1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 #include <linux/crash_dump.h> 24 25 #include <trace/events/block.h> 26 27 #include <linux/blk-mq.h> 28 #include "blk.h" 29 #include "blk-mq.h" 30 #include "blk-mq-tag.h" 31 32 static DEFINE_MUTEX(all_q_mutex); 33 static LIST_HEAD(all_q_list); 34 35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 36 37 /* 38 * Check if any of the ctx's have pending work in this hardware queue 39 */ 40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 41 { 42 unsigned int i; 43 44 for (i = 0; i < hctx->ctx_map.size; i++) 45 if (hctx->ctx_map.map[i].word) 46 return true; 47 48 return false; 49 } 50 51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 52 struct blk_mq_ctx *ctx) 53 { 54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 55 } 56 57 #define CTX_TO_BIT(hctx, ctx) \ 58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 59 60 /* 61 * Mark this ctx as having pending work in this hardware queue 62 */ 63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 64 struct blk_mq_ctx *ctx) 65 { 66 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 67 68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 70 } 71 72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 73 struct blk_mq_ctx *ctx) 74 { 75 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 76 77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 78 } 79 80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp) 81 { 82 while (true) { 83 int ret; 84 85 if (percpu_ref_tryget_live(&q->mq_usage_counter)) 86 return 0; 87 88 if (!(gfp & __GFP_WAIT)) 89 return -EBUSY; 90 91 ret = wait_event_interruptible(q->mq_freeze_wq, 92 !atomic_read(&q->mq_freeze_depth) || 93 blk_queue_dying(q)); 94 if (blk_queue_dying(q)) 95 return -ENODEV; 96 if (ret) 97 return ret; 98 } 99 } 100 101 static void blk_mq_queue_exit(struct request_queue *q) 102 { 103 percpu_ref_put(&q->mq_usage_counter); 104 } 105 106 static void blk_mq_usage_counter_release(struct percpu_ref *ref) 107 { 108 struct request_queue *q = 109 container_of(ref, struct request_queue, mq_usage_counter); 110 111 wake_up_all(&q->mq_freeze_wq); 112 } 113 114 void blk_mq_freeze_queue_start(struct request_queue *q) 115 { 116 int freeze_depth; 117 118 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 119 if (freeze_depth == 1) { 120 percpu_ref_kill(&q->mq_usage_counter); 121 blk_mq_run_hw_queues(q, false); 122 } 123 } 124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 125 126 static void blk_mq_freeze_queue_wait(struct request_queue *q) 127 { 128 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); 129 } 130 131 /* 132 * Guarantee no request is in use, so we can change any data structure of 133 * the queue afterward. 134 */ 135 void blk_mq_freeze_queue(struct request_queue *q) 136 { 137 blk_mq_freeze_queue_start(q); 138 blk_mq_freeze_queue_wait(q); 139 } 140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 141 142 void blk_mq_unfreeze_queue(struct request_queue *q) 143 { 144 int freeze_depth; 145 146 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 147 WARN_ON_ONCE(freeze_depth < 0); 148 if (!freeze_depth) { 149 percpu_ref_reinit(&q->mq_usage_counter); 150 wake_up_all(&q->mq_freeze_wq); 151 } 152 } 153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 154 155 void blk_mq_wake_waiters(struct request_queue *q) 156 { 157 struct blk_mq_hw_ctx *hctx; 158 unsigned int i; 159 160 queue_for_each_hw_ctx(q, hctx, i) 161 if (blk_mq_hw_queue_mapped(hctx)) 162 blk_mq_tag_wakeup_all(hctx->tags, true); 163 164 /* 165 * If we are called because the queue has now been marked as 166 * dying, we need to ensure that processes currently waiting on 167 * the queue are notified as well. 168 */ 169 wake_up_all(&q->mq_freeze_wq); 170 } 171 172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 173 { 174 return blk_mq_has_free_tags(hctx->tags); 175 } 176 EXPORT_SYMBOL(blk_mq_can_queue); 177 178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 179 struct request *rq, unsigned int rw_flags) 180 { 181 if (blk_queue_io_stat(q)) 182 rw_flags |= REQ_IO_STAT; 183 184 INIT_LIST_HEAD(&rq->queuelist); 185 /* csd/requeue_work/fifo_time is initialized before use */ 186 rq->q = q; 187 rq->mq_ctx = ctx; 188 rq->cmd_flags |= rw_flags; 189 /* do not touch atomic flags, it needs atomic ops against the timer */ 190 rq->cpu = -1; 191 INIT_HLIST_NODE(&rq->hash); 192 RB_CLEAR_NODE(&rq->rb_node); 193 rq->rq_disk = NULL; 194 rq->part = NULL; 195 rq->start_time = jiffies; 196 #ifdef CONFIG_BLK_CGROUP 197 rq->rl = NULL; 198 set_start_time_ns(rq); 199 rq->io_start_time_ns = 0; 200 #endif 201 rq->nr_phys_segments = 0; 202 #if defined(CONFIG_BLK_DEV_INTEGRITY) 203 rq->nr_integrity_segments = 0; 204 #endif 205 rq->special = NULL; 206 /* tag was already set */ 207 rq->errors = 0; 208 209 rq->cmd = rq->__cmd; 210 211 rq->extra_len = 0; 212 rq->sense_len = 0; 213 rq->resid_len = 0; 214 rq->sense = NULL; 215 216 INIT_LIST_HEAD(&rq->timeout_list); 217 rq->timeout = 0; 218 219 rq->end_io = NULL; 220 rq->end_io_data = NULL; 221 rq->next_rq = NULL; 222 223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 224 } 225 226 static struct request * 227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 228 { 229 struct request *rq; 230 unsigned int tag; 231 232 tag = blk_mq_get_tag(data); 233 if (tag != BLK_MQ_TAG_FAIL) { 234 rq = data->hctx->tags->rqs[tag]; 235 236 if (blk_mq_tag_busy(data->hctx)) { 237 rq->cmd_flags = REQ_MQ_INFLIGHT; 238 atomic_inc(&data->hctx->nr_active); 239 } 240 241 rq->tag = tag; 242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 243 return rq; 244 } 245 246 return NULL; 247 } 248 249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 250 bool reserved) 251 { 252 struct blk_mq_ctx *ctx; 253 struct blk_mq_hw_ctx *hctx; 254 struct request *rq; 255 struct blk_mq_alloc_data alloc_data; 256 int ret; 257 258 ret = blk_mq_queue_enter(q, gfp); 259 if (ret) 260 return ERR_PTR(ret); 261 262 ctx = blk_mq_get_ctx(q); 263 hctx = q->mq_ops->map_queue(q, ctx->cpu); 264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 265 reserved, ctx, hctx); 266 267 rq = __blk_mq_alloc_request(&alloc_data, rw); 268 if (!rq && (gfp & __GFP_WAIT)) { 269 __blk_mq_run_hw_queue(hctx); 270 blk_mq_put_ctx(ctx); 271 272 ctx = blk_mq_get_ctx(q); 273 hctx = q->mq_ops->map_queue(q, ctx->cpu); 274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 275 hctx); 276 rq = __blk_mq_alloc_request(&alloc_data, rw); 277 ctx = alloc_data.ctx; 278 } 279 blk_mq_put_ctx(ctx); 280 if (!rq) { 281 blk_mq_queue_exit(q); 282 return ERR_PTR(-EWOULDBLOCK); 283 } 284 return rq; 285 } 286 EXPORT_SYMBOL(blk_mq_alloc_request); 287 288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 289 struct blk_mq_ctx *ctx, struct request *rq) 290 { 291 const int tag = rq->tag; 292 struct request_queue *q = rq->q; 293 294 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 295 atomic_dec(&hctx->nr_active); 296 rq->cmd_flags = 0; 297 298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 299 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 300 blk_mq_queue_exit(q); 301 } 302 303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 304 { 305 struct blk_mq_ctx *ctx = rq->mq_ctx; 306 307 ctx->rq_completed[rq_is_sync(rq)]++; 308 __blk_mq_free_request(hctx, ctx, rq); 309 310 } 311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 312 313 void blk_mq_free_request(struct request *rq) 314 { 315 struct blk_mq_hw_ctx *hctx; 316 struct request_queue *q = rq->q; 317 318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 319 blk_mq_free_hctx_request(hctx, rq); 320 } 321 