xref: /linux/block/blk-mq.c (revision fc4fa6e112c0f999fab022a4eb7f6614bb47c7ab)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 
26 #include <trace/events/block.h>
27 
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32 
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35 
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37 
38 /*
39  * Check if any of the ctx's have pending work in this hardware queue
40  */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 	unsigned int i;
44 
45 	for (i = 0; i < hctx->ctx_map.size; i++)
46 		if (hctx->ctx_map.map[i].word)
47 			return true;
48 
49 	return false;
50 }
51 
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 					      struct blk_mq_ctx *ctx)
54 {
55 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57 
58 #define CTX_TO_BIT(hctx, ctx)	\
59 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 
61 /*
62  * Mark this ctx as having pending work in this hardware queue
63  */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 				     struct blk_mq_ctx *ctx)
66 {
67 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 
69 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72 
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 				      struct blk_mq_ctx *ctx)
75 {
76 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 
78 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80 
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 	int freeze_depth;
84 
85 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 	if (freeze_depth == 1) {
87 		percpu_ref_kill(&q->q_usage_counter);
88 		blk_mq_run_hw_queues(q, false);
89 	}
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97 
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 	/*
105 	 * In the !blk_mq case we are only calling this to kill the
106 	 * q_usage_counter, otherwise this increases the freeze depth
107 	 * and waits for it to return to zero.  For this reason there is
108 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 	 * exported to drivers as the only user for unfreeze is blk_mq.
110 	 */
111 	blk_mq_freeze_queue_start(q);
112 	blk_mq_freeze_queue_wait(q);
113 }
114 
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 	/*
118 	 * ...just an alias to keep freeze and unfreeze actions balanced
119 	 * in the blk_mq_* namespace
120 	 */
121 	blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124 
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 	int freeze_depth;
128 
129 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 	WARN_ON_ONCE(freeze_depth < 0);
131 	if (!freeze_depth) {
132 		percpu_ref_reinit(&q->q_usage_counter);
133 		wake_up_all(&q->mq_freeze_wq);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137 
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 	struct blk_mq_hw_ctx *hctx;
141 	unsigned int i;
142 
143 	queue_for_each_hw_ctx(q, hctx, i)
144 		if (blk_mq_hw_queue_mapped(hctx))
145 			blk_mq_tag_wakeup_all(hctx->tags, true);
146 
147 	/*
148 	 * If we are called because the queue has now been marked as
149 	 * dying, we need to ensure that processes currently waiting on
150 	 * the queue are notified as well.
151 	 */
152 	wake_up_all(&q->mq_freeze_wq);
153 }
154 
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 	return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160 
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 			       struct request *rq, unsigned int rw_flags)
163 {
164 	if (blk_queue_io_stat(q))
165 		rw_flags |= REQ_IO_STAT;
166 
167 	INIT_LIST_HEAD(&rq->queuelist);
168 	/* csd/requeue_work/fifo_time is initialized before use */
169 	rq->q = q;
170 	rq->mq_ctx = ctx;
171 	rq->cmd_flags |= rw_flags;
172 	/* do not touch atomic flags, it needs atomic ops against the timer */
173 	rq->cpu = -1;
174 	INIT_HLIST_NODE(&rq->hash);
175 	RB_CLEAR_NODE(&rq->rb_node);
176 	rq->rq_disk = NULL;
177 	rq->part = NULL;
178 	rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 	rq->rl = NULL;
181 	set_start_time_ns(rq);
182 	rq->io_start_time_ns = 0;
183 #endif
184 	rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 	rq->nr_integrity_segments = 0;
187 #endif
188 	rq->special = NULL;
189 	/* tag was already set */
190 	rq->errors = 0;
191 
192 	rq->cmd = rq->__cmd;
193 
194 	rq->extra_len = 0;
195 	rq->sense_len = 0;
196 	rq->resid_len = 0;
197 	rq->sense = NULL;
198 
199 	INIT_LIST_HEAD(&rq->timeout_list);
200 	rq->timeout = 0;
201 
202 	rq->end_io = NULL;
203 	rq->end_io_data = NULL;
204 	rq->next_rq = NULL;
205 
206 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208 
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 	struct request *rq;
213 	unsigned int tag;
214 
215 	tag = blk_mq_get_tag(data);
216 	if (tag != BLK_MQ_TAG_FAIL) {
217 		rq = data->hctx->tags->rqs[tag];
218 
219 		if (blk_mq_tag_busy(data->hctx)) {
220 			rq->cmd_flags = REQ_MQ_INFLIGHT;
221 			atomic_inc(&data->hctx->nr_active);
222 		}
223 
224 		rq->tag = tag;
225 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 		return rq;
227 	}
228 
229 	return NULL;
230 }
231 
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
233 		bool reserved)
234 {
235 	struct blk_mq_ctx *ctx;
236 	struct blk_mq_hw_ctx *hctx;
237 	struct request *rq;
238 	struct blk_mq_alloc_data alloc_data;
239 	int ret;
240 
241 	ret = blk_queue_enter(q, gfp);
242 	if (ret)
243 		return ERR_PTR(ret);
244 
245 	ctx = blk_mq_get_ctx(q);
246 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
248 			reserved, ctx, hctx);
249 
250 	rq = __blk_mq_alloc_request(&alloc_data, rw);
251 	if (!rq && (gfp & __GFP_WAIT)) {
252 		__blk_mq_run_hw_queue(hctx);
253 		blk_mq_put_ctx(ctx);
254 
255 		ctx = blk_mq_get_ctx(q);
256 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
258 				hctx);
259 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
260 		ctx = alloc_data.ctx;
261 	}
262 	blk_mq_put_ctx(ctx);
263 	if (!rq) {
264 		blk_queue_exit(q);
265 		return ERR_PTR(-EWOULDBLOCK);
266 	}
267 	return rq;
268 }
269 EXPORT_SYMBOL(blk_mq_alloc_request);
270 
271 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
272 				  struct blk_mq_ctx *ctx, struct request *rq)
273 {
274 	const int tag = rq->tag;
275 	struct request_queue *q = rq->q;
276 
277 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
278 		atomic_dec(&hctx->nr_active);
279 	rq->cmd_flags = 0;
280 
281 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
282 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
283 	blk_queue_exit(q);
284 }
285 
286 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
287 {
288 	struct blk_mq_ctx *ctx = rq->mq_ctx;
289 
290 	ctx->rq_completed[rq_is_sync(rq)]++;
291 	__blk_mq_free_request(hctx, ctx, rq);
292 
293 }
294 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
295 
296 void blk_mq_free_request(struct request *rq)
297 {
298 	struct blk_mq_hw_ctx *hctx;
299 	struct request_queue *q = rq->q;
300 
301 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
302 	blk_mq_free_hctx_request(hctx, rq);
303 }
304 EXPORT_SYMBOL_GPL(blk_mq_free_request);
305 
306 inline void __blk_mq_end_request(struct request *rq, int error)
307 {
308 	blk_account_io_done(rq);
309 
310 	if (rq->end_io) {
311 		rq->end_io(rq, error);
312 	} else {
313 		if (unlikely(blk_bidi_rq(rq)))
314 			blk_mq_free_request(rq->next_rq);
315 		blk_mq_free_request(rq);
316 	}
317 }
318 EXPORT_SYMBOL(__blk_mq_end_request);
319 
320 void blk_mq_end_request(struct request *rq, int error)
321 {
322 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
323 		BUG();
324 	__blk_mq_end_request(rq, error);
325 }
326 EXPORT_SYMBOL(blk_mq_end_request);
327 
328 static void __blk_mq_complete_request_remote(void *data)
329 {
330 	struct request *rq = data;
331 
332 	rq->q->softirq_done_fn(rq);
333 }
334 
335 static void blk_mq_ipi_complete_request(struct request *rq)
336 {
337 	struct blk_mq_ctx *ctx = rq->mq_ctx;
338 	bool shared = false;
339 	int cpu;
340 
341 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
342 		rq->q->softirq_done_fn(rq);
343 		return;
344 	}
345 
346 	cpu = get_cpu();
347 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
348 		shared = cpus_share_cache(cpu, ctx->cpu);
349 
350 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
351 		rq->csd.func = __blk_mq_complete_request_remote;
352 		rq->csd.info = rq;
353 		rq->csd.flags = 0;
354 		smp_call_function_single_async(ctx->cpu, &rq->csd);
355 	} else {
356 		rq->q->softirq_done_fn(rq);
357 	}
358 	put_cpu();
359 }
360 
361 void __blk_mq_complete_request(struct request *rq)
362 {
363 	struct request_queue *q = rq->q;
364 
365 	if (!q->softirq_done_fn)
366 		blk_mq_end_request(rq, rq->errors);
367 	else
368 		blk_mq_ipi_complete_request(rq);
369 }
370 
371 /**
372  * blk_mq_complete_request - end I/O on a request
373  * @rq:		the request being processed
374  *
375  * Description:
376  *	Ends all I/O on a request. It does not handle partial completions.
