1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 #include "blk-ioprio.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_request_bypass_insert(struct request *rq, 49 blk_insert_t flags); 50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 51 struct list_head *list); 52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 53 struct io_comp_batch *iob, unsigned int flags); 54 55 /* 56 * Check if any of the ctx, dispatch list or elevator 57 * have pending work in this hardware queue. 58 */ 59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 60 { 61 return !list_empty_careful(&hctx->dispatch) || 62 sbitmap_any_bit_set(&hctx->ctx_map) || 63 blk_mq_sched_has_work(hctx); 64 } 65 66 /* 67 * Mark this ctx as having pending work in this hardware queue 68 */ 69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 70 struct blk_mq_ctx *ctx) 71 { 72 const int bit = ctx->index_hw[hctx->type]; 73 74 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 75 sbitmap_set_bit(&hctx->ctx_map, bit); 76 } 77 78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 sbitmap_clear_bit(&hctx->ctx_map, bit); 84 } 85 86 struct mq_inflight { 87 struct block_device *part; 88 unsigned int inflight[2]; 89 }; 90 91 static bool blk_mq_check_inflight(struct request *rq, void *priv) 92 { 93 struct mq_inflight *mi = priv; 94 95 if (rq->part && blk_do_io_stat(rq) && 96 (!mi->part->bd_partno || rq->part == mi->part) && 97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 98 mi->inflight[rq_data_dir(rq)]++; 99 100 return true; 101 } 102 103 unsigned int blk_mq_in_flight(struct request_queue *q, 104 struct block_device *part) 105 { 106 struct mq_inflight mi = { .part = part }; 107 108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 109 110 return mi.inflight[0] + mi.inflight[1]; 111 } 112 113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 114 unsigned int inflight[2]) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 inflight[0] = mi.inflight[0]; 120 inflight[1] = mi.inflight[1]; 121 } 122 123 void blk_freeze_queue_start(struct request_queue *q) 124 { 125 mutex_lock(&q->mq_freeze_lock); 126 if (++q->mq_freeze_depth == 1) { 127 percpu_ref_kill(&q->q_usage_counter); 128 mutex_unlock(&q->mq_freeze_lock); 129 if (queue_is_mq(q)) 130 blk_mq_run_hw_queues(q, false); 131 } else { 132 mutex_unlock(&q->mq_freeze_lock); 133 } 134 } 135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 136 137 void blk_mq_freeze_queue_wait(struct request_queue *q) 138 { 139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 140 } 141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 142 143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 144 unsigned long timeout) 145 { 146 return wait_event_timeout(q->mq_freeze_wq, 147 percpu_ref_is_zero(&q->q_usage_counter), 148 timeout); 149 } 150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 151 152 /* 153 * Guarantee no request is in use, so we can change any data structure of 154 * the queue afterward. 155 */ 156 void blk_freeze_queue(struct request_queue *q) 157 { 158 /* 159 * In the !blk_mq case we are only calling this to kill the 160 * q_usage_counter, otherwise this increases the freeze depth 161 * and waits for it to return to zero. For this reason there is 162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 163 * exported to drivers as the only user for unfreeze is blk_mq. 164 */ 165 blk_freeze_queue_start(q); 166 blk_mq_freeze_queue_wait(q); 167 } 168 169 void blk_mq_freeze_queue(struct request_queue *q) 170 { 171 /* 172 * ...just an alias to keep freeze and unfreeze actions balanced 173 * in the blk_mq_* namespace 174 */ 175 blk_freeze_queue(q); 176 } 177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 178 179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 180 { 181 mutex_lock(&q->mq_freeze_lock); 182 if (force_atomic) 183 q->q_usage_counter.data->force_atomic = true; 184 q->mq_freeze_depth--; 185 WARN_ON_ONCE(q->mq_freeze_depth < 0); 186 if (!q->mq_freeze_depth) { 187 percpu_ref_resurrect(&q->q_usage_counter); 188 wake_up_all(&q->mq_freeze_wq); 189 } 190 mutex_unlock(&q->mq_freeze_lock); 191 } 192 193 void blk_mq_unfreeze_queue(struct request_queue *q) 194 { 195 __blk_mq_unfreeze_queue(q, false); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 198 199 /* 200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 201 * mpt3sas driver such that this function can be removed. 202 */ 203 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 204 { 205 unsigned long flags; 206 207 spin_lock_irqsave(&q->queue_lock, flags); 208 if (!q->quiesce_depth++) 209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 210 spin_unlock_irqrestore(&q->queue_lock, flags); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 216 * @set: tag_set to wait on 217 * 218 * Note: it is driver's responsibility for making sure that quiesce has 219 * been started on or more of the request_queues of the tag_set. This 220 * function only waits for the quiesce on those request_queues that had 221 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 222 */ 223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 224 { 225 if (set->flags & BLK_MQ_F_BLOCKING) 226 synchronize_srcu(set->srcu); 227 else 228 synchronize_rcu(); 229 } 230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 231 232 /** 233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 234 * @q: request queue. 235 * 236 * Note: this function does not prevent that the struct request end_io() 237 * callback function is invoked. Once this function is returned, we make 238 * sure no dispatch can happen until the queue is unquiesced via 239 * blk_mq_unquiesce_queue(). 240 */ 241 void blk_mq_quiesce_queue(struct request_queue *q) 242 { 243 blk_mq_quiesce_queue_nowait(q); 244 /* nothing to wait for non-mq queues */ 245 if (queue_is_mq(q)) 246 blk_mq_wait_quiesce_done(q->tag_set); 247 } 248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 249 250 /* 251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 252 * @q: request queue. 253 * 254 * This function recovers queue into the state before quiescing 255 * which is done by blk_mq_quiesce_queue. 256 */ 257 void blk_mq_unquiesce_queue(struct request_queue *q) 258 { 259 unsigned long flags; 260 bool run_queue = false; 261 262 spin_lock_irqsave(&q->queue_lock, flags); 263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 264 ; 265 } else if (!--q->quiesce_depth) { 266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 267 run_queue = true; 268 } 269 spin_unlock_irqrestore(&q->queue_lock, flags); 270 271 /* dispatch requests which are inserted during quiescing */ 272 if (run_queue) 273 blk_mq_run_hw_queues(q, true); 274 } 275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 276 277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 278 { 279 struct request_queue *q; 280 281 mutex_lock(&set->tag_list_lock); 282 list_for_each_entry(q, &set->tag_list, tag_set_list) { 283 if (!blk_queue_skip_tagset_quiesce(q)) 284 blk_mq_quiesce_queue_nowait(q); 285 } 286 blk_mq_wait_quiesce_done(set); 287 mutex_unlock(&set->tag_list_lock); 288 } 289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 290 291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 292 { 293 struct request_queue *q; 294 295 mutex_lock(&set->tag_list_lock); 296 list_for_each_entry(q, &set->tag_list, tag_set_list) { 297 if (!blk_queue_skip_tagset_quiesce(q)) 298 blk_mq_unquiesce_queue(q); 299 } 300 mutex_unlock(&set->tag_list_lock); 301 } 302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 303 304 void blk_mq_wake_waiters(struct request_queue *q) 305 { 306 struct blk_mq_hw_ctx *hctx; 307 unsigned long i; 308 309 queue_for_each_hw_ctx(q, hctx, i) 310 if (blk_mq_hw_queue_mapped(hctx)) 311 blk_mq_tag_wakeup_all(hctx->tags, true); 312 } 313 314 void blk_rq_init(struct request_queue *q, struct request *rq) 315 { 316 memset(rq, 0, sizeof(*rq)); 317 318 INIT_LIST_HEAD(&rq->queuelist); 319 rq->q = q; 320 rq->__sector = (sector_t) -1; 321 INIT_HLIST_NODE(&rq->hash); 322 RB_CLEAR_NODE(&rq->rb_node); 323 rq->tag = BLK_MQ_NO_TAG; 324 rq->internal_tag = BLK_MQ_NO_TAG; 325 rq->start_time_ns = ktime_get_ns(); 326 rq->part = NULL; 327 blk_crypto_rq_set_defaults(rq); 328 } 329 EXPORT_SYMBOL(blk_rq_init); 330 331 /* Set start and alloc time when the allocated request is actually used */ 332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 333 { 334 if (blk_mq_need_time_stamp(rq)) 335 rq->start_time_ns = ktime_get_ns(); 336 else 337 rq->start_time_ns = 0; 338 339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 340 if (blk_queue_rq_alloc_time(rq->q)) 341 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 342 else 343 rq->alloc_time_ns = 0; 344 #endif 345 } 346 347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 348 struct blk_mq_tags *tags, unsigned int tag) 349 { 350 struct blk_mq_ctx *ctx = data->ctx; 351 struct blk_mq_hw_ctx *hctx = data->hctx; 352 struct request_queue *q = data->q; 353 struct request *rq = tags->static_rqs[tag]; 354 355 rq->q = q; 356 rq->mq_ctx = ctx; 357 rq->mq_hctx = hctx; 358 rq->cmd_flags = data->cmd_flags; 359 360 if (data->flags & BLK_MQ_REQ_PM) 361 data->rq_flags |= RQF_PM; 362 if (blk_queue_io_stat(q)) 363 data->rq_flags |= RQF_IO_STAT; 364 rq->rq_flags = data->rq_flags; 365 366 if (data->rq_flags & RQF_SCHED_TAGS) { 367 rq->tag = BLK_MQ_NO_TAG; 368 rq->internal_tag = tag; 369 } else { 370 rq->tag = tag; 371 rq->internal_tag = BLK_MQ_NO_TAG; 372 } 373 rq->timeout = 0; 374 375 rq->part = NULL; 376 rq->io_start_time_ns = 0; 377 rq->stats_sectors = 0; 378 rq->nr_phys_segments = 0; 379 #if defined(CONFIG_BLK_DEV_INTEGRITY) 380 rq->nr_integrity_segments = 0; 381 #endif 382 rq->end_io = NULL; 383 rq->end_io_data = NULL; 384 385 blk_crypto_rq_set_defaults(rq); 386 INIT_LIST_HEAD(&rq->queuelist); 387 /* tag was already set */ 388 WRITE_ONCE(rq->deadline, 0); 389 req_ref_set(rq, 1); 390 391 if (rq->rq_flags & RQF_USE_SCHED) { 392 struct elevator_queue *e = data->q->elevator; 393 394 INIT_HLIST_NODE(&rq->hash); 395 RB_CLEAR_NODE(&rq->rb_node); 396 397 if (e->type->ops.prepare_request) 398 e->type->ops.prepare_request(rq); 399 } 400 401 return rq; 402 } 403 404 static inline struct request * 405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 406 { 407 unsigned int tag, tag_offset; 408 struct blk_mq_tags *tags; 409 struct request *rq; 410 unsigned long tag_mask; 411 int i, nr = 0; 412 413 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 414 if (unlikely(!tag_mask)) 415 return NULL; 416 417 tags = blk_mq_tags_from_data(data); 418 for (i = 0; tag_mask; i++) { 419 if (!(tag_mask & (1UL << i))) 420 continue; 421 tag = tag_offset + i; 422 prefetch(tags->static_rqs[tag]); 423 tag_mask &= ~(1UL << i); 424 rq = blk_mq_rq_ctx_init(data, tags, tag); 425 rq_list_add(data->cached_rq, rq); 426 nr++; 427 } 428 /* caller already holds a reference, add for remainder */ 429 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 430 data->nr_tags -= nr; 431 432 return rq_list_pop(data->cached_rq); 433 } 434 435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 436 { 437 struct request_queue *q = data->q; 438 u64 alloc_time_ns = 0; 439 struct request *rq; 440 unsigned int tag; 441 442 /* alloc_time includes depth and tag waits */ 443 if (blk_queue_rq_alloc_time(q)) 444 alloc_time_ns = ktime_get_ns(); 445 446 if (data->cmd_flags & REQ_NOWAIT) 447 data->flags |= BLK_MQ_REQ_NOWAIT; 448 449 if (q->elevator) { 450 /* 451 * All requests use scheduler tags when an I/O scheduler is 452 * enabled for the queue. 453 */ 454 data->rq_flags |= RQF_SCHED_TAGS; 455 456 /* 457 * Flush/passthrough requests are special and go directly to the 458 * dispatch list. 459 */ 460 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 461 !blk_op_is_passthrough(data->cmd_flags)) { 462 struct elevator_mq_ops *ops = &q->elevator->type->ops; 463 464 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 465 466 data->rq_flags |= RQF_USE_SCHED; 467 if (ops->limit_depth) 468 ops->limit_depth(data->cmd_flags, data); 469 } 470 } 471 472 retry: 473 data->ctx = blk_mq_get_ctx(q); 474 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 475 if (!(data->rq_flags & RQF_SCHED_TAGS)) 476 blk_mq_tag_busy(data->hctx); 477 478 if (data->flags & BLK_MQ_REQ_RESERVED) 479 data->rq_flags |= RQF_RESV; 480 481 /* 482 * Try batched alloc if we want more than 1 tag. 483 */ 484 if (data->nr_tags > 1) { 485 rq = __blk_mq_alloc_requests_batch(data); 486 if (rq) { 487 blk_mq_rq_time_init(rq, alloc_time_ns); 488 return rq; 489 } 490 data->nr_tags = 1; 491 } 492 493 /* 494 * Waiting allocations only fail because of an inactive hctx. In that 495 * case just retry the hctx assignment and tag allocation as CPU hotplug 496 * should have migrated us to an online CPU by now. 497 */ 498 tag = blk_mq_get_tag(data); 499 if (tag == BLK_MQ_NO_TAG) { 500 if (data->flags & BLK_MQ_REQ_NOWAIT) 501 return NULL; 502 /* 503 * Give up the CPU and sleep for a random short time to 504 * ensure that thread using a realtime scheduling class 505 * are migrated off the CPU, and thus off the hctx that 506 * is going away. 507 */ 508 msleep(3); 509 goto retry; 510 } 511 512 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 513 blk_mq_rq_time_init(rq, alloc_time_ns); 514 return rq; 515 } 516 517 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 518 struct blk_plug *plug, 519 blk_opf_t opf, 520 blk_mq_req_flags_t flags) 521 { 522 struct blk_mq_alloc_data data = { 523 .q = q, 524 .flags = flags, 525 .cmd_flags = opf, 526 .nr_tags = plug->nr_ios, 527 .cached_rq = &plug->cached_rq, 528 }; 529 struct request *rq; 530 531 if (blk_queue_enter(q, flags)) 532 return NULL; 533 534 plug->nr_ios = 1; 535 536 rq = __blk_mq_alloc_requests(&data); 537 if (unlikely(!rq)) 538 blk_queue_exit(q); 539 return rq; 540 } 541 542 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 543 blk_opf_t opf, 544 blk_mq_req_flags_t flags) 545 { 546 struct blk_plug *plug = current->plug; 547 struct request *rq; 548 549 if (!plug) 550 return NULL; 551 552 if (rq_list_empty(plug->cached_rq)) { 553 if (plug->nr_ios == 1) 554 return NULL; 555 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 556 if (!rq) 557 return NULL; 558 } else { 559 rq = rq_list_peek(&plug->cached_rq); 560 if (!rq || rq->q != q) 561 return NULL; 562 563 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 564 return NULL; 565 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 566 return NULL; 567 568 plug->cached_rq = rq_list_next(rq); 569 blk_mq_rq_time_init(rq, 0); 570 } 571 572 rq->cmd_flags = opf; 573 INIT_LIST_HEAD(&rq->queuelist); 574 return rq; 575 } 576 577 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 578 blk_mq_req_flags_t flags) 579 { 580 struct request *rq; 581 582 rq = blk_mq_alloc_cached_request(q, opf, flags); 583 if (!rq) { 584 struct blk_mq_alloc_data data = { 585 .q = q, 586 .flags = flags, 587 .cmd_flags = opf, 588 .nr_tags = 1, 589 }; 590 int ret; 591 592 ret = blk_queue_enter(q, flags); 593 if (ret) 594 return ERR_PTR(ret); 595 596 rq = __blk_mq_alloc_requests(&data); 597 if (!rq) 598 goto out_queue_exit; 599 } 600 rq->__data_len = 0; 601 rq->__sector = (sector_t) -1; 602 rq->bio = rq->biotail = NULL; 603 return rq; 604 out_queue_exit: 605 blk_queue_exit(q); 606 return ERR_PTR(-EWOULDBLOCK); 607 } 608 EXPORT_SYMBOL(blk_mq_alloc_request); 609 610 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 611 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 612 { 613 struct blk_mq_alloc_data data = { 614 .q = q, 615 .flags = flags, 616 .cmd_flags = opf, 617 .nr_tags = 1, 618 }; 619 u64 alloc_time_ns = 0; 620 struct request *rq; 621 unsigned int cpu; 622 unsigned int tag; 623 int ret; 624 625 /* alloc_time includes depth and tag waits */ 626 if (blk_queue_rq_alloc_time(q)) 627 alloc_time_ns = ktime_get_ns(); 628 629 /* 630 * If the tag allocator sleeps we could get an allocation for a 631 * different hardware context. No need to complicate the low level 632 * allocator for this for the rare use case of a command tied to 633 * a specific queue. 634 */ 635 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 636 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 637 return ERR_PTR(-EINVAL); 638 639 if (hctx_idx >= q->nr_hw_queues) 640 return ERR_PTR(-EIO); 641 642 ret = blk_queue_enter(q, flags); 643 if (ret) 644 return ERR_PTR(ret); 645 646 /* 647 * Check if the hardware context is actually mapped to anything. 648 * If not tell the caller that it should skip this queue. 