EXPORT_SYMBOL_GPL(blk_mq_free_request); 322 323 inline void __blk_mq_end_request(struct request *rq, int error) 324 { 325 blk_account_io_done(rq); 326 327 if (rq->end_io) { 328 rq->end_io(rq, error); 329 } else { 330 if (unlikely(blk_bidi_rq(rq))) 331 blk_mq_free_request(rq->next_rq); 332 blk_mq_free_request(rq); 333 } 334 } 335 EXPORT_SYMBOL(__blk_mq_end_request); 336 337 void blk_mq_end_request(struct request *rq, int error) 338 { 339 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 340 BUG(); 341 __blk_mq_end_request(rq, error); 342 } 343 EXPORT_SYMBOL(blk_mq_end_request); 344 345 static void __blk_mq_complete_request_remote(void *data) 346 { 347 struct request *rq = data; 348 349 rq->q->softirq_done_fn(rq); 350 } 351 352 static void blk_mq_ipi_complete_request(struct request *rq) 353 { 354 struct blk_mq_ctx *ctx = rq->mq_ctx; 355 bool shared = false; 356 int cpu; 357 358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 359 rq->q->softirq_done_fn(rq); 360 return; 361 } 362 363 cpu = get_cpu(); 364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 365 shared = cpus_share_cache(cpu, ctx->cpu); 366 367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 368 rq->csd.func = __blk_mq_complete_request_remote; 369 rq->csd.info = rq; 370 rq->csd.flags = 0; 371 smp_call_function_single_async(ctx->cpu, &rq->csd); 372 } else { 373 rq->q->softirq_done_fn(rq); 374 } 375 put_cpu(); 376 } 377 378 void __blk_mq_complete_request(struct request *rq) 379 { 380 struct request_queue *q = rq->q; 381 382 if (!q->softirq_done_fn) 383 blk_mq_end_request(rq, rq->errors); 384 else 385 blk_mq_ipi_complete_request(rq); 386 } 387 388 /** 389 * blk_mq_complete_request - end I/O on a request 390 * @rq: the request being processed 391 * 392 * Description: 393 * Ends all I/O on a request. It does not handle partial completions. 394 * The actual completion happens out-of-order, through a IPI handler. 395 **/ 396 void blk_mq_complete_request(struct request *rq) 397 { 398 struct request_queue *q = rq->q; 399 400 if (unlikely(blk_should_fake_timeout(q))) 401 return; 402 if (!blk_mark_rq_complete(rq)) 403 __blk_mq_complete_request(rq); 404 } 405 EXPORT_SYMBOL(blk_mq_complete_request); 406 407 int blk_mq_request_started(struct request *rq) 408 { 409 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 410 } 411 EXPORT_SYMBOL_GPL(blk_mq_request_started); 412 413 void blk_mq_start_request(struct request *rq) 414 { 415 struct request_queue *q = rq->q; 416 417 trace_block_rq_issue(q, rq); 418 419 rq->resid_len = blk_rq_bytes(rq); 420 if (unlikely(blk_bidi_rq(rq))) 421 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 422 423 blk_add_timer(rq); 424 425 /* 426 * Ensure that ->deadline is visible before set the started 427 * flag and clear the completed flag. 428 */ 429 smp_mb__before_atomic(); 430 431 /* 432 * Mark us as started and clear complete. Complete might have been 433 * set if requeue raced with timeout, which then marked it as 434 * complete. So be sure to clear complete again when we start 435 * the request, otherwise we'll ignore the completion event. 436 */ 437 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 439 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 440 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 441 442 if (q->dma_drain_size && blk_rq_bytes(rq)) { 443 /* 444 * Make sure space for the drain appears. We know we can do 445 * this because max_hw_segments has been adjusted to be one 446 * fewer than the device can handle. 447 */ 448 rq->nr_phys_segments++; 449 } 450 } 451 EXPORT_SYMBOL(blk_mq_start_request); 452 453 static void __blk_mq_requeue_request(struct request *rq) 454 { 455 struct request_queue *q = rq->q; 456 457 trace_block_rq_requeue(q, rq); 458 459 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 460 if (q->dma_drain_size && blk_rq_bytes(rq)) 461 rq->nr_phys_segments--; 462 } 463 } 464 465 void blk_mq_requeue_request(struct request *rq) 466 { 467 __blk_mq_requeue_request(rq); 468 469 BUG_ON(blk_queued_rq(rq)); 470 blk_mq_add_to_requeue_list(rq, true); 471 } 472 EXPORT_SYMBOL(blk_mq_requeue_request); 473 474 static void blk_mq_requeue_work(struct work_struct *work) 475 { 476 struct request_queue *q = 477 container_of(work, struct request_queue, requeue_work); 478 LIST_HEAD(rq_list); 479 struct request *rq, *next; 480 unsigned long flags; 481 482 spin_lock_irqsave(&q->requeue_lock, flags); 483 list_splice_init(&q->requeue_list, &rq_list); 484 spin_unlock_irqrestore(&q->requeue_lock, flags); 485 486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 487 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 488 continue; 489 490 rq->cmd_flags &= ~REQ_SOFTBARRIER; 491 list_del_init(&rq->queuelist); 492 blk_mq_insert_request(rq, true, false, false); 493 } 494 495 while (!list_empty(&rq_list)) { 496 rq = list_entry(rq_list.next, struct request, queuelist); 497 list_del_init(&rq->queuelist); 498 blk_mq_insert_request(rq, false, false, false); 499 } 500 501 /* 502 * Use the start variant of queue running here, so that running 503 * the requeue work will kick stopped queues. 504 */ 505 blk_mq_start_hw_queues(q); 506 } 507 508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 509 { 510 struct request_queue *q = rq->q; 511 unsigned long flags; 512 513 /* 514 * We abuse this flag that is otherwise used by the I/O scheduler to 515 * request head insertation from the workqueue. 516 */ 517 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 518 519 spin_lock_irqsave(&q->requeue_lock, flags); 520 if (at_head) { 521 rq->cmd_flags |= REQ_SOFTBARRIER; 522 list_add(&rq->queuelist, &q->requeue_list); 523 } else { 524 list_add_tail(&rq->queuelist, &q->requeue_list); 525 } 526 spin_unlock_irqrestore(&q->requeue_lock, flags); 527 } 528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 529 530 void blk_mq_cancel_requeue_work(struct request_queue *q) 531 { 532 cancel_work_sync(&q->requeue_work); 533 } 534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work); 535 536 void blk_mq_kick_requeue_list(struct request_queue *q) 537 { 538 kblockd_schedule_work(&q->requeue_work); 539 } 540 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 541 542 void blk_mq_abort_requeue_list(struct request_queue *q) 543 { 544 unsigned long flags; 545 LIST_HEAD(rq_list); 546 547 spin_lock_irqsave(&q->requeue_lock, flags); 548 list_splice_init(&q->requeue_list, &rq_list); 549 spin_unlock_irqrestore(&q->requeue_lock, flags); 550 551 while (!list_empty(&rq_list)) { 552 struct request *rq; 553 554 rq = list_first_entry(&rq_list, struct request, queuelist); 555 list_del_init(&rq->queuelist); 556 rq->errors = -EIO; 557 blk_mq_end_request(rq, rq->errors); 558 } 559 } 560 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 561 562 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 563 { 564 return tags->rqs[tag]; 565 } 566 EXPORT_SYMBOL(blk_mq_tag_to_rq); 567 568 struct blk_mq_timeout_data { 569 unsigned long next; 570 unsigned int next_set; 571 }; 572 573 void blk_mq_rq_timed_out(struct request *req, bool reserved) 574 { 575 struct blk_mq_ops *ops = req->q->mq_ops; 576 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 577 578 /* 579 * We know that complete is set at this point. If STARTED isn't set 580 * anymore, then the request isn't active and the "timeout" should 581 * just be ignored. This can happen due to the bitflag ordering. 582 * Timeout first checks if STARTED is set, and if it is, assumes 583 * the request is active. But if we race with completion, then 584 * we both flags will get cleared. So check here again, and ignore 585 * a timeout event with a request that isn't active. 