() and 566 * queue_limits_commit_update() instead. 567 * 568 * Returns 0 if successful, else a negative error code. 569 */ 570 int queue_limits_set(struct request_queue *q, struct queue_limits *lim) 571 { 572 mutex_lock(&q->limits_lock); 573 return queue_limits_commit_update(q, lim); 574 } 575 EXPORT_SYMBOL_GPL(queue_limits_set); 576 577 static int queue_limit_alignment_offset(const struct queue_limits *lim, 578 sector_t sector) 579 { 580 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 581 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 582 << SECTOR_SHIFT; 583 584 return (granularity + lim->alignment_offset - alignment) % granularity; 585 } 586 587 static unsigned int queue_limit_discard_alignment( 588 const struct queue_limits *lim, sector_t sector) 589 { 590 unsigned int alignment, granularity, offset; 591 592 if (!lim->max_discard_sectors) 593 return 0; 594 595 /* Why are these in bytes, not sectors? */ 596 alignment = lim->discard_alignment >> SECTOR_SHIFT; 597 granularity = lim->discard_granularity >> SECTOR_SHIFT; 598 599 /* Offset of the partition start in 'granularity' sectors */ 600 offset = sector_div(sector, granularity); 601 602 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 603 offset = (granularity + alignment - offset) % granularity; 604 605 /* Turn it back into bytes, gaah */ 606 return offset << SECTOR_SHIFT; 607 } 608 609 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) 610 { 611 sectors = round_down(sectors, lbs >> SECTOR_SHIFT); 612 if (sectors < PAGE_SIZE >> SECTOR_SHIFT) 613 sectors = PAGE_SIZE >> SECTOR_SHIFT; 614 return sectors; 615 } 616 617 /* Check if second and later bottom devices are compliant */ 618 static bool blk_stack_atomic_writes_tail(struct queue_limits *t, 619 struct queue_limits *b) 620 { 621 /* We're not going to support different boundary sizes.. yet */ 622 if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary) 623 return false; 624 625 /* Can't support this */ 626 if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max) 627 return false; 628 629 /* Or this */ 630 if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min) 631 return false; 632 633 t->atomic_write_hw_max = min(t->atomic_write_hw_max, 634 b->atomic_write_hw_max); 635 t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min, 636 b->atomic_write_hw_unit_min); 637 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max, 638 b->atomic_write_hw_unit_max); 639 return true; 640 } 641 642 /* Check for valid boundary of first bottom device */ 643 static bool blk_stack_atomic_writes_boundary_head(struct queue_limits *t, 644 struct queue_limits *b) 645 { 646 /* 647 * Ensure atomic write boundary is aligned with chunk sectors. Stacked 648 * devices store chunk sectors in t->io_min. 649 */ 650 if (b->atomic_write_hw_boundary > t->io_min && 651 b->atomic_write_hw_boundary % t->io_min) 652 return false; 653 if (t->io_min > b->atomic_write_hw_boundary && 654 t->io_min % b->atomic_write_hw_boundary) 655 return false; 656 657 t->atomic_write_hw_boundary = b->atomic_write_hw_boundary; 658 return true; 659 } 660 661 static void blk_stack_atomic_writes_chunk_sectors(struct queue_limits *t) 662 { 663 unsigned int chunk_bytes; 664 665 if (!t->chunk_sectors) 666 return; 667 668 /* 669 * If chunk sectors is so large that its value in bytes overflows 670 * UINT_MAX, then just shift it down so it definitely will fit. 671 * We don't support atomic writes of such a large size anyway. 672 */ 673 if (check_shl_overflow(t->chunk_sectors, SECTOR_SHIFT, &chunk_bytes)) 674 chunk_bytes = t->chunk_sectors; 675 676 /* 677 * Find values for limits which work for chunk size. 678 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk 679 * size, as the chunk size is not restricted to a power-of-2. 680 * So we need to find highest power-of-2 which works for the chunk 681 * size. 682 * As an example scenario, we could have t->unit_max = 16K and 683 * t->chunk_sectors = 24KB. For this case, reduce t->unit_max to a 684 * value aligned with both limits, i.e. 8K in this example. 