377  *	The actual completion happens out-of-order, through a IPI handler.
378  **/
379 void blk_mq_complete_request(struct request *rq, int error)
380 {
381 	struct request_queue *q = rq->q;
382 
383 	if (unlikely(blk_should_fake_timeout(q)))
384 		return;
385 	if (!blk_mark_rq_complete(rq)) {
386 		rq->errors = error;
387 		__blk_mq_complete_request(rq);
388 	}
389 }
390 EXPORT_SYMBOL(blk_mq_complete_request);
391 
392 int blk_mq_request_started(struct request *rq)
393 {
394 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
395 }
396 EXPORT_SYMBOL_GPL(blk_mq_request_started);
397 
398 void blk_mq_start_request(struct request *rq)
399 {
400 	struct request_queue *q = rq->q;
401 
402 	trace_block_rq_issue(q, rq);
403 
404 	rq->resid_len = blk_rq_bytes(rq);
405 	if (unlikely(blk_bidi_rq(rq)))
406 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
407 
408 	blk_add_timer(rq);
409 
410 	/*
411 	 * Ensure that ->deadline is visible before set the started
412 	 * flag and clear the completed flag.
413 	 */
414 	smp_mb__before_atomic();
415 
416 	/*
417 	 * Mark us as started and clear complete. Complete might have been
418 	 * set if requeue raced with timeout, which then marked it as
419 	 * complete. So be sure to clear complete again when we start
420 	 * the request, otherwise we'll ignore the completion event.
421 	 */
422 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
423 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
424 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
425 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
426 
427 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
428 		/*
429 		 * Make sure space for the drain appears.  We know we can do
430 		 * this because max_hw_segments has been adjusted to be one
431 		 * fewer than the device can handle.
432 		 */
433 		rq->nr_phys_segments++;
434 	}
435 }
436 EXPORT_SYMBOL(blk_mq_start_request);
437 
438 static void __blk_mq_requeue_request(struct request *rq)
439 {
440 	struct request_queue *q = rq->q;
441 
442 	trace_block_rq_requeue(q, rq);
443 
444 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
445 		if (q->dma_drain_size && blk_rq_bytes(rq))
446 			rq->nr_phys_segments--;
447 	}
448 }
449 
450 void blk_mq_requeue_request(struct request *rq)
451 {
452 	__blk_mq_requeue_request(rq);
453 
454 	BUG_ON(blk_queued_rq(rq));
455 	blk_mq_add_to_requeue_list(rq, true);
456 }
457 EXPORT_SYMBOL(blk_mq_requeue_request);
458 
459 static void blk_mq_requeue_work(struct work_struct *work)
460 {
461 	struct request_queue *q =
462 		container_of(work, struct request_queue, requeue_work);
463 	LIST_HEAD(rq_list);
464 	struct request *rq, *next;
465 	unsigned long flags;
466 
467 	spin_lock_irqsave(&q->requeue_lock, flags);
468 	list_splice_init(&q->requeue_list, &rq_list);
469 	spin_unlock_irqrestore(&q->requeue_lock, flags);
470 
471 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
472 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
473 			continue;
474 
475 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
476 		list_del_init(&rq->queuelist);
477 		blk_mq_insert_request(rq, true, false, false);
478 	}
479 
480 	while (!list_empty(&rq_list)) {
481 		rq = list_entry(rq_list.next, struct request, queuelist);
482 		list_del_init(&rq->queuelist);
483 		blk_mq_insert_request(rq, false, false, false);
484 	}
485 
486 	/*
487 	 * Use the start variant of queue running here, so that running
488 	 * the requeue work will kick stopped queues.
489 	 */
490 	blk_mq_start_hw_queues(q);
491 }
492 
493 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
494 {
495 	struct request_queue *q = rq->q;
496 	unsigned long flags;
497 
498 	/*
499 	 * We abuse this flag that is otherwise used by the I/O scheduler to
500 	 * request head insertation from the workqueue.
501 	 */
502 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
503 
504 	spin_lock_irqsave(&q->requeue_lock, flags);
505 	if (at_head) {
506 		rq->cmd_flags |= REQ_SOFTBARRIER;
507 		list_add(&rq->queuelist, &q->requeue_list);
508 	} else {
509 		list_add_tail(&rq->queuelist, &q->requeue_list);
510 	}
511 	spin_unlock_irqrestore(&q->requeue_lock, flags);
512 }
513 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
514 
515 void blk_mq_cancel_requeue_work(struct request_queue *q)
516 {
517 	cancel_work_sync(&q->requeue_work);
518 }
519 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
520 
521 void blk_mq_kick_requeue_list(struct request_queue *q)
522 {
523 	kblockd_schedule_work(&q->requeue_work);
524 }
525 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
526 
527 void blk_mq_abort_requeue_list(struct request_queue *q)
528 {
529 	unsigned long flags;
530 	LIST_HEAD(rq_list);
531 
532 	spin_lock_irqsave(&q->requeue_lock, flags);
533 	list_splice_init(&q->requeue_list, &rq_list);
534 	spin_unlock_irqrestore(&q->requeue_lock, flags);
535 
536 	while (!list_empty(&rq_list)) {
537 		struct request *rq;
538 
539 		rq = list_first_entry(&rq_list, struct request, queuelist);
540 		list_del_init(&rq->queuelist);
541 		rq->errors = -EIO;
542 		blk_mq_end_request(rq, rq->errors);
543 	}
544 }
545 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
546 
547 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
548 {
549 	return tags->rqs[tag];
550 }
551 EXPORT_SYMBOL(blk_mq_tag_to_rq);
552 
553 struct blk_mq_timeout_data {
554 	unsigned long next;
555 	unsigned int next_set;
556 };
557 
558 void blk_mq_rq_timed_out(struct request *req, bool reserved)
559 {
560 	struct blk_mq_ops *ops = req->q->mq_ops;
561 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
562 
563 	/*
564 	 * We know that complete is set at this point. If STARTED isn't set
565 	 * anymore, then the request isn't active and the "timeout" should
566 	 * just be ignored. This can happen due to the bitflag ordering.
567 	 * Timeout first checks if STARTED is set, and if it is, assumes
568 	 * the request is active. But if we race with completion, then
569 	 * we both flags will get cleared. So check here again, and ignore
570 	 * a timeout event with a request that isn't active.
571 	 */
572 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
573 		return;
574 
575 	if (ops->timeout)
576 		ret = ops->timeout(req, reserved);
577 
578 	switch (ret) {
579 	case BLK_EH_HANDLED:
580 		__blk_mq_complete_request(req);
581 		break;
582 	case BLK_EH_RESET_TIMER:
583 		blk_add_timer(req);
584 		blk_clear_rq_complete(req);
585 		break;
586 	case BLK_EH_NOT_HANDLED:
587 		break;
588 	default:
589 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
590 		break;
591 	}
592 }
593 
594 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
595 		struct request *rq, void *priv, bool reserved)
596 {
597 	struct blk_mq_timeout_data *data = priv;
598 
599 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
600 		/*
601 		 * If a request wasn't started before the queue was
602 		 * marked dying, kill it here or it'll go unnoticed.
603 		 */
604 		if (unlikely(blk_queue_dying(rq->q)))
605 			blk_mq_complete_request(rq, -EIO);
606 		return;
607 	}
608 	if (rq->cmd_flags & REQ_NO_TIMEOUT)
609 		return;
610 
611 	if (time_after_eq(jiffies, rq->deadline)) {
612 		if (!blk_mark_rq_complete(rq))
613 			blk_mq_rq_timed_out(rq, reserved);
614 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
615 		data->next = rq->deadline;
616 		data->next_set = 1;
617 	}
618 }
619 
620 static void blk_mq_rq_timer(unsigned long priv)
621 {
622 	struct request_queue *q = (struct request_queue *)priv;
623 	struct blk_mq_timeout_data data = {
624 		.next		= 0,
625 		.next_set	= 0,
626 	};
627 	int i;
628 
629 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
630 
631 	if (data.next_set) {
632 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
633 		mod_timer(&q->timeout, data.next);
634 	} else {
635 		struct blk_mq_hw_ctx *hctx;
636 
637 		queue_for_each_hw_ctx(q, hctx, i) {
638 			/* the hctx may be unmapped, so check it here */
639 			if (blk_mq_hw_queue_mapped(hctx))
640 				blk_mq_tag_idle(hctx);
641 		}
642 	}
643 }
644 
645 /*
646  * Reverse check our software queue for entries that we could potentially
647  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
648  * too much time checking for merges.