649 */ 650 ret = -EXDEV; 651 data.hctx = xa_load(&q->hctx_table, hctx_idx); 652 if (!blk_mq_hw_queue_mapped(data.hctx)) 653 goto out_queue_exit; 654 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 655 if (cpu >= nr_cpu_ids) 656 goto out_queue_exit; 657 data.ctx = __blk_mq_get_ctx(q, cpu); 658 659 if (q->elevator) 660 data.rq_flags |= RQF_SCHED_TAGS; 661 else 662 blk_mq_tag_busy(data.hctx); 663 664 if (flags & BLK_MQ_REQ_RESERVED) 665 data.rq_flags |= RQF_RESV; 666 667 ret = -EWOULDBLOCK; 668 tag = blk_mq_get_tag(&data); 669 if (tag == BLK_MQ_NO_TAG) 670 goto out_queue_exit; 671 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 672 blk_mq_rq_time_init(rq, alloc_time_ns); 673 rq->__data_len = 0; 674 rq->__sector = (sector_t) -1; 675 rq->bio = rq->biotail = NULL; 676 return rq; 677 678 out_queue_exit: 679 blk_queue_exit(q); 680 return ERR_PTR(ret); 681 } 682 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 683 684 static void __blk_mq_free_request(struct request *rq) 685 { 686 struct request_queue *q = rq->q; 687 struct blk_mq_ctx *ctx = rq->mq_ctx; 688 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 689 const int sched_tag = rq->internal_tag; 690 691 blk_crypto_free_request(rq); 692 blk_pm_mark_last_busy(rq); 693 rq->mq_hctx = NULL; 694 695 if (rq->rq_flags & RQF_MQ_INFLIGHT) 696 __blk_mq_dec_active_requests(hctx); 697 698 if (rq->tag != BLK_MQ_NO_TAG) 699 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 700 if (sched_tag != BLK_MQ_NO_TAG) 701 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 702 blk_mq_sched_restart(hctx); 703 blk_queue_exit(q); 704 } 705 706 void blk_mq_free_request(struct request *rq) 707 { 708 struct request_queue *q = rq->q; 709 710 if ((rq->rq_flags & RQF_USE_SCHED) && 711 q->elevator->type->ops.finish_request) 712 q->elevator->type->ops.finish_request(rq); 713 714 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 715 laptop_io_completion(q->disk->bdi); 716 717 rq_qos_done(q, rq); 718 719 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 720 if (req_ref_put_and_test(rq)) 721 __blk_mq_free_request(rq); 722 } 723 EXPORT_SYMBOL_GPL(blk_mq_free_request); 724 725 void blk_mq_free_plug_rqs(struct blk_plug *plug) 726 { 727 struct request *rq; 728 729 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 730 blk_mq_free_request(rq); 731 } 732 733 void blk_dump_rq_flags(struct request *rq, char *msg) 734 { 735 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 736 rq->q->disk ? rq->q->disk->disk_name : "?", 737 (__force unsigned long long) rq->cmd_flags); 738 739 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 740 (unsigned long long)blk_rq_pos(rq), 741 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 742 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 743 rq->bio, rq->biotail, blk_rq_bytes(rq)); 744 } 745 EXPORT_SYMBOL(blk_dump_rq_flags); 746 747 static void req_bio_endio(struct request *rq, struct bio *bio, 748 unsigned int nbytes, blk_status_t error) 749 { 750 if (unlikely(error)) { 751 bio->bi_status = error; 752 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 753 /* 754 * Partial zone append completions cannot be supported as the 755 * BIO fragments may end up not being written sequentially. 756 */ 757 if (bio->bi_iter.bi_size != nbytes) 758 bio->bi_status = BLK_STS_IOERR; 759 else 760 bio->bi_iter.bi_sector = rq->__sector; 761 } 762 763 bio_advance(bio, nbytes); 764 765 if (unlikely(rq->rq_flags & RQF_QUIET)) 766 bio_set_flag(bio, BIO_QUIET); 767 /* don't actually finish bio if it's part of flush sequence */ 768 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 769 bio_endio(bio); 770 } 771 772 static void blk_account_io_completion(struct request *req, unsigned int bytes) 773 { 774 if (req->part && blk_do_io_stat(req)) { 775 const int sgrp = op_stat_group(req_op(req)); 776 777 part_stat_lock(); 778 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 779 part_stat_unlock(); 780 } 781 } 782 783 static void blk_print_req_error(struct request *req, blk_status_t status) 784 { 785 printk_ratelimited(KERN_ERR 786 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 787 "phys_seg %u prio class %u\n", 788 blk_status_to_str(status), 789 req->q->disk ? req->q->disk->disk_name : "?", 790 blk_rq_pos(req), (__force u32)req_op(req), 791 blk_op_str(req_op(req)), 792 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 793 req->nr_phys_segments, 794 IOPRIO_PRIO_CLASS(req->ioprio)); 795 } 796 797 /* 798 * Fully end IO on a request. Does not support partial completions, or 799 * errors. 800 */ 801 static void blk_complete_request(struct request *req) 802 { 803 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 804 int total_bytes = blk_rq_bytes(req); 805 struct bio *bio = req->bio; 806 807 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 808 809 if (!bio) 810 return; 811 812 #ifdef CONFIG_BLK_DEV_INTEGRITY 813 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 814 req->q->integrity.profile->complete_fn(req, total_bytes); 815 #endif 816 817 /* 818 * Upper layers may call blk_crypto_evict_key() anytime after the last 819 * bio_endio(). Therefore, the keyslot must be released before that. 820 */ 821 blk_crypto_rq_put_keyslot(req); 822 823 blk_account_io_completion(req, total_bytes); 824 825 do { 826 struct bio *next = bio->bi_next; 827 828 /* Completion has already been traced */ 829 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 830 831 if (req_op(req) == REQ_OP_ZONE_APPEND) 832 bio->bi_iter.bi_sector = req->__sector; 833 834 if (!is_flush) 835 bio_endio(bio); 836 bio = next; 837 } while (bio); 838 839 /* 840 * Reset counters so that the request stacking driver 841 * can find how many bytes remain in the request 842 * later. 843 */ 844 if (!req->end_io) { 845 req->bio = NULL; 846 req->__data_len = 0; 847 } 848 } 849 850 /** 851 * blk_update_request - Complete multiple bytes without completing the request 852 * @req: the request being processed 853 * @error: block status code 854 * @nr_bytes: number of bytes to complete for @req 855 * 856 * Description: 857 * Ends I/O on a number of bytes attached to @req, but doesn't complete 858 * the request structure even if @req doesn't have leftover. 859 * If @req has leftover, sets it up for the next range of segments. 860 * 861 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 862 * %false return from this function. 863 * 864 * Note: 865 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 866 * except in the consistency check at the end of this function. 867 * 868 * Return: 869 * %false - this request doesn't have any more data 870 * %true - this request has more data 871 **/ 872 bool blk_update_request(struct request *req, blk_status_t error, 873 unsigned int nr_bytes) 874 { 875 int total_bytes; 876 877 trace_block_rq_complete(req, error, nr_bytes); 878 879 if (!req->bio) 880 return false; 881 882 #ifdef CONFIG_BLK_DEV_INTEGRITY 883 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 884 error == BLK_STS_OK) 885 req->q->integrity.profile->complete_fn(req, nr_bytes); 886 #endif 887 888 /* 889 * Upper layers may call blk_crypto_evict_key() anytime after the last 890 * bio_endio(). Therefore, the keyslot must be released before that. 891 */ 892 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 893 __blk_crypto_rq_put_keyslot(req); 894 895 if (unlikely(error && !blk_rq_is_passthrough(req) && 896 !(req->rq_flags & RQF_QUIET)) && 897 !test_bit(GD_DEAD, &req->q->disk->state)) { 898 blk_print_req_error(req, error); 899 trace_block_rq_error(req, error, nr_bytes); 900 } 901 902 blk_account_io_completion(req, nr_bytes); 903 904 total_bytes = 0; 905 while (req->bio) { 906 struct bio *bio = req->bio; 907 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 908 909 if (bio_bytes == bio->bi_iter.bi_size) 910 req->bio = bio->bi_next; 911 912 /* Completion has already been traced */ 913 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 914 req_bio_endio(req, bio, bio_bytes, error); 915 916 total_bytes += bio_bytes; 917 nr_bytes -= bio_bytes; 918 919 if (!nr_bytes) 920 break; 921 } 922 923 /* 924 * completely done 925 */ 926 if (!req->bio) { 927 /* 928 * Reset counters so that the request stacking driver 929 * can find how many bytes remain in the request 930 * later. 931 */ 932 req->__data_len = 0; 933 return false; 934 } 935 936 req->__data_len -= total_bytes; 937 938 /* update sector only for requests with clear definition of sector */ 939 if (!blk_rq_is_passthrough(req)) 940 req->__sector += total_bytes >> 9; 941 942 /* mixed attributes always follow the first bio */ 943 if (req->rq_flags & RQF_MIXED_MERGE) { 944 req->cmd_flags &= ~REQ_FAILFAST_MASK; 945 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 946 } 947 948 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 949 /* 950 * If total number of sectors is less than the first segment 951 * size, something has gone terribly wrong. 952 */ 953 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 954 blk_dump_rq_flags(req, "request botched"); 955 req->__data_len = blk_rq_cur_bytes(req); 956 } 957 958 /* recalculate the number of segments */ 959 req->nr_phys_segments = blk_recalc_rq_segments(req); 960 } 961 962 return true; 963 } 964 EXPORT_SYMBOL_GPL(blk_update_request); 965 966 static inline void blk_account_io_done(struct request *req, u64 now) 967 { 968 trace_block_io_done(req); 969 970 /* 971 * Account IO completion. flush_rq isn't accounted as a 972 * normal IO on queueing nor completion. Accounting the 973 * containing request is enough. 974 */ 975 if (blk_do_io_stat(req) && req->part && 976 !(req->rq_flags & RQF_FLUSH_SEQ)) { 977 const int sgrp = op_stat_group(req_op(req)); 978 979 part_stat_lock(); 980 update_io_ticks(req->part, jiffies, true); 981 part_stat_inc(req->part, ios[sgrp]); 982 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 983 part_stat_unlock(); 984 } 985 } 986 987 static inline void blk_account_io_start(struct request *req) 988 { 989 trace_block_io_start(req); 990 991 if (blk_do_io_stat(req)) { 992 /* 993 * All non-passthrough requests are created from a bio with one 994 * exception: when a flush command that is part of a flush sequence 995 * generated by the state machine in blk-flush.c is cloned onto the 996 * lower device by dm-multipath we can get here without a bio. 997 */ 998 if (req->bio) 999 req->part = req->bio->bi_bdev; 1000 else 1001 req->part = req->q->disk->part0; 1002 1003 part_stat_lock(); 1004 update_io_ticks(req->part, jiffies, false); 1005 part_stat_unlock(); 1006 } 1007 } 1008 1009 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1010 { 1011 if (rq->rq_flags & RQF_STATS) 1012 blk_stat_add(rq, now); 1013 1014 blk_mq_sched_completed_request(rq, now); 1015 blk_account_io_done(rq, now); 1016 } 1017 1018 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1019 { 1020 if (blk_mq_need_time_stamp(rq)) 1021 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1022 1023 if (rq->end_io) { 1024 rq_qos_done(rq->q, rq); 1025 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1026 blk_mq_free_request(rq); 1027 } else { 1028 blk_mq_free_request(rq); 1029 } 1030 } 1031 EXPORT_SYMBOL(__blk_mq_end_request); 1032 1033 void blk_mq_end_request(struct request *rq, blk_status_t error) 1034 { 1035 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1036 BUG(); 1037 __blk_mq_end_request(rq, error); 1038 } 1039 EXPORT_SYMBOL(blk_mq_end_request); 1040 1041 #define TAG_COMP_BATCH 32 1042 1043 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1044 int *tag_array, int nr_tags) 1045 { 1046 struct request_queue *q = hctx->queue; 1047 1048 /* 1049 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1050 * update hctx->nr_active in batch 1051 */ 1052 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1053 __blk_mq_sub_active_requests(hctx, nr_tags); 1054 1055 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1056 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1057 } 1058 1059 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1060 { 1061 int tags[TAG_COMP_BATCH], nr_tags = 0; 1062 struct blk_mq_hw_ctx *cur_hctx = NULL; 1063 struct request *rq; 1064 u64 now = 0; 1065 1066 if (iob->need_ts) 1067 now = ktime_get_ns(); 1068 1069 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1070 prefetch(rq->bio); 1071 prefetch(rq->rq_next); 1072 1073 blk_complete_request(rq); 1074 if (iob->need_ts) 1075 __blk_mq_end_request_acct(rq, now); 1076 1077 rq_qos_done(rq->q, rq); 1078 1079 /* 1080 * If end_io handler returns NONE, then it still has 1081 * ownership of the request. 1082 */ 1083 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1084 continue; 1085 1086 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1087 if (!req_ref_put_and_test(rq)) 1088 continue; 1089 1090 blk_crypto_free_request(rq); 1091 blk_pm_mark_last_busy(rq); 1092 1093 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1094 if (cur_hctx) 1095 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1096 nr_tags = 0; 1097 cur_hctx = rq->mq_hctx; 1098 } 1099 tags[nr_tags++] = rq->tag; 1100 } 1101 1102 if (nr_tags) 1103 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1104 } 1105 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1106 1107 static void blk_complete_reqs(struct llist_head *list) 1108 { 1109 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1110 struct request *rq, *next; 1111 1112 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1113 rq->q->mq_ops->complete(rq); 1114 } 1115 1116 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1117 { 1118 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1119 } 1120 1121 static int blk_softirq_cpu_dead(unsigned int cpu) 1122 { 1123 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1124 return 0; 1125 } 1126 1127 static void __blk_mq_complete_request_remote(void *data) 1128 { 1129 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1130 } 1131 1132 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1133 { 1134 int cpu = raw_smp_processor_id(); 1135 1136 if (!IS_ENABLED(CONFIG_SMP) || 1137 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1138 return false; 1139 /* 1140 * With force threaded interrupts enabled, raising softirq from an SMP 1141 * function call will always result in waking the ksoftirqd thread. 1142 * This is probably worse than completing the request on a different 1143 * cache domain. 1144 */ 1145 if (force_irqthreads()) 1146 return false; 1147 1148 /* same CPU or cache domain? Complete locally */ 1149 if (cpu == rq->mq_ctx->cpu || 1150 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1151 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1152 return false; 1153 1154 /* don't try to IPI to an offline CPU */ 1155 return cpu_online(rq->mq_ctx->cpu); 1156 } 1157 1158 static void blk_mq_complete_send_ipi(struct request *rq) 1159 { 1160 struct llist_head *list; 1161 unsigned int cpu; 1162 1163 cpu = rq->mq_ctx->cpu; 1164 list = &per_cpu(blk_cpu_done, cpu); 1165 if (llist_add(&rq->ipi_list, list)) { 1166 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1167 smp_call_function_single_async(cpu, &rq->csd); 1168 } 1169 } 1170 1171 static void blk_mq_raise_softirq(struct request *rq) 1172 { 1173 struct llist_head *list; 1174 1175 preempt_disable(); 1176 list = this_cpu_ptr(&blk_cpu_done); 1177 if (llist_add(&rq->ipi_list, list)) 1178 raise_softirq(BLOCK_SOFTIRQ); 1179 preempt_enable(); 1180 } 1181 1182 bool blk_mq_complete_request_remote(struct request *rq) 1183 { 1184 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1185 1186 /* 1187 * For request which hctx has only one ctx mapping, 1188 * or a polled request, always complete locally, 1189 * it's pointless to redirect the completion. 1190 */ 1191 if ((rq->mq_hctx->nr_ctx == 1 && 1192 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1193 rq->cmd_flags & REQ_POLLED) 1194 return false; 1195 1196 if (blk_mq_complete_need_ipi(rq)) { 1197 blk_mq_complete_send_ipi(rq); 1198 return true; 1199 } 1200 1201 if (rq->q->nr_hw_queues == 1) { 1202 blk_mq_raise_softirq(rq); 1203 return true; 1204 } 1205 return false; 1206 } 1207 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1208 1209 /** 1210 * blk_mq_complete_request - end I/O on a request 1211 * @rq: the request being processed 1212 * 1213 * Description: 1214 * Complete a request by scheduling the ->complete_rq operation. 1215 **/ 1216 void blk_mq_complete_request(struct request *rq) 1217 { 1218 if (!blk_mq_complete_request_remote(rq)) 1219 rq->q->mq_ops->complete(rq); 1220 } 1221 EXPORT_SYMBOL(blk_mq_complete_request); 1222 1223 /** 1224 * blk_mq_start_request - Start processing a request 1225 * @rq: Pointer to request to be started 1226 * 1227 * Function used by device drivers to notify the block layer that a request 1228 * is going to be processed now, so blk layer can do proper initializations 1229 * such as starting the timeout timer. 1230 */ 1231 void blk_mq_start_request(struct request *rq) 1232 { 1233 struct request_queue *q = rq->q; 1234 1235 trace_block_rq_issue(rq); 1236 1237 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1238 rq->io_start_time_ns = ktime_get_ns(); 1239 rq->stats_sectors = blk_rq_sectors(rq); 1240 rq->rq_flags |= RQF_STATS; 1241 rq_qos_issue(q, rq); 1242 } 1243 1244 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1245 1246 blk_add_timer(rq); 1247 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1248 1249 #ifdef CONFIG_BLK_DEV_INTEGRITY 1250 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1251 q->integrity.profile->prepare_fn(rq); 1252 #endif 1253 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1254 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1255 } 1256 EXPORT_SYMBOL(blk_mq_start_request); 1257 1258 /* 1259 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1260 * queues. This is important for md arrays to benefit from merging 1261 * requests. 