xref: /linux/block/blk-mq.h (revision e0c1b49f5b674cca7b10549c53b3791d0bbc90a8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
4 
5 #include "blk-stat.h"
6 #include "blk-mq-tag.h"
7 
8 struct blk_mq_tag_set;
9 
10 struct blk_mq_ctxs {
11 	struct kobject kobj;
12 	struct blk_mq_ctx __percpu	*queue_ctx;
13 };
14 
15 /**
16  * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17  */
18 struct blk_mq_ctx {
19 	struct {
20 		spinlock_t		lock;
21 		struct list_head	rq_lists[HCTX_MAX_TYPES];
22 	} ____cacheline_aligned_in_smp;
23 
24 	unsigned int		cpu;
25 	unsigned short		index_hw[HCTX_MAX_TYPES];
26 	struct blk_mq_hw_ctx 	*hctxs[HCTX_MAX_TYPES];
27 
28 	struct request_queue	*queue;
29 	struct blk_mq_ctxs      *ctxs;
30 	struct kobject		kobj;
31 } ____cacheline_aligned_in_smp;
32 
33 void blk_mq_submit_bio(struct bio *bio);
34 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
35 		unsigned int flags);
36 void blk_mq_exit_queue(struct request_queue *q);
37 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
38 void blk_mq_wake_waiters(struct request_queue *q);
39 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
40 			     unsigned int);
41 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
42 				bool kick_requeue_list);
43 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
44 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
45 					struct blk_mq_ctx *start);
46 void blk_mq_put_rq_ref(struct request *rq);
47 
48 /*
49  * Internal helpers for allocating/freeing the request map
50  */
51 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
52 		     unsigned int hctx_idx);
53 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
54 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
55 				unsigned int hctx_idx, unsigned int depth);
56 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
57 			     struct blk_mq_tags *tags,
58 			     unsigned int hctx_idx);
59 /*
60  * Internal helpers for request insertion into sw queues
61  */
62 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
63 				bool at_head);
64 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
65 				  bool run_queue);
66 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
67 				struct list_head *list);
68 
69 /* Used by blk_insert_cloned_request() to issue request directly */
70 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last);
71 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
72 				    struct list_head *list);
73 
74 /*
75  * CPU -> queue mappings
76  */
77 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
78 
79 /*
80  * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
81  * @q: request queue
82  * @type: the hctx type index
83  * @cpu: CPU
84  */
85 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
86 							  enum hctx_type type,
87 							  unsigned int cpu)
88 {
89 	return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]];
90 }
91 
92 /*
93  * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
94  * @q: request queue
95  * @flags: request command flags
96  * @ctx: software queue cpu ctx
97  */
98 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
99 						     unsigned int flags,
100 						     struct blk_mq_ctx *ctx)
101 {
102 	enum hctx_type type = HCTX_TYPE_DEFAULT;
103 
104 	/*
105 	 * The caller ensure that if REQ_POLLED, poll must be enabled.
106 	 */
107 	if (flags & REQ_POLLED)
108 		type = HCTX_TYPE_POLL;
109 	else if ((flags & REQ_OP_MASK) == REQ_OP_READ)
110 		type = HCTX_TYPE_READ;
111 
112 	return ctx->hctxs[type];
113 }
114 
115 /*
116  * sysfs helpers
117  */
118 extern void blk_mq_sysfs_init(struct request_queue *q);
119 extern void blk_mq_sysfs_deinit(struct request_queue *q);
120 extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
121 extern int blk_mq_sysfs_register(struct request_queue *q);
122 extern void blk_mq_sysfs_unregister(struct request_queue *q);
123 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
124 void blk_mq_free_plug_rqs(struct blk_plug *plug);
125 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
126 
127 void blk_mq_release(struct request_queue *q);
128 
129 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
130 					   unsigned int cpu)
131 {
132 	return per_cpu_ptr(q->queue_ctx, cpu);
133 }
134 
135 /*
136  * This assumes per-cpu software queueing queues. They could be per-node
137  * as well, for instance. For now this is hardcoded as-is. Note that we don't
138  * care about preemption, since we know the ctx's are persistent. This does
139  * mean that we can't rely on ctx always matching the currently running CPU.