649  */
650 static bool blk_mq_attempt_merge(struct request_queue *q,
651 				 struct blk_mq_ctx *ctx, struct bio *bio)
652 {
653 	struct request *rq;
654 	int checked = 8;
655 
656 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
657 		int el_ret;
658 
659 		if (!checked--)
660 			break;
661 
662 		if (!blk_rq_merge_ok(rq, bio))
663 			continue;
664 
665 		el_ret = blk_try_merge(rq, bio);
666 		if (el_ret == ELEVATOR_BACK_MERGE) {
667 			if (bio_attempt_back_merge(q, rq, bio)) {
668 				ctx->rq_merged++;
669 				return true;
670 			}
671 			break;
672 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
673 			if (bio_attempt_front_merge(q, rq, bio)) {
674 				ctx->rq_merged++;
675 				return true;
676 			}
677 			break;
678 		}
679 	}
680 
681 	return false;
682 }
683 
684 /*
685  * Process software queues that have been marked busy, splicing them
686  * to the for-dispatch
687  */
688 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
689 {
690 	struct blk_mq_ctx *ctx;
691 	int i;
692 
693 	for (i = 0; i < hctx->ctx_map.size; i++) {
694 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
695 		unsigned int off, bit;
696 
697 		if (!bm->word)
698 			continue;
699 
700 		bit = 0;
701 		off = i * hctx->ctx_map.bits_per_word;
702 		do {
703 			bit = find_next_bit(&bm->word, bm->depth, bit);
704 			if (bit >= bm->depth)
705 				break;
706 
707 			ctx = hctx->ctxs[bit + off];
708 			clear_bit(bit, &bm->word);
709 			spin_lock(&ctx->lock);
710 			list_splice_tail_init(&ctx->rq_list, list);
711 			spin_unlock(&ctx->lock);
712 
713 			bit++;
714 		} while (1);
715 	}
716 }
717 
718 /*
719  * Run this hardware queue, pulling any software queues mapped to it in.
720  * Note that this function currently has various problems around ordering
721  * of IO. In particular, we'd like FIFO behaviour on handling existing
722  * items on the hctx->dispatch list. Ignore that for now.
723  */
724 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
725 {
726 	struct request_queue *q = hctx->queue;
727 	struct request *rq;
728 	LIST_HEAD(rq_list);
729 	LIST_HEAD(driver_list);
730 	struct list_head *dptr;
731 	int queued;
732 
733 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
734 
735 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
736 		return;
737 
738 	hctx->run++;
739 
740 	/*
741 	 * Touch any software queue that has pending entries.
742 	 */
743 	flush_busy_ctxs(hctx, &rq_list);
744 
745 	/*
746 	 * If we have previous entries on our dispatch list, grab them
747 	 * and stuff them at the front for more fair dispatch.
748 	 */
749 	if (!list_empty_careful(&hctx->dispatch)) {
750 		spin_lock(&hctx->lock);
751 		if (!list_empty(&hctx->dispatch))
752 			list_splice_init(&hctx->dispatch, &rq_list);
753 		spin_unlock(&hctx->lock);
754 	}
755 
756 	/*
757 	 * Start off with dptr being NULL, so we start the first request
758 	 * immediately, even if we have more pending.
759 	 */
760 	dptr = NULL;
761 
762 	/*
763 	 * Now process all the entries, sending them to the driver.
764 	 */
765 	queued = 0;
766 	while (!list_empty(&rq_list)) {
767 		struct blk_mq_queue_data bd;
768 		int ret;
769 
770 		rq = list_first_entry(&rq_list, struct request, queuelist);
771 		list_del_init(&rq->queuelist);
772 
773 		bd.rq = rq;
774 		bd.list = dptr;
775 		bd.last = list_empty(&rq_list);
776 
777 		ret = q->mq_ops->queue_rq(hctx, &bd);
778 		switch (ret) {
779 		case BLK_MQ_RQ_QUEUE_OK:
780 			queued++;
781 			continue;
782 		case BLK_MQ_RQ_QUEUE_BUSY:
783 			list_add(&rq->queuelist, &rq_list);
784 			__blk_mq_requeue_request(rq);
785 			break;
786 		default:
787 			pr_err("blk-mq: bad return on queue: %d\n", ret);
788 		case BLK_MQ_RQ_QUEUE_ERROR:
789 			rq->errors = -EIO;
790 			blk_mq_end_request(rq, rq->errors);
791 			break;
792 		}
793 
794 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
795 			break;
796 
797 		/*
798 		 * We've done the first request. If we have more than 1
799 		 * left in the list, set dptr to defer issue.
800 		 */
801 		if (!dptr && rq_list.next != rq_list.prev)
802 			dptr = &driver_list;
803 	}
804 
805 	if (!queued)
806 		hctx->dispatched[0]++;
807 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
808 		hctx->dispatched[ilog2(queued) + 1]++;
809 
810 	/*
811 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
812 	 * that is where we will continue on next queue run.
813 	 */
814 	if (!list_empty(&rq_list)) {
815 		spin_lock(&hctx->lock);
816 		list_splice(&rq_list, &hctx->dispatch);
817 		spin_unlock(&hctx->lock);
818 		/*
819 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
820 		 * it's possible the queue is stopped and restarted again
821 		 * before this. Queue restart will dispatch requests. And since
822 		 * requests in rq_list aren't added into hctx->dispatch yet,
823 		 * the requests in rq_list might get lost.
824 		 *
825 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
826 		 **/
827 		blk_mq_run_hw_queue(hctx, true);
828 	}
829 }
830 
831 /*
832  * It'd be great if the workqueue API had a way to pass
833  * in a mask and had some smarts for more clever placement.
834  * For now we just round-robin here, switching for every
835  * BLK_MQ_CPU_WORK_BATCH queued items.
836  */
837 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
838 {
839 	if (hctx->queue->nr_hw_queues == 1)
840 		return WORK_CPU_UNBOUND;
841 
842 	if (--hctx->next_cpu_batch <= 0) {
843 		int cpu = hctx->next_cpu, next_cpu;
844 
845 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
846 		if (next_cpu >= nr_cpu_ids)
847 			next_cpu = cpumask_first(hctx->cpumask);
848 
849 		hctx->next_cpu = next_cpu;
850 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
851 
852 		return cpu;
853 	}
854 
855 	return hctx->next_cpu;
856 }
857 
858 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
859 {
860 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
861 	    !blk_mq_hw_queue_mapped(hctx)))
862 		return;
863 
864 	if (!async) {
865 		int cpu = get_cpu();
866 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
867 			__blk_mq_run_hw_queue(hctx);
868 			put_cpu();
869 			return;
870 		}
871 
872 		put_cpu();
873 	}
874 
875 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
876 			&hctx->run_work, 0);
877 }
878 
879 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
880 {
881 	struct blk_mq_hw_ctx *hctx;
882 	int i;
883 
884 	queue_for_each_hw_ctx(q, hctx, i) {
885 		if ((!blk_mq_hctx_has_pending(hctx) &&
886 		    list_empty_careful(&hctx->dispatch)) ||
887 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
888 			continue;
889 
890 		blk_mq_run_hw_queue(hctx, async);
891 	}
892 }
893 EXPORT_SYMBOL(blk_mq_run_hw_queues);
894 
895 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
896 {
897 	cancel_delayed_work(&hctx->run_work);
898 	cancel_delayed_work(&hctx->delay_work);
899 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
900 }
901 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
902 
903 void blk_mq_stop_hw_queues(struct request_queue *q)
904 {
905 	struct blk_mq_hw_ctx *hctx;
906 	int i;
907 
908 	queue_for_each_hw_ctx(q, hctx, i)
909 		blk_mq_stop_hw_queue(hctx);
910 }
911 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
912 
913 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
914 {
915 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
916 
917 	blk_mq_run_hw_queue(hctx, false);
918 }
919 EXPORT_SYMBOL(blk_mq_start_hw_queue);
920 
921 void blk_mq_start_hw_queues(struct request_queue *q)
922 {
923 	struct blk_mq_hw_ctx *hctx;
924 	int i;
925 
926 	queue_for_each_hw_ctx(q, hctx, i)
927 		blk_mq_start_hw_queue(hctx);
928 }
929 EXPORT_SYMBOL(blk_mq_start_hw_queues);
930 
931 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
932 {
933 	struct blk_mq_hw_ctx *hctx;
934 	int i;
935 
936 	queue_for_each_hw_ctx(q, hctx, i) {
937 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
938 			continue;
939 
940 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
941 		blk_mq_run_hw_queue(hctx, async);
942 	}
943 }
944 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
945 
946 static void blk_mq_run_work_fn(struct work_struct *work)