586 */ 587 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 588 return; 589 590 if (ops->timeout) 591 ret = ops->timeout(req, reserved); 592 593 switch (ret) { 594 case BLK_EH_HANDLED: 595 __blk_mq_complete_request(req); 596 break; 597 case BLK_EH_RESET_TIMER: 598 blk_add_timer(req); 599 blk_clear_rq_complete(req); 600 break; 601 case BLK_EH_NOT_HANDLED: 602 break; 603 default: 604 printk(KERN_ERR "block: bad eh return: %d\n", ret); 605 break; 606 } 607 } 608 609 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 610 struct request *rq, void *priv, bool reserved) 611 { 612 struct blk_mq_timeout_data *data = priv; 613 614 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 615 /* 616 * If a request wasn't started before the queue was 617 * marked dying, kill it here or it'll go unnoticed. 618 */ 619 if (unlikely(blk_queue_dying(rq->q))) { 620 rq->errors = -EIO; 621 blk_mq_complete_request(rq); 622 } 623 return; 624 } 625 if (rq->cmd_flags & REQ_NO_TIMEOUT) 626 return; 627 628 if (time_after_eq(jiffies, rq->deadline)) { 629 if (!blk_mark_rq_complete(rq)) 630 blk_mq_rq_timed_out(rq, reserved); 631 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 632 data->next = rq->deadline; 633 data->next_set = 1; 634 } 635 } 636 637 static void blk_mq_rq_timer(unsigned long priv) 638 { 639 struct request_queue *q = (struct request_queue *)priv; 640 struct blk_mq_timeout_data data = { 641 .next = 0, 642 .next_set = 0, 643 }; 644 struct blk_mq_hw_ctx *hctx; 645 int i; 646 647 queue_for_each_hw_ctx(q, hctx, i) { 648 /* 649 * If not software queues are currently mapped to this 650 * hardware queue, there's nothing to check 651 */ 652 if (!blk_mq_hw_queue_mapped(hctx)) 653 continue; 654 655 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data); 656 } 657 658 if (data.next_set) { 659 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 660 mod_timer(&q->timeout, data.next); 661 } else { 662 queue_for_each_hw_ctx(q, hctx, i) { 663 /* the hctx may be unmapped, so check it here */ 664 if (blk_mq_hw_queue_mapped(hctx)) 665 blk_mq_tag_idle(hctx); 666 } 667 } 668 } 669 670 /* 671 * Reverse check our software queue for entries that we could potentially 672 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 673 * too much time checking for merges. 674 */ 675 static bool blk_mq_attempt_merge(struct request_queue *q, 676 struct blk_mq_ctx *ctx, struct bio *bio) 677 { 678 struct request *rq; 679 int checked = 8; 680 681 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 682 int el_ret; 683 684 if (!checked--) 685 break; 686 687 if (!blk_rq_merge_ok(rq, bio)) 688 continue; 689 690 el_ret = blk_try_merge(rq, bio); 691 if (el_ret == ELEVATOR_BACK_MERGE) { 692 if (bio_attempt_back_merge(q, rq, bio)) { 693 ctx->rq_merged++; 694 return true; 695 } 696 break; 697 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 698 if (bio_attempt_front_merge(q, rq, bio)) { 699 ctx->rq_merged++; 700 return true; 701 } 702 break; 703 } 704 } 705 706 return false; 707 } 708 709 /* 710 * Process software queues that have been marked busy, splicing them 711 * to the for-dispatch 712 */ 713 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 714 { 715 struct blk_mq_ctx *ctx; 716 int i; 717 718 for (i = 0; i < hctx->ctx_map.size; i++) { 719 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 720 unsigned int off, bit; 721 722 if (!bm->word) 723 continue; 724 725 bit = 0; 726 off = i * hctx->ctx_map.bits_per_word; 727 do { 728 bit = find_next_bit(&bm->word, bm->depth, bit); 729 if (bit >= bm->depth) 730 break; 731 732 ctx = hctx->ctxs[bit + off]; 733 clear_bit(bit, &bm->word); 734 spin_lock(&ctx->lock); 735 list_splice_tail_init(&ctx->rq_list, list); 736 spin_unlock(&ctx->lock); 737 738 bit++; 739 } while (1); 740 } 741 } 742 743 /* 744 * Run this hardware queue, pulling any software queues mapped to it in. 745 * Note that this function currently has various problems around ordering 746 * of IO. In particular, we'd like FIFO behaviour on handling existing 747 * items on the hctx->dispatch list. Ignore that for now. 748 */ 749 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 750 { 751 struct request_queue *q = hctx->queue; 752 struct request *rq; 753 LIST_HEAD(rq_list); 754 LIST_HEAD(driver_list); 755 struct list_head *dptr; 756 int queued; 757 758 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 759 760 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 761 return; 762 763 hctx->run++; 764 765 /* 766 * Touch any software queue that has pending entries. 767 */ 768 flush_busy_ctxs(hctx, &rq_list); 769 770 /* 771 * If we have previous entries on our dispatch list, grab them 772 * and stuff them at the front for more fair dispatch. 773 */ 774 if (!list_empty_careful(&hctx->dispatch)) { 775 spin_lock(&hctx->lock); 776 if (!list_empty(&hctx->dispatch)) 777 list_splice_init(&hctx->dispatch, &rq_list); 778 spin_unlock(&hctx->lock); 779 } 780 781 /* 782 * Start off with dptr being NULL, so we start the first request 783 * immediately, even if we have more pending. 784 */ 785 dptr = NULL; 786 787 /* 788 * Now process all the entries, sending them to the driver. 789 */ 790 queued = 0; 791 while (!list_empty(&rq_list)) { 792 struct blk_mq_queue_data bd; 793 int ret; 794 795 rq = list_first_entry(&rq_list, struct request, queuelist); 796 list_del_init(&rq->queuelist); 797 798 bd.rq = rq; 799 bd.list = dptr; 800 bd.last = list_empty(&rq_list); 801 802 ret = q->mq_ops->queue_rq(hctx, &bd); 803 switch (ret) { 804 case BLK_MQ_RQ_QUEUE_OK: 805 queued++; 806 continue; 807 case BLK_MQ_RQ_QUEUE_BUSY: 808 list_add(&rq->queuelist, &rq_list); 809 __blk_mq_requeue_request(rq); 810 break; 811 default: 812 pr_err("blk-mq: bad return on queue: %d\n", ret); 813 case BLK_MQ_RQ_QUEUE_ERROR: 814 rq->errors = -EIO; 815 blk_mq_end_request(rq, rq->errors); 816 break; 817 } 818 819 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 820 break; 821 822 /* 823 * We've done the first request. If we have more than 1 824 * left in the list, set dptr to defer issue. 825 */ 826 if (!dptr && rq_list.next != rq_list.prev) 827 dptr = &driver_list; 828 } 829 830 if (!queued) 831 hctx->dispatched[0]++; 832 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 833 hctx->dispatched[ilog2(queued) + 1]++; 834 835 /* 836 * Any items that need requeuing? Stuff them into hctx->dispatch, 837 * that is where we will continue on next queue run. 838 */ 839 if (!list_empty(&rq_list)) { 840 spin_lock(&hctx->lock); 841 list_splice(&rq_list, &hctx->dispatch); 842 spin_unlock(&hctx->lock); 843 /* 844 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 845 * it's possible the queue is stopped and restarted again 846 * before this. Queue restart will dispatch requests. And since 847 * requests in rq_list aren't added into hctx->dispatch yet, 848 * the requests in rq_list might get lost. 849 * 850 * blk_mq_run_hw_queue() already checks the STOPPED bit 851 **/ 852 blk_mq_run_hw_queue(hctx, true); 853 } 854 } 855 856 /* 857 * It'd be great if the workqueue API had a way to pass 858 * in a mask and had some smarts for more clever placement. 859 * For now we just round-robin here, switching for every 860 * BLK_MQ_CPU_WORK_BATCH queued items. 