685 */ 686 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max, 687 max_pow_of_two_factor(chunk_bytes)); 688 689 t->atomic_write_hw_unit_min = min(t->atomic_write_hw_unit_min, 690 t->atomic_write_hw_unit_max); 691 t->atomic_write_hw_max = min(t->atomic_write_hw_max, chunk_bytes); 692 } 693 694 /* Check stacking of first bottom device */ 695 static bool blk_stack_atomic_writes_head(struct queue_limits *t, 696 struct queue_limits *b) 697 { 698 if (b->atomic_write_hw_boundary && 699 !blk_stack_atomic_writes_boundary_head(t, b)) 700 return false; 701 702 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max; 703 t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min; 704 t->atomic_write_hw_max = b->atomic_write_hw_max; 705 return true; 706 } 707 708 static void blk_stack_atomic_writes_limits(struct queue_limits *t, 709 struct queue_limits *b, sector_t start) 710 { 711 if (!(b->features & BLK_FEAT_ATOMIC_WRITES)) 712 goto unsupported; 713 714 if (!b->atomic_write_hw_unit_min) 715 goto unsupported; 716 717 if (!blk_atomic_write_start_sect_aligned(start, b)) 718 goto unsupported; 719 720 /* 721 * If atomic_write_hw_max is set, we have already stacked 1x bottom 722 * device, so check for compliance. 723 */ 724 if (t->atomic_write_hw_max) { 725 if (!blk_stack_atomic_writes_tail(t, b)) 726 goto unsupported; 727 return; 728 } 729 730 if (!blk_stack_atomic_writes_head(t, b)) 731 goto unsupported; 732 blk_stack_atomic_writes_chunk_sectors(t); 733 return; 734 735 unsupported: 736 t->atomic_write_hw_max = 0; 737 t->atomic_write_hw_unit_max = 0; 738 t->atomic_write_hw_unit_min = 0; 739 t->atomic_write_hw_boundary = 0; 740 } 741 742 /** 743 * blk_stack_limits - adjust queue_limits for stacked devices 744 * @t: the stacking driver limits (top device) 745 * @b: the underlying queue limits (bottom, component device) 746 * @start: first data sector within component device 747 * 748 * Description: 749 * This function is used by stacking drivers like MD and DM to ensure 750 * that all component devices have compatible block sizes and 751 * alignments. The stacking driver must provide a queue_limits 752 * struct (top) and then iteratively call the stacking function for 753 * all component (bottom) devices. The stacking function will 754 * attempt to combine the values and ensure proper alignment. 755 * 756 * Returns 0 if the top and bottom queue_limits are compatible. The 757 * top device's block sizes and alignment offsets may be adjusted to 758 * ensure alignment with the bottom device. If no compatible sizes 759 * and alignments exist, -1 is returned and the resulting top 760 * queue_limits will have the misaligned flag set to indicate that 761 * the alignment_offset is undefined. 762 */ 763 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 764 sector_t start) 765 { 766 unsigned int top, bottom, alignment, ret = 0; 767 768 t->features |= (b->features & BLK_FEAT_INHERIT_MASK); 769 770 /* 771 * Some feaures need to be supported both by the stacking driver and all 772 * underlying devices. The stacking driver sets these flags before 773 * stacking the limits, and this will clear the flags if any of the 774 * underlying devices does not support it. 775 */ 776 if (!(b->features & BLK_FEAT_NOWAIT)) 777 t->features &= ~BLK_FEAT_NOWAIT; 778 if (!(b->features & BLK_FEAT_POLL)) 779 t->features &= ~BLK_FEAT_POLL; 780 781 t->flags |= (b->flags & BLK_FLAG_MISALIGNED); 782 783 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 784 t->max_user_sectors = min_not_zero(t->max_user_sectors, 785 b->max_user_sectors); 786 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 787 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); 788 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, 789 b->max_write_zeroes_sectors); 790 t->max_user_wzeroes_unmap_sectors = 791 min(t->max_user_wzeroes_unmap_sectors, 792 b->max_user_wzeroes_unmap_sectors); 793 t->max_hw_wzeroes_unmap_sectors = 794 min(t->max_hw_wzeroes_unmap_sectors, 795 b->max_hw_wzeroes_unmap_sectors); 