140  */
141 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
142 {
143 	return __blk_mq_get_ctx(q, raw_smp_processor_id());
144 }
145 
146 struct blk_mq_alloc_data {
147 	/* input parameter */
148 	struct request_queue *q;
149 	blk_mq_req_flags_t flags;
150 	unsigned int shallow_depth;
151 	unsigned int cmd_flags;
152 	unsigned int rq_flags;
153 
154 	/* allocate multiple requests/tags in one go */
155 	unsigned int nr_tags;
156 	struct request **cached_rq;
157 
158 	/* input & output parameter */
159 	struct blk_mq_ctx *ctx;
160 	struct blk_mq_hw_ctx *hctx;
161 };
162 
163 static inline bool blk_mq_is_shared_tags(unsigned int flags)
164 {
165 	return flags & BLK_MQ_F_TAG_HCTX_SHARED;
166 }
167 
168 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
169 {
170 	if (!(data->rq_flags & RQF_ELV))
171 		return data->hctx->tags;
172 	return data->hctx->sched_tags;
173 }
174 
175 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
176 {
177 	return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
178 }
179 
180 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
181 {
182 	return hctx->nr_ctx && hctx->tags;
183 }
184 
185 unsigned int blk_mq_in_flight(struct request_queue *q,
186 		struct block_device *part);
187 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
188 		unsigned int inflight[2]);
189 
190 static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
191 					      int budget_token)
192 {
193 	if (q->mq_ops->put_budget)
194 		q->mq_ops->put_budget(q, budget_token);
195 }
196 
197 static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
198 {
199 	if (q->mq_ops->get_budget)
200 		return q->mq_ops->get_budget(q);
201 	return 0;
202 }
203 
204 static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
205 {
206 	if (token < 0)
207 		return;
208 
209 	if (rq->q->mq_ops->set_rq_budget_token)
210 		rq->q->mq_ops->set_rq_budget_token(rq, token);
211 }
212 
213 static inline int blk_mq_get_rq_budget_token(struct request *rq)
214 {
215 	if (rq->q->mq_ops->get_rq_budget_token)
216 		return rq->q->mq_ops->get_rq_budget_token(rq);
217 	return -1;
218 }
219 
220 static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
221 {
222 	if (blk_mq_is_shared_tags(hctx->flags))
223 		atomic_inc(&hctx->queue->nr_active_requests_shared_tags);
224 	else
225 		atomic_inc(&hctx->nr_active);
226 }
227 
228 static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
229 {
230 	if (blk_mq_is_shared_tags(hctx->flags))
231 		atomic_dec(&hctx->queue->nr_active_requests_shared_tags);
232 	else
233 		atomic_dec(&hctx->nr_active);
234 }
235 
236 static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
237 {
238 	if (blk_mq_is_shared_tags(hctx->flags))
239 		return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
240 	return atomic_read(&hctx->nr_active);
241 }
242 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
243 					   struct request *rq)
244 {
245 	blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
246 	rq->tag = BLK_MQ_NO_TAG;
247 
248 	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
249 		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
250 		__blk_mq_dec_active_requests(hctx);
251 	}
252 }
253 
254 static inline void blk_mq_put_driver_tag(struct request *rq)
255 {
256 	if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
257 		return;
258 
259 	__blk_mq_put_driver_tag(rq->mq_hctx, rq);
260 }
261 
262 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq);
263 
264 static inline bool blk_mq_get_driver_tag(struct request *rq)
265 {
266 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
267 
268 	if (rq->tag != BLK_MQ_NO_TAG &&
269 	    !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
270 		hctx->tags->rqs[rq->tag] = rq;
271 		return true;
272 	}
273 
274 	return __blk_mq_get_driver_tag(hctx, rq);
275 }
276 
277 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
278 {
279 	int cpu;
280 
281 	for_each_possible_cpu(cpu)
282 		qmap->mq_map[cpu] = 0;
283 }
284 
285 /*
286  * blk_mq_plug() - Get caller context plug
287  * @q: request queue
288  * @bio : the bio being submitted by the caller context
289  *
290  * Plugging, by design, may delay the insertion of BIOs into the elevator in
291  * order to increase BIO merging opportunities. This however can cause BIO
292  * insertion order to change from the order in which submit_bio() is being
293  * executed in the case of multiple contexts concurrently issuing BIOs to a
294  * device, even if these context are synchronized to tightly control BIO issuing
295  * order. While this is not a problem with regular block devices, this ordering
296  * change can cause write BIO failures with zoned block devices as these
297  * require sequential write patterns to zones. Prevent this from happening by
298  * ignoring the plug state of a BIO issuing context if the target request queue
299  * is for a zoned block device and the BIO to plug is a write operation.
300  *
301  * Return current->plug if the bio can be plugged and NULL otherwise
302  */
303 static inline struct blk_plug *blk_mq_plug(struct request_queue *q,
304 					   struct bio *bio)
305 {
306 	/*
307 	 * For regular block devices or read operations, use the context plug
308 	 * which may be NULL if blk_start_plug() was not executed.
309 	 */
310 	if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio)))
311 		return current->plug;
312 
313 	/* Zoned block device write operation case: do not plug the BIO */
314 	return NULL;
315 }
316 
317 /* Free all requests on the list */
318 static inline void blk_mq_free_requests(struct list_head *list)
319 {
320 	while (!list_empty(list)) {
321 		struct request *rq = list_entry_rq(list->next);
322 
323 		list_del_init(&rq->queuelist);
324 		blk_mq_free_request(rq);
325 	}
326 }
327 
328 /*
329  * For shared tag users, we track the number of currently active users
330  * and attempt to provide a fair share of the tag depth for each of them.
331  */
332 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
333 				  struct sbitmap_queue *bt)
334 {
335 	unsigned int depth, users;
336 
337 	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
338 		return true;
339 
340 	/*
341 	 * Don't try dividing an ant
342 	 */
343 	if (bt->sb.depth == 1)
344 		return true;
345 
346 	if (blk_mq_is_shared_tags(hctx->flags)) {
347 		struct request_queue *q = hctx->queue;
348 
349 		if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
350 			return true;
351 	} else {
352 		if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
353 			return true;
354 	}
355 
356 	users = atomic_read(&hctx->tags->active_queues);
357 
358 	if (!users)
359 		return true;
360 
361 	/*
362 	 * Allow at least some tags
363 	 */
364 	depth = max((bt->sb.depth + users - 1) / users, 4U);
365 	return __blk_mq_active_requests(hctx) < depth;
366 }
367 
368 
369 #endif
370