947 {
948 	struct blk_mq_hw_ctx *hctx;
949 
950 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
951 
952 	__blk_mq_run_hw_queue(hctx);
953 }
954 
955 static void blk_mq_delay_work_fn(struct work_struct *work)
956 {
957 	struct blk_mq_hw_ctx *hctx;
958 
959 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
960 
961 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
962 		__blk_mq_run_hw_queue(hctx);
963 }
964 
965 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
966 {
967 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
968 		return;
969 
970 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
971 			&hctx->delay_work, msecs_to_jiffies(msecs));
972 }
973 EXPORT_SYMBOL(blk_mq_delay_queue);
974 
975 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
976 					    struct blk_mq_ctx *ctx,
977 					    struct request *rq,
978 					    bool at_head)
979 {
980 	trace_block_rq_insert(hctx->queue, rq);
981 
982 	if (at_head)
983 		list_add(&rq->queuelist, &ctx->rq_list);
984 	else
985 		list_add_tail(&rq->queuelist, &ctx->rq_list);
986 }
987 
988 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
989 				    struct request *rq, bool at_head)
990 {
991 	struct blk_mq_ctx *ctx = rq->mq_ctx;
992 
993 	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
994 	blk_mq_hctx_mark_pending(hctx, ctx);
995 }
996 
997 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
998 		bool async)
999 {
1000 	struct request_queue *q = rq->q;
1001 	struct blk_mq_hw_ctx *hctx;
1002 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1003 
1004 	current_ctx = blk_mq_get_ctx(q);
1005 	if (!cpu_online(ctx->cpu))
1006 		rq->mq_ctx = ctx = current_ctx;
1007 
1008 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1009 
1010 	spin_lock(&ctx->lock);
1011 	__blk_mq_insert_request(hctx, rq, at_head);
1012 	spin_unlock(&ctx->lock);
1013 
1014 	if (run_queue)
1015 		blk_mq_run_hw_queue(hctx, async);
1016 
1017 	blk_mq_put_ctx(current_ctx);
1018 }
1019 
1020 static void blk_mq_insert_requests(struct request_queue *q,
1021 				     struct blk_mq_ctx *ctx,
1022 				     struct list_head *list,
1023 				     int depth,
1024 				     bool from_schedule)
1025 
1026 {
1027 	struct blk_mq_hw_ctx *hctx;
1028 	struct blk_mq_ctx *current_ctx;
1029 
1030 	trace_block_unplug(q, depth, !from_schedule);
1031 
1032 	current_ctx = blk_mq_get_ctx(q);
1033 
1034 	if (!cpu_online(ctx->cpu))
1035 		ctx = current_ctx;
1036 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1037 
1038 	/*
1039 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1040 	 * offline now
1041 	 */
1042 	spin_lock(&ctx->lock);
1043 	while (!list_empty(list)) {
1044 		struct request *rq;
1045 
1046 		rq = list_first_entry(list, struct request, queuelist);
1047 		list_del_init(&rq->queuelist);
1048 		rq->mq_ctx = ctx;
1049 		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1050 	}
1051 	blk_mq_hctx_mark_pending(hctx, ctx);
1052 	spin_unlock(&ctx->lock);
1053 
1054 	blk_mq_run_hw_queue(hctx, from_schedule);
1055 	blk_mq_put_ctx(current_ctx);
1056 }
1057 
1058 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1059 {
1060 	struct request *rqa = container_of(a, struct request, queuelist);
1061 	struct request *rqb = container_of(b, struct request, queuelist);
1062 
1063 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1064 		 (rqa->mq_ctx == rqb->mq_ctx &&
1065 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1066 }
1067 
1068 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1069 {
1070 	struct blk_mq_ctx *this_ctx;
1071 	struct request_queue *this_q;
1072 	struct request *rq;
1073 	LIST_HEAD(list);
1074 	LIST_HEAD(ctx_list);
1075 	unsigned int depth;
1076 
1077 	list_splice_init(&plug->mq_list, &list);
1078 
1079 	list_sort(NULL, &list, plug_ctx_cmp);
1080 
1081 	this_q = NULL;
1082 	this_ctx = NULL;
1083 	depth = 0;
1084 
1085 	while (!list_empty(&list)) {
1086 		rq = list_entry_rq(list.next);
1087 		list_del_init(&rq->queuelist);
1088 		BUG_ON(!rq->q);
1089 		if (rq->mq_ctx != this_ctx) {
1090 			if (this_ctx) {
1091 				blk_mq_insert_requests(this_q, this_ctx,
1092 							&ctx_list, depth,
1093 							from_schedule);
1094 			}
1095 
1096 			this_ctx = rq->mq_ctx;
1097 			this_q = rq->q;
1098 			depth = 0;
1099 		}
1100 
1101 		depth++;
1102 		list_add_tail(&rq->queuelist, &ctx_list);
1103 	}
1104 
1105 	/*
1106 	 * If 'this_ctx' is set, we know we have entries to complete
1107 	 * on 'ctx_list'. Do those.
1108 	 */
1109 	if (this_ctx) {
1110 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1111 				       from_schedule);
1112 	}
1113 }
1114 
1115 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1116 {
1117 	init_request_from_bio(rq, bio);
1118 
1119 	if (blk_do_io_stat(rq))
1120 		blk_account_io_start(rq, 1);
1121 }
1122 
1123 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1124 {
1125 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1126 		!blk_queue_nomerges(hctx->queue);
1127 }
1128 
1129 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1130 					 struct blk_mq_ctx *ctx,
1131 					 struct request *rq, struct bio *bio)
1132 {
1133 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1134 		blk_mq_bio_to_request(rq, bio);
1135 		spin_lock(&ctx->lock);
1136 insert_rq:
1137 		__blk_mq_insert_request(hctx, rq, false);
1138 		spin_unlock(&ctx->lock);
1139 		return false;
1140 	} else {
1141 		struct request_queue *q = hctx->queue;
1142 
1143 		spin_lock(&ctx->lock);
1144 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1145 			blk_mq_bio_to_request(rq, bio);
1146 			goto insert_rq;
1147 		}
1148 
1149 		spin_unlock(&ctx->lock);
1150 		__blk_mq_free_request(hctx, ctx, rq);
1151 		return true;
1152 	}
1153 }
1154 
1155 struct blk_map_ctx {
1156 	struct blk_mq_hw_ctx *hctx;
1157 	struct blk_mq_ctx *ctx;
1158 };
1159 
1160 static struct request *blk_mq_map_request(struct request_queue *q,
1161 					  struct bio *bio,
1162 					  struct blk_map_ctx *data)
1163 {
1164 	struct blk_mq_hw_ctx *hctx;
1165 	struct blk_mq_ctx *ctx;
1166 	struct request *rq;
1167 	int rw = bio_data_dir(bio);
1168 	struct blk_mq_alloc_data alloc_data;
1169 
1170 	blk_queue_enter_live(q);
1171 	ctx = blk_mq_get_ctx(q);
1172 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1173 
1174 	if (rw_is_sync(bio->bi_rw))
1175 		rw |= REQ_SYNC;
1176 
1177 	trace_block_getrq(q, bio, rw);
1178 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1179 			hctx);
1180 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1181 	if (unlikely(!rq)) {
1182 		__blk_mq_run_hw_queue(hctx);
1183 		blk_mq_put_ctx(ctx);
1184 		trace_block_sleeprq(q, bio, rw);
1185 
1186 		ctx = blk_mq_get_ctx(q);
1187 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1188 		blk_mq_set_alloc_data(&alloc_data, q,
1189 				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1190 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1191 		ctx = alloc_data.ctx;
1192 		hctx = alloc_data.hctx;
1193 	}
1194 
1195 	hctx->queued++;
1196 	data->hctx = hctx;
1197 	data->ctx = ctx;
1198 	return rq;
1199 }
1200 
1201 static int blk_mq_direct_issue_request(struct request *rq)
1202 {
1203 	int ret;
1204 	struct request_queue *q = rq->q;
1205 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1206 			rq->mq_ctx->cpu);
1207 	struct blk_mq_queue_data bd = {
1208 		.rq = rq,
1209 		.list = NULL,
1210 		.last = 1
1211 	};
1212 
1213 	/*
1214 	 * For OK queue, we are done. For error, kill it. Any other
1215 	 * error (busy), just add it to our list as we previously
1216 	 * would have done
1217 	 */
1218 	ret = q->mq_ops->queue_rq(hctx, &bd);
1219 	if (ret == BLK_MQ_RQ_QUEUE_OK)
1220 		return 0;
1221 	else {
1222 		__blk_mq_requeue_request(rq);
1223 
1224 		if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1225 			rq->errors = -EIO;
1226 			blk_mq_end_request(rq, rq->errors);
1227 			return 0;
1228 		}
1229 		return -1;
1230 	}
1231 }
1232 
1233 /*
1234  * Multiple hardware queue variant. This will not use per-process plugs,
1235  * but will attempt to bypass the hctx queueing if we can go straight to
1236  * hardware for SYNC IO.