861 */ 862 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 863 { 864 if (hctx->queue->nr_hw_queues == 1) 865 return WORK_CPU_UNBOUND; 866 867 if (--hctx->next_cpu_batch <= 0) { 868 int cpu = hctx->next_cpu, next_cpu; 869 870 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 871 if (next_cpu >= nr_cpu_ids) 872 next_cpu = cpumask_first(hctx->cpumask); 873 874 hctx->next_cpu = next_cpu; 875 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 876 877 return cpu; 878 } 879 880 return hctx->next_cpu; 881 } 882 883 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 884 { 885 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 886 !blk_mq_hw_queue_mapped(hctx))) 887 return; 888 889 if (!async) { 890 int cpu = get_cpu(); 891 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 892 __blk_mq_run_hw_queue(hctx); 893 put_cpu(); 894 return; 895 } 896 897 put_cpu(); 898 } 899 900 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 901 &hctx->run_work, 0); 902 } 903 904 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 905 { 906 struct blk_mq_hw_ctx *hctx; 907 int i; 908 909 queue_for_each_hw_ctx(q, hctx, i) { 910 if ((!blk_mq_hctx_has_pending(hctx) && 911 list_empty_careful(&hctx->dispatch)) || 912 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 913 continue; 914 915 blk_mq_run_hw_queue(hctx, async); 916 } 917 } 918 EXPORT_SYMBOL(blk_mq_run_hw_queues); 919 920 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 921 { 922 cancel_delayed_work(&hctx->run_work); 923 cancel_delayed_work(&hctx->delay_work); 924 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 925 } 926 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 927 928 void blk_mq_stop_hw_queues(struct request_queue *q) 929 { 930 struct blk_mq_hw_ctx *hctx; 931 int i; 932 933 queue_for_each_hw_ctx(q, hctx, i) 934 blk_mq_stop_hw_queue(hctx); 935 } 936 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 937 938 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 939 { 940 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 941 942 blk_mq_run_hw_queue(hctx, false); 943 } 944 EXPORT_SYMBOL(blk_mq_start_hw_queue); 945 946 void blk_mq_start_hw_queues(struct request_queue *q) 947 { 948 struct blk_mq_hw_ctx *hctx; 949 int i; 950 951 queue_for_each_hw_ctx(q, hctx, i) 952 blk_mq_start_hw_queue(hctx); 953 } 954 EXPORT_SYMBOL(blk_mq_start_hw_queues); 955 956 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 957 { 958 struct blk_mq_hw_ctx *hctx; 959 int i; 960 961 queue_for_each_hw_ctx(q, hctx, i) { 962 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 963 continue; 964 965 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 966 blk_mq_run_hw_queue(hctx, async); 967 } 968 } 969 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 970 971 static void blk_mq_run_work_fn(struct work_struct *work) 972 { 973 struct blk_mq_hw_ctx *hctx; 974 975 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 976 977 __blk_mq_run_hw_queue(hctx); 978 } 979 980 static void blk_mq_delay_work_fn(struct work_struct *work) 981 { 982 struct blk_mq_hw_ctx *hctx; 983 984 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 985 986 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 987 __blk_mq_run_hw_queue(hctx); 988 } 989 990 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 991 { 992 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 993 return; 994 995 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 996 &hctx->delay_work, msecs_to_jiffies(msecs)); 997 } 998 EXPORT_SYMBOL(blk_mq_delay_queue); 999 1000 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 1001 struct request *rq, bool at_head) 1002 { 1003 struct blk_mq_ctx *ctx = rq->mq_ctx; 1004 1005 trace_block_rq_insert(hctx->queue, rq); 1006 1007 if (at_head) 1008 list_add(&rq->queuelist, &ctx->rq_list); 1009 else 1010 list_add_tail(&rq->queuelist, &ctx->rq_list); 1011 1012 blk_mq_hctx_mark_pending(hctx, ctx); 1013 } 1014 1015 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 1016 bool async) 1017 { 1018 struct request_queue *q = rq->q; 1019 struct blk_mq_hw_ctx *hctx; 1020 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 1021 1022 current_ctx = blk_mq_get_ctx(q); 1023 if (!cpu_online(ctx->cpu)) 1024 rq->mq_ctx = ctx = current_ctx; 1025 1026 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1027 1028 spin_lock(&ctx->lock); 1029 __blk_mq_insert_request(hctx, rq, at_head); 1030 spin_unlock(&ctx->lock); 1031 1032 if (run_queue) 1033 blk_mq_run_hw_queue(hctx, async); 1034 1035 blk_mq_put_ctx(current_ctx); 1036 } 1037 1038 static void blk_mq_insert_requests(struct request_queue *q, 1039 struct blk_mq_ctx *ctx, 1040 struct list_head *list, 1041 int depth, 1042 bool from_schedule) 1043 1044 { 1045 struct blk_mq_hw_ctx *hctx; 1046 struct blk_mq_ctx *current_ctx; 1047 1048 trace_block_unplug(q, depth, !from_schedule); 1049 1050 current_ctx = blk_mq_get_ctx(q); 1051 1052 if (!cpu_online(ctx->cpu)) 1053 ctx = current_ctx; 1054 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1055 1056 /* 1057 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1058 * offline now 1059 */ 1060 spin_lock(&ctx->lock); 1061 while (!list_empty(list)) { 1062 struct request *rq; 1063 1064 rq = list_first_entry(list, struct request, queuelist); 1065 list_del_init(&rq->queuelist); 1066 rq->mq_ctx = ctx; 1067 __blk_mq_insert_request(hctx, rq, false); 1068 } 1069 spin_unlock(&ctx->lock); 1070 1071 blk_mq_run_hw_queue(hctx, from_schedule); 1072 blk_mq_put_ctx(current_ctx); 1073 } 1074 1075 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1076 { 1077 struct request *rqa = container_of(a, struct request, queuelist); 1078 struct request *rqb = container_of(b, struct request, queuelist); 1079 1080 return !(rqa->mq_ctx < rqb->mq_ctx || 1081 (rqa->mq_ctx == rqb->mq_ctx && 1082 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1083 } 1084 1085 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1086 { 1087 struct blk_mq_ctx *this_ctx; 1088 struct request_queue *this_q; 1089 struct request *rq; 1090 LIST_HEAD(list); 1091 LIST_HEAD(ctx_list); 1092 unsigned int depth; 1093 1094 list_splice_init(&plug->mq_list, &list); 1095 1096 list_sort(NULL, &list, plug_ctx_cmp); 1097 1098 this_q = NULL; 1099 this_ctx = NULL; 1100 depth = 0; 1101 1102 while (!list_empty(&list)) { 1103 rq = list_entry_rq(list.next); 1104 list_del_init(&rq->queuelist); 1105 BUG_ON(!rq->q); 1106 if (rq->mq_ctx != this_ctx) { 1107 if (this_ctx) { 1108 blk_mq_insert_requests(this_q, this_ctx, 1109 &ctx_list, depth, 1110 from_schedule); 1111 } 1112 1113 this_ctx = rq->mq_ctx; 1114 this_q = rq->q; 1115 depth = 0; 1116 } 1117 1118 depth++; 1119 list_add_tail(&rq->queuelist, &ctx_list); 1120 } 1121 1122 /* 1123 * If 'this_ctx' is set, we know we have entries to complete 1124 * on 'ctx_list'. Do those. 1125 */ 1126 if (this_ctx) { 1127 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1128 from_schedule); 1129 } 1130 } 1131 1132 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1133 { 1134 init_request_from_bio(rq, bio); 1135 1136 if (blk_do_io_stat(rq)) 1137 blk_account_io_start(rq, 1); 1138 } 1139 1140 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1141 { 1142 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1143 !blk_queue_nomerges(hctx->queue); 1144 } 1145 1146 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1147 struct blk_mq_ctx *ctx, 1148 struct request *rq, struct bio *bio) 1149 { 1150 if (!hctx_allow_merges(hctx)) { 1151 blk_mq_bio_to_request(rq, bio); 1152 spin_lock(&ctx->lock); 1153 insert_rq: 1154 __blk_mq_insert_request(hctx, rq, false); 1155 spin_unlock(&ctx->lock); 1156 return false; 1157 } else { 1158 struct request_queue *q = hctx->queue; 1159 1160 spin_lock(&ctx->lock); 1161 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1162 blk_mq_bio_to_request(rq, bio); 1163 goto insert_rq; 1164 } 1165 1166 spin_unlock(&ctx->lock); 1167 __blk_mq_free_request(hctx, ctx, rq); 1168 return true; 1169 } 1170 } 1171 