1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef INT_BLK_MQ_H 3 #define INT_BLK_MQ_H 4 5 #include "blk-stat.h" 6 #include "blk-mq-tag.h" 7 8 struct blk_mq_tag_set; 9 10 struct blk_mq_ctxs { 11 struct kobject kobj; 12 struct blk_mq_ctx __percpu *queue_ctx; 13 }; 14 15 /** 16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs 17 */ 18 struct blk_mq_ctx { 19 struct { 20 spinlock_t lock; 21 struct list_head rq_lists[HCTX_MAX_TYPES]; 22 } ____cacheline_aligned_in_smp; 23 24 unsigned int cpu; 25 unsigned short index_hw[HCTX_MAX_TYPES]; 26 struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES]; 27 28 /* incremented at dispatch time */ 29 unsigned long rq_dispatched[2]; 30 unsigned long rq_merged; 31 32 /* incremented at completion time */ 33 unsigned long ____cacheline_aligned_in_smp rq_completed[2]; 34 35 struct request_queue *queue; 36 struct blk_mq_ctxs *ctxs; 37 struct kobject kobj; 38 } ____cacheline_aligned_in_smp; 39 40 void blk_mq_free_queue(struct request_queue *q); 41 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr); 42 void blk_mq_wake_waiters(struct request_queue *q); 43 bool blk_mq_dispatch_rq_list(struct request_queue *, struct list_head *, bool); 44 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 45 bool kick_requeue_list); 46 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list); 47 bool blk_mq_get_driver_tag(struct request *rq); 48 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 49 struct blk_mq_ctx *start); 50 51 /* 52 * Internal helpers for allocating/freeing the request map 53 */ 54 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 55 unsigned int hctx_idx); 56 void blk_mq_free_rq_map(struct blk_mq_tags *tags); 57 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 58 unsigned int hctx_idx, 59 unsigned int nr_tags, 60 unsigned int reserved_tags); 61 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 62 unsigned int hctx_idx, unsigned int depth); 63 64 /* 65 * Internal helpers for request insertion into sw queues 66 */ 67 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 68 bool at_head); 69 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue); 70 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 71 struct list_head *list); 72 73 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 74 struct request *rq, 75 blk_qc_t *cookie, 76 bool bypass, bool last); 77 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 78 struct list_head *list); 79 80 /* 81 * CPU -> queue mappings 82 */ 83 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int); 84 85 /* 86 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue 87 * @q: request queue 88 * @type: the hctx type index 89 * @cpu: CPU 90 */ 91 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q, 92 enum hctx_type type, 93 unsigned int cpu) 94 { 95 return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]]; 96 } 97 98 /* 99 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue 100 * @q: request queue 101 * @flags: request command flags 102 * @cpu: cpu ctx 103 */ 104 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, 105 unsigned int flags, 106 struct blk_mq_ctx *ctx) 107 { 108 enum hctx_type type = HCTX_TYPE_DEFAULT; 109 110 /* 111 * The caller ensure that if REQ_HIPRI, poll must be enabled. 112 */ 113 if (flags & REQ_HIPRI) 114 type = HCTX_TYPE_POLL; 115 else if ((flags & REQ_OP_MASK) == REQ_OP_READ) 116 type = HCTX_TYPE_READ; 117 118 return ctx->hctxs[type]; 119 } 120 121 /* 122 * sysfs helpers 123 */ 124 extern void blk_mq_sysfs_init(struct request_queue *q); 125 extern void blk_mq_sysfs_deinit(struct request_queue *q); 126 extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q); 127 extern int blk_mq_sysfs_register(struct request_queue *q); 128 extern void blk_mq_sysfs_unregister(struct request_queue *q); 129 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx); 130 131 void blk_mq_release(struct request_queue *q); 132 133 /** 134 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request 135 * @rq: target request. 136 */ 137 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq) 138 { 139 return READ_ONCE(rq->state); 140 } 141 142 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q, 143 unsigned int cpu) 144 { 145 return per_cpu_ptr(q->queue_ctx, cpu); 146 } 147 148 /* 149 * This assumes per-cpu software queueing queues. They could be per-node 150 * as well, for instance. For now this is hardcoded as-is. Note that we don't 151 * care about preemption, since we know the ctx's are persistent. This does 152 * mean that we can't rely on ctx always matching the currently running CPU. 153 */ 154 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q) 155 { 156 return __blk_mq_get_ctx(q, get_cpu()); 157 } 158 159 static inline void blk_mq_put_ctx(struct blk_mq_ctx *ctx) 160 { 161 put_cpu(); 162 } 163 164 struct blk_mq_alloc_data { 165 /* input parameter */ 166 struct request_queue *q; 167 blk_mq_req_flags_t flags; 168 unsigned int shallow_depth; 169 unsigned int cmd_flags; 170 171 /* input & output parameter */ 172 struct blk_mq_ctx *ctx; 173 struct blk_mq_hw_ctx *hctx; 174 }; 175 176 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data) 177 { 178 if (data->flags & BLK_MQ_REQ_INTERNAL) 179 return data->hctx->sched_tags; 180 181 return data->hctx->tags; 182 } 183 184 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx) 185 { 186 return test_bit(BLK_MQ_S_STOPPED, &hctx->state); 187 } 188 189 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx) 190 { 191 return hctx->nr_ctx && hctx->tags; 192 } 193 194 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part); 195 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 196 unsigned int inflight[2]); 197 198 static inline void blk_mq_put_dispatch_budget(struct blk_mq_hw_ctx *hctx) 199 { 200 struct request_queue *q = hctx->queue; 201 202 if (q->mq_ops->put_budget) 203 q->mq_ops->put_budget(hctx); 204 } 205 206 static inline bool blk_mq_get_dispatch_budget(struct blk_mq_hw_ctx *hctx) 207 { 208 struct request_queue *q = hctx->queue; 209 210 if (q->mq_ops->get_budget) 211 return q->mq_ops->get_budget(hctx); 212 return true; 213 } 214 215 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, 216 struct request *rq) 217 { 218 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag); 219 rq->tag = -1; 220 221 if (rq->rq_flags & RQF_MQ_INFLIGHT) { 222 rq->rq_flags &= ~RQF_MQ_INFLIGHT; 223 atomic_dec(&hctx->nr_active); 224 } 225 } 226 227 static inline void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx, 228 struct request *rq) 229 { 230 if (rq->tag == -1 || rq->internal_tag == -1) 231 return; 232 233 __blk_mq_put_driver_tag(hctx, rq); 234 } 235 236 static inline void blk_mq_put_driver_tag(struct request *rq) 237 { 238 if (rq->tag == -1 || rq->internal_tag == -1) 239 return; 240 241 __blk_mq_put_driver_tag(rq->mq_hctx, rq); 242 } 243 244 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap) 245 { 246 int cpu; 247 248 for_each_possible_cpu(cpu) 249 qmap->mq_map[cpu] = 0; 250 } 251 252 #endif 253