1237  */
1238 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1239 {
1240 	const int is_sync = rw_is_sync(bio->bi_rw);
1241 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1242 	struct blk_map_ctx data;
1243 	struct request *rq;
1244 	unsigned int request_count = 0;
1245 	struct blk_plug *plug;
1246 	struct request *same_queue_rq = NULL;
1247 
1248 	blk_queue_bounce(q, &bio);
1249 
1250 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1251 		bio_io_error(bio);
1252 		return;
1253 	}
1254 
1255 	blk_queue_split(q, &bio, q->bio_split);
1256 
1257 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1258 		if (blk_attempt_plug_merge(q, bio, &request_count,
1259 					   &same_queue_rq))
1260 			return;
1261 	} else
1262 		request_count = blk_plug_queued_count(q);
1263 
1264 	rq = blk_mq_map_request(q, bio, &data);
1265 	if (unlikely(!rq))
1266 		return;
1267 
1268 	if (unlikely(is_flush_fua)) {
1269 		blk_mq_bio_to_request(rq, bio);
1270 		blk_insert_flush(rq);
1271 		goto run_queue;
1272 	}
1273 
1274 	plug = current->plug;
1275 	/*
1276 	 * If the driver supports defer issued based on 'last', then
1277 	 * queue it up like normal since we can potentially save some
1278 	 * CPU this way.
1279 	 */
1280 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1281 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1282 		struct request *old_rq = NULL;
1283 
1284 		blk_mq_bio_to_request(rq, bio);
1285 
1286 		/*
1287 		 * we do limited pluging. If bio can be merged, do merge.
1288 		 * Otherwise the existing request in the plug list will be
1289 		 * issued. So the plug list will have one request at most
1290 		 */
1291 		if (plug) {
1292 			/*
1293 			 * The plug list might get flushed before this. If that
1294 			 * happens, same_queue_rq is invalid and plug list is empty
1295 			 **/
1296 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1297 				old_rq = same_queue_rq;
1298 				list_del_init(&old_rq->queuelist);
1299 			}
1300 			list_add_tail(&rq->queuelist, &plug->mq_list);
1301 		} else /* is_sync */
1302 			old_rq = rq;
1303 		blk_mq_put_ctx(data.ctx);
1304 		if (!old_rq)
1305 			return;
1306 		if (!blk_mq_direct_issue_request(old_rq))
1307 			return;
1308 		blk_mq_insert_request(old_rq, false, true, true);
1309 		return;
1310 	}
1311 
1312 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1313 		/*
1314 		 * For a SYNC request, send it to the hardware immediately. For
1315 		 * an ASYNC request, just ensure that we run it later on. The
1316 		 * latter allows for merging opportunities and more efficient
1317 		 * dispatching.
1318 		 */
1319 run_queue:
1320 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1321 	}
1322 	blk_mq_put_ctx(data.ctx);
1323 }
1324 
1325 /*
1326  * Single hardware queue variant. This will attempt to use any per-process
1327  * plug for merging and IO deferral.
1328  */
1329 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1330 {
1331 	const int is_sync = rw_is_sync(bio->bi_rw);
1332 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1333 	struct blk_plug *plug;
1334 	unsigned int request_count = 0;
1335 	struct blk_map_ctx data;
1336 	struct request *rq;
1337 
1338 	blk_queue_bounce(q, &bio);
1339 
1340 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1341 		bio_io_error(bio);
1342 		return;
1343 	}
1344 
1345 	blk_queue_split(q, &bio, q->bio_split);
1346 
1347 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1348 	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1349 		return;
1350 
1351 	rq = blk_mq_map_request(q, bio, &data);
1352 	if (unlikely(!rq))
1353 		return;
1354 
1355 	if (unlikely(is_flush_fua)) {
1356 		blk_mq_bio_to_request(rq, bio);
1357 		blk_insert_flush(rq);
1358 		goto run_queue;
1359 	}
1360 
1361 	/*
1362 	 * A task plug currently exists. Since this is completely lockless,
1363 	 * utilize that to temporarily store requests until the task is
1364 	 * either done or scheduled away.
1365 	 */
1366 	plug = current->plug;
1367 	if (plug) {
1368 		blk_mq_bio_to_request(rq, bio);
1369 		if (!request_count)
1370 			trace_block_plug(q);
1371 		else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1372 			blk_flush_plug_list(plug, false);
1373 			trace_block_plug(q);
1374 		}
1375 		list_add_tail(&rq->queuelist, &plug->mq_list);
1376 		blk_mq_put_ctx(data.ctx);
1377 		return;
1378 	}
1379 
1380 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1381 		/*
1382 		 * For a SYNC request, send it to the hardware immediately. For
1383 		 * an ASYNC request, just ensure that we run it later on. The
1384 		 * latter allows for merging opportunities and more efficient
1385 		 * dispatching.
1386 		 */
1387 run_queue:
1388 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1389 	}
1390 
1391 	blk_mq_put_ctx(data.ctx);
1392 }
1393 
1394 /*
1395  * Default mapping to a software queue, since we use one per CPU.
1396  */
1397 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1398 {
1399 	return q->queue_hw_ctx[q->mq_map[cpu]];
1400 }
1401 EXPORT_SYMBOL(blk_mq_map_queue);
1402 
1403 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1404 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1405 {
1406 	struct page *page;
1407 
1408 	if (tags->rqs && set->ops->exit_request) {
1409 		int i;
1410 
1411 		for (i = 0; i < tags->nr_tags; i++) {
1412 			if (!tags->rqs[i])
1413 				continue;
1414 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1415 						hctx_idx, i);
1416 			tags->rqs[i] = NULL;
1417 		}
1418 	}
1419 
1420 	while (!list_empty(&tags->page_list)) {
1421 		page = list_first_entry(&tags->page_list, struct page, lru);
1422 		list_del_init(&page->lru);
1423 		/*
1424 		 * Remove kmemleak object previously allocated in
1425 		 * blk_mq_init_rq_map().
1426 		 */
1427 		kmemleak_free(page_address(page));
1428 		__free_pages(page, page->private);
1429 	}
1430 
1431 	kfree(tags->rqs);
1432 
1433 	blk_mq_free_tags(tags);
1434 }
1435 
1436 static size_t order_to_size(unsigned int order)
1437 {
1438 	return (size_t)PAGE_SIZE << order;
1439 }
1440 
1441 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1442 		unsigned int hctx_idx)
1443 {
1444 	struct blk_mq_tags *tags;
1445 	unsigned int i, j, entries_per_page, max_order = 4;
1446 	size_t rq_size, left;
1447 
1448 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1449 				set->numa_node,
1450 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1451 	if (!tags)
1452 		return NULL;
1453 
1454 	INIT_LIST_HEAD(&tags->page_list);
1455 
1456 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1457 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1458 				 set->numa_node);
1459 	if (!tags->rqs) {
1460 		blk_mq_free_tags(tags);
1461 		return NULL;
1462 	}
1463 
1464 	/*
1465 	 * rq_size is the size of the request plus driver payload, rounded
1466 	 * to the cacheline size
1467 	 */
1468 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1469 				cache_line_size());
1470 	left = rq_size * set->queue_depth;
1471 
1472 	for (i = 0; i < set->queue_depth; ) {
1473 		int this_order = max_order;
1474 		struct page *page;
1475 		int to_do;
1476 		void *p;
1477 
1478 		while (left < order_to_size(this_order - 1) && this_order)
1479 			this_order--;
1480 
1481 		do {
1482 			page = alloc_pages_node(set->numa_node,
1483 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1484 				this_order);
1485 			if (page)
1486 				break;
1487 			if (!this_order--)
1488 				break;
1489 			if (order_to_size(this_order) < rq_size)
1490 				break;
1491 		} while (1);
1492 
1493 		if (!page)
1494 			goto fail;
1495 
1496 		page->private = this_order;
1497 		list_add_tail(&page->lru, &tags->page_list);
1498 
1499 		p = page_address(page);
1500 		/*
1501 		 * Allow kmemleak to scan these pages as they contain pointers
1502 		 * to additional allocations like via ops->init_request().