1262 */ 1263 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1264 { 1265 if (plug->multiple_queues) 1266 return BLK_MAX_REQUEST_COUNT * 2; 1267 return BLK_MAX_REQUEST_COUNT; 1268 } 1269 1270 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1271 { 1272 struct request *last = rq_list_peek(&plug->mq_list); 1273 1274 if (!plug->rq_count) { 1275 trace_block_plug(rq->q); 1276 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1277 (!blk_queue_nomerges(rq->q) && 1278 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1279 blk_mq_flush_plug_list(plug, false); 1280 last = NULL; 1281 trace_block_plug(rq->q); 1282 } 1283 1284 if (!plug->multiple_queues && last && last->q != rq->q) 1285 plug->multiple_queues = true; 1286 /* 1287 * Any request allocated from sched tags can't be issued to 1288 * ->queue_rqs() directly 1289 */ 1290 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1291 plug->has_elevator = true; 1292 rq->rq_next = NULL; 1293 rq_list_add(&plug->mq_list, rq); 1294 plug->rq_count++; 1295 } 1296 1297 /** 1298 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1299 * @rq: request to insert 1300 * @at_head: insert request at head or tail of queue 1301 * 1302 * Description: 1303 * Insert a fully prepared request at the back of the I/O scheduler queue 1304 * for execution. Don't wait for completion. 1305 * 1306 * Note: 1307 * This function will invoke @done directly if the queue is dead. 1308 */ 1309 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1310 { 1311 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1312 1313 WARN_ON(irqs_disabled()); 1314 WARN_ON(!blk_rq_is_passthrough(rq)); 1315 1316 blk_account_io_start(rq); 1317 1318 /* 1319 * As plugging can be enabled for passthrough requests on a zoned 1320 * device, directly accessing the plug instead of using blk_mq_plug() 1321 * should not have any consequences. 1322 */ 1323 if (current->plug && !at_head) { 1324 blk_add_rq_to_plug(current->plug, rq); 1325 return; 1326 } 1327 1328 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1329 blk_mq_run_hw_queue(hctx, false); 1330 } 1331 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1332 1333 struct blk_rq_wait { 1334 struct completion done; 1335 blk_status_t ret; 1336 }; 1337 1338 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1339 { 1340 struct blk_rq_wait *wait = rq->end_io_data; 1341 1342 wait->ret = ret; 1343 complete(&wait->done); 1344 return RQ_END_IO_NONE; 1345 } 1346 1347 bool blk_rq_is_poll(struct request *rq) 1348 { 1349 if (!rq->mq_hctx) 1350 return false; 1351 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1352 return false; 1353 return true; 1354 } 1355 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1356 1357 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1358 { 1359 do { 1360 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1361 cond_resched(); 1362 } while (!completion_done(wait)); 1363 } 1364 1365 /** 1366 * blk_execute_rq - insert a request into queue for execution 1367 * @rq: request to insert 1368 * @at_head: insert request at head or tail of queue 1369 * 1370 * Description: 1371 * Insert a fully prepared request at the back of the I/O scheduler queue 1372 * for execution and wait for completion. 1373 * Return: The blk_status_t result provided to blk_mq_end_request(). 1374 */ 1375 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1376 { 1377 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1378 struct blk_rq_wait wait = { 1379 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1380 }; 1381 1382 WARN_ON(irqs_disabled()); 1383 WARN_ON(!blk_rq_is_passthrough(rq)); 1384 1385 rq->end_io_data = &wait; 1386 rq->end_io = blk_end_sync_rq; 1387 1388 blk_account_io_start(rq); 1389 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1390 blk_mq_run_hw_queue(hctx, false); 1391 1392 if (blk_rq_is_poll(rq)) { 1393 blk_rq_poll_completion(rq, &wait.done); 1394 } else { 1395 /* 1396 * Prevent hang_check timer from firing at us during very long 1397 * I/O 1398 */ 1399 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1400 1401 if (hang_check) 1402 while (!wait_for_completion_io_timeout(&wait.done, 1403 hang_check * (HZ/2))) 1404 ; 1405 else 1406 wait_for_completion_io(&wait.done); 1407 } 1408 1409 return wait.ret; 1410 } 1411 EXPORT_SYMBOL(blk_execute_rq); 1412 1413 static void __blk_mq_requeue_request(struct request *rq) 1414 { 1415 struct request_queue *q = rq->q; 1416 1417 blk_mq_put_driver_tag(rq); 1418 1419 trace_block_rq_requeue(rq); 1420 rq_qos_requeue(q, rq); 1421 1422 if (blk_mq_request_started(rq)) { 1423 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1424 rq->rq_flags &= ~RQF_TIMED_OUT; 1425 } 1426 } 1427 1428 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1429 { 1430 struct request_queue *q = rq->q; 1431 unsigned long flags; 1432 1433 __blk_mq_requeue_request(rq); 1434 1435 /* this request will be re-inserted to io scheduler queue */ 1436 blk_mq_sched_requeue_request(rq); 1437 1438 spin_lock_irqsave(&q->requeue_lock, flags); 1439 list_add_tail(&rq->queuelist, &q->requeue_list); 1440 spin_unlock_irqrestore(&q->requeue_lock, flags); 1441 1442 if (kick_requeue_list) 1443 blk_mq_kick_requeue_list(q); 1444 } 1445 EXPORT_SYMBOL(blk_mq_requeue_request); 1446 1447 static void blk_mq_requeue_work(struct work_struct *work) 1448 { 1449 struct request_queue *q = 1450 container_of(work, struct request_queue, requeue_work.work); 1451 LIST_HEAD(rq_list); 1452 LIST_HEAD(flush_list); 1453 struct request *rq; 1454 1455 spin_lock_irq(&q->requeue_lock); 1456 list_splice_init(&q->requeue_list, &rq_list); 1457 list_splice_init(&q->flush_list, &flush_list); 1458 spin_unlock_irq(&q->requeue_lock); 1459 1460 while (!list_empty(&rq_list)) { 1461 rq = list_entry(rq_list.next, struct request, queuelist); 1462 /* 1463 * If RQF_DONTPREP ist set, the request has been started by the 1464 * driver already and might have driver-specific data allocated 1465 * already. Insert it into the hctx dispatch list to avoid 1466 * block layer merges for the request. 1467 */ 1468 if (rq->rq_flags & RQF_DONTPREP) { 1469 list_del_init(&rq->queuelist); 1470 blk_mq_request_bypass_insert(rq, 0); 1471 } else { 1472 list_del_init(&rq->queuelist); 1473 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1474 } 1475 } 1476 1477 while (!list_empty(&flush_list)) { 1478 rq = list_entry(flush_list.next, struct request, queuelist); 1479 list_del_init(&rq->queuelist); 1480 blk_mq_insert_request(rq, 0); 1481 } 1482 1483 blk_mq_run_hw_queues(q, false); 1484 } 1485 1486 void blk_mq_kick_requeue_list(struct request_queue *q) 1487 { 1488 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1489 } 1490 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1491 1492 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1493 unsigned long msecs) 1494 { 1495 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1496 msecs_to_jiffies(msecs)); 1497 } 1498 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1499 1500 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1501 { 1502 /* 1503 * If we find a request that isn't idle we know the queue is busy 1504 * as it's checked in the iter. 1505 * Return false to stop the iteration. 1506 */ 1507 if (blk_mq_request_started(rq)) { 1508 bool *busy = priv; 1509 1510 *busy = true; 1511 return false; 1512 } 1513 1514 return true; 1515 } 1516 1517 bool blk_mq_queue_inflight(struct request_queue *q) 1518 { 1519 bool busy = false; 1520 1521 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1522 return busy; 1523 } 1524 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1525 1526 static void blk_mq_rq_timed_out(struct request *req) 1527 { 1528 req->rq_flags |= RQF_TIMED_OUT; 1529 if (req->q->mq_ops->timeout) { 1530 enum blk_eh_timer_return ret; 1531 1532 ret = req->q->mq_ops->timeout(req); 1533 if (ret == BLK_EH_DONE) 1534 return; 1535 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1536 } 1537 1538 blk_add_timer(req); 1539 } 1540 1541 struct blk_expired_data { 1542 bool has_timedout_rq; 1543 unsigned long next; 1544 unsigned long timeout_start; 1545 }; 1546 1547 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1548 { 1549 unsigned long deadline; 1550 1551 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1552 return false; 1553 if (rq->rq_flags & RQF_TIMED_OUT) 1554 return false; 1555 1556 deadline = READ_ONCE(rq->deadline); 1557 if (time_after_eq(expired->timeout_start, deadline)) 1558 return true; 1559 1560 if (expired->next == 0) 1561 expired->next = deadline; 1562 else if (time_after(expired->next, deadline)) 1563 expired->next = deadline; 1564 return false; 1565 } 1566 1567 void blk_mq_put_rq_ref(struct request *rq) 1568 { 1569 if (is_flush_rq(rq)) { 1570 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1571 blk_mq_free_request(rq); 1572 } else if (req_ref_put_and_test(rq)) { 1573 __blk_mq_free_request(rq); 1574 } 1575 } 1576 1577 static bool blk_mq_check_expired(struct request *rq, void *priv) 1578 { 1579 struct blk_expired_data *expired = priv; 1580 1581 /* 1582 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1583 * be reallocated underneath the timeout handler's processing, then 1584 * the expire check is reliable. If the request is not expired, then 1585 * it was completed and reallocated as a new request after returning 1586 * from blk_mq_check_expired(). 1587 */ 1588 if (blk_mq_req_expired(rq, expired)) { 1589 expired->has_timedout_rq = true; 1590 return false; 1591 } 1592 return true; 1593 } 1594 1595 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1596 { 1597 struct blk_expired_data *expired = priv; 1598 1599 if (blk_mq_req_expired(rq, expired)) 1600 blk_mq_rq_timed_out(rq); 1601 return true; 1602 } 1603 1604 static void blk_mq_timeout_work(struct work_struct *work) 1605 { 1606 struct request_queue *q = 1607 container_of(work, struct request_queue, timeout_work); 1608 struct blk_expired_data expired = { 1609 .timeout_start = jiffies, 1610 }; 1611 struct blk_mq_hw_ctx *hctx; 1612 unsigned long i; 1613 1614 /* A deadlock might occur if a request is stuck requiring a 1615 * timeout at the same time a queue freeze is waiting 1616 * completion, since the timeout code would not be able to 1617 * acquire the queue reference here. 1618 * 1619 * That's why we don't use blk_queue_enter here; instead, we use 1620 * percpu_ref_tryget directly, because we need to be able to 1621 * obtain a reference even in the short window between the queue 1622 * starting to freeze, by dropping the first reference in 1623 * blk_freeze_queue_start, and the moment the last request is 1624 * consumed, marked by the instant q_usage_counter reaches 1625 * zero. 1626 */ 1627 if (!percpu_ref_tryget(&q->q_usage_counter)) 1628 return; 1629 1630 /* check if there is any timed-out request */ 1631 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1632 if (expired.has_timedout_rq) { 1633 /* 1634 * Before walking tags, we must ensure any submit started 1635 * before the current time has finished. Since the submit 1636 * uses srcu or rcu, wait for a synchronization point to 1637 * ensure all running submits have finished 1638 */ 1639 blk_mq_wait_quiesce_done(q->tag_set); 1640 1641 expired.next = 0; 1642 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1643 } 1644 1645 if (expired.next != 0) { 1646 mod_timer(&q->timeout, expired.next); 1647 } else { 1648 /* 1649 * Request timeouts are handled as a forward rolling timer. If 1650 * we end up here it means that no requests are pending and 1651 * also that no request has been pending for a while. Mark 1652 * each hctx as idle. 1653 */ 1654 queue_for_each_hw_ctx(q, hctx, i) { 1655 /* the hctx may be unmapped, so check it here */ 1656 if (blk_mq_hw_queue_mapped(hctx)) 1657 blk_mq_tag_idle(hctx); 1658 } 1659 } 1660 blk_queue_exit(q); 1661 } 1662 1663 struct flush_busy_ctx_data { 1664 struct blk_mq_hw_ctx *hctx; 1665 struct list_head *list; 1666 }; 1667 1668 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1669 { 1670 struct flush_busy_ctx_data *flush_data = data; 1671 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1672 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1673 enum hctx_type type = hctx->type; 1674 1675 spin_lock(&ctx->lock); 1676 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1677 sbitmap_clear_bit(sb, bitnr); 1678 spin_unlock(&ctx->lock); 1679 return true; 1680 } 1681 1682 /* 1683 * Process software queues that have been marked busy, splicing them 1684 * to the for-dispatch 1685 */ 1686 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1687 { 1688 struct flush_busy_ctx_data data = { 1689 .hctx = hctx, 1690 .list = list, 1691 }; 1692 1693 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1694 } 1695 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1696 1697 struct dispatch_rq_data { 1698 struct blk_mq_hw_ctx *hctx; 1699 struct request *rq; 1700 }; 1701 1702 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1703 void *data) 1704 { 1705 struct dispatch_rq_data *dispatch_data = data; 1706 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1707 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1708 enum hctx_type type = hctx->type; 1709 1710 spin_lock(&ctx->lock); 1711 if (!list_empty(&ctx->rq_lists[type])) { 1712 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1713 list_del_init(&dispatch_data->rq->queuelist); 1714 if (list_empty(&ctx->rq_lists[type])) 1715 sbitmap_clear_bit(sb, bitnr); 1716 } 1717 spin_unlock(&ctx->lock); 1718 1719 return !dispatch_data->rq; 1720 } 1721 1722 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1723 struct blk_mq_ctx *start) 1724 { 1725 unsigned off = start ? start->index_hw[hctx->type] : 0; 1726 struct dispatch_rq_data data = { 1727 .hctx = hctx, 1728 .rq = NULL, 1729 }; 1730 1731 __sbitmap_for_each_set(&hctx->ctx_map, off, 1732 dispatch_rq_from_ctx, &data); 1733 1734 return data.rq; 1735 } 1736 1737 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1738 { 1739 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1740 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1741 int tag; 1742 1743 blk_mq_tag_busy(rq->mq_hctx); 1744 1745 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1746 bt = &rq->mq_hctx->tags->breserved_tags; 1747 tag_offset = 0; 1748 } else { 1749 if (!hctx_may_queue(rq->mq_hctx, bt)) 1750 return false; 1751 } 1752 1753 tag = __sbitmap_queue_get(bt); 1754 if (tag == BLK_MQ_NO_TAG) 1755 return false; 1756 1757 rq->tag = tag + tag_offset; 1758 return true; 1759 } 1760 1761 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1762 { 1763 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1764 return false; 1765 1766 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1767 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1768 rq->rq_flags |= RQF_MQ_INFLIGHT; 1769 __blk_mq_inc_active_requests(hctx); 1770 } 1771 hctx->tags->rqs[rq->tag] = rq; 1772 return true; 1773 } 1774 1775 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1776 int flags, void *key) 1777 { 1778 struct blk_mq_hw_ctx *hctx; 1779 1780 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1781 1782 spin_lock(&hctx->dispatch_wait_lock); 1783 if (!list_empty(&wait->entry)) { 1784 struct sbitmap_queue *sbq; 1785 1786 list_del_init(&wait->entry); 1787 sbq = &hctx->tags->bitmap_tags; 1788 atomic_dec(&sbq->ws_active); 1789 } 1790 spin_unlock(&hctx->dispatch_wait_lock); 1791 1792 blk_mq_run_hw_queue(hctx, true); 1793 return 1; 1794 } 1795 1796 /* 1797 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1798 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1799 * restart. For both cases, take care to check the condition again after 1800 * marking us as waiting. 1801 */ 1802 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1803 struct request *rq) 1804 { 1805 struct sbitmap_queue *sbq; 1806 struct wait_queue_head *wq; 1807 wait_queue_entry_t *wait; 1808 bool ret; 1809 1810 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1811 !(blk_mq_is_shared_tags(hctx->flags))) { 1812 blk_mq_sched_mark_restart_hctx(hctx); 1813 1814 /* 1815 * It's possible that a tag was freed in the window between the 1816 * allocation failure and adding the hardware queue to the wait 1817 * queue. 1818 * 1819 * Don't clear RESTART here, someone else could have set it. 1820 * At most this will cost an extra queue run. 1821 */ 1822 return blk_mq_get_driver_tag(rq); 1823 } 1824 1825 wait = &hctx->dispatch_wait; 1826 if (!list_empty_careful(&wait->entry)) 1827 return false; 1828 1829 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1830 sbq = &hctx->tags->breserved_tags; 1831 else 1832 sbq = &hctx->tags->bitmap_tags; 1833 wq = &bt_wait_ptr(sbq, hctx)->wait; 1834 1835 spin_lock_irq(&wq->lock); 1836 spin_lock(&hctx->dispatch_wait_lock); 1837 if (!list_empty(&wait->entry)) { 1838 spin_unlock(&hctx->dispatch_wait_lock); 1839 spin_unlock_irq(&wq->lock); 1840 return false; 1841 } 1842 1843 atomic_inc(&sbq->ws_active); 1844 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1845 __add_wait_queue(wq, wait); 1846 1847 /* 1848 * It's possible that a tag was freed in the window between the 1849 * allocation failure and adding the hardware queue to the wait 1850 * queue. 