796 797 t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors, 798 b->max_hw_zone_append_sectors); 799 800 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, 801 b->seg_boundary_mask); 802 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, 803 b->virt_boundary_mask); 804 805 t->max_segments = min_not_zero(t->max_segments, b->max_segments); 806 t->max_discard_segments = min_not_zero(t->max_discard_segments, 807 b->max_discard_segments); 808 t->max_integrity_segments = min_not_zero(t->max_integrity_segments, 809 b->max_integrity_segments); 810 811 t->max_segment_size = min_not_zero(t->max_segment_size, 812 b->max_segment_size); 813 814 alignment = queue_limit_alignment_offset(b, start); 815 816 /* Bottom device has different alignment. Check that it is 817 * compatible with the current top alignment. 818 */ 819 if (t->alignment_offset != alignment) { 820 821 top = max(t->physical_block_size, t->io_min) 822 + t->alignment_offset; 823 bottom = max(b->physical_block_size, b->io_min) + alignment; 824 825 /* Verify that top and bottom intervals line up */ 826 if (max(top, bottom) % min(top, bottom)) { 827 t->flags |= BLK_FLAG_MISALIGNED; 828 ret = -1; 829 } 830 } 831 832 t->logical_block_size = max(t->logical_block_size, 833 b->logical_block_size); 834 835 t->physical_block_size = max(t->physical_block_size, 836 b->physical_block_size); 837 838 t->io_min = max(t->io_min, b->io_min); 839 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); 840 t->dma_alignment = max(t->dma_alignment, b->dma_alignment); 841 842 /* Set non-power-of-2 compatible chunk_sectors boundary */ 843 if (b->chunk_sectors) 844 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); 845 846 /* Physical block size a multiple of the logical block size? */ 847 if (t->physical_block_size & (t->logical_block_size - 1)) { 848 t->physical_block_size = t->logical_block_size; 849 t->flags |= BLK_FLAG_MISALIGNED; 850 ret = -1; 851 } 852 853 /* Minimum I/O a multiple of the physical block size? */ 854 if (t->io_min & (t->physical_block_size - 1)) { 855 t->io_min = t->physical_block_size; 856 t->flags |= BLK_FLAG_MISALIGNED; 857 ret = -1; 858 } 859 860 /* Optimal I/O a multiple of the physical block size? */ 861 if (t->io_opt & (t->physical_block_size - 1)) { 862 t->io_opt = 0; 863 t->flags |= BLK_FLAG_MISALIGNED; 864 ret = -1; 865 } 866 867 /* chunk_sectors a multiple of the physical block size? */ 868 if (t->chunk_sectors % (t->physical_block_size >> SECTOR_SHIFT)) { 869 t->chunk_sectors = 0; 870 t->flags |= BLK_FLAG_MISALIGNED; 871 ret = -1; 872 } 873 874 /* Find lowest common alignment_offset */ 875 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) 876 % max(t->physical_block_size, t->io_min); 877 878 /* Verify that new alignment_offset is on a logical block boundary */ 879 if (t->alignment_offset & (t->logical_block_size - 1)) { 880 t->flags |= BLK_FLAG_MISALIGNED; 881 ret = -1; 882 } 883 884 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); 885 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); 886 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); 887 888 /* Discard alignment and granularity */ 889 if (b->discard_granularity) { 890 alignment = queue_limit_discard_alignment(b, start); 891 892 t->max_discard_sectors = min_not_zero(t->max_discard_sectors, 893 b->max_discard_sectors); 894 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, 895 b->max_hw_discard_sectors); 896 t->discard_granularity = max(t->discard_granularity, 897 b->discard_granularity); 898 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % 899 t->discard_granularity; 900 } 901 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, 902 b->max_secure_erase_sectors); 903 t->zone_write_granularity = max(t->zone_write_granularity, 904 b->zone_write_granularity); 905 if (!