1503 		 */
1504 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1505 		entries_per_page = order_to_size(this_order) / rq_size;
1506 		to_do = min(entries_per_page, set->queue_depth - i);
1507 		left -= to_do * rq_size;
1508 		for (j = 0; j < to_do; j++) {
1509 			tags->rqs[i] = p;
1510 			if (set->ops->init_request) {
1511 				if (set->ops->init_request(set->driver_data,
1512 						tags->rqs[i], hctx_idx, i,
1513 						set->numa_node)) {
1514 					tags->rqs[i] = NULL;
1515 					goto fail;
1516 				}
1517 			}
1518 
1519 			p += rq_size;
1520 			i++;
1521 		}
1522 	}
1523 	return tags;
1524 
1525 fail:
1526 	blk_mq_free_rq_map(set, tags, hctx_idx);
1527 	return NULL;
1528 }
1529 
1530 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1531 {
1532 	kfree(bitmap->map);
1533 }
1534 
1535 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1536 {
1537 	unsigned int bpw = 8, total, num_maps, i;
1538 
1539 	bitmap->bits_per_word = bpw;
1540 
1541 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1542 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1543 					GFP_KERNEL, node);
1544 	if (!bitmap->map)
1545 		return -ENOMEM;
1546 
1547 	total = nr_cpu_ids;
1548 	for (i = 0; i < num_maps; i++) {
1549 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1550 		total -= bitmap->map[i].depth;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1557 {
1558 	struct request_queue *q = hctx->queue;
1559 	struct blk_mq_ctx *ctx;
1560 	LIST_HEAD(tmp);
1561 
1562 	/*
1563 	 * Move ctx entries to new CPU, if this one is going away.
1564 	 */
1565 	ctx = __blk_mq_get_ctx(q, cpu);
1566 
1567 	spin_lock(&ctx->lock);
1568 	if (!list_empty(&ctx->rq_list)) {
1569 		list_splice_init(&ctx->rq_list, &tmp);
1570 		blk_mq_hctx_clear_pending(hctx, ctx);
1571 	}
1572 	spin_unlock(&ctx->lock);
1573 
1574 	if (list_empty(&tmp))
1575 		return NOTIFY_OK;
1576 
1577 	ctx = blk_mq_get_ctx(q);
1578 	spin_lock(&ctx->lock);
1579 
1580 	while (!list_empty(&tmp)) {
1581 		struct request *rq;
1582 
1583 		rq = list_first_entry(&tmp, struct request, queuelist);
1584 		rq->mq_ctx = ctx;
1585 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1586 	}
1587 
1588 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1589 	blk_mq_hctx_mark_pending(hctx, ctx);
1590 
1591 	spin_unlock(&ctx->lock);
1592 
1593 	blk_mq_run_hw_queue(hctx, true);
1594 	blk_mq_put_ctx(ctx);
1595 	return NOTIFY_OK;
1596 }
1597 
1598 static int blk_mq_hctx_notify(void *data, unsigned long action,
1599 			      unsigned int cpu)
1600 {
1601 	struct blk_mq_hw_ctx *hctx = data;
1602 
1603 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1604 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1605 
1606 	/*
1607 	 * In case of CPU online, tags may be reallocated
1608 	 * in blk_mq_map_swqueue() after mapping is updated.
1609 	 */
1610 
1611 	return NOTIFY_OK;
1612 }
1613 
1614 /* hctx->ctxs will be freed in queue's release handler */
1615 static void blk_mq_exit_hctx(struct request_queue *q,
1616 		struct blk_mq_tag_set *set,
1617 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1618 {
1619 	unsigned flush_start_tag = set->queue_depth;
1620 
1621 	blk_mq_tag_idle(hctx);
1622 
1623 	if (set->ops->exit_request)
1624 		set->ops->exit_request(set->driver_data,
1625 				       hctx->fq->flush_rq, hctx_idx,
1626 				       flush_start_tag + hctx_idx);
1627 
1628 	if (set->ops->exit_hctx)
1629 		set->ops->exit_hctx(hctx, hctx_idx);
1630 
1631 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1632 	blk_free_flush_queue(hctx->fq);
1633 	blk_mq_free_bitmap(&hctx->ctx_map);
1634 }
1635 
1636 static void blk_mq_exit_hw_queues(struct request_queue *q,
1637 		struct blk_mq_tag_set *set, int nr_queue)
1638 {
1639 	struct blk_mq_hw_ctx *hctx;
1640 	unsigned int i;
1641 
1642 	queue_for_each_hw_ctx(q, hctx, i) {
1643 		if (i == nr_queue)
1644 			break;
1645 		blk_mq_exit_hctx(q, set, hctx, i);
1646 	}
1647 }
1648 
1649 static void blk_mq_free_hw_queues(struct request_queue *q,
1650 		struct blk_mq_tag_set *set)
1651 {
1652 	struct blk_mq_hw_ctx *hctx;
1653 	unsigned int i;
1654 
1655 	queue_for_each_hw_ctx(q, hctx, i)
1656 		free_cpumask_var(hctx->cpumask);
1657 }
1658 
1659 static int blk_mq_init_hctx(struct request_queue *q,
1660 		struct blk_mq_tag_set *set,
1661 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1662 {
1663 	int node;
1664 	unsigned flush_start_tag = set->queue_depth;
1665 
1666 	node = hctx->numa_node;
1667 	if (node == NUMA_NO_NODE)
1668 		node = hctx->numa_node = set->numa_node;
1669 
1670 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1671 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1672 	spin_lock_init(&hctx->lock);
1673 	INIT_LIST_HEAD(&hctx->dispatch);
1674 	hctx->queue = q;
1675 	hctx->queue_num = hctx_idx;
1676 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1677 
1678 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1679 					blk_mq_hctx_notify, hctx);
1680 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1681 
1682 	hctx->tags = set->tags[hctx_idx];
1683 
1684 	/*
1685 	 * Allocate space for all possible cpus to avoid allocation at
1686 	 * runtime
1687 	 */
1688 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1689 					GFP_KERNEL, node);
1690 	if (!hctx->ctxs)
1691 		goto unregister_cpu_notifier;
1692 
1693 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1694 		goto free_ctxs;
1695 
1696 	hctx->nr_ctx = 0;
1697 
1698 	if (set->ops->init_hctx &&
1699 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1700 		goto free_bitmap;
1701 
1702 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1703 	if (!hctx->fq)
1704 		goto exit_hctx;
1705 
1706 	if (set->ops->init_request &&
1707 	    set->ops->init_request(set->driver_data,
1708 				   hctx->fq->flush_rq, hctx_idx,
1709 				   flush_start_tag + hctx_idx, node))
1710 		goto free_fq;
1711 
1712 	return 0;
1713 
1714  free_fq:
1715 	kfree(hctx->fq);
1716  exit_hctx:
1717 	if (set->ops->exit_hctx)
1718 		set->ops->exit_hctx(hctx, hctx_idx);
1719  free_bitmap:
1720 	blk_mq_free_bitmap(&hctx->ctx_map);
1721  free_ctxs:
1722 	kfree(hctx->ctxs);
1723  unregister_cpu_notifier:
1724 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1725 
1726 	return -1;
1727 }
1728 
1729 static int blk_mq_init_hw_queues(struct request_queue *q,
1730 		struct blk_mq_tag_set *set)
1731 {
1732 	struct blk_mq_hw_ctx *hctx;
1733 	unsigned int i;
1734 
1735 	/*
1736 	 * Initialize hardware queues
1737 	 */
1738 	queue_for_each_hw_ctx(q, hctx, i) {
1739 		if (blk_mq_init_hctx(q, set, hctx, i))
1740 			break;
1741 	}
1742 
1743 	if (i == q->nr_hw_queues)
1744 		return 0;
1745 
1746 	/*
1747 	 * Init failed
1748 	 */
1749 	blk_mq_exit_hw_queues(q, set, i);
1750 
1751 	return 1;
1752 }
1753 
1754 static void blk_mq_init_cpu_queues(struct request_queue *q,
1755 				   unsigned int nr_hw_queues)
1756 {
1757 	unsigned int i;
1758 
1759 	for_each_possible_cpu(i) {
1760 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1761 		struct blk_mq_hw_ctx *hctx;
1762 
1763 		memset(__ctx, 0, sizeof(*__ctx));
1764 		__ctx->cpu = i;
1765 		spin_lock_init(&__ctx->lock);
1766 		INIT_LIST_HEAD(&__ctx->rq_list);
1767 		__ctx->queue = q;
1768 
1769 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1770 		if (!cpu_online(i))
1771 			continue;
1772 
1773 		hctx = q->mq_ops->map_queue(q, i);
1774 
1775 		/*
1776 		 * Set local node, IFF we have more than one hw queue. If
1777 		 * not, we remain on the home node of the device
1778 		 */
1779 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1780 			hctx->numa_node = cpu_to_node(i);
1781 	}
1782 }
1783 
1784 static void blk_mq_map_swqueue(struct request_queue *q,
1785 			       const struct cpumask *online_mask)
1786 {
1787 	unsigned int i;
1788 	struct blk_mq_hw_ctx *hctx;
1789 	struct blk_mq_ctx *ctx;
1790 	struct blk_mq_tag_set *set = q->tag_set;
1791 
1792 	/*
1793 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1794 	 */
1795 	mutex_lock(&q->sysfs_lock);
1796 
1797 	queue_for_each_hw_ctx(q, hctx, i) {
1798 		cpumask_clear(hctx->cpumask);
1799 		hctx->nr_ctx = 0;
1800 	}
1801 
1802 	/*
1803 	 * Map software to hardware queues
1804 	 */
1805 	queue_for_each_ctx(q, ctx, i) {
1806 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1807 		if (!cpumask_test_cpu(i, online_mask))
1808 			continue;
1809 
1810 		hctx = q->mq_ops->map_queue(q, i);
1811 		cpumask_set_cpu(i, hctx->cpumask);
1812 		ctx->index_hw = hctx->nr_ctx;
1813 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1814 	}
1815 
1816 	mutex_unlock(&q->sysfs_lock);
1817 
1818 	queue_for_each_hw_ctx(q, hctx, i) {
1819 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1820 
1821 		/*
1822 		 * If no software queues are mapped to this hardware queue,
1823 		 * disable it and free the request entries.