1851 */ 1852 ret = blk_mq_get_driver_tag(rq); 1853 if (!ret) { 1854 spin_unlock(&hctx->dispatch_wait_lock); 1855 spin_unlock_irq(&wq->lock); 1856 return false; 1857 } 1858 1859 /* 1860 * We got a tag, remove ourselves from the wait queue to ensure 1861 * someone else gets the wakeup. 1862 */ 1863 list_del_init(&wait->entry); 1864 atomic_dec(&sbq->ws_active); 1865 spin_unlock(&hctx->dispatch_wait_lock); 1866 spin_unlock_irq(&wq->lock); 1867 1868 return true; 1869 } 1870 1871 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1872 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1873 /* 1874 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1875 * - EWMA is one simple way to compute running average value 1876 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1877 * - take 4 as factor for avoiding to get too small(0) result, and this 1878 * factor doesn't matter because EWMA decreases exponentially 1879 */ 1880 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1881 { 1882 unsigned int ewma; 1883 1884 ewma = hctx->dispatch_busy; 1885 1886 if (!ewma && !busy) 1887 return; 1888 1889 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1890 if (busy) 1891 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1892 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1893 1894 hctx->dispatch_busy = ewma; 1895 } 1896 1897 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1898 1899 static void blk_mq_handle_dev_resource(struct request *rq, 1900 struct list_head *list) 1901 { 1902 list_add(&rq->queuelist, list); 1903 __blk_mq_requeue_request(rq); 1904 } 1905 1906 static void blk_mq_handle_zone_resource(struct request *rq, 1907 struct list_head *zone_list) 1908 { 1909 /* 1910 * If we end up here it is because we cannot dispatch a request to a 1911 * specific zone due to LLD level zone-write locking or other zone 1912 * related resource not being available. In this case, set the request 1913 * aside in zone_list for retrying it later. 1914 */ 1915 list_add(&rq->queuelist, zone_list); 1916 __blk_mq_requeue_request(rq); 1917 } 1918 1919 enum prep_dispatch { 1920 PREP_DISPATCH_OK, 1921 PREP_DISPATCH_NO_TAG, 1922 PREP_DISPATCH_NO_BUDGET, 1923 }; 1924 1925 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1926 bool need_budget) 1927 { 1928 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1929 int budget_token = -1; 1930 1931 if (need_budget) { 1932 budget_token = blk_mq_get_dispatch_budget(rq->q); 1933 if (budget_token < 0) { 1934 blk_mq_put_driver_tag(rq); 1935 return PREP_DISPATCH_NO_BUDGET; 1936 } 1937 blk_mq_set_rq_budget_token(rq, budget_token); 1938 } 1939 1940 if (!blk_mq_get_driver_tag(rq)) { 1941 /* 1942 * The initial allocation attempt failed, so we need to 1943 * rerun the hardware queue when a tag is freed. The 1944 * waitqueue takes care of that. If the queue is run 1945 * before we add this entry back on the dispatch list, 1946 * we'll re-run it below. 1947 */ 1948 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1949 /* 1950 * All budgets not got from this function will be put 1951 * together during handling partial dispatch 1952 */ 1953 if (need_budget) 1954 blk_mq_put_dispatch_budget(rq->q, budget_token); 1955 return PREP_DISPATCH_NO_TAG; 1956 } 1957 } 1958 1959 return PREP_DISPATCH_OK; 1960 } 1961 1962 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1963 static void blk_mq_release_budgets(struct request_queue *q, 1964 struct list_head *list) 1965 { 1966 struct request *rq; 1967 1968 list_for_each_entry(rq, list, queuelist) { 1969 int budget_token = blk_mq_get_rq_budget_token(rq); 1970 1971 if (budget_token >= 0) 1972 blk_mq_put_dispatch_budget(q, budget_token); 1973 } 1974 } 1975 1976 /* 1977 * blk_mq_commit_rqs will notify driver using bd->last that there is no 1978 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 1979 * details) 1980 * Attention, we should explicitly call this in unusual cases: 1981 * 1) did not queue everything initially scheduled to queue 1982 * 2) the last attempt to queue a request failed 1983 */ 1984 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 1985 bool from_schedule) 1986 { 1987 if (hctx->queue->mq_ops->commit_rqs && queued) { 1988 trace_block_unplug(hctx->queue, queued, !from_schedule); 1989 hctx->queue->mq_ops->commit_rqs(hctx); 1990 } 1991 } 1992 1993 /* 1994 * Returns true if we did some work AND can potentially do more. 1995 */ 1996 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1997 unsigned int nr_budgets) 1998 { 1999 enum prep_dispatch prep; 2000 struct request_queue *q = hctx->queue; 2001 struct request *rq; 2002 int queued; 2003 blk_status_t ret = BLK_STS_OK; 2004 LIST_HEAD(zone_list); 2005 bool needs_resource = false; 2006 2007 if (list_empty(list)) 2008 return false; 2009 2010 /* 2011 * Now process all the entries, sending them to the driver. 2012 */ 2013 queued = 0; 2014 do { 2015 struct blk_mq_queue_data bd; 2016 2017 rq = list_first_entry(list, struct request, queuelist); 2018 2019 WARN_ON_ONCE(hctx != rq->mq_hctx); 2020 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2021 if (prep != PREP_DISPATCH_OK) 2022 break; 2023 2024 list_del_init(&rq->queuelist); 2025 2026 bd.rq = rq; 2027 bd.last = list_empty(list); 2028 2029 /* 2030 * once the request is queued to lld, no need to cover the 2031 * budget any more 2032 */ 2033 if (nr_budgets) 2034 nr_budgets--; 2035 ret = q->mq_ops->queue_rq(hctx, &bd); 2036 switch (ret) { 2037 case BLK_STS_OK: 2038 queued++; 2039 break; 2040 case BLK_STS_RESOURCE: 2041 needs_resource = true; 2042 fallthrough; 2043 case BLK_STS_DEV_RESOURCE: 2044 blk_mq_handle_dev_resource(rq, list); 2045 goto out; 2046 case BLK_STS_ZONE_RESOURCE: 2047 /* 2048 * Move the request to zone_list and keep going through 2049 * the dispatch list to find more requests the drive can 2050 * accept. 2051 */ 2052 blk_mq_handle_zone_resource(rq, &zone_list); 2053 needs_resource = true; 2054 break; 2055 default: 2056 blk_mq_end_request(rq, ret); 2057 } 2058 } while (!list_empty(list)); 2059 out: 2060 if (!list_empty(&zone_list)) 2061 list_splice_tail_init(&zone_list, list); 2062 2063 /* If we didn't flush the entire list, we could have told the driver 2064 * there was more coming, but that turned out to be a lie. 2065 */ 2066 if (!list_empty(list) || ret != BLK_STS_OK) 2067 blk_mq_commit_rqs(hctx, queued, false); 2068 2069 /* 2070 * Any items that need requeuing? Stuff them into hctx->dispatch, 2071 * that is where we will continue on next queue run. 2072 */ 2073 if (!list_empty(list)) { 2074 bool needs_restart; 2075 /* For non-shared tags, the RESTART check will suffice */ 2076 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2077 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2078 blk_mq_is_shared_tags(hctx->flags)); 2079 2080 if (nr_budgets) 2081 blk_mq_release_budgets(q, list); 2082 2083 spin_lock(&hctx->lock); 2084 list_splice_tail_init(list, &hctx->dispatch); 2085 spin_unlock(&hctx->lock); 2086 2087 /* 2088 * Order adding requests to hctx->dispatch and checking 2089 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2090 * in blk_mq_sched_restart(). Avoid restart code path to 2091 * miss the new added requests to hctx->dispatch, meantime 2092 * SCHED_RESTART is observed here. 2093 */ 2094 smp_mb(); 2095 2096 /* 2097 * If SCHED_RESTART was set by the caller of this function and 2098 * it is no longer set that means that it was cleared by another 2099 * thread and hence that a queue rerun is needed. 2100 * 2101 * If 'no_tag' is set, that means that we failed getting 2102 * a driver tag with an I/O scheduler attached. If our dispatch 2103 * waitqueue is no longer active, ensure that we run the queue 2104 * AFTER adding our entries back to the list. 2105 * 2106 * If no I/O scheduler has been configured it is possible that 2107 * the hardware queue got stopped and restarted before requests 2108 * were pushed back onto the dispatch list. Rerun the queue to 2109 * avoid starvation. Notes: 2110 * - blk_mq_run_hw_queue() checks whether or not a queue has 2111 * been stopped before rerunning a queue. 2112 * - Some but not all block drivers stop a queue before 2113 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2114 * and dm-rq. 2115 * 2116 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2117 * bit is set, run queue after a delay to avoid IO stalls 2118 * that could otherwise occur if the queue is idle. We'll do 2119 * similar if we couldn't get budget or couldn't lock a zone 2120 * and SCHED_RESTART is set. 2121 */ 2122 needs_restart = blk_mq_sched_needs_restart(hctx); 2123 if (prep == PREP_DISPATCH_NO_BUDGET) 2124 needs_resource = true; 2125 if (!needs_restart || 2126 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2127 blk_mq_run_hw_queue(hctx, true); 2128 else if (needs_resource) 2129 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2130 2131 blk_mq_update_dispatch_busy(hctx, true); 2132 return false; 2133 } 2134 2135 blk_mq_update_dispatch_busy(hctx, false); 2136 return true; 2137 } 2138 2139 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2140 { 2141 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2142 2143 if (cpu >= nr_cpu_ids) 2144 cpu = cpumask_first(hctx->cpumask); 2145 return cpu; 2146 } 2147 2148 /* 2149 * It'd be great if the workqueue API had a way to pass 2150 * in a mask and had some smarts for more clever placement. 2151 * For now we just round-robin here, switching for every 2152 * BLK_MQ_CPU_WORK_BATCH queued items. 2153 */ 2154 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2155 { 2156 bool tried = false; 2157 int next_cpu = hctx->next_cpu; 2158 2159 if (hctx->queue->nr_hw_queues == 1) 2160 return WORK_CPU_UNBOUND; 2161 2162 if (--hctx->next_cpu_batch <= 0) { 2163 select_cpu: 2164 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2165 cpu_online_mask); 2166 if (next_cpu >= nr_cpu_ids) 2167 next_cpu = blk_mq_first_mapped_cpu(hctx); 2168 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2169 } 2170 2171 /* 2172 * Do unbound schedule if we can't find a online CPU for this hctx, 2173 * and it should only happen in the path of handling CPU DEAD. 2174 */ 2175 if (!cpu_online(next_cpu)) { 2176 if (!tried) { 2177 tried = true; 2178 goto select_cpu; 2179 } 2180 2181 /* 2182 * Make sure to re-select CPU next time once after CPUs 2183 * in hctx->cpumask become online again. 2184 */ 2185 hctx->next_cpu = next_cpu; 2186 hctx->next_cpu_batch = 1; 2187 return WORK_CPU_UNBOUND; 2188 } 2189 2190 hctx->next_cpu = next_cpu; 2191 return next_cpu; 2192 } 2193 2194 /** 2195 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2196 * @hctx: Pointer to the hardware queue to run. 2197 * @msecs: Milliseconds of delay to wait before running the queue. 2198 * 2199 * Run a hardware queue asynchronously with a delay of @msecs. 2200 */ 2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2202 { 2203 if (unlikely(blk_mq_hctx_stopped(hctx))) 2204 return; 2205 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2206 msecs_to_jiffies(msecs)); 2207 } 2208 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2209 2210 /** 2211 * blk_mq_run_hw_queue - Start to run a hardware queue. 2212 * @hctx: Pointer to the hardware queue to run. 2213 * @async: If we want to run the queue asynchronously. 2214 * 2215 * Check if the request queue is not in a quiesced state and if there are 2216 * pending requests to be sent. If this is true, run the queue to send requests 2217 * to hardware. 2218 */ 2219 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2220 { 2221 bool need_run; 2222 2223 /* 2224 * We can't run the queue inline with interrupts disabled. 2225 */ 2226 WARN_ON_ONCE(!async && in_interrupt()); 2227 2228 /* 2229 * When queue is quiesced, we may be switching io scheduler, or 2230 * updating nr_hw_queues, or other things, and we can't run queue 2231 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2232 * 2233 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2234 * quiesced. 2235 */ 2236 __blk_mq_run_dispatch_ops(hctx->queue, false, 2237 need_run = !blk_queue_quiesced(hctx->queue) && 2238 blk_mq_hctx_has_pending(hctx)); 2239 2240 if (!need_run) 2241 return; 2242 2243 if (async || (hctx->flags & BLK_MQ_F_BLOCKING) || 2244 !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2245 blk_mq_delay_run_hw_queue(hctx, 0); 2246 return; 2247 } 2248 2249 blk_mq_run_dispatch_ops(hctx->queue, 2250 blk_mq_sched_dispatch_requests(hctx)); 2251 } 2252 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2253 2254 /* 2255 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2256 * scheduler. 2257 */ 2258 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2259 { 2260 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2261 /* 2262 * If the IO scheduler does not respect hardware queues when 2263 * dispatching, we just don't bother with multiple HW queues and 2264 * dispatch from hctx for the current CPU since running multiple queues 2265 * just causes lock contention inside the scheduler and pointless cache 2266 * bouncing. 2267 */ 2268 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2269 2270 if (!blk_mq_hctx_stopped(hctx)) 2271 return hctx; 2272 return NULL; 2273 } 2274 2275 /** 2276 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2277 * @q: Pointer to the request queue to run. 2278 * @async: If we want to run the queue asynchronously. 2279 */ 2280 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2281 { 2282 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2283 unsigned long i; 2284 2285 sq_hctx = NULL; 2286 if (blk_queue_sq_sched(q)) 2287 sq_hctx = blk_mq_get_sq_hctx(q); 2288 queue_for_each_hw_ctx(q, hctx, i) { 2289 if (blk_mq_hctx_stopped(hctx)) 2290 continue; 2291 /* 2292 * Dispatch from this hctx either if there's no hctx preferred 2293 * by IO scheduler or if it has requests that bypass the 2294 * scheduler. 2295 */ 2296 if (!sq_hctx || sq_hctx == hctx || 2297 !list_empty_careful(&hctx->dispatch)) 2298 blk_mq_run_hw_queue(hctx, async); 2299 } 2300 } 2301 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2302 2303 /** 2304 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2305 * @q: Pointer to the request queue to run. 2306 * @msecs: Milliseconds of delay to wait before running the queues. 2307 */ 2308 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2309 { 2310 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2311 unsigned long i; 2312 2313 sq_hctx = NULL; 2314 if (blk_queue_sq_sched(q)) 2315 sq_hctx = blk_mq_get_sq_hctx(q); 2316 queue_for_each_hw_ctx(q, hctx, i) { 2317 if (blk_mq_hctx_stopped(hctx)) 2318 continue; 2319 /* 2320 * If there is already a run_work pending, leave the 2321 * pending delay untouched. Otherwise, a hctx can stall 2322 * if another hctx is re-delaying the other's work 2323 * before the work executes. 2324 */ 2325 if (delayed_work_pending(&hctx->run_work)) 2326 continue; 2327 /* 2328 * Dispatch from this hctx either if there's no hctx preferred 2329 * by IO scheduler or if it has requests that bypass the 2330 * scheduler. 2331 */ 2332 if (!sq_hctx || sq_hctx == hctx || 2333 !list_empty_careful(&hctx->dispatch)) 2334 blk_mq_delay_run_hw_queue(hctx, msecs); 2335 } 2336 } 2337 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2338 2339 /* 2340 * This function is often used for pausing .queue_rq() by driver when 2341 * there isn't enough resource or some conditions aren't satisfied, and 2342 * BLK_STS_RESOURCE is usually returned. 2343 * 2344 * We do not guarantee that dispatch can be drained or blocked 2345 * after blk_mq_stop_hw_queue() returns. Please use 2346 * blk_mq_quiesce_queue() for that requirement. 2347 */ 2348 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2349 { 2350 cancel_delayed_work(&hctx->run_work); 2351 2352 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2353 } 2354 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2355 2356 /* 2357 * This function is often used for pausing .queue_rq() by driver when 2358 * there isn't enough resource or some conditions aren't satisfied, and 2359 * BLK_STS_RESOURCE is usually returned. 2360 * 2361 * We do not guarantee that dispatch can be drained or blocked 2362 * after blk_mq_stop_hw_queues() returns. Please use 2363 * blk_mq_quiesce_queue() for that requirement. 