1172 struct blk_map_ctx { 1173 struct blk_mq_hw_ctx *hctx; 1174 struct blk_mq_ctx *ctx; 1175 }; 1176 1177 static struct request *blk_mq_map_request(struct request_queue *q, 1178 struct bio *bio, 1179 struct blk_map_ctx *data) 1180 { 1181 struct blk_mq_hw_ctx *hctx; 1182 struct blk_mq_ctx *ctx; 1183 struct request *rq; 1184 int rw = bio_data_dir(bio); 1185 struct blk_mq_alloc_data alloc_data; 1186 1187 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) { 1188 bio_io_error(bio); 1189 return NULL; 1190 } 1191 1192 ctx = blk_mq_get_ctx(q); 1193 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1194 1195 if (rw_is_sync(bio->bi_rw)) 1196 rw |= REQ_SYNC; 1197 1198 trace_block_getrq(q, bio, rw); 1199 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1200 hctx); 1201 rq = __blk_mq_alloc_request(&alloc_data, rw); 1202 if (unlikely(!rq)) { 1203 __blk_mq_run_hw_queue(hctx); 1204 blk_mq_put_ctx(ctx); 1205 trace_block_sleeprq(q, bio, rw); 1206 1207 ctx = blk_mq_get_ctx(q); 1208 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1209 blk_mq_set_alloc_data(&alloc_data, q, 1210 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1211 rq = __blk_mq_alloc_request(&alloc_data, rw); 1212 ctx = alloc_data.ctx; 1213 hctx = alloc_data.hctx; 1214 } 1215 1216 hctx->queued++; 1217 data->hctx = hctx; 1218 data->ctx = ctx; 1219 return rq; 1220 } 1221 1222 static int blk_mq_direct_issue_request(struct request *rq) 1223 { 1224 int ret; 1225 struct request_queue *q = rq->q; 1226 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, 1227 rq->mq_ctx->cpu); 1228 struct blk_mq_queue_data bd = { 1229 .rq = rq, 1230 .list = NULL, 1231 .last = 1 1232 }; 1233 1234 /* 1235 * For OK queue, we are done. For error, kill it. Any other 1236 * error (busy), just add it to our list as we previously 1237 * would have done 1238 */ 1239 ret = q->mq_ops->queue_rq(hctx, &bd); 1240 if (ret == BLK_MQ_RQ_QUEUE_OK) 1241 return 0; 1242 else { 1243 __blk_mq_requeue_request(rq); 1244 1245 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1246 rq->errors = -EIO; 1247 blk_mq_end_request(rq, rq->errors); 1248 return 0; 1249 } 1250 return -1; 1251 } 1252 } 1253 1254 /* 1255 * Multiple hardware queue variant. This will not use per-process plugs, 1256 * but will attempt to bypass the hctx queueing if we can go straight to 1257 * hardware for SYNC IO. 1258 */ 1259 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1260 { 1261 const int is_sync = rw_is_sync(bio->bi_rw); 1262 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1263 struct blk_map_ctx data; 1264 struct request *rq; 1265 unsigned int request_count = 0; 1266 struct blk_plug *plug; 1267 struct request *same_queue_rq = NULL; 1268 1269 blk_queue_bounce(q, &bio); 1270 1271 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1272 bio_io_error(bio); 1273 return; 1274 } 1275 1276 blk_queue_split(q, &bio, q->bio_split); 1277 1278 if (!is_flush_fua && !blk_queue_nomerges(q) && 1279 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1280 return; 1281 1282 rq = blk_mq_map_request(q, bio, &data); 1283 if (unlikely(!rq)) 1284 return; 1285 1286 if (unlikely(is_flush_fua)) { 1287 blk_mq_bio_to_request(rq, bio); 1288 blk_insert_flush(rq); 1289 goto run_queue; 1290 } 1291 1292 plug = current->plug; 1293 /* 1294 * If the driver supports defer issued based on 'last', then 1295 * queue it up like normal since we can potentially save some 1296 * CPU this way. 1297 */ 1298 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1299 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1300 struct request *old_rq = NULL; 1301 1302 blk_mq_bio_to_request(rq, bio); 1303 1304 /* 1305 * we do limited pluging. If bio can be merged, do merge. 1306 * Otherwise the existing request in the plug list will be 1307 * issued. So the plug list will have one request at most 1308 */ 1309 if (plug) { 1310 /* 1311 * The plug list might get flushed before this. If that 1312 * happens, same_queue_rq is invalid and plug list is empty 1313 **/ 1314 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1315 old_rq = same_queue_rq; 1316 list_del_init(&old_rq->queuelist); 1317 } 1318 list_add_tail(&rq->queuelist, &plug->mq_list); 1319 } else /* is_sync */ 1320 old_rq = rq; 1321 blk_mq_put_ctx(data.ctx); 1322 if (!old_rq) 1323 return; 1324 if (!blk_mq_direct_issue_request(old_rq)) 1325 return; 1326 blk_mq_insert_request(old_rq, false, true, true); 1327 return; 1328 } 1329 1330 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1331 /* 1332 * For a SYNC request, send it to the hardware immediately. For 1333 * an ASYNC request, just ensure that we run it later on. The 1334 * latter allows for merging opportunities and more efficient 1335 * dispatching. 1336 */ 1337 run_queue: 1338 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1339 } 1340 blk_mq_put_ctx(data.ctx); 1341 } 1342 1343 /* 1344 * Single hardware queue variant. This will attempt to use any per-process 1345 * plug for merging and IO deferral. 1346 */ 1347 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1348 { 1349 const int is_sync = rw_is_sync(bio->bi_rw); 1350 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1351 struct blk_plug *plug; 1352 unsigned int request_count = 0; 1353 struct blk_map_ctx data; 1354 struct request *rq; 1355 1356 blk_queue_bounce(q, &bio); 1357 1358 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1359 bio_io_error(bio); 1360 return; 1361 } 1362 1363 blk_queue_split(q, &bio, q->bio_split); 1364 1365 if (!is_flush_fua && !blk_queue_nomerges(q) && 1366 blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1367 return; 1368 1369 rq = blk_mq_map_request(q, bio, &data); 1370 if (unlikely(!rq)) 1371 return; 1372 1373 if (unlikely(is_flush_fua)) { 1374 blk_mq_bio_to_request(rq, bio); 1375 blk_insert_flush(rq); 1376 goto run_queue; 1377 } 1378 1379 /* 1380 * A task plug currently exists. Since this is completely lockless, 1381 * utilize that to temporarily store requests until the task is 1382 * either done or scheduled away. 1383 */ 1384 plug = current->plug; 1385 if (plug) { 1386 blk_mq_bio_to_request(rq, bio); 1387 if (list_empty(&plug->mq_list)) 1388 trace_block_plug(q); 1389 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1390 blk_flush_plug_list(plug, false); 1391 trace_block_plug(q); 1392 } 1393 list_add_tail(&rq->queuelist, &plug->mq_list); 1394 blk_mq_put_ctx(data.ctx); 1395 return; 1396 } 1397 1398 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1399 /* 1400 * For a SYNC request, send it to the hardware immediately. For 1401 * an ASYNC request, just ensure that we run it later on. The 1402 * latter allows for merging opportunities and more efficient 1403 * dispatching. 