1824 		 */
1825 		if (!hctx->nr_ctx) {
1826 			if (set->tags[i]) {
1827 				blk_mq_free_rq_map(set, set->tags[i], i);
1828 				set->tags[i] = NULL;
1829 			}
1830 			hctx->tags = NULL;
1831 			continue;
1832 		}
1833 
1834 		/* unmapped hw queue can be remapped after CPU topo changed */
1835 		if (!set->tags[i])
1836 			set->tags[i] = blk_mq_init_rq_map(set, i);
1837 		hctx->tags = set->tags[i];
1838 		WARN_ON(!hctx->tags);
1839 
1840 		/*
1841 		 * Set the map size to the number of mapped software queues.
1842 		 * This is more accurate and more efficient than looping
1843 		 * over all possibly mapped software queues.
1844 		 */
1845 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1846 
1847 		/*
1848 		 * Initialize batch roundrobin counts
1849 		 */
1850 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1851 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1852 	}
1853 
1854 	queue_for_each_ctx(q, ctx, i) {
1855 		if (!cpumask_test_cpu(i, online_mask))
1856 			continue;
1857 
1858 		hctx = q->mq_ops->map_queue(q, i);
1859 		cpumask_set_cpu(i, hctx->tags->cpumask);
1860 	}
1861 }
1862 
1863 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1864 {
1865 	struct blk_mq_hw_ctx *hctx;
1866 	int i;
1867 
1868 	queue_for_each_hw_ctx(q, hctx, i) {
1869 		if (shared)
1870 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1871 		else
1872 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1873 	}
1874 }
1875 
1876 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1877 {
1878 	struct request_queue *q;
1879 
1880 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1881 		blk_mq_freeze_queue(q);
1882 		queue_set_hctx_shared(q, shared);
1883 		blk_mq_unfreeze_queue(q);
1884 	}
1885 }
1886 
1887 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1888 {
1889 	struct blk_mq_tag_set *set = q->tag_set;
1890 
1891 	mutex_lock(&set->tag_list_lock);
1892 	list_del_init(&q->tag_set_list);
1893 	if (list_is_singular(&set->tag_list)) {
1894 		/* just transitioned to unshared */
1895 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1896 		/* update existing queue */
1897 		blk_mq_update_tag_set_depth(set, false);
1898 	}
1899 	mutex_unlock(&set->tag_list_lock);
1900 }
1901 
1902 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1903 				     struct request_queue *q)
1904 {
1905 	q->tag_set = set;
1906 
1907 	mutex_lock(&set->tag_list_lock);
1908 
1909 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1910 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1911 		set->flags |= BLK_MQ_F_TAG_SHARED;
1912 		/* update existing queue */
1913 		blk_mq_update_tag_set_depth(set, true);
1914 	}
1915 	if (set->flags & BLK_MQ_F_TAG_SHARED)
1916 		queue_set_hctx_shared(q, true);
1917 	list_add_tail(&q->tag_set_list, &set->tag_list);
1918 
1919 	mutex_unlock(&set->tag_list_lock);
1920 }
1921 
1922 /*
1923  * It is the actual release handler for mq, but we do it from
1924  * request queue's release handler for avoiding use-after-free
1925  * and headache because q->mq_kobj shouldn't have been introduced,
1926  * but we can't group ctx/kctx kobj without it.
1927  */
1928 void blk_mq_release(struct request_queue *q)
1929 {
1930 	struct blk_mq_hw_ctx *hctx;
1931 	unsigned int i;
1932 
1933 	/* hctx kobj stays in hctx */
1934 	queue_for_each_hw_ctx(q, hctx, i) {
1935 		if (!hctx)
1936 			continue;
1937 		kfree(hctx->ctxs);
1938 		kfree(hctx);
1939 	}
1940 
1941 	kfree(q->mq_map);
1942 	q->mq_map = NULL;
1943 
1944 	kfree(q->queue_hw_ctx);
1945 
1946 	/* ctx kobj stays in queue_ctx */
1947 	free_percpu(q->queue_ctx);
1948 }
1949 
1950 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1951 {
1952 	struct request_queue *uninit_q, *q;
1953 
1954 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1955 	if (!uninit_q)
1956 		return ERR_PTR(-ENOMEM);
1957 
1958 	q = blk_mq_init_allocated_queue(set, uninit_q);
1959 	if (IS_ERR(q))
1960 		blk_cleanup_queue(uninit_q);
1961 
1962 	return q;
1963 }
1964 EXPORT_SYMBOL(blk_mq_init_queue);
1965 
1966 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1967 						  struct request_queue *q)
1968 {
1969 	struct blk_mq_hw_ctx **hctxs;
1970 	struct blk_mq_ctx __percpu *ctx;
1971 	unsigned int *map;
1972 	int i;
1973 
1974 	ctx = alloc_percpu(struct blk_mq_ctx);
1975 	if (!ctx)
1976 		return ERR_PTR(-ENOMEM);
1977 
1978 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1979 			set->numa_node);
1980 
1981 	if (!hctxs)
1982 		goto err_percpu;
1983 
1984 	map = blk_mq_make_queue_map(set);
1985 	if (!map)
1986 		goto err_map;
1987 
1988 	for (i = 0; i < set->nr_hw_queues; i++) {
1989 		int node = blk_mq_hw_queue_to_node(map, i);
1990 
1991 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1992 					GFP_KERNEL, node);
1993 		if (!hctxs[i])
1994 			goto err_hctxs;
1995 
1996 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1997 						node))
1998 			goto err_hctxs;
1999 
2000 		atomic_set(&hctxs[i]->nr_active, 0);
2001 		hctxs[i]->numa_node = node;
2002 		hctxs[i]->queue_num = i;
2003 	}
2004 
2005 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2006 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2007 
2008 	q->nr_queues = nr_cpu_ids;
2009 	q->nr_hw_queues = set->nr_hw_queues;
2010 	q->mq_map = map;
2011 
2012 	q->queue_ctx = ctx;
2013 	q->queue_hw_ctx = hctxs;
2014 
2015 	q->mq_ops = set->ops;
2016 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2017 
2018 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2019 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2020 
2021 	q->sg_reserved_size = INT_MAX;
2022 
2023 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2024 	INIT_LIST_HEAD(&q->requeue_list);
2025 	spin_lock_init(&q->requeue_lock);
2026 
2027 	if (q->nr_hw_queues > 1)
2028 		blk_queue_make_request(q, blk_mq_make_request);
2029 	else
2030 		blk_queue_make_request(q, blk_sq_make_request);
2031 
2032 	/*
2033 	 * Do this after blk_queue_make_request() overrides it...
2034 	 */
2035 	q->nr_requests = set->queue_depth;
2036 
2037 	if (set->ops->complete)
2038 		blk_queue_softirq_done(q, set->ops->complete);
2039 
2040 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2041 
2042 	if (blk_mq_init_hw_queues(q, set))
2043 		goto err_hctxs;
2044 
2045 	get_online_cpus();
2046 	mutex_lock(&all_q_mutex);
2047 
2048 	list_add_tail(&q->all_q_node, &all_q_list);
2049 	blk_mq_add_queue_tag_set(set, q);
2050 	blk_mq_map_swqueue(q, cpu_online_mask);
2051 
2052 	mutex_unlock(&all_q_mutex);
2053 	put_online_cpus();
2054 
2055 	return q;
2056 
2057 err_hctxs:
2058 	kfree(map);
2059 	for (i = 0; i < set->nr_hw_queues; i++) {
2060 		if (!hctxs[i])
2061 			break;
2062 		free_cpumask_var(hctxs[i]->cpumask);
2063 		kfree(hctxs[i]);
2064 	}
2065 err_map:
2066 	kfree(hctxs);
2067 err_percpu:
2068 	free_percpu(ctx);
2069 	return ERR_PTR(-ENOMEM);
2070 }
2071 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2072 
2073 void blk_mq_free_queue(struct request_queue *q)
2074 {
2075 	struct blk_mq_tag_set	*set = q->tag_set;
2076 
2077 	mutex_lock(&all_q_mutex);
2078 	list_del_init(&q->all_q_node);
2079 	mutex_unlock(&all_q_mutex);
2080 
2081 	blk_mq_del_queue_tag_set(q);
2082 
2083 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2084 	blk_mq_free_hw_queues(q, set);
2085 }
2086 
2087 /* Basically redo blk_mq_init_queue with queue frozen */
2088 static void blk_mq_queue_reinit(struct request_queue *q,
2089 				const struct cpumask *online_mask)
2090 {
2091 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2092 
2093 	blk_mq_sysfs_unregister(q);
2094 
2095 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2096 
2097 	/*
2098 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2099 	 * we should change hctx numa_node according to new topology (this
2100 	 * involves free and re-allocate memory, worthy doing?)