2364 */ 2365 void blk_mq_stop_hw_queues(struct request_queue *q) 2366 { 2367 struct blk_mq_hw_ctx *hctx; 2368 unsigned long i; 2369 2370 queue_for_each_hw_ctx(q, hctx, i) 2371 blk_mq_stop_hw_queue(hctx); 2372 } 2373 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2374 2375 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2376 { 2377 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2378 2379 blk_mq_run_hw_queue(hctx, false); 2380 } 2381 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2382 2383 void blk_mq_start_hw_queues(struct request_queue *q) 2384 { 2385 struct blk_mq_hw_ctx *hctx; 2386 unsigned long i; 2387 2388 queue_for_each_hw_ctx(q, hctx, i) 2389 blk_mq_start_hw_queue(hctx); 2390 } 2391 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2392 2393 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2394 { 2395 if (!blk_mq_hctx_stopped(hctx)) 2396 return; 2397 2398 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2399 blk_mq_run_hw_queue(hctx, async); 2400 } 2401 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2402 2403 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2404 { 2405 struct blk_mq_hw_ctx *hctx; 2406 unsigned long i; 2407 2408 queue_for_each_hw_ctx(q, hctx, i) 2409 blk_mq_start_stopped_hw_queue(hctx, async); 2410 } 2411 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2412 2413 static void blk_mq_run_work_fn(struct work_struct *work) 2414 { 2415 struct blk_mq_hw_ctx *hctx = 2416 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2417 2418 blk_mq_run_dispatch_ops(hctx->queue, 2419 blk_mq_sched_dispatch_requests(hctx)); 2420 } 2421 2422 /** 2423 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2424 * @rq: Pointer to request to be inserted. 2425 * @flags: BLK_MQ_INSERT_* 2426 * 2427 * Should only be used carefully, when the caller knows we want to 2428 * bypass a potential IO scheduler on the target device. 2429 */ 2430 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2431 { 2432 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2433 2434 spin_lock(&hctx->lock); 2435 if (flags & BLK_MQ_INSERT_AT_HEAD) 2436 list_add(&rq->queuelist, &hctx->dispatch); 2437 else 2438 list_add_tail(&rq->queuelist, &hctx->dispatch); 2439 spin_unlock(&hctx->lock); 2440 } 2441 2442 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2443 struct blk_mq_ctx *ctx, struct list_head *list, 2444 bool run_queue_async) 2445 { 2446 struct request *rq; 2447 enum hctx_type type = hctx->type; 2448 2449 /* 2450 * Try to issue requests directly if the hw queue isn't busy to save an 2451 * extra enqueue & dequeue to the sw queue. 2452 */ 2453 if (!hctx->dispatch_busy && !run_queue_async) { 2454 blk_mq_run_dispatch_ops(hctx->queue, 2455 blk_mq_try_issue_list_directly(hctx, list)); 2456 if (list_empty(list)) 2457 goto out; 2458 } 2459 2460 /* 2461 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2462 * offline now 2463 */ 2464 list_for_each_entry(rq, list, queuelist) { 2465 BUG_ON(rq->mq_ctx != ctx); 2466 trace_block_rq_insert(rq); 2467 } 2468 2469 spin_lock(&ctx->lock); 2470 list_splice_tail_init(list, &ctx->rq_lists[type]); 2471 blk_mq_hctx_mark_pending(hctx, ctx); 2472 spin_unlock(&ctx->lock); 2473 out: 2474 blk_mq_run_hw_queue(hctx, run_queue_async); 2475 } 2476 2477 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2478 { 2479 struct request_queue *q = rq->q; 2480 struct blk_mq_ctx *ctx = rq->mq_ctx; 2481 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2482 2483 if (blk_rq_is_passthrough(rq)) { 2484 /* 2485 * Passthrough request have to be added to hctx->dispatch 2486 * directly. The device may be in a situation where it can't 2487 * handle FS request, and always returns BLK_STS_RESOURCE for 2488 * them, which gets them added to hctx->dispatch. 2489 * 2490 * If a passthrough request is required to unblock the queues, 2491 * and it is added to the scheduler queue, there is no chance to 2492 * dispatch it given we prioritize requests in hctx->dispatch. 2493 */ 2494 blk_mq_request_bypass_insert(rq, flags); 2495 } else if (req_op(rq) == REQ_OP_FLUSH) { 2496 /* 2497 * Firstly normal IO request is inserted to scheduler queue or 2498 * sw queue, meantime we add flush request to dispatch queue( 2499 * hctx->dispatch) directly and there is at most one in-flight 2500 * flush request for each hw queue, so it doesn't matter to add 2501 * flush request to tail or front of the dispatch queue. 2502 * 2503 * Secondly in case of NCQ, flush request belongs to non-NCQ 2504 * command, and queueing it will fail when there is any 2505 * in-flight normal IO request(NCQ command). When adding flush 2506 * rq to the front of hctx->dispatch, it is easier to introduce 2507 * extra time to flush rq's latency because of S_SCHED_RESTART 2508 * compared with adding to the tail of dispatch queue, then 2509 * chance of flush merge is increased, and less flush requests 2510 * will be issued to controller. It is observed that ~10% time 2511 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2512 * drive when adding flush rq to the front of hctx->dispatch. 2513 * 2514 * Simply queue flush rq to the front of hctx->dispatch so that 2515 * intensive flush workloads can benefit in case of NCQ HW. 2516 */ 2517 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2518 } else if (q->elevator) { 2519 LIST_HEAD(list); 2520 2521 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2522 2523 list_add(&rq->queuelist, &list); 2524 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2525 } else { 2526 trace_block_rq_insert(rq); 2527 2528 spin_lock(&ctx->lock); 2529 if (flags & BLK_MQ_INSERT_AT_HEAD) 2530 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2531 else 2532 list_add_tail(&rq->queuelist, 2533 &ctx->rq_lists[hctx->type]); 2534 blk_mq_hctx_mark_pending(hctx, ctx); 2535 spin_unlock(&ctx->lock); 2536 } 2537 } 2538 2539 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2540 unsigned int nr_segs) 2541 { 2542 int err; 2543 2544 if (bio->bi_opf & REQ_RAHEAD) 2545 rq->cmd_flags |= REQ_FAILFAST_MASK; 2546 2547 rq->__sector = bio->bi_iter.bi_sector; 2548 blk_rq_bio_prep(rq, bio, nr_segs); 2549 2550 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2551 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2552 WARN_ON_ONCE(err); 2553 2554 blk_account_io_start(rq); 2555 } 2556 2557 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2558 struct request *rq, bool last) 2559 { 2560 struct request_queue *q = rq->q; 2561 struct blk_mq_queue_data bd = { 2562 .rq = rq, 2563 .last = last, 2564 }; 2565 blk_status_t ret; 2566 2567 /* 2568 * For OK queue, we are done. For error, caller may kill it. 2569 * Any other error (busy), just add it to our list as we 2570 * previously would have done. 2571 */ 2572 ret = q->mq_ops->queue_rq(hctx, &bd); 2573 switch (ret) { 2574 case BLK_STS_OK: 2575 blk_mq_update_dispatch_busy(hctx, false); 2576 break; 2577 case BLK_STS_RESOURCE: 2578 case BLK_STS_DEV_RESOURCE: 2579 blk_mq_update_dispatch_busy(hctx, true); 2580 __blk_mq_requeue_request(rq); 2581 break; 2582 default: 2583 blk_mq_update_dispatch_busy(hctx, false); 2584 break; 2585 } 2586 2587 return ret; 2588 } 2589 2590 static bool blk_mq_get_budget_and_tag(struct request *rq) 2591 { 2592 int budget_token; 2593 2594 budget_token = blk_mq_get_dispatch_budget(rq->q); 2595 if (budget_token < 0) 2596 return false; 2597 blk_mq_set_rq_budget_token(rq, budget_token); 2598 if (!blk_mq_get_driver_tag(rq)) { 2599 blk_mq_put_dispatch_budget(rq->q, budget_token); 2600 return false; 2601 } 2602 return true; 2603 } 2604 2605 /** 2606 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2607 * @hctx: Pointer of the associated hardware queue. 2608 * @rq: Pointer to request to be sent. 2609 * 2610 * If the device has enough resources to accept a new request now, send the 2611 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2612 * we can try send it another time in the future. Requests inserted at this 2613 * queue have higher priority. 2614 */ 2615 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2616 struct request *rq) 2617 { 2618 blk_status_t ret; 2619 2620 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2621 blk_mq_insert_request(rq, 0); 2622 return; 2623 } 2624 2625 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2626 blk_mq_insert_request(rq, 0); 2627 blk_mq_run_hw_queue(hctx, false); 2628 return; 2629 } 2630 2631 ret = __blk_mq_issue_directly(hctx, rq, true); 2632 switch (ret) { 2633 case BLK_STS_OK: 2634 break; 2635 case BLK_STS_RESOURCE: 2636 case BLK_STS_DEV_RESOURCE: 2637 blk_mq_request_bypass_insert(rq, 0); 2638 blk_mq_run_hw_queue(hctx, false); 2639 break; 2640 default: 2641 blk_mq_end_request(rq, ret); 2642 break; 2643 } 2644 } 2645 2646 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2647 { 2648 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2649 2650 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2651 blk_mq_insert_request(rq, 0); 2652 return BLK_STS_OK; 2653 } 2654 2655 if (!blk_mq_get_budget_and_tag(rq)) 2656 return BLK_STS_RESOURCE; 2657 return __blk_mq_issue_directly(hctx, rq, last); 2658 } 2659 2660 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2661 { 2662 struct blk_mq_hw_ctx *hctx = NULL; 2663 struct request *rq; 2664 int queued = 0; 2665 blk_status_t ret = BLK_STS_OK; 2666 2667 while ((rq = rq_list_pop(&plug->mq_list))) { 2668 bool last = rq_list_empty(plug->mq_list); 2669 2670 if (hctx != rq->mq_hctx) { 2671 if (hctx) { 2672 blk_mq_commit_rqs(hctx, queued, false); 2673 queued = 0; 2674 } 2675 hctx = rq->mq_hctx; 2676 } 2677 2678 ret = blk_mq_request_issue_directly(rq, last); 2679 switch (ret) { 2680 case BLK_STS_OK: 2681 queued++; 2682 break; 2683 case BLK_STS_RESOURCE: 2684 case BLK_STS_DEV_RESOURCE: 2685 blk_mq_request_bypass_insert(rq, 0); 2686 blk_mq_run_hw_queue(hctx, false); 2687 goto out; 2688 default: 2689 blk_mq_end_request(rq, ret); 2690 break; 2691 } 2692 } 2693 2694 out: 2695 if (ret != BLK_STS_OK) 2696 blk_mq_commit_rqs(hctx, queued, false); 2697 } 2698 2699 static void __blk_mq_flush_plug_list(struct request_queue *q, 2700 struct blk_plug *plug) 2701 { 2702 if (blk_queue_quiesced(q)) 2703 return; 2704 q->mq_ops->queue_rqs(&plug->mq_list); 2705 } 2706 2707 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2708 { 2709 struct blk_mq_hw_ctx *this_hctx = NULL; 2710 struct blk_mq_ctx *this_ctx = NULL; 2711 struct request *requeue_list = NULL; 2712 struct request **requeue_lastp = &requeue_list; 2713 unsigned int depth = 0; 2714 bool is_passthrough = false; 2715 LIST_HEAD(list); 2716 2717 do { 2718 struct request *rq = rq_list_pop(&plug->mq_list); 2719 2720 if (!this_hctx) { 2721 this_hctx = rq->mq_hctx; 2722 this_ctx = rq->mq_ctx; 2723 is_passthrough = blk_rq_is_passthrough(rq); 2724 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2725 is_passthrough != blk_rq_is_passthrough(rq)) { 2726 rq_list_add_tail(&requeue_lastp, rq); 2727 continue; 2728 } 2729 list_add(&rq->queuelist, &list); 2730 depth++; 2731 } while (!rq_list_empty(plug->mq_list)); 2732 2733 plug->mq_list = requeue_list; 2734 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2735 2736 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2737 /* passthrough requests should never be issued to the I/O scheduler */ 2738 if (is_passthrough) { 2739 spin_lock(&this_hctx->lock); 2740 list_splice_tail_init(&list, &this_hctx->dispatch); 2741 spin_unlock(&this_hctx->lock); 2742 blk_mq_run_hw_queue(this_hctx, from_sched); 2743 } else if (this_hctx->queue->elevator) { 2744 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2745 &list, 0); 2746 blk_mq_run_hw_queue(this_hctx, from_sched); 2747 } else { 2748 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2749 } 2750 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2751 } 2752 2753 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2754 { 2755 struct request *rq; 2756 2757 if (rq_list_empty(plug->mq_list)) 2758 return; 2759 plug->rq_count = 0; 2760 2761 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2762 struct request_queue *q; 2763 2764 rq = rq_list_peek(&plug->mq_list); 2765 q = rq->q; 2766 2767 /* 2768 * Peek first request and see if we have a ->queue_rqs() hook. 2769 * If we do, we can dispatch the whole plug list in one go. We 2770 * already know at this point that all requests belong to the 2771 * same queue, caller must ensure that's the case. 2772 * 2773 * Since we pass off the full list to the driver at this point, 2774 * we do not increment the active request count for the queue. 2775 * Bypass shared tags for now because of that. 2776 */ 2777 if (q->mq_ops->queue_rqs && 2778 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2779 blk_mq_run_dispatch_ops(q, 2780 __blk_mq_flush_plug_list(q, plug)); 2781 if (rq_list_empty(plug->mq_list)) 2782 return; 2783 } 2784 2785 blk_mq_run_dispatch_ops(q, 2786 blk_mq_plug_issue_direct(plug)); 2787 if (rq_list_empty(plug->mq_list)) 2788 return; 2789 } 2790 2791 do { 2792 blk_mq_dispatch_plug_list(plug, from_schedule); 2793 } while (!rq_list_empty(plug->mq_list)); 2794 } 2795 2796 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2797 struct list_head *list) 2798 { 2799 int queued = 0; 2800 blk_status_t ret = BLK_STS_OK; 2801 2802 while (!list_empty(list)) { 2803 struct request *rq = list_first_entry(list, struct request, 2804 queuelist); 2805 2806 list_del_init(&rq->queuelist); 2807 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2808 switch (ret) { 2809 case BLK_STS_OK: 2810 queued++; 2811 break; 2812 case BLK_STS_RESOURCE: 2813 case BLK_STS_DEV_RESOURCE: 2814 blk_mq_request_bypass_insert(rq, 0); 2815 if (list_empty(list)) 2816 blk_mq_run_hw_queue(hctx, false); 2817 goto out; 2818 default: 2819 blk_mq_end_request(rq, ret); 2820 break; 2821 } 2822 } 2823 2824 out: 2825 if (ret != BLK_STS_OK) 2826 blk_mq_commit_rqs(hctx, queued, false); 2827 } 2828 2829 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2830 struct bio *bio, unsigned int nr_segs) 2831 { 2832 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2833 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2834 return true; 2835 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2836 return true; 2837 } 2838 return false; 2839 } 2840 2841 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2842 struct blk_plug *plug, 2843 struct bio *bio, 2844 unsigned int nsegs) 2845 { 2846 struct blk_mq_alloc_data data = { 2847 .q = q, 2848 .nr_tags = 1, 2849 .cmd_flags = bio->bi_opf, 2850 }; 2851 struct request *rq; 2852 2853 if (unlikely(bio_queue_enter(bio))) 2854 return NULL; 2855 2856 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2857 goto queue_exit; 2858 2859 rq_qos_throttle(q, bio); 2860 2861 if (plug) { 2862 data.nr_tags = plug->nr_ios; 2863 plug->nr_ios = 1; 2864 data.cached_rq = &plug->cached_rq; 2865 } 2866 2867 rq = __blk_mq_alloc_requests(&data); 2868 if (rq) 2869 return rq; 2870 rq_qos_cleanup(q, bio); 2871 if (bio->bi_opf & REQ_NOWAIT) 2872 bio_wouldblock_error(bio); 2873 queue_exit: 2874 blk_queue_exit(q); 2875 return NULL; 2876 } 2877 2878 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2879 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2880 { 2881 struct request *rq; 2882 enum hctx_type type, hctx_type; 2883 2884 if (!plug) 2885 return NULL; 2886 rq = rq_list_peek(&plug->cached_rq); 2887 if (!rq || rq->q != q) 2888 return NULL; 2889 2890 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2891 *bio = NULL; 2892 return NULL; 2893 } 2894 2895 type = blk_mq_get_hctx_type((*bio)->bi_opf); 2896 hctx_type = rq->mq_hctx->type; 2897 if (type != hctx_type && 2898 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2899 return NULL; 2900 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2901 return NULL; 2902 2903 /* 2904 * If any qos ->throttle() end up blocking, we will have flushed the 2905 * plug and hence killed the cached_rq list as well. Pop this entry 2906 * before we throttle. 2907 */ 2908 plug->cached_rq = rq_list_next(rq); 2909 rq_qos_throttle(q, *bio); 2910 2911 blk_mq_rq_time_init(rq, 0); 2912 rq->cmd_flags = (*bio)->bi_opf; 2913 INIT_LIST_HEAD(&rq->queuelist); 2914 return rq; 2915 } 2916 2917 static void bio_set_ioprio(struct bio *bio) 2918 { 2919 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2920 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2921 bio->bi_ioprio = get_current_ioprio(); 2922 blkcg_set_ioprio(bio); 2923 } 2924 2925 /** 2926 * blk_mq_submit_bio - Create and send a request to block device. 2927 * @bio: Bio pointer. 2928 * 2929 * Builds up a request structure from @q and @bio and send to the device. The 2930 * request may not be queued directly to hardware if: 2931 * * This request can be merged with another one 2932 * * We want to place request at plug queue for possible future merging 2933 * * There is an IO scheduler active at this queue 2934 * 2935 * It will not queue the request if there is an error with the bio, or at the 2936 * request creation. 