1404 */ 1405 run_queue: 1406 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1407 } 1408 1409 blk_mq_put_ctx(data.ctx); 1410 } 1411 1412 /* 1413 * Default mapping to a software queue, since we use one per CPU. 1414 */ 1415 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1416 { 1417 return q->queue_hw_ctx[q->mq_map[cpu]]; 1418 } 1419 EXPORT_SYMBOL(blk_mq_map_queue); 1420 1421 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1422 struct blk_mq_tags *tags, unsigned int hctx_idx) 1423 { 1424 struct page *page; 1425 1426 if (tags->rqs && set->ops->exit_request) { 1427 int i; 1428 1429 for (i = 0; i < tags->nr_tags; i++) { 1430 if (!tags->rqs[i]) 1431 continue; 1432 set->ops->exit_request(set->driver_data, tags->rqs[i], 1433 hctx_idx, i); 1434 tags->rqs[i] = NULL; 1435 } 1436 } 1437 1438 while (!list_empty(&tags->page_list)) { 1439 page = list_first_entry(&tags->page_list, struct page, lru); 1440 list_del_init(&page->lru); 1441 __free_pages(page, page->private); 1442 } 1443 1444 kfree(tags->rqs); 1445 1446 blk_mq_free_tags(tags); 1447 } 1448 1449 static size_t order_to_size(unsigned int order) 1450 { 1451 return (size_t)PAGE_SIZE << order; 1452 } 1453 1454 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1455 unsigned int hctx_idx) 1456 { 1457 struct blk_mq_tags *tags; 1458 unsigned int i, j, entries_per_page, max_order = 4; 1459 size_t rq_size, left; 1460 1461 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1462 set->numa_node, 1463 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1464 if (!tags) 1465 return NULL; 1466 1467 INIT_LIST_HEAD(&tags->page_list); 1468 1469 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1470 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1471 set->numa_node); 1472 if (!tags->rqs) { 1473 blk_mq_free_tags(tags); 1474 return NULL; 1475 } 1476 1477 /* 1478 * rq_size is the size of the request plus driver payload, rounded 1479 * to the cacheline size 1480 */ 1481 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1482 cache_line_size()); 1483 left = rq_size * set->queue_depth; 1484 1485 for (i = 0; i < set->queue_depth; ) { 1486 int this_order = max_order; 1487 struct page *page; 1488 int to_do; 1489 void *p; 1490 1491 while (left < order_to_size(this_order - 1) && this_order) 1492 this_order--; 1493 1494 do { 1495 page = alloc_pages_node(set->numa_node, 1496 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1497 this_order); 1498 if (page) 1499 break; 1500 if (!this_order--) 1501 break; 1502 if (order_to_size(this_order) < rq_size) 1503 break; 1504 } while (1); 1505 1506 if (!page) 1507 goto fail; 1508 1509 page->private = this_order; 1510 list_add_tail(&page->lru, &tags->page_list); 1511 1512 p = page_address(page); 1513 entries_per_page = order_to_size(this_order) / rq_size; 1514 to_do = min(entries_per_page, set->queue_depth - i); 1515 left -= to_do * rq_size; 1516 for (j = 0; j < to_do; j++) { 1517 tags->rqs[i] = p; 1518 if (set->ops->init_request) { 1519 if (set->ops->init_request(set->driver_data, 1520 tags->rqs[i], hctx_idx, i, 1521 set->numa_node)) { 1522 tags->rqs[i] = NULL; 1523 goto fail; 1524 } 1525 } 1526 1527 p += rq_size; 1528 i++; 1529 } 1530 } 1531 return tags; 1532 1533 fail: 1534 blk_mq_free_rq_map(set, tags, hctx_idx); 1535 return NULL; 1536 } 1537 1538 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1539 { 1540 kfree(bitmap->map); 1541 } 1542 1543 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1544 { 1545 unsigned int bpw = 8, total, num_maps, i; 1546 1547 bitmap->bits_per_word = bpw; 1548 1549 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1550 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1551 GFP_KERNEL, node); 1552 if (!bitmap->map) 1553 return -ENOMEM; 1554 1555 total = nr_cpu_ids; 1556 for (i = 0; i < num_maps; i++) { 1557 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1558 total -= bitmap->map[i].depth; 1559 } 1560 1561 return 0; 1562 } 1563 1564 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1565 { 1566 struct request_queue *q = hctx->queue; 1567 struct blk_mq_ctx *ctx; 1568 LIST_HEAD(tmp); 1569 1570 /* 1571 * Move ctx entries to new CPU, if this one is going away. 1572 */ 1573 ctx = __blk_mq_get_ctx(q, cpu); 1574 1575 spin_lock(&ctx->lock); 1576 if (!list_empty(&ctx->rq_list)) { 1577 list_splice_init(&ctx->rq_list, &tmp); 1578 blk_mq_hctx_clear_pending(hctx, ctx); 1579 } 1580 spin_unlock(&ctx->lock); 1581 1582 if (list_empty(&tmp)) 1583 return NOTIFY_OK; 1584 1585 ctx = blk_mq_get_ctx(q); 1586 spin_lock(&ctx->lock); 1587 1588 while (!list_empty(&tmp)) { 1589 struct request *rq; 1590 1591 rq = list_first_entry(&tmp, struct request, queuelist); 1592 rq->mq_ctx = ctx; 1593 list_move_tail(&rq->queuelist, &ctx->rq_list); 1594 } 1595 1596 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1597 blk_mq_hctx_mark_pending(hctx, ctx); 1598 1599 spin_unlock(&ctx->lock); 1600 1601 blk_mq_run_hw_queue(hctx, true); 1602 blk_mq_put_ctx(ctx); 1603 return NOTIFY_OK; 1604 } 1605 1606 static int blk_mq_hctx_notify(void *data, unsigned long action, 1607 unsigned int cpu) 1608 { 1609 struct blk_mq_hw_ctx *hctx = data; 1610 1611 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1612 return blk_mq_hctx_cpu_offline(hctx, cpu); 1613 1614 /* 1615 * In case of CPU online, tags may be reallocated 1616 * in blk_mq_map_swqueue() after mapping is updated. 1617 */ 1618 1619 return NOTIFY_OK; 1620 } 1621 1622 /* hctx->ctxs will be freed in queue's release handler */ 1623 static void blk_mq_exit_hctx(struct request_queue *q, 1624 struct blk_mq_tag_set *set, 1625 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1626 { 1627 unsigned flush_start_tag = set->queue_depth; 1628 1629 blk_mq_tag_idle(hctx); 1630 1631 if (set->ops->exit_request) 1632 set->ops->exit_request(set->driver_data, 1633 hctx->fq->flush_rq, hctx_idx, 1634 flush_start_tag + hctx_idx); 1635 1636 if (set->ops->exit_hctx) 1637 set->ops->exit_hctx(hctx, hctx_idx); 1638 1639 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1640 blk_free_flush_queue(hctx->fq); 1641 blk_mq_free_bitmap(&hctx->ctx_map); 1642 } 1643 1644 static void blk_mq_exit_hw_queues(struct request_queue *q, 1645 struct blk_mq_tag_set *set, int nr_queue) 1646 { 1647 struct blk_mq_hw_ctx *hctx; 1648 unsigned int i; 1649 1650 queue_for_each_hw_ctx(q, hctx, i) { 1651 if (i == nr_queue) 1652 break; 1653 blk_mq_exit_hctx(q, set, hctx, i); 1654 } 1655 } 1656 1657 static void blk_mq_free_hw_queues(struct request_queue *q, 1658 struct blk_mq_tag_set *set) 1659 { 1660 struct blk_mq_hw_ctx *hctx; 1661 unsigned int i; 1662 1663 queue_for_each_hw_ctx(q, hctx, i) 1664 free_cpumask_var(hctx->cpumask); 1665 } 1666 1667 static int blk_mq_init_hctx(struct request_queue *q, 1668 struct blk_mq_tag_set *set, 1669 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1670 { 1671 int node; 1672 unsigned flush_start_tag = set->queue_depth; 1673 1674 node = hctx->numa_node; 1675 if (node == NUMA_NO_NODE) 1676 node = hctx->numa_node = set->numa_node; 1677 1678 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1679 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1680 spin_lock_init(&hctx->lock); 1681 INIT_LIST_HEAD(&hctx->dispatch); 1682 hctx->queue = q; 1683 hctx->queue_num = hctx_idx; 1684 hctx->flags = set->flags; 1685 1686 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1687 blk_mq_hctx_notify, hctx); 1688 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1689 1690 hctx->tags = set->tags[hctx_idx]; 1691 1692 /* 1693 * Allocate space for all possible cpus to avoid allocation at 1694 * runtime 1695 */ 1696 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1697 GFP_KERNEL, node); 1698 if (!hctx->ctxs) 1699 goto unregister_cpu_notifier; 1700 1701 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1702 goto free_ctxs; 1703 1704 hctx->nr_ctx = 0; 1705 1706 if (set->ops->init_hctx && 1707 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1708 goto free_bitmap; 1709 1710 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1711 if (!hctx->fq) 1712 goto exit_hctx; 1713 1714 if (set->ops->init_request && 1715 set->ops->init_request(set->driver_data, 1716 hctx->fq->flush_rq, hctx_idx, 1717 flush_start_tag + hctx_idx, node)) 1718 goto free_fq; 1719 1720 return 0; 1721 1722 free_fq: 1723 kfree(hctx->fq); 1724 exit_hctx: 1725 if (set->ops->exit_hctx) 1726 set->ops->exit_hctx(hctx, hctx_idx); 1727 free_bitmap: 1728 blk_mq_free_bitmap(&hctx->ctx_map); 1729 free_ctxs: 1730 kfree(hctx->ctxs); 1731 unregister_cpu_notifier: 1732 