2101 	 */
2102 
2103 	blk_mq_map_swqueue(q, online_mask);
2104 
2105 	blk_mq_sysfs_register(q);
2106 }
2107 
2108 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2109 				      unsigned long action, void *hcpu)
2110 {
2111 	struct request_queue *q;
2112 	int cpu = (unsigned long)hcpu;
2113 	/*
2114 	 * New online cpumask which is going to be set in this hotplug event.
2115 	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2116 	 * one-by-one and dynamically allocating this could result in a failure.
2117 	 */
2118 	static struct cpumask online_new;
2119 
2120 	/*
2121 	 * Before hotadded cpu starts handling requests, new mappings must
2122 	 * be established.  Otherwise, these requests in hw queue might
2123 	 * never be dispatched.
2124 	 *
2125 	 * For example, there is a single hw queue (hctx) and two CPU queues
2126 	 * (ctx0 for CPU0, and ctx1 for CPU1).
2127 	 *
2128 	 * Now CPU1 is just onlined and a request is inserted into
2129 	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2130 	 * still zero.
2131 	 *
2132 	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2133 	 * set in pending bitmap and tries to retrieve requests in
2134 	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2135 	 * so the request in ctx1->rq_list is ignored.
2136 	 */
2137 	switch (action & ~CPU_TASKS_FROZEN) {
2138 	case CPU_DEAD:
2139 	case CPU_UP_CANCELED:
2140 		cpumask_copy(&online_new, cpu_online_mask);
2141 		break;
2142 	case CPU_UP_PREPARE:
2143 		cpumask_copy(&online_new, cpu_online_mask);
2144 		cpumask_set_cpu(cpu, &online_new);
2145 		break;
2146 	default:
2147 		return NOTIFY_OK;
2148 	}
2149 
2150 	mutex_lock(&all_q_mutex);
2151 
2152 	/*
2153 	 * We need to freeze and reinit all existing queues.  Freezing
2154 	 * involves synchronous wait for an RCU grace period and doing it
2155 	 * one by one may take a long time.  Start freezing all queues in
2156 	 * one swoop and then wait for the completions so that freezing can
2157 	 * take place in parallel.
2158 	 */
2159 	list_for_each_entry(q, &all_q_list, all_q_node)
2160 		blk_mq_freeze_queue_start(q);
2161 	list_for_each_entry(q, &all_q_list, all_q_node) {
2162 		blk_mq_freeze_queue_wait(q);
2163 
2164 		/*
2165 		 * timeout handler can't touch hw queue during the
2166 		 * reinitialization
2167 		 */
2168 		del_timer_sync(&q->timeout);
2169 	}
2170 
2171 	list_for_each_entry(q, &all_q_list, all_q_node)
2172 		blk_mq_queue_reinit(q, &online_new);
2173 
2174 	list_for_each_entry(q, &all_q_list, all_q_node)
2175 		blk_mq_unfreeze_queue(q);
2176 
2177 	mutex_unlock(&all_q_mutex);
2178 	return NOTIFY_OK;
2179 }
2180 
2181 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2182 {
2183 	int i;
2184 
2185 	for (i = 0; i < set->nr_hw_queues; i++) {
2186 		set->tags[i] = blk_mq_init_rq_map(set, i);
2187 		if (!set->tags[i])
2188 			goto out_unwind;
2189 	}
2190 
2191 	return 0;
2192 
2193 out_unwind:
2194 	while (--i >= 0)
2195 		blk_mq_free_rq_map(set, set->tags[i], i);
2196 
2197 	return -ENOMEM;
2198 }
2199 
2200 /*
2201  * Allocate the request maps associated with this tag_set. Note that this
2202  * may reduce the depth asked for, if memory is tight. set->queue_depth
2203  * will be updated to reflect the allocated depth.
2204  */
2205 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2206 {
2207 	unsigned int depth;
2208 	int err;
2209 
2210 	depth = set->queue_depth;
2211 	do {
2212 		err = __blk_mq_alloc_rq_maps(set);
2213 		if (!err)
2214 			break;
2215 
2216 		set->queue_depth >>= 1;
2217 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2218 			err = -ENOMEM;
2219 			break;
2220 		}
2221 	} while (set->queue_depth);
2222 
2223 	if (!set->queue_depth || err) {
2224 		pr_err("blk-mq: failed to allocate request map\n");
2225 		return -ENOMEM;
2226 	}
2227 
2228 	if (depth != set->queue_depth)
2229 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2230 						depth, set->queue_depth);
2231 
2232 	return 0;
2233 }
2234 
2235 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2236 {
2237 	return tags->cpumask;
2238 }
2239 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2240 
2241 /*
2242  * Alloc a tag set to be associated with one or more request queues.
2243  * May fail with EINVAL for various error conditions. May adjust the
2244  * requested depth down, if if it too large. In that case, the set
2245  * value will be stored in set->queue_depth.
2246  */
2247 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2248 {
2249 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2250 
2251 	if (!set->nr_hw_queues)
2252 		return -EINVAL;
2253 	if (!set->queue_depth)
2254 		return -EINVAL;
2255 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2256 		return -EINVAL;
2257 
2258 	if (!set->ops->queue_rq || !set->ops->map_queue)
2259 		return -EINVAL;
2260 
2261 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2262 		pr_info("blk-mq: reduced tag depth to %u\n",
2263 			BLK_MQ_MAX_DEPTH);
2264 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2265 	}
2266 
2267 	/*
2268 	 * If a crashdump is active, then we are potentially in a very
2269 	 * memory constrained environment. Limit us to 1 queue and
2270 	 * 64 tags to prevent using too much memory.
2271 	 */
2272 	if (is_kdump_kernel()) {
2273 		set->nr_hw_queues = 1;
2274 		set->queue_depth = min(64U, set->queue_depth);
2275 	}
2276 
2277 	set->tags = kmalloc_node(set->nr_hw_queues *
2278 				 sizeof(struct blk_mq_tags *),
2279 				 GFP_KERNEL, set->numa_node);
2280 	if (!set->tags)
2281 		return -ENOMEM;
2282 
2283 	if (blk_mq_alloc_rq_maps(set))
2284 		goto enomem;
2285 
2286 	mutex_init(&set->tag_list_lock);
2287 	INIT_LIST_HEAD(&set->tag_list);
2288 
2289 	return 0;
2290 enomem:
2291 	kfree(set->tags);
2292 	set->tags = NULL;
2293 	return -ENOMEM;
2294 }
2295 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2296 
2297 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2298 {
2299 	int i;
2300 
2301 	for (i = 0; i < set->nr_hw_queues; i++) {
2302 		if (set->tags[i])
2303 			blk_mq_free_rq_map(set, set->tags[i], i);
2304 	}
2305 
2306 	kfree(set->tags);
2307 	set->tags = NULL;
2308 }
2309 EXPORT_SYMBOL(blk_mq_free_tag_set);
2310 
2311 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2312 {
2313 	struct blk_mq_tag_set *set = q->tag_set;
2314 	struct blk_mq_hw_ctx *hctx;
2315 	int i, ret;
2316 
2317 	if (!set || nr > set->queue_depth)
2318 		return -EINVAL;
2319 
2320 	ret = 0;
2321 	queue_for_each_hw_ctx(q, hctx, i) {
2322 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2323 		if (ret)
2324 			break;
2325 	}
2326 
2327 	if (!ret)
2328 		q->nr_requests = nr;
2329 
2330 	return ret;
2331 }
2332 
2333 void blk_mq_disable_hotplug(void)
2334 {
2335 	mutex_lock(&all_q_mutex);
2336 }
2337 
2338 void blk_mq_enable_hotplug(void)
2339 {
2340 	mutex_unlock(&all_q_mutex);
2341 }
2342 
2343 static int __init blk_mq_init(void)
2344 {
2345 	blk_mq_cpu_init();
2346 
2347 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2348 
2349 	return 0;
2350 }
2351 subsys_initcall(blk_mq_init);
2352