2937 */ 2938 void blk_mq_submit_bio(struct bio *bio) 2939 { 2940 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2941 struct blk_plug *plug = blk_mq_plug(bio); 2942 const int is_sync = op_is_sync(bio->bi_opf); 2943 struct blk_mq_hw_ctx *hctx; 2944 struct request *rq; 2945 unsigned int nr_segs = 1; 2946 blk_status_t ret; 2947 2948 bio = blk_queue_bounce(bio, q); 2949 if (bio_may_exceed_limits(bio, &q->limits)) { 2950 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2951 if (!bio) 2952 return; 2953 } 2954 2955 if (!bio_integrity_prep(bio)) 2956 return; 2957 2958 bio_set_ioprio(bio); 2959 2960 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2961 if (!rq) { 2962 if (!bio) 2963 return; 2964 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2965 if (unlikely(!rq)) 2966 return; 2967 } 2968 2969 trace_block_getrq(bio); 2970 2971 rq_qos_track(q, rq, bio); 2972 2973 blk_mq_bio_to_request(rq, bio, nr_segs); 2974 2975 ret = blk_crypto_rq_get_keyslot(rq); 2976 if (ret != BLK_STS_OK) { 2977 bio->bi_status = ret; 2978 bio_endio(bio); 2979 blk_mq_free_request(rq); 2980 return; 2981 } 2982 2983 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 2984 return; 2985 2986 if (plug) { 2987 blk_add_rq_to_plug(plug, rq); 2988 return; 2989 } 2990 2991 hctx = rq->mq_hctx; 2992 if ((rq->rq_flags & RQF_USE_SCHED) || 2993 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 2994 blk_mq_insert_request(rq, 0); 2995 blk_mq_run_hw_queue(hctx, true); 2996 } else { 2997 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 2998 } 2999 } 3000 3001 #ifdef CONFIG_BLK_MQ_STACKING 3002 /** 3003 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3004 * @rq: the request being queued 3005 */ 3006 blk_status_t blk_insert_cloned_request(struct request *rq) 3007 { 3008 struct request_queue *q = rq->q; 3009 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3010 unsigned int max_segments = blk_rq_get_max_segments(rq); 3011 blk_status_t ret; 3012 3013 if (blk_rq_sectors(rq) > max_sectors) { 3014 /* 3015 * SCSI device does not have a good way to return if 3016 * Write Same/Zero is actually supported. If a device rejects 3017 * a non-read/write command (discard, write same,etc.) the 3018 * low-level device driver will set the relevant queue limit to 3019 * 0 to prevent blk-lib from issuing more of the offending 3020 * operations. Commands queued prior to the queue limit being 3021 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3022 * errors being propagated to upper layers. 3023 */ 3024 if (max_sectors == 0) 3025 return BLK_STS_NOTSUPP; 3026 3027 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3028 __func__, blk_rq_sectors(rq), max_sectors); 3029 return BLK_STS_IOERR; 3030 } 3031 3032 /* 3033 * The queue settings related to segment counting may differ from the 3034 * original queue. 3035 */ 3036 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3037 if (rq->nr_phys_segments > max_segments) { 3038 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3039 __func__, rq->nr_phys_segments, max_segments); 3040 return BLK_STS_IOERR; 3041 } 3042 3043 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3044 return BLK_STS_IOERR; 3045 3046 ret = blk_crypto_rq_get_keyslot(rq); 3047 if (ret != BLK_STS_OK) 3048 return ret; 3049 3050 blk_account_io_start(rq); 3051 3052 /* 3053 * Since we have a scheduler attached on the top device, 3054 * bypass a potential scheduler on the bottom device for 3055 * insert. 3056 */ 3057 blk_mq_run_dispatch_ops(q, 3058 ret = blk_mq_request_issue_directly(rq, true)); 3059 if (ret) 3060 blk_account_io_done(rq, ktime_get_ns()); 3061 return ret; 3062 } 3063 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3064 3065 /** 3066 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3067 * @rq: the clone request to be cleaned up 3068 * 3069 * Description: 3070 * Free all bios in @rq for a cloned request. 3071 */ 3072 void blk_rq_unprep_clone(struct request *rq) 3073 { 3074 struct bio *bio; 3075 3076 while ((bio = rq->bio) != NULL) { 3077 rq->bio = bio->bi_next; 3078 3079 bio_put(bio); 3080 } 3081 } 3082 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3083 3084 /** 3085 * blk_rq_prep_clone - Helper function to setup clone request 3086 * @rq: the request to be setup 3087 * @rq_src: original request to be cloned 3088 * @bs: bio_set that bios for clone are allocated from 3089 * @gfp_mask: memory allocation mask for bio 3090 * @bio_ctr: setup function to be called for each clone bio. 3091 * Returns %0 for success, non %0 for failure. 3092 * @data: private data to be passed to @bio_ctr 3093 * 3094 * Description: 3095 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3096 * Also, pages which the original bios are pointing to are not copied 3097 * and the cloned bios just point same pages. 3098 * So cloned bios must be completed before original bios, which means 3099 * the caller must complete @rq before @rq_src. 3100 */ 3101 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3102 struct bio_set *bs, gfp_t gfp_mask, 3103 int (*bio_ctr)(struct bio *, struct bio *, void *), 3104 void *data) 3105 { 3106 struct bio *bio, *bio_src; 3107 3108 if (!bs) 3109 bs = &fs_bio_set; 3110 3111 __rq_for_each_bio(bio_src, rq_src) { 3112 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3113 bs); 3114 if (!bio) 3115 goto free_and_out; 3116 3117 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3118 goto free_and_out; 3119 3120 if (rq->bio) { 3121 rq->biotail->bi_next = bio; 3122 rq->biotail = bio; 3123 } else { 3124 rq->bio = rq->biotail = bio; 3125 } 3126 bio = NULL; 3127 } 3128 3129 /* Copy attributes of the original request to the clone request. */ 3130 rq->__sector = blk_rq_pos(rq_src); 3131 rq->__data_len = blk_rq_bytes(rq_src); 3132 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3133 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3134 rq->special_vec = rq_src->special_vec; 3135 } 3136 rq->nr_phys_segments = rq_src->nr_phys_segments; 3137 rq->ioprio = rq_src->ioprio; 3138 3139 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3140 goto free_and_out; 3141 3142 return 0; 3143 3144 free_and_out: 3145 if (bio) 3146 bio_put(bio); 3147 blk_rq_unprep_clone(rq); 3148 3149 return -ENOMEM; 3150 } 3151 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3152 #endif /* CONFIG_BLK_MQ_STACKING */ 3153 3154 /* 3155 * Steal bios from a request and add them to a bio list. 3156 * The request must not have been partially completed before. 3157 */ 3158 void blk_steal_bios(struct bio_list *list, struct request *rq) 3159 { 3160 if (rq->bio) { 3161 if (list->tail) 3162 list->tail->bi_next = rq->bio; 3163 else 3164 list->head = rq->bio; 3165 list->tail = rq->biotail; 3166 3167 rq->bio = NULL; 3168 rq->biotail = NULL; 3169 } 3170 3171 rq->__data_len = 0; 3172 } 3173 EXPORT_SYMBOL_GPL(blk_steal_bios); 3174 3175 static size_t order_to_size(unsigned int order) 3176 { 3177 return (size_t)PAGE_SIZE << order; 3178 } 3179 3180 /* called before freeing request pool in @tags */ 3181 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3182 struct blk_mq_tags *tags) 3183 { 3184 struct page *page; 3185 unsigned long flags; 3186 3187 /* 3188 * There is no need to clear mapping if driver tags is not initialized 3189 * or the mapping belongs to the driver tags. 3190 */ 3191 if (!drv_tags || drv_tags == tags) 3192 return; 3193 3194 list_for_each_entry(page, &tags->page_list, lru) { 3195 unsigned long start = (unsigned long)page_address(page); 3196 unsigned long end = start + order_to_size(page->private); 3197 int i; 3198 3199 for (i = 0; i < drv_tags->nr_tags; i++) { 3200 struct request *rq = drv_tags->rqs[i]; 3201 unsigned long rq_addr = (unsigned long)rq; 3202 3203 if (rq_addr >= start && rq_addr < end) { 3204 WARN_ON_ONCE(req_ref_read(rq) != 0); 3205 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3206 } 3207 } 3208 } 3209 3210 /* 3211 * Wait until all pending iteration is done. 3212 * 3213 * Request reference is cleared and it is guaranteed to be observed 3214 * after the ->lock is released. 3215 */ 3216 spin_lock_irqsave(&drv_tags->lock, flags); 3217 spin_unlock_irqrestore(&drv_tags->lock, flags); 3218 } 3219 3220 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3221 unsigned int hctx_idx) 3222 { 3223 struct blk_mq_tags *drv_tags; 3224 struct page *page; 3225 3226 if (list_empty(&tags->page_list)) 3227 return; 3228 3229 if (blk_mq_is_shared_tags(set->flags)) 3230 drv_tags = set->shared_tags; 3231 else 3232 drv_tags = set->tags[hctx_idx]; 3233 3234 if (tags->static_rqs && set->ops->exit_request) { 3235 int i; 3236 3237 for (i = 0; i < tags->nr_tags; i++) { 3238 struct request *rq = tags->static_rqs[i]; 3239 3240 if (!rq) 3241 continue; 3242 set->ops->exit_request(set, rq, hctx_idx); 3243 tags->static_rqs[i] = NULL; 3244 } 3245 } 3246 3247 blk_mq_clear_rq_mapping(drv_tags, tags); 3248 3249 while (!list_empty(&tags->page_list)) { 3250 page = list_first_entry(&tags->page_list, struct page, lru); 3251 list_del_init(&page->lru); 3252 /* 3253 * Remove kmemleak object previously allocated in 3254 * blk_mq_alloc_rqs(). 3255 */ 3256 kmemleak_free(page_address(page)); 3257 __free_pages(page, page->private); 3258 } 3259 } 3260 3261 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3262 { 3263 kfree(tags->rqs); 3264 tags->rqs = NULL; 3265 kfree(tags->static_rqs); 3266 tags->static_rqs = NULL; 3267 3268 blk_mq_free_tags(tags); 3269 } 3270 3271 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3272 unsigned int hctx_idx) 3273 { 3274 int i; 3275 3276 for (i = 0; i < set->nr_maps; i++) { 3277 unsigned int start = set->map[i].queue_offset; 3278 unsigned int end = start + set->map[i].nr_queues; 3279 3280 if (hctx_idx >= start && hctx_idx < end) 3281 break; 3282 } 3283 3284 if (i >= set->nr_maps) 3285 i = HCTX_TYPE_DEFAULT; 3286 3287 return i; 3288 } 3289 3290 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3291 unsigned int hctx_idx) 3292 { 3293 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3294 3295 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3296 } 3297 3298 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3299 unsigned int hctx_idx, 3300 unsigned int nr_tags, 3301 unsigned int reserved_tags) 3302 { 3303 int node = blk_mq_get_hctx_node(set, hctx_idx); 3304 struct blk_mq_tags *tags; 3305 3306 if (node == NUMA_NO_NODE) 3307 node = set->numa_node; 3308 3309 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3310 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3311 if (!tags) 3312 return NULL; 3313 3314 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3315 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3316 node); 3317 if (!tags->rqs) 3318 goto err_free_tags; 3319 3320 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3321 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3322 node); 3323 if (!tags->static_rqs) 3324 goto err_free_rqs; 3325 3326 return tags; 3327 3328 err_free_rqs: 3329 kfree(tags->rqs); 3330 err_free_tags: 3331 blk_mq_free_tags(tags); 3332 return NULL; 3333 } 3334 3335 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3336 unsigned int hctx_idx, int node) 3337 { 3338 int ret; 3339 3340 if (set->ops->init_request) { 3341 ret = set->ops->init_request(set, rq, hctx_idx, node); 3342 if (ret) 3343 return ret; 3344 } 3345 3346 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3347 return 0; 3348 } 3349 3350 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3351 struct blk_mq_tags *tags, 3352 unsigned int hctx_idx, unsigned int depth) 3353 { 3354 unsigned int i, j, entries_per_page, max_order = 4; 3355 int node = blk_mq_get_hctx_node(set, hctx_idx); 3356 size_t rq_size, left; 3357 3358 if (node == NUMA_NO_NODE) 3359 node = set->numa_node; 3360 3361 INIT_LIST_HEAD(&tags->page_list); 3362 3363 /* 3364 * rq_size is the size of the request plus driver payload, rounded 3365 * to the cacheline size 3366 */ 3367 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3368 cache_line_size()); 3369 left = rq_size * depth; 3370 3371 for (i = 0; i < depth; ) { 3372 int this_order = max_order; 3373 struct page *page; 3374 int to_do; 3375 void *p; 3376 3377 while (this_order && left < order_to_size(this_order - 1)) 3378 this_order--; 3379 3380 do { 3381 page = alloc_pages_node(node, 3382 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3383 this_order); 3384 if (page) 3385 break; 3386 if (!this_order--) 3387 break; 3388 if (order_to_size(this_order) < rq_size) 3389 break; 3390 } while (1); 3391 3392 if (!page) 3393 goto fail; 3394 3395 page->private = this_order; 3396 list_add_tail(&page->lru, &tags->page_list); 3397 3398 p = page_address(page); 3399 /* 3400 * Allow kmemleak to scan these pages as they contain pointers 3401 * to additional allocations like via ops->init_request(). 3402 */ 3403 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3404 entries_per_page = order_to_size(this_order) / rq_size; 3405 to_do = min(entries_per_page, depth - i); 3406 left -= to_do * rq_size; 3407 for (j = 0; j < to_do; j++) { 3408 struct request *rq = p; 3409 3410 tags->static_rqs[i] = rq; 3411 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3412 tags->static_rqs[i] = NULL; 3413 goto fail; 3414 } 3415 3416 p += rq_size; 3417 i++; 3418 } 3419 } 3420 return 0; 3421 3422 fail: 3423 blk_mq_free_rqs(set, tags, hctx_idx); 3424 return -ENOMEM; 3425 } 3426 3427 struct rq_iter_data { 3428 struct blk_mq_hw_ctx *hctx; 3429 bool has_rq; 3430 }; 3431 3432 static bool blk_mq_has_request(struct request *rq, void *data) 3433 { 3434 struct rq_iter_data *iter_data = data; 3435 3436 if (rq->mq_hctx != iter_data->hctx) 3437 return true; 3438 iter_data->has_rq = true; 3439 return false; 3440 } 3441 3442 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3443 { 3444 struct blk_mq_tags *tags = hctx->sched_tags ? 3445 hctx->sched_tags : hctx->tags; 3446 struct rq_iter_data data = { 3447 .hctx = hctx, 3448 }; 3449 3450 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3451 return data.has_rq; 3452 } 3453 3454 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3455 struct blk_mq_hw_ctx *hctx) 3456 { 3457 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3458 return false; 3459 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3460 return false; 3461 return true; 3462 } 3463 3464 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3465 { 3466 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3467 struct blk_mq_hw_ctx, cpuhp_online); 3468 3469 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3470 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3471 return 0; 3472 3473 /* 3474 * Prevent new request from being allocated on the current hctx. 3475 * 3476 * The smp_mb__after_atomic() Pairs with the implied barrier in 3477 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3478 * seen once we return from the tag allocator. 3479 */ 3480 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3481 smp_mb__after_atomic(); 3482 3483 /* 3484 * Try to grab a reference to the queue and wait for any outstanding 3485 * requests. If we could not grab a reference the queue has been 3486 * frozen and there are no requests. 3487 */ 3488 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3489 while (blk_mq_hctx_has_requests(hctx)) 3490 msleep(5); 3491 percpu_ref_put(&hctx->queue->q_usage_counter); 3492 } 3493 3494 return 0; 3495 } 3496 3497 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3498 { 3499 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3500 struct blk_mq_hw_ctx, cpuhp_online); 3501 3502 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3503 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3504 return 0; 3505 } 3506 3507 /* 3508 * 'cpu' is going away. splice any existing rq_list entries from this 3509 * software queue to the hw queue dispatch list, and ensure that it 3510 * gets run. 3511 */ 3512 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3513 { 3514 struct blk_mq_hw_ctx *hctx; 3515 struct blk_mq_ctx *ctx; 3516 LIST_HEAD(tmp); 3517 enum hctx_type type; 3518 3519 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3520 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3521 return 0; 3522 3523 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3524 type = hctx->type; 3525 3526 spin_lock(&ctx->lock); 3527 if (!list_empty(&ctx->rq_lists[type])) { 3528 list_splice_init(&ctx->rq_lists[type], &tmp); 3529 blk_mq_hctx_clear_pending(hctx, ctx); 3530 } 3531 spin_unlock(&ctx->lock); 3532 3533 if (list_empty(&tmp)) 3534 return 0; 3535 3536 spin_lock(&hctx->lock); 3537 list_splice_tail_init(&tmp, &hctx->dispatch); 3538 spin_unlock(&hctx->lock); 3539 3540 blk_mq_run_hw_queue(hctx, true); 3541 return 0; 3542 } 3543 3544 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3545 { 3546 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3547 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3548 &hctx->cpuhp_online); 3549 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3550 &hctx->cpuhp_dead); 3551 } 3552 3553 /* 3554 * Before freeing hw queue, clearing the flush request reference in 3555 * tags->rqs[] for avoiding potential UAF. 3556 */ 3557 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3558 unsigned int queue_depth, struct request *flush_rq) 3559 { 3560 int i; 3561 unsigned long flags; 3562 3563 /* The hw queue may not be mapped yet */ 3564 if (!tags) 3565 return; 3566 3567 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3568 3569 for (i = 0; i < queue_depth; i++) 3570 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3571 3572 /* 3573 * Wait until all pending iteration is done. 3574 * 3575 * Request reference is cleared and it is guaranteed to be observed 3576 * after the ->lock is released. 