(t->features & BLK_FEAT_ZONED)) { 906 t->zone_write_granularity = 0; 907 t->max_zone_append_sectors = 0; 908 } 909 blk_stack_atomic_writes_limits(t, b, start); 910 911 return ret; 912 } 913 EXPORT_SYMBOL(blk_stack_limits); 914 915 /** 916 * queue_limits_stack_bdev - adjust queue_limits for stacked devices 917 * @t: the stacking driver limits (top device) 918 * @bdev: the underlying block device (bottom) 919 * @offset: offset to beginning of data within component device 920 * @pfx: prefix to use for warnings logged 921 * 922 * Description: 923 * This function is used by stacking drivers like MD and DM to ensure 924 * that all component devices have compatible block sizes and 925 * alignments. The stacking driver must provide a queue_limits 926 * struct (top) and then iteratively call the stacking function for 927 * all component (bottom) devices. The stacking function will 928 * attempt to combine the values and ensure proper alignment. 929 */ 930 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, 931 sector_t offset, const char *pfx) 932 { 933 if (blk_stack_limits(t, bdev_limits(bdev), 934 get_start_sect(bdev) + offset)) 935 pr_notice("%s: Warning: Device %pg is misaligned\n", 936 pfx, bdev); 937 } 938 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev); 939 940 /** 941 * queue_limits_stack_integrity - stack integrity profile 942 * @t: target queue limits 943 * @b: base queue limits 944 * 945 * Check if the integrity profile in the @b can be stacked into the 946 * target @t. Stacking is possible if either: 947 * 948 * a) does not have any integrity information stacked into it yet 949 * b) the integrity profile in @b is identical to the one in @t 950 * 951 * If @b can be stacked into @t, return %true. Else return %false and clear the 952 * integrity information in @t. 953 */ 954 bool queue_limits_stack_integrity(struct queue_limits *t, 955 struct queue_limits *b) 956 { 957 struct blk_integrity *ti = &t->integrity; 958 struct blk_integrity *bi = &b->integrity; 959 960 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 961 return true; 962 963 if (ti->flags & BLK_INTEGRITY_STACKED) { 964 if (ti->metadata_size != bi->metadata_size) 965 goto incompatible; 966 if (ti->interval_exp != bi->interval_exp) 967 goto incompatible; 968 if (ti->tag_size != bi->tag_size) 969 goto incompatible; 970 if (ti->csum_type != bi->csum_type) 971 goto incompatible; 972 if (ti->pi_tuple_size != bi->pi_tuple_size) 973 goto incompatible; 974 if ((ti->flags & BLK_INTEGRITY_REF_TAG) != 975 (bi->flags & BLK_INTEGRITY_REF_TAG)) 976 goto incompatible; 977 } else { 978 ti->flags = BLK_INTEGRITY_STACKED; 979 ti->flags |= (bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) | 980 (bi->flags & BLK_INTEGRITY_REF_TAG); 981 ti->csum_type = bi->csum_type; 982 ti->pi_tuple_size = bi->pi_tuple_size; 983 ti->metadata_size = bi->metadata_size; 984 ti->pi_offset = bi->pi_offset; 985 ti->interval_exp = bi->interval_exp; 986 ti->tag_size = bi->tag_size; 987 } 988 return true; 989 990 incompatible: 991 memset(ti, 0, sizeof(*ti)); 992 return false; 993 } 994 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity); 995 996 /** 997 * blk_set_queue_depth - tell the block layer about the device queue depth 998 * @q: the request queue for the device 999 * @depth: queue depth 1000 * 1001 */ 1002 void blk_set_queue_depth(struct request_queue *q, unsigned int depth) 1003 { 1004 q->queue_depth = depth; 1005 rq_qos_queue_depth_changed(q); 1006 } 1007 EXPORT_SYMBOL(blk_set_queue_depth); 1008 1009 int bdev_alignment_offset(struct block_device *bdev) 1010 { 1011 struct request_queue *q = bdev_get_queue(bdev); 1012 1013 if (q->limits.flags & BLK_FLAG_MISALIGNED) 1014 return -1; 1015 if (bdev_is_partition(bdev)) 1016 return queue_limit_alignment_offset(&q->limits, 1017 bdev->bd_start_sect); 1018 return q->limits.alignment_offset; 1019 } 1020 EXPORT_SYMBOL_GPL(bdev_alignment_offset); 1021 1022 unsigned int bdev_discard_alignment(struct block_device *bdev) 1023 { 1024 struct request_queue *q = bdev_get_queue(bdev); 1025 1026 if (bdev_is_partition(bdev)) 1027 return queue_limit_discard_alignment(&q->limits, 1028 bdev->bd_start_sect); 1029 return q->limits.discard_alignment; 1030 } 1031 EXPORT_SYMBOL_GPL(bdev_discard_alignment); 1032