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1733 1734 return -1; 1735 } 1736 1737 static int blk_mq_init_hw_queues(struct request_queue *q, 1738 struct blk_mq_tag_set *set) 1739 { 1740 struct blk_mq_hw_ctx *hctx; 1741 unsigned int i; 1742 1743 /* 1744 * Initialize hardware queues 1745 */ 1746 queue_for_each_hw_ctx(q, hctx, i) { 1747 if (blk_mq_init_hctx(q, set, hctx, i)) 1748 break; 1749 } 1750 1751 if (i == q->nr_hw_queues) 1752 return 0; 1753 1754 /* 1755 * Init failed 1756 */ 1757 blk_mq_exit_hw_queues(q, set, i); 1758 1759 return 1; 1760 } 1761 1762 static void blk_mq_init_cpu_queues(struct request_queue *q, 1763 unsigned int nr_hw_queues) 1764 { 1765 unsigned int i; 1766 1767 for_each_possible_cpu(i) { 1768 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1769 struct blk_mq_hw_ctx *hctx; 1770 1771 memset(__ctx, 0, sizeof(*__ctx)); 1772 __ctx->cpu = i; 1773 spin_lock_init(&__ctx->lock); 1774 INIT_LIST_HEAD(&__ctx->rq_list); 1775 __ctx->queue = q; 1776 1777 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1778 if (!cpu_online(i)) 1779 continue; 1780 1781 hctx = q->mq_ops->map_queue(q, i); 1782 1783 /* 1784 * Set local node, IFF we have more than one hw queue. If 1785 * not, we remain on the home node of the device 1786 */ 1787 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1788 hctx->numa_node = cpu_to_node(i); 1789 } 1790 } 1791 1792 static void blk_mq_map_swqueue(struct request_queue *q) 1793 { 1794 unsigned int i; 1795 struct blk_mq_hw_ctx *hctx; 1796 struct blk_mq_ctx *ctx; 1797 struct blk_mq_tag_set *set = q->tag_set; 1798 1799 queue_for_each_hw_ctx(q, hctx, i) { 1800 cpumask_clear(hctx->cpumask); 1801 hctx->nr_ctx = 0; 1802 } 1803 1804 /* 1805 * Map software to hardware queues 1806 */ 1807 queue_for_each_ctx(q, ctx, i) { 1808 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1809 if (!cpu_online(i)) 1810 continue; 1811 1812 hctx = q->mq_ops->map_queue(q, i); 1813 cpumask_set_cpu(i, hctx->cpumask); 1814 cpumask_set_cpu(i, hctx->tags->cpumask); 1815 ctx->index_hw = hctx->nr_ctx; 1816 hctx->ctxs[hctx->nr_ctx++] = ctx; 1817 } 1818 1819 queue_for_each_hw_ctx(q, hctx, i) { 1820 struct blk_mq_ctxmap *map = &hctx->ctx_map; 1821 1822 /* 1823 * If no software queues are mapped to this hardware queue, 1824 * disable it and free the request entries. 1825 */ 1826 if (!hctx->nr_ctx) { 1827 if (set->tags[i]) { 1828 blk_mq_free_rq_map(set, set->tags[i], i); 1829 set->tags[i] = NULL; 1830 } 1831 hctx->tags = NULL; 1832 continue; 1833 } 1834 1835 /* unmapped hw queue can be remapped after CPU topo changed */ 1836 if (!set->tags[i]) 1837 set->tags[i] = blk_mq_init_rq_map(set, i); 1838 hctx->tags = set->tags[i]; 1839 WARN_ON(!hctx->tags); 1840 1841 /* 1842 * Set the map size to the number of mapped software queues. 1843 * This is more accurate and more efficient than looping 1844 * over all possibly mapped software queues. 1845 */ 1846 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word); 1847 1848 /* 1849 * Initialize batch roundrobin counts 1850 */ 1851 hctx->next_cpu = cpumask_first(hctx->cpumask); 1852 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1853 } 1854 } 1855 1856 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1857 { 1858 struct blk_mq_hw_ctx *hctx; 1859 struct request_queue *q; 1860 bool shared; 1861 int i; 1862 1863 if (set->tag_list.next == set->tag_list.prev) 1864 shared = false; 1865 else 1866 shared = true; 1867 1868 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1869 blk_mq_freeze_queue(q); 1870 1871 queue_for_each_hw_ctx(q, hctx, i) { 1872 if (shared) 1873 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1874 else 1875 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1876 } 1877 blk_mq_unfreeze_queue(q); 1878 } 1879 } 1880 1881 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1882 { 1883 struct blk_mq_tag_set *set = q->tag_set; 1884 1885 mutex_lock(&set->tag_list_lock); 1886 list_del_init(&q->tag_set_list); 1887 blk_mq_update_tag_set_depth(set); 1888 mutex_unlock(&set->tag_list_lock); 1889 } 1890 1891 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1892 struct request_queue *q) 1893 { 1894 q->tag_set = set; 1895 1896 mutex_lock(&set->tag_list_lock); 1897 list_add_tail(&q->tag_set_list, &set->tag_list); 1898 blk_mq_update_tag_set_depth(set); 1899 mutex_unlock(&set->tag_list_lock); 1900 } 1901 1902 /* 1903 * It is the actual release handler for mq, but we do it from 1904 * request queue's release handler for avoiding use-after-free 1905 * and headache because q->mq_kobj shouldn't have been introduced, 1906 * but we can't group ctx/kctx kobj without it. 1907 */ 1908 void blk_mq_release(struct request_queue *q) 1909 { 1910 struct blk_mq_hw_ctx *hctx; 1911 unsigned int i; 1912 1913 /* hctx kobj stays in hctx */ 1914 queue_for_each_hw_ctx(q, hctx, i) { 1915 if (!hctx) 1916 continue; 1917 kfree(hctx->ctxs); 1918 kfree(hctx); 1919 } 1920 1921 kfree(q->queue_hw_ctx); 1922 1923 /* ctx kobj stays in queue_ctx */ 1924 free_percpu(q->queue_ctx); 1925 } 1926 1927 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1928 { 1929 struct request_queue *uninit_q, *q; 1930 1931 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1932 if (!uninit_q) 1933 return ERR_PTR(-ENOMEM); 1934 1935 q = blk_mq_init_allocated_queue(set, uninit_q); 1936 if (IS_ERR(q)) 1937 blk_cleanup_queue(uninit_q); 1938 1939 return q; 1940 } 1941 EXPORT_SYMBOL(blk_mq_init_queue); 1942 1943 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 1944 struct request_queue *q) 1945 { 1946 struct blk_mq_hw_ctx **hctxs; 1947 struct blk_mq_ctx __percpu *ctx; 1948 unsigned int *map; 1949 int i; 1950 1951 ctx = alloc_percpu(struct blk_mq_ctx); 1952 if (!ctx) 1953 return ERR_PTR(-ENOMEM); 1954 1955 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1956 set->numa_node); 1957 1958 if (!hctxs) 1959 goto err_percpu; 1960 1961 map = blk_mq_make_queue_map(set); 1962 if (!map) 1963 goto err_map; 1964 1965 for (i = 0; i < set->nr_hw_queues; i++) { 1966 int node = blk_mq_hw_queue_to_node(map, i); 1967 1968 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1969 GFP_KERNEL, node); 1970 if (!hctxs[i]) 1971 goto err_hctxs; 1972 1973 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 1974 node)) 1975 goto err_hctxs; 1976 1977 atomic_set(&hctxs[i]->nr_active, 0); 1978 hctxs[i]->numa_node = node; 1979 hctxs[i]->queue_num = i; 1980 } 1981 1982 /* 1983 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1984 * See blk_register_queue() for details. 