3577 */ 3578 spin_lock_irqsave(&tags->lock, flags); 3579 spin_unlock_irqrestore(&tags->lock, flags); 3580 } 3581 3582 /* hctx->ctxs will be freed in queue's release handler */ 3583 static void blk_mq_exit_hctx(struct request_queue *q, 3584 struct blk_mq_tag_set *set, 3585 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3586 { 3587 struct request *flush_rq = hctx->fq->flush_rq; 3588 3589 if (blk_mq_hw_queue_mapped(hctx)) 3590 blk_mq_tag_idle(hctx); 3591 3592 if (blk_queue_init_done(q)) 3593 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3594 set->queue_depth, flush_rq); 3595 if (set->ops->exit_request) 3596 set->ops->exit_request(set, flush_rq, hctx_idx); 3597 3598 if (set->ops->exit_hctx) 3599 set->ops->exit_hctx(hctx, hctx_idx); 3600 3601 blk_mq_remove_cpuhp(hctx); 3602 3603 xa_erase(&q->hctx_table, hctx_idx); 3604 3605 spin_lock(&q->unused_hctx_lock); 3606 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3607 spin_unlock(&q->unused_hctx_lock); 3608 } 3609 3610 static void blk_mq_exit_hw_queues(struct request_queue *q, 3611 struct blk_mq_tag_set *set, int nr_queue) 3612 { 3613 struct blk_mq_hw_ctx *hctx; 3614 unsigned long i; 3615 3616 queue_for_each_hw_ctx(q, hctx, i) { 3617 if (i == nr_queue) 3618 break; 3619 blk_mq_exit_hctx(q, set, hctx, i); 3620 } 3621 } 3622 3623 static int blk_mq_init_hctx(struct request_queue *q, 3624 struct blk_mq_tag_set *set, 3625 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3626 { 3627 hctx->queue_num = hctx_idx; 3628 3629 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3630 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3631 &hctx->cpuhp_online); 3632 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3633 3634 hctx->tags = set->tags[hctx_idx]; 3635 3636 if (set->ops->init_hctx && 3637 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3638 goto unregister_cpu_notifier; 3639 3640 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3641 hctx->numa_node)) 3642 goto exit_hctx; 3643 3644 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3645 goto exit_flush_rq; 3646 3647 return 0; 3648 3649 exit_flush_rq: 3650 if (set->ops->exit_request) 3651 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3652 exit_hctx: 3653 if (set->ops->exit_hctx) 3654 set->ops->exit_hctx(hctx, hctx_idx); 3655 unregister_cpu_notifier: 3656 blk_mq_remove_cpuhp(hctx); 3657 return -1; 3658 } 3659 3660 static struct blk_mq_hw_ctx * 3661 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3662 int node) 3663 { 3664 struct blk_mq_hw_ctx *hctx; 3665 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3666 3667 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3668 if (!hctx) 3669 goto fail_alloc_hctx; 3670 3671 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3672 goto free_hctx; 3673 3674 atomic_set(&hctx->nr_active, 0); 3675 if (node == NUMA_NO_NODE) 3676 node = set->numa_node; 3677 hctx->numa_node = node; 3678 3679 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3680 spin_lock_init(&hctx->lock); 3681 INIT_LIST_HEAD(&hctx->dispatch); 3682 hctx->queue = q; 3683 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3684 3685 INIT_LIST_HEAD(&hctx->hctx_list); 3686 3687 /* 3688 * Allocate space for all possible cpus to avoid allocation at 3689 * runtime 3690 */ 3691 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3692 gfp, node); 3693 if (!hctx->ctxs) 3694 goto free_cpumask; 3695 3696 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3697 gfp, node, false, false)) 3698 goto free_ctxs; 3699 hctx->nr_ctx = 0; 3700 3701 spin_lock_init(&hctx->dispatch_wait_lock); 3702 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3703 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3704 3705 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3706 if (!hctx->fq) 3707 goto free_bitmap; 3708 3709 blk_mq_hctx_kobj_init(hctx); 3710 3711 return hctx; 3712 3713 free_bitmap: 3714 sbitmap_free(&hctx->ctx_map); 3715 free_ctxs: 3716 kfree(hctx->ctxs); 3717 free_cpumask: 3718 free_cpumask_var(hctx->cpumask); 3719 free_hctx: 3720 kfree(hctx); 3721 fail_alloc_hctx: 3722 return NULL; 3723 } 3724 3725 static void blk_mq_init_cpu_queues(struct request_queue *q, 3726 unsigned int nr_hw_queues) 3727 { 3728 struct blk_mq_tag_set *set = q->tag_set; 3729 unsigned int i, j; 3730 3731 for_each_possible_cpu(i) { 3732 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3733 struct blk_mq_hw_ctx *hctx; 3734 int k; 3735 3736 __ctx->cpu = i; 3737 spin_lock_init(&__ctx->lock); 3738 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3739 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3740 3741 __ctx->queue = q; 3742 3743 /* 3744 * Set local node, IFF we have more than one hw queue. If 3745 * not, we remain on the home node of the device 3746 */ 3747 for (j = 0; j < set->nr_maps; j++) { 3748 hctx = blk_mq_map_queue_type(q, j, i); 3749 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3750 hctx->numa_node = cpu_to_node(i); 3751 } 3752 } 3753 } 3754 3755 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3756 unsigned int hctx_idx, 3757 unsigned int depth) 3758 { 3759 struct blk_mq_tags *tags; 3760 int ret; 3761 3762 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3763 if (!tags) 3764 return NULL; 3765 3766 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3767 if (ret) { 3768 blk_mq_free_rq_map(tags); 3769 return NULL; 3770 } 3771 3772 return tags; 3773 } 3774 3775 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3776 int hctx_idx) 3777 { 3778 if (blk_mq_is_shared_tags(set->flags)) { 3779 set->tags[hctx_idx] = set->shared_tags; 3780 3781 return true; 3782 } 3783 3784 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3785 set->queue_depth); 3786 3787 return set->tags[hctx_idx]; 3788 } 3789 3790 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3791 struct blk_mq_tags *tags, 3792 unsigned int hctx_idx) 3793 { 3794 if (tags) { 3795 blk_mq_free_rqs(set, tags, hctx_idx); 3796 blk_mq_free_rq_map(tags); 3797 } 3798 } 3799 3800 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3801 unsigned int hctx_idx) 3802 { 3803 if (!blk_mq_is_shared_tags(set->flags)) 3804 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3805 3806 set->tags[hctx_idx] = NULL; 3807 } 3808 3809 static void blk_mq_map_swqueue(struct request_queue *q) 3810 { 3811 unsigned int j, hctx_idx; 3812 unsigned long i; 3813 struct blk_mq_hw_ctx *hctx; 3814 struct blk_mq_ctx *ctx; 3815 struct blk_mq_tag_set *set = q->tag_set; 3816 3817 queue_for_each_hw_ctx(q, hctx, i) { 3818 cpumask_clear(hctx->cpumask); 3819 hctx->nr_ctx = 0; 3820 hctx->dispatch_from = NULL; 3821 } 3822 3823 /* 3824 * Map software to hardware queues. 3825 * 3826 * If the cpu isn't present, the cpu is mapped to first hctx. 3827 */ 3828 for_each_possible_cpu(i) { 3829 3830 ctx = per_cpu_ptr(q->queue_ctx, i); 3831 for (j = 0; j < set->nr_maps; j++) { 3832 if (!set->map[j].nr_queues) { 3833 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3834 HCTX_TYPE_DEFAULT, i); 3835 continue; 3836 } 3837 hctx_idx = set->map[j].mq_map[i]; 3838 /* unmapped hw queue can be remapped after CPU topo changed */ 3839 if (!set->tags[hctx_idx] && 3840 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3841 /* 3842 * If tags initialization fail for some hctx, 3843 * that hctx won't be brought online. In this 3844 * case, remap the current ctx to hctx[0] which 3845 * is guaranteed to always have tags allocated 3846 */ 3847 set->map[j].mq_map[i] = 0; 3848 } 3849 3850 hctx = blk_mq_map_queue_type(q, j, i); 3851 ctx->hctxs[j] = hctx; 3852 /* 3853 * If the CPU is already set in the mask, then we've 3854 * mapped this one already. This can happen if 3855 * devices share queues across queue maps. 3856 */ 3857 if (cpumask_test_cpu(i, hctx->cpumask)) 3858 continue; 3859 3860 cpumask_set_cpu(i, hctx->cpumask); 3861 hctx->type = j; 3862 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3863 hctx->ctxs[hctx->nr_ctx++] = ctx; 3864 3865 /* 3866 * If the nr_ctx type overflows, we have exceeded the 3867 * amount of sw queues we can support. 3868 */ 3869 BUG_ON(!hctx->nr_ctx); 3870 } 3871 3872 for (; j < HCTX_MAX_TYPES; j++) 3873 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3874 HCTX_TYPE_DEFAULT, i); 3875 } 3876 3877 queue_for_each_hw_ctx(q, hctx, i) { 3878 /* 3879 * If no software queues are mapped to this hardware queue, 3880 * disable it and free the request entries. 3881 */ 3882 if (!hctx->nr_ctx) { 3883 /* Never unmap queue 0. We need it as a 3884 * fallback in case of a new remap fails 3885 * allocation 3886 */ 3887 if (i) 3888 __blk_mq_free_map_and_rqs(set, i); 3889 3890 hctx->tags = NULL; 3891 continue; 3892 } 3893 3894 hctx->tags = set->tags[i]; 3895 WARN_ON(!hctx->tags); 3896 3897 /* 3898 * Set the map size to the number of mapped software queues. 3899 * This is more accurate and more efficient than looping 3900 * over all possibly mapped software queues. 3901 */ 3902 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3903 3904 /* 3905 * Initialize batch roundrobin counts 3906 */ 3907 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3908 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3909 } 3910 } 3911 3912 /* 3913 * Caller needs to ensure that we're either frozen/quiesced, or that 3914 * the queue isn't live yet. 3915 */ 3916 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3917 { 3918 struct blk_mq_hw_ctx *hctx; 3919 unsigned long i; 3920 3921 queue_for_each_hw_ctx(q, hctx, i) { 3922 if (shared) { 3923 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3924 } else { 3925 blk_mq_tag_idle(hctx); 3926 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3927 } 3928 } 3929 } 3930 3931 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3932 bool shared) 3933 { 3934 struct request_queue *q; 3935 3936 lockdep_assert_held(&set->tag_list_lock); 3937 3938 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3939 blk_mq_freeze_queue(q); 3940 queue_set_hctx_shared(q, shared); 3941 blk_mq_unfreeze_queue(q); 3942 } 3943 } 3944 3945 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3946 { 3947 struct blk_mq_tag_set *set = q->tag_set; 3948 3949 mutex_lock(&set->tag_list_lock); 3950 list_del(&q->tag_set_list); 3951 if (list_is_singular(&set->tag_list)) { 3952 /* just transitioned to unshared */ 3953 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3954 /* update existing queue */ 3955 blk_mq_update_tag_set_shared(set, false); 3956 } 3957 mutex_unlock(&set->tag_list_lock); 3958 INIT_LIST_HEAD(&q->tag_set_list); 3959 } 3960 3961 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3962 struct request_queue *q) 3963 { 3964 mutex_lock(&set->tag_list_lock); 3965 3966 /* 3967 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3968 */ 3969 if (!list_empty(&set->tag_list) && 3970 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3971 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3972 /* update existing queue */ 3973 blk_mq_update_tag_set_shared(set, true); 3974 } 3975 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3976 queue_set_hctx_shared(q, true); 3977 list_add_tail(&q->tag_set_list, &set->tag_list); 3978 3979 mutex_unlock(&set->tag_list_lock); 3980 } 3981 3982 /* All allocations will be freed in release handler of q->mq_kobj */ 3983 static int blk_mq_alloc_ctxs(struct request_queue *q) 3984 { 3985 struct blk_mq_ctxs *ctxs; 3986 int cpu; 3987 3988 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3989 if (!ctxs) 3990 return -ENOMEM; 3991 3992 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3993 if (!ctxs->queue_ctx) 3994 goto fail; 3995 3996 for_each_possible_cpu(cpu) { 3997 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3998 ctx->ctxs = ctxs; 3999 } 4000 4001 q->mq_kobj = &ctxs->kobj; 4002 q->queue_ctx = ctxs->queue_ctx; 4003 4004 return 0; 4005 fail: 4006 kfree(ctxs); 4007 return -ENOMEM; 4008 } 4009 4010 /* 4011 * It is the actual release handler for mq, but we do it from 4012 * request queue's release handler for avoiding use-after-free 4013 * and headache because q->mq_kobj shouldn't have been introduced, 4014 * but we can't group ctx/kctx kobj without it. 4015 */ 4016 void blk_mq_release(struct request_queue *q) 4017 { 4018 struct blk_mq_hw_ctx *hctx, *next; 4019 unsigned long i; 4020 4021 queue_for_each_hw_ctx(q, hctx, i) 4022 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4023 4024 /* all hctx are in .unused_hctx_list now */ 4025 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4026 list_del_init(&hctx->hctx_list); 4027 kobject_put(&hctx->kobj); 4028 } 4029 4030 xa_destroy(&q->hctx_table); 4031 4032 /* 4033 * release .mq_kobj and sw queue's kobject now because 4034 * both share lifetime with request queue. 4035 */ 4036 blk_mq_sysfs_deinit(q); 4037 } 4038 4039 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4040 void *queuedata) 4041 { 4042 struct request_queue *q; 4043 int ret; 4044 4045 q = blk_alloc_queue(set->numa_node); 4046 if (!q) 4047 return ERR_PTR(-ENOMEM); 4048 q->queuedata = queuedata; 4049 ret = blk_mq_init_allocated_queue(set, q); 4050 if (ret) { 4051 blk_put_queue(q); 4052 return ERR_PTR(ret); 4053 } 4054 return q; 4055 } 4056 4057 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4058 { 4059 return blk_mq_init_queue_data(set, NULL); 4060 } 4061 EXPORT_SYMBOL(blk_mq_init_queue); 4062 4063 /** 4064 * blk_mq_destroy_queue - shutdown a request queue 4065 * @q: request queue to shutdown 4066 * 4067 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4068 * requests will be failed with -ENODEV. The caller is responsible for dropping 4069 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4070 * 4071 * Context: can sleep 4072 */ 4073 void blk_mq_destroy_queue(struct request_queue *q) 4074 { 4075 WARN_ON_ONCE(!queue_is_mq(q)); 4076 WARN_ON_ONCE(blk_queue_registered(q)); 4077 4078 might_sleep(); 4079 4080 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4081 blk_queue_start_drain(q); 4082 blk_mq_freeze_queue_wait(q); 4083 4084 blk_sync_queue(q); 4085 blk_mq_cancel_work_sync(q); 4086 blk_mq_exit_queue(q); 4087 } 4088 EXPORT_SYMBOL(blk_mq_destroy_queue); 4089 4090 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4091 struct lock_class_key *lkclass) 4092 { 4093 struct request_queue *q; 4094 struct gendisk *disk; 4095 4096 q = blk_mq_init_queue_data(set, queuedata); 4097 if (IS_ERR(q)) 4098 return ERR_CAST(q); 4099 4100 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4101 if (!disk) { 4102 blk_mq_destroy_queue(q); 4103 blk_put_queue(q); 4104 return ERR_PTR(-ENOMEM); 4105 } 4106 set_bit(GD_OWNS_QUEUE, &disk->state); 4107 return disk; 4108 } 4109 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4110 4111 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4112 struct lock_class_key *lkclass) 4113 { 4114 struct gendisk *disk; 4115 4116 if (!blk_get_queue(q)) 4117 return NULL; 4118 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4119 if (!disk) 4120 blk_put_queue(q); 4121 return disk; 4122 } 4123 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4124 4125 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4126 struct blk_mq_tag_set *set, struct request_queue *q, 4127 int hctx_idx, int node) 4128 { 4129 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4130 4131 /* reuse dead hctx first */ 4132 spin_lock(&q->unused_hctx_lock); 4133 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4134 if (tmp->numa_node == node) { 4135 hctx = tmp; 4136 break; 4137 } 4138 } 4139 if (hctx) 4140 list_del_init(&hctx->hctx_list); 4141 spin_unlock(&q->unused_hctx_lock); 4142 4143 if (!hctx) 4144 hctx = blk_mq_alloc_hctx(q, set, node); 4145 if (!hctx) 4146 goto fail; 4147 4148 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4149 goto free_hctx; 4150 4151 return hctx; 4152 4153 free_hctx: 4154 kobject_put(&hctx->kobj); 4155 fail: 4156 return NULL; 4157 } 4158 4159 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4160 struct request_queue *q) 4161 { 4162 struct blk_mq_hw_ctx *hctx; 4163 unsigned long i, j; 4164 4165 /* protect against switching io scheduler */ 4166 mutex_lock(&q->sysfs_lock); 4167 for (i = 0; i < set->nr_hw_queues; i++) { 4168 int old_node; 4169 int node = blk_mq_get_hctx_node(set, i); 4170 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4171 4172 if (old_hctx) { 4173 old_node = old_hctx->numa_node; 4174 blk_mq_exit_hctx(q, set, old_hctx, i); 4175 } 4176 4177 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4178 if (!old_hctx) 4179 break; 4180 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4181 node, old_node); 4182 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4183 WARN_ON_ONCE(!hctx); 4184 } 4185 } 4186 /* 4187 * Increasing nr_hw_queues fails. Free the newly allocated 4188 * hctxs and keep the previous q->nr_hw_queues. 