xref: /linux/block/blk-mq.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24 
25 #include <trace/events/block.h>
26 
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31 
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34 
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 	unsigned int i;
43 
44 	for (i = 0; i < hctx->ctx_map.size; i++)
45 		if (hctx->ctx_map.map[i].word)
46 			return true;
47 
48 	return false;
49 }
50 
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 					      struct blk_mq_ctx *ctx)
53 {
54 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56 
57 #define CTX_TO_BIT(hctx, ctx)	\
58 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59 
60 /*
61  * Mark this ctx as having pending work in this hardware queue
62  */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 				     struct blk_mq_ctx *ctx)
65 {
66 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67 
68 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71 
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 				      struct blk_mq_ctx *ctx)
74 {
75 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76 
77 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79 
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81 {
82 	while (true) {
83 		int ret;
84 
85 		if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 			return 0;
87 
88 		if (!(gfp & __GFP_WAIT))
89 			return -EBUSY;
90 
91 		ret = wait_event_interruptible(q->mq_freeze_wq,
92 				!atomic_read(&q->mq_freeze_depth) ||
93 				blk_queue_dying(q));
94 		if (blk_queue_dying(q))
95 			return -ENODEV;
96 		if (ret)
97 			return ret;
98 	}
99 }
100 
101 static void blk_mq_queue_exit(struct request_queue *q)
102 {
103 	percpu_ref_put(&q->mq_usage_counter);
104 }
105 
106 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
107 {
108 	struct request_queue *q =
109 		container_of(ref, struct request_queue, mq_usage_counter);
110 
111 	wake_up_all(&q->mq_freeze_wq);
112 }
113 
114 void blk_mq_freeze_queue_start(struct request_queue *q)
115 {
116 	int freeze_depth;
117 
118 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
119 	if (freeze_depth == 1) {
120 		percpu_ref_kill(&q->mq_usage_counter);
121 		blk_mq_run_hw_queues(q, false);
122 	}
123 }
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125 
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
127 {
128 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 }
130 
131 /*
132  * Guarantee no request is in use, so we can change any data structure of
133  * the queue afterward.
134  */
135 void blk_mq_freeze_queue(struct request_queue *q)
136 {
137 	blk_mq_freeze_queue_start(q);
138 	blk_mq_freeze_queue_wait(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141 
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144 	int freeze_depth;
145 
146 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147 	WARN_ON_ONCE(freeze_depth < 0);
148 	if (!freeze_depth) {
149 		percpu_ref_reinit(&q->mq_usage_counter);
150 		wake_up_all(&q->mq_freeze_wq);
151 	}
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154 
155 void blk_mq_wake_waiters(struct request_queue *q)
156 {
157 	struct blk_mq_hw_ctx *hctx;
158 	unsigned int i;
159 
160 	queue_for_each_hw_ctx(q, hctx, i)
161 		if (blk_mq_hw_queue_mapped(hctx))
162 			blk_mq_tag_wakeup_all(hctx->tags, true);
163 
164 	/*
165 	 * If we are called because the queue has now been marked as
166 	 * dying, we need to ensure that processes currently waiting on
167 	 * the queue are notified as well.
168 	 */
169 	wake_up_all(&q->mq_freeze_wq);
170 }
171 
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173 {
174 	return blk_mq_has_free_tags(hctx->tags);
175 }
176 EXPORT_SYMBOL(blk_mq_can_queue);
177 
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 			       struct request *rq, unsigned int rw_flags)
180 {
181 	if (blk_queue_io_stat(q))
182 		rw_flags |= REQ_IO_STAT;
183 
184 	INIT_LIST_HEAD(&rq->queuelist);
185 	/* csd/requeue_work/fifo_time is initialized before use */
186 	rq->q = q;
187 	rq->mq_ctx = ctx;
188 	rq->cmd_flags |= rw_flags;
189 	/* do not touch atomic flags, it needs atomic ops against the timer */
190 	rq->cpu = -1;
191 	INIT_HLIST_NODE(&rq->hash);
192 	RB_CLEAR_NODE(&rq->rb_node);
193 	rq->rq_disk = NULL;
194 	rq->part = NULL;
195 	rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 	rq->rl = NULL;
198 	set_start_time_ns(rq);