1985 */ 1986 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release, 1987 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1988 goto err_hctxs; 1989 1990 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 1991 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 1992 1993 q->nr_queues = nr_cpu_ids; 1994 q->nr_hw_queues = set->nr_hw_queues; 1995 q->mq_map = map; 1996 1997 q->queue_ctx = ctx; 1998 q->queue_hw_ctx = hctxs; 1999 2000 q->mq_ops = set->ops; 2001 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2002 2003 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2004 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2005 2006 q->sg_reserved_size = INT_MAX; 2007 2008 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 2009 INIT_LIST_HEAD(&q->requeue_list); 2010 spin_lock_init(&q->requeue_lock); 2011 2012 if (q->nr_hw_queues > 1) 2013 blk_queue_make_request(q, blk_mq_make_request); 2014 else 2015 blk_queue_make_request(q, blk_sq_make_request); 2016 2017 /* 2018 * Do this after blk_queue_make_request() overrides it... 2019 */ 2020 q->nr_requests = set->queue_depth; 2021 2022 if (set->ops->complete) 2023 blk_queue_softirq_done(q, set->ops->complete); 2024 2025 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2026 2027 if (blk_mq_init_hw_queues(q, set)) 2028 goto err_hctxs; 2029 2030 mutex_lock(&all_q_mutex); 2031 list_add_tail(&q->all_q_node, &all_q_list); 2032 mutex_unlock(&all_q_mutex); 2033 2034 blk_mq_add_queue_tag_set(set, q); 2035 2036 blk_mq_map_swqueue(q); 2037 2038 return q; 2039 2040 err_hctxs: 2041 kfree(map); 2042 for (i = 0; i < set->nr_hw_queues; i++) { 2043 if (!hctxs[i]) 2044 break; 2045 free_cpumask_var(hctxs[i]->cpumask); 2046 kfree(hctxs[i]); 2047 } 2048 err_map: 2049 kfree(hctxs); 2050 err_percpu: 2051 free_percpu(ctx); 2052 return ERR_PTR(-ENOMEM); 2053 } 2054 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2055 2056 void blk_mq_free_queue(struct request_queue *q) 2057 { 2058 struct blk_mq_tag_set *set = q->tag_set; 2059 2060 blk_mq_del_queue_tag_set(q); 2061 2062 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2063 blk_mq_free_hw_queues(q, set); 2064 2065 percpu_ref_exit(&q->mq_usage_counter); 2066 2067 kfree(q->mq_map); 2068 2069 q->mq_map = NULL; 2070 2071 mutex_lock(&all_q_mutex); 2072 list_del_init(&q->all_q_node); 2073 mutex_unlock(&all_q_mutex); 2074 } 2075 2076 /* Basically redo blk_mq_init_queue with queue frozen */ 2077 static void blk_mq_queue_reinit(struct request_queue *q) 2078 { 2079 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2080 2081 blk_mq_sysfs_unregister(q); 2082 2083 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 2084 2085 /* 2086 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2087 * we should change hctx numa_node according to new topology (this 2088 * involves free and re-allocate memory, worthy doing?) 2089 */ 2090 2091 blk_mq_map_swqueue(q); 2092 2093 blk_mq_sysfs_register(q); 2094 } 2095 2096 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 2097 unsigned long action, void *hcpu) 2098 { 2099 struct request_queue *q; 2100 2101 /* 2102 * Before new mappings are established, hotadded cpu might already 2103 * start handling requests. This doesn't break anything as we map 2104 * offline CPUs to first hardware queue. We will re-init the queue 2105 * below to get optimal settings. 2106 */ 2107 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 2108 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 2109 return NOTIFY_OK; 2110 2111 mutex_lock(&all_q_mutex); 2112 2113 /* 2114 * We need to freeze and reinit all existing queues. Freezing 2115 * involves synchronous wait for an RCU grace period and doing it 2116 * one by one may take a long time. Start freezing all queues in 2117 * one swoop and then wait for the completions so that freezing can 2118 * take place in parallel. 2119 */ 2120 list_for_each_entry(q, &all_q_list, all_q_node) 2121 blk_mq_freeze_queue_start(q); 2122 list_for_each_entry(q, &all_q_list, all_q_node) { 2123 blk_mq_freeze_queue_wait(q); 2124 2125 /* 2126 * timeout handler can't touch hw queue during the 2127 * reinitialization 2128 */ 2129 del_timer_sync(&q->timeout); 2130 } 2131 2132 list_for_each_entry(q, &all_q_list, all_q_node) 2133 blk_mq_queue_reinit(q); 2134 2135 list_for_each_entry(q, &all_q_list, all_q_node) 2136 blk_mq_unfreeze_queue(q); 2137 2138 mutex_unlock(&all_q_mutex); 2139 return NOTIFY_OK; 2140 } 2141 2142 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2143 { 2144 int i; 2145 2146 for (i = 0; i < set->nr_hw_queues; i++) { 2147 set->tags[i] = blk_mq_init_rq_map(set, i); 2148 if (!set->tags[i]) 2149 goto out_unwind; 2150 } 2151 2152 return 0; 2153 2154 out_unwind: 2155 while (--i >= 0) 2156 blk_mq_free_rq_map(set, set->tags[i], i); 2157 2158 return -ENOMEM; 2159 } 2160 2161 /* 2162 * Allocate the request maps associated with this tag_set. Note that this 2163 * may reduce the depth asked for, if memory is tight. set->queue_depth 2164 * will be updated to reflect the allocated depth. 2165 */ 2166 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2167 { 2168 unsigned int depth; 2169 int err; 2170 2171 depth = set->queue_depth; 2172 do { 2173 err = __blk_mq_alloc_rq_maps(set); 2174 if (!err) 2175 break; 2176 2177 set->queue_depth >>= 1; 2178 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2179 err = -ENOMEM; 2180 break; 2181 } 2182 } while (set->queue_depth); 2183 2184 if (!set->queue_depth || err) { 2185 pr_err("blk-mq: failed to allocate request map\n"); 2186 return -ENOMEM; 2187 } 2188 2189 if (depth != set->queue_depth) 2190 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2191 depth, set->queue_depth); 2192 2193 return 0; 2194 } 2195 2196 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags) 2197 { 2198 return tags->cpumask; 2199 } 2200 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask); 2201 2202 /* 2203 * Alloc a tag set to be associated with one or more request queues. 2204 * May fail with EINVAL for various error conditions. May adjust the 2205 * requested depth down, if if it too large. In that case, the set 2206 * value will be stored in set->queue_depth. 2207 */ 2208 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2209 { 2210 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2211 2212 if (!set->nr_hw_queues) 2213 return -EINVAL; 2214 if (!set->queue_depth) 2215 return -EINVAL; 2216 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2217 return -EINVAL; 2218 2219 if (!set->ops->queue_rq || !set->ops->map_queue) 2220 return -EINVAL; 2221 2222 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2223 pr_info("blk-mq: reduced tag depth to %u\n", 2224 BLK_MQ_MAX_DEPTH); 2225 set->queue_depth = BLK_MQ_MAX_DEPTH; 2226 } 2227 2228 /* 2229 * If a crashdump is active, then we are potentially in a very 2230 * memory constrained environment. Limit us to 1 queue and 2231 * 64 tags to prevent using too much memory. 2232 */ 2233 if (is_kdump_kernel()) { 2234 set->nr_hw_queues = 1; 2235 set->queue_depth = min(64U, set->queue_depth); 2236 } 2237 2238 set->tags = kmalloc_node(set->nr_hw_queues * 2239 sizeof(struct blk_mq_tags *), 2240 GFP_KERNEL, set->numa_node); 2241 if (!set->tags) 2242 return -ENOMEM; 2243 2244 if (blk_mq_alloc_rq_maps(set)) 2245 goto enomem; 2246 2247 mutex_init(&set->tag_list_lock); 2248 INIT_LIST_HEAD(&set->tag_list); 2249 2250 return 0; 2251 enomem: 2252 kfree(set->tags); 2253 set->tags = NULL; 2254 return -ENOMEM; 2255 } 2256 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2257 2258 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2259 { 2260 int i; 2261 2262 for (i = 0; i < set->nr_hw_queues; i++) { 2263 if (set->tags[i]) { 2264 blk_mq_free_rq_map(set, set->tags[i], i); 2265 free_cpumask_var(set->tags[i]->cpumask); 2266 } 2267 } 2268 2269 kfree(set->tags); 2270 set->tags = NULL; 2271 } 2272 EXPORT_SYMBOL(blk_mq_free_tag_set); 2273 2274 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2275 { 2276 struct blk_mq_tag_set *set = q->tag_set; 2277 struct blk_mq_hw_ctx *hctx; 2278 int i, ret; 2279 2280 if (!set || nr > set->queue_depth) 2281 return -EINVAL; 2282 2283 ret = 0; 2284 queue_for_each_hw_ctx(q, hctx, i) { 2285 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2286 if (ret) 2287 break; 2288 } 2289 2290 if (!ret) 2291 q->nr_requests = nr; 2292 2293 return ret; 2294 } 2295 2296 void blk_mq_disable_hotplug(void) 2297 { 2298 mutex_lock(&all_q_mutex); 2299 } 2300 2301 void blk_mq_enable_hotplug(void) 2302 { 2303 mutex_unlock(&all_q_mutex); 2304 } 2305 2306 static int __init blk_mq_init(void) 2307 { 2308 blk_mq_cpu_init(); 2309 2310 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2311 2312 return 0; 2313 } 2314 subsys_initcall(blk_mq_init); 2315