4189 */ 4190 if (i != set->nr_hw_queues) { 4191 j = q->nr_hw_queues; 4192 } else { 4193 j = i; 4194 q->nr_hw_queues = set->nr_hw_queues; 4195 } 4196 4197 xa_for_each_start(&q->hctx_table, j, hctx, j) 4198 blk_mq_exit_hctx(q, set, hctx, j); 4199 mutex_unlock(&q->sysfs_lock); 4200 } 4201 4202 static void blk_mq_update_poll_flag(struct request_queue *q) 4203 { 4204 struct blk_mq_tag_set *set = q->tag_set; 4205 4206 if (set->nr_maps > HCTX_TYPE_POLL && 4207 set->map[HCTX_TYPE_POLL].nr_queues) 4208 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4209 else 4210 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4211 } 4212 4213 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4214 struct request_queue *q) 4215 { 4216 /* mark the queue as mq asap */ 4217 q->mq_ops = set->ops; 4218 4219 if (blk_mq_alloc_ctxs(q)) 4220 goto err_exit; 4221 4222 /* init q->mq_kobj and sw queues' kobjects */ 4223 blk_mq_sysfs_init(q); 4224 4225 INIT_LIST_HEAD(&q->unused_hctx_list); 4226 spin_lock_init(&q->unused_hctx_lock); 4227 4228 xa_init(&q->hctx_table); 4229 4230 blk_mq_realloc_hw_ctxs(set, q); 4231 if (!q->nr_hw_queues) 4232 goto err_hctxs; 4233 4234 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4235 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4236 4237 q->tag_set = set; 4238 4239 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4240 blk_mq_update_poll_flag(q); 4241 4242 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4243 INIT_LIST_HEAD(&q->flush_list); 4244 INIT_LIST_HEAD(&q->requeue_list); 4245 spin_lock_init(&q->requeue_lock); 4246 4247 q->nr_requests = set->queue_depth; 4248 4249 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4250 blk_mq_add_queue_tag_set(set, q); 4251 blk_mq_map_swqueue(q); 4252 return 0; 4253 4254 err_hctxs: 4255 blk_mq_release(q); 4256 err_exit: 4257 q->mq_ops = NULL; 4258 return -ENOMEM; 4259 } 4260 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4261 4262 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4263 void blk_mq_exit_queue(struct request_queue *q) 4264 { 4265 struct blk_mq_tag_set *set = q->tag_set; 4266 4267 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4268 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4269 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4270 blk_mq_del_queue_tag_set(q); 4271 } 4272 4273 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4274 { 4275 int i; 4276 4277 if (blk_mq_is_shared_tags(set->flags)) { 4278 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4279 BLK_MQ_NO_HCTX_IDX, 4280 set->queue_depth); 4281 if (!set->shared_tags) 4282 return -ENOMEM; 4283 } 4284 4285 for (i = 0; i < set->nr_hw_queues; i++) { 4286 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4287 goto out_unwind; 4288 cond_resched(); 4289 } 4290 4291 return 0; 4292 4293 out_unwind: 4294 while (--i >= 0) 4295 __blk_mq_free_map_and_rqs(set, i); 4296 4297 if (blk_mq_is_shared_tags(set->flags)) { 4298 blk_mq_free_map_and_rqs(set, set->shared_tags, 4299 BLK_MQ_NO_HCTX_IDX); 4300 } 4301 4302 return -ENOMEM; 4303 } 4304 4305 /* 4306 * Allocate the request maps associated with this tag_set. Note that this 4307 * may reduce the depth asked for, if memory is tight. set->queue_depth 4308 * will be updated to reflect the allocated depth. 4309 */ 4310 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4311 { 4312 unsigned int depth; 4313 int err; 4314 4315 depth = set->queue_depth; 4316 do { 4317 err = __blk_mq_alloc_rq_maps(set); 4318 if (!err) 4319 break; 4320 4321 set->queue_depth >>= 1; 4322 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4323 err = -ENOMEM; 4324 break; 4325 } 4326 } while (set->queue_depth); 4327 4328 if (!set->queue_depth || err) { 4329 pr_err("blk-mq: failed to allocate request map\n"); 4330 return -ENOMEM; 4331 } 4332 4333 if (depth != set->queue_depth) 4334 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4335 depth, set->queue_depth); 4336 4337 return 0; 4338 } 4339 4340 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4341 { 4342 /* 4343 * blk_mq_map_queues() and multiple .map_queues() implementations 4344 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4345 * number of hardware queues. 4346 */ 4347 if (set->nr_maps == 1) 4348 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4349 4350 if (set->ops->map_queues && !is_kdump_kernel()) { 4351 int i; 4352 4353 /* 4354 * transport .map_queues is usually done in the following 4355 * way: 4356 * 4357 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4358 * mask = get_cpu_mask(queue) 4359 * for_each_cpu(cpu, mask) 4360 * set->map[x].mq_map[cpu] = queue; 4361 * } 4362 * 4363 * When we need to remap, the table has to be cleared for 4364 * killing stale mapping since one CPU may not be mapped 4365 * to any hw queue. 4366 */ 4367 for (i = 0; i < set->nr_maps; i++) 4368 blk_mq_clear_mq_map(&set->map[i]); 4369 4370 set->ops->map_queues(set); 4371 } else { 4372 BUG_ON(set->nr_maps > 1); 4373 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4374 } 4375 } 4376 4377 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4378 int new_nr_hw_queues) 4379 { 4380 struct blk_mq_tags **new_tags; 4381 4382 if (set->nr_hw_queues >= new_nr_hw_queues) 4383 goto done; 4384 4385 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4386 GFP_KERNEL, set->numa_node); 4387 if (!new_tags) 4388 return -ENOMEM; 4389 4390 if (set->tags) 4391 memcpy(new_tags, set->tags, set->nr_hw_queues * 4392 sizeof(*set->tags)); 4393 kfree(set->tags); 4394 set->tags = new_tags; 4395 done: 4396 set->nr_hw_queues = new_nr_hw_queues; 4397 return 0; 4398 } 4399 4400 /* 4401 * Alloc a tag set to be associated with one or more request queues. 4402 * May fail with EINVAL for various error conditions. May adjust the 4403 * requested depth down, if it's too large. In that case, the set 4404 * value will be stored in set->queue_depth. 4405 */ 4406 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4407 { 4408 int i, ret; 4409 4410 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4411 4412 if (!set->nr_hw_queues) 4413 return -EINVAL; 4414 if (!set->queue_depth) 4415 return -EINVAL; 4416 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4417 return -EINVAL; 4418 4419 if (!set->ops->queue_rq) 4420 return -EINVAL; 4421 4422 if (!set->ops->get_budget ^ !set->ops->put_budget) 4423 return -EINVAL; 4424 4425 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4426 pr_info("blk-mq: reduced tag depth to %u\n", 4427 BLK_MQ_MAX_DEPTH); 4428 set->queue_depth = BLK_MQ_MAX_DEPTH; 4429 } 4430 4431 if (!set->nr_maps) 4432 set->nr_maps = 1; 4433 else if (set->nr_maps > HCTX_MAX_TYPES) 4434 return -EINVAL; 4435 4436 /* 4437 * If a crashdump is active, then we are potentially in a very 4438 * memory constrained environment. Limit us to 1 queue and 4439 * 64 tags to prevent using too much memory. 4440 */ 4441 if (is_kdump_kernel()) { 4442 set->nr_hw_queues = 1; 4443 set->nr_maps = 1; 4444 set->queue_depth = min(64U, set->queue_depth); 4445 } 4446 /* 4447 * There is no use for more h/w queues than cpus if we just have 4448 * a single map 4449 */ 4450 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4451 set->nr_hw_queues = nr_cpu_ids; 4452 4453 if (set->flags & BLK_MQ_F_BLOCKING) { 4454 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4455 if (!set->srcu) 4456 return -ENOMEM; 4457 ret = init_srcu_struct(set->srcu); 4458 if (ret) 4459 goto out_free_srcu; 4460 } 4461 4462 ret = -ENOMEM; 4463 set->tags = kcalloc_node(set->nr_hw_queues, 4464 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4465 set->numa_node); 4466 if (!set->tags) 4467 goto out_cleanup_srcu; 4468 4469 for (i = 0; i < set->nr_maps; i++) { 4470 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4471 sizeof(set->map[i].mq_map[0]), 4472 GFP_KERNEL, set->numa_node); 4473 if (!set->map[i].mq_map) 4474 goto out_free_mq_map; 4475 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4476 } 4477 4478 blk_mq_update_queue_map(set); 4479 4480 ret = blk_mq_alloc_set_map_and_rqs(set); 4481 if (ret) 4482 goto out_free_mq_map; 4483 4484 mutex_init(&set->tag_list_lock); 4485 INIT_LIST_HEAD(&set->tag_list); 4486 4487 return 0; 4488 4489 out_free_mq_map: 4490 for (i = 0; i < set->nr_maps; i++) { 4491 kfree(set->map[i].mq_map); 4492 set->map[i].mq_map = NULL; 4493 } 4494 kfree(set->tags); 4495 set->tags = NULL; 4496 out_cleanup_srcu: 4497 if (set->flags & BLK_MQ_F_BLOCKING) 4498 cleanup_srcu_struct(set->srcu); 4499 out_free_srcu: 4500 if (set->flags & BLK_MQ_F_BLOCKING) 4501 kfree(set->srcu); 4502 return ret; 4503 } 4504 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4505 4506 /* allocate and initialize a tagset for a simple single-queue device */ 4507 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4508 const struct blk_mq_ops *ops, unsigned int queue_depth, 4509 unsigned int set_flags) 4510 { 4511 memset(set, 0, sizeof(*set)); 4512 set->ops = ops; 4513 set->nr_hw_queues = 1; 4514 set->nr_maps = 1; 4515 set->queue_depth = queue_depth; 4516 set->numa_node = NUMA_NO_NODE; 4517 set->flags = set_flags; 4518 return blk_mq_alloc_tag_set(set); 4519 } 4520 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4521 4522 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4523 { 4524 int i, j; 4525 4526 for (i = 0; i < set->nr_hw_queues; i++) 4527 __blk_mq_free_map_and_rqs(set, i); 4528 4529 if (blk_mq_is_shared_tags(set->flags)) { 4530 blk_mq_free_map_and_rqs(set, set->shared_tags, 4531 BLK_MQ_NO_HCTX_IDX); 4532 } 4533 4534 for (j = 0; j < set->nr_maps; j++) { 4535 kfree(set->map[j].mq_map); 4536 set->map[j].mq_map = NULL; 4537 } 4538 4539 kfree(set->tags); 4540 set->tags = NULL; 4541 if (set->flags & BLK_MQ_F_BLOCKING) { 4542 cleanup_srcu_struct(set->srcu); 4543 kfree(set->srcu); 4544 } 4545 } 4546 EXPORT_SYMBOL(blk_mq_free_tag_set); 4547 4548 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4549 { 4550 struct blk_mq_tag_set *set = q->tag_set; 4551 struct blk_mq_hw_ctx *hctx; 4552 int ret; 4553 unsigned long i; 4554 4555 if (!set) 4556 return -EINVAL; 4557 4558 if (q->nr_requests == nr) 4559 return 0; 4560 4561 blk_mq_freeze_queue(q); 4562 blk_mq_quiesce_queue(q); 4563 4564 ret = 0; 4565 queue_for_each_hw_ctx(q, hctx, i) { 4566 if (!hctx->tags) 4567 continue; 4568 /* 4569 * If we're using an MQ scheduler, just update the scheduler 4570 * queue depth. This is similar to what the old code would do. 4571 */ 4572 if (hctx->sched_tags) { 4573 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4574 nr, true); 4575 } else { 4576 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4577 false); 4578 } 4579 if (ret) 4580 break; 4581 if (q->elevator && q->elevator->type->ops.depth_updated) 4582 q->elevator->type->ops.depth_updated(hctx); 4583 } 4584 if (!ret) { 4585 q->nr_requests = nr; 4586 if (blk_mq_is_shared_tags(set->flags)) { 4587 if (q->elevator) 4588 blk_mq_tag_update_sched_shared_tags(q); 4589 else 4590 blk_mq_tag_resize_shared_tags(set, nr); 4591 } 4592 } 4593 4594 blk_mq_unquiesce_queue(q); 4595 blk_mq_unfreeze_queue(q); 4596 4597 return ret; 4598 } 4599 4600 /* 4601 * request_queue and elevator_type pair. 4602 * It is just used by __blk_mq_update_nr_hw_queues to cache 4603 * the elevator_type associated with a request_queue. 4604 */ 4605 struct blk_mq_qe_pair { 4606 struct list_head node; 4607 struct request_queue *q; 4608 struct elevator_type *type; 4609 }; 4610 4611 /* 4612 * Cache the elevator_type in qe pair list and switch the 4613 * io scheduler to 'none' 4614 */ 4615 static bool blk_mq_elv_switch_none(struct list_head *head, 4616 struct request_queue *q) 4617 { 4618 struct blk_mq_qe_pair *qe; 4619 4620 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4621 if (!qe) 4622 return false; 4623 4624 /* q->elevator needs protection from ->sysfs_lock */ 4625 mutex_lock(&q->sysfs_lock); 4626 4627 /* the check has to be done with holding sysfs_lock */ 4628 if (!q->elevator) { 4629 kfree(qe); 4630 goto unlock; 4631 } 4632 4633 INIT_LIST_HEAD(&qe->node); 4634 qe->q = q; 4635 qe->type = q->elevator->type; 4636 /* keep a reference to the elevator module as we'll switch back */ 4637 __elevator_get(qe->type); 4638 list_add(&qe->node, head); 4639 elevator_disable(q); 4640 unlock: 4641 mutex_unlock(&q->sysfs_lock); 4642 4643 return true; 4644 } 4645 4646 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4647 struct request_queue *q) 4648 { 4649 struct blk_mq_qe_pair *qe; 4650 4651 list_for_each_entry(qe, head, node) 4652 if (qe->q == q) 4653 return qe; 4654 4655 return NULL; 4656 } 4657 4658 static void blk_mq_elv_switch_back(struct list_head *head, 4659 struct request_queue *q) 4660 { 4661 struct blk_mq_qe_pair *qe; 4662 struct elevator_type *t; 4663 4664 qe = blk_lookup_qe_pair(head, q); 4665 if (!qe) 4666 return; 4667 t = qe->type; 4668 list_del(&qe->node); 4669 kfree(qe); 4670 4671 mutex_lock(&q->sysfs_lock); 4672 elevator_switch(q, t); 4673 /* drop the reference acquired in blk_mq_elv_switch_none */ 4674 elevator_put(t); 4675 mutex_unlock(&q->sysfs_lock); 4676 } 4677 4678 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4679 int nr_hw_queues) 4680 { 4681 struct request_queue *q; 4682 LIST_HEAD(head); 4683 int prev_nr_hw_queues; 4684 4685 lockdep_assert_held(&set->tag_list_lock); 4686 4687 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4688 nr_hw_queues = nr_cpu_ids; 4689 if (nr_hw_queues < 1) 4690 return; 4691 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4692 return; 4693 4694 list_for_each_entry(q, &set->tag_list, tag_set_list) 4695 blk_mq_freeze_queue(q); 4696 /* 4697 * Switch IO scheduler to 'none', cleaning up the data associated 4698 * with the previous scheduler. We will switch back once we are done 4699 * updating the new sw to hw queue mappings. 4700 */ 4701 list_for_each_entry(q, &set->tag_list, tag_set_list) 4702 if (!blk_mq_elv_switch_none(&head, q)) 4703 goto switch_back; 4704 4705 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4706 blk_mq_debugfs_unregister_hctxs(q); 4707 blk_mq_sysfs_unregister_hctxs(q); 4708 } 4709 4710 prev_nr_hw_queues = set->nr_hw_queues; 4711 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4712 goto reregister; 4713 4714 fallback: 4715 blk_mq_update_queue_map(set); 4716 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4717 blk_mq_realloc_hw_ctxs(set, q); 4718 blk_mq_update_poll_flag(q); 4719 if (q->nr_hw_queues != set->nr_hw_queues) { 4720 int i = prev_nr_hw_queues; 4721 4722 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4723 nr_hw_queues, prev_nr_hw_queues); 4724 for (; i < set->nr_hw_queues; i++) 4725 __blk_mq_free_map_and_rqs(set, i); 4726 4727 set->nr_hw_queues = prev_nr_hw_queues; 4728 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4729 goto fallback; 4730 } 4731 blk_mq_map_swqueue(q); 4732 } 4733 4734 reregister: 4735 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4736 blk_mq_sysfs_register_hctxs(q); 4737 blk_mq_debugfs_register_hctxs(q); 4738 } 4739 4740 switch_back: 4741 list_for_each_entry(q, &set->tag_list, tag_set_list) 4742 blk_mq_elv_switch_back(&head, q); 4743 4744 list_for_each_entry(q, &set->tag_list, tag_set_list) 4745 blk_mq_unfreeze_queue(q); 4746 } 4747 4748 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4749 { 4750 mutex_lock(&set->tag_list_lock); 4751 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4752 mutex_unlock(&set->tag_list_lock); 4753 } 4754 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4755 4756 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4757 struct io_comp_batch *iob, unsigned int flags) 4758 { 4759 long state = get_current_state(); 4760 int ret; 4761 4762 do { 4763 ret = q->mq_ops->poll(hctx, iob); 4764 if (ret > 0) { 4765 __set_current_state(TASK_RUNNING); 4766 return ret; 4767 } 4768 4769 if (signal_pending_state(state, current)) 4770 __set_current_state(TASK_RUNNING); 4771 if (task_is_running(current)) 4772 return 1; 4773 4774 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4775 break; 4776 cpu_relax(); 4777 } while (!need_resched()); 4778 4779 __set_current_state(TASK_RUNNING); 4780 return 0; 4781 } 4782 4783 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4784 struct io_comp_batch *iob, unsigned int flags) 4785 { 4786 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4787 4788 return blk_hctx_poll(q, hctx, iob, flags); 4789 } 4790 4791 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4792 unsigned int poll_flags) 4793 { 4794 struct request_queue *q = rq->q; 4795 int ret; 4796 4797 if (!blk_rq_is_poll(rq)) 4798 return 0; 4799 if (!percpu_ref_tryget(&q->q_usage_counter)) 4800 return 0; 4801 4802 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4803 blk_queue_exit(q); 4804 4805 return ret; 4806 } 4807 EXPORT_SYMBOL_GPL(blk_rq_poll); 4808 4809 unsigned int blk_mq_rq_cpu(struct request *rq) 4810 { 4811 return rq->mq_ctx->cpu; 4812 } 4813 EXPORT_SYMBOL(blk_mq_rq_cpu); 4814 4815 void blk_mq_cancel_work_sync(struct request_queue *q) 4816 { 4817 struct blk_mq_hw_ctx *hctx; 4818 unsigned long i; 4819 4820 cancel_delayed_work_sync(&q->requeue_work); 4821 4822 queue_for_each_hw_ctx(q, hctx, i) 4823 cancel_delayed_work_sync(&hctx->run_work); 4824 } 4825 4826 static int __init blk_mq_init(void) 4827 { 4828 int i; 4829 4830 for_each_possible_cpu(i) 4831 init_llist_head(&per_cpu(blk_cpu_done, i)); 4832 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4833 4834 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4835 "block/softirq:dead", NULL, 4836 blk_softirq_cpu_dead); 4837 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4838 blk_mq_hctx_notify_dead); 4839 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4840 blk_mq_hctx_notify_online, 4841 blk_mq_hctx_notify_offline); 4842 return 0; 4843 } 4844 subsys_initcall(blk_mq_init); 4845