199 	rq->io_start_time_ns = 0;
200 #endif
201 	rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 	rq->nr_integrity_segments = 0;
204 #endif
205 	rq->special = NULL;
206 	/* tag was already set */
207 	rq->errors = 0;
208 
209 	rq->cmd = rq->__cmd;
210 
211 	rq->extra_len = 0;
212 	rq->sense_len = 0;
213 	rq->resid_len = 0;
214 	rq->sense = NULL;
215 
216 	INIT_LIST_HEAD(&rq->timeout_list);
217 	rq->timeout = 0;
218 
219 	rq->end_io = NULL;
220 	rq->end_io_data = NULL;
221 	rq->next_rq = NULL;
222 
223 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224 }
225 
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 {
229 	struct request *rq;
230 	unsigned int tag;
231 
232 	tag = blk_mq_get_tag(data);
233 	if (tag != BLK_MQ_TAG_FAIL) {
234 		rq = data->hctx->tags->rqs[tag];
235 
236 		if (blk_mq_tag_busy(data->hctx)) {
237 			rq->cmd_flags = REQ_MQ_INFLIGHT;
238 			atomic_inc(&data->hctx->nr_active);
239 		}
240 
241 		rq->tag = tag;
242 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 		return rq;
244 	}
245 
246 	return NULL;
247 }
248 
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 		bool reserved)
251 {
252 	struct blk_mq_ctx *ctx;
253 	struct blk_mq_hw_ctx *hctx;
254 	struct request *rq;
255 	struct blk_mq_alloc_data alloc_data;
256 	int ret;
257 
258 	ret = blk_mq_queue_enter(q, gfp);
259 	if (ret)
260 		return ERR_PTR(ret);
261 
262 	ctx = blk_mq_get_ctx(q);
263 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 			reserved, ctx, hctx);
266 
267 	rq = __blk_mq_alloc_request(&alloc_data, rw);
268 	if (!rq && (gfp & __GFP_WAIT)) {
269 		__blk_mq_run_hw_queue(hctx);
270 		blk_mq_put_ctx(ctx);
271 
272 		ctx = blk_mq_get_ctx(q);
273 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 				hctx);
276 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
277 		ctx = alloc_data.ctx;
278 	}
279 	blk_mq_put_ctx(ctx);
280 	if (!rq) {
281 		blk_mq_queue_exit(q);
282 		return ERR_PTR(-EWOULDBLOCK);
283 	}
284 	return rq;
285 }
286 EXPORT_SYMBOL(blk_mq_alloc_request);
287 
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 				  struct blk_mq_ctx *ctx, struct request *rq)
290 {
291 	const int tag = rq->tag;
292 	struct request_queue *q = rq->q;
293 
294 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 		atomic_dec(&hctx->nr_active);
296 	rq->cmd_flags = 0;
297 
298 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 	blk_mq_queue_exit(q);
301 }
302 
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 {
305 	struct blk_mq_ctx *ctx = rq->mq_ctx;
306 
307 	ctx->rq_completed[rq_is_sync(rq)]++;
308 	__blk_mq_free_request(hctx, ctx, rq);
309 
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312 
313 void blk_mq_free_request(struct request *rq)
314 {
315 	struct blk_mq_hw_ctx *hctx;
316 	struct request_queue *q = rq->q;
317 
318 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 	blk_mq_free_hctx_request(hctx, rq);
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
322 
323 inline void __blk_mq_end_request(struct request *rq, int error)
324 {
325 	blk_account_io_done(rq);
326 
327 	if (rq->end_io) {
328 		rq->end_io(rq, error);
329 	} else {
330 		if (unlikely(blk_bidi_rq(rq)))
331 			blk_mq_free_request(rq->next_rq);
332 		blk_mq_free_request(rq);
333 	}
334 }
335 EXPORT_SYMBOL(__blk_mq_end_request);
336 
337 void blk_mq_end_request(struct request *rq, int error)
338 {
339 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 		BUG();
341 	__blk_mq_end_request(rq, error);
342 }
343 EXPORT_SYMBOL(blk_mq_end_request);
344 
345 static void __blk_mq_complete_request_remote(void *data)
346 {
347 	struct request *rq = data;
348 
349 	rq->q->softirq_done_fn(rq);
350 }
351 
352 static void blk_mq_ipi_complete_request(struct request *rq)
353 {
354 	struct blk_mq_ctx *ctx = rq->mq_ctx;
355 	bool shared = false;
356 	int cpu;
357 
358 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 		rq->q->softirq_done_fn(rq);
360 		return;
361 	}
362 
363 	cpu = get_cpu();
364 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 		shared = cpus_share_cache(cpu, ctx->cpu);
366 
367 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 		rq->csd.func = __blk_mq_complete_request_remote;
369 		rq->csd.info = rq;
370 		rq->csd.flags = 0;
371 		smp_call_function_single_async(ctx->cpu, &rq->csd);
372 	} else {
373 		rq->q->softirq_done_fn(rq);
374 	}
375 	put_cpu();
376 }
377 
378 void __blk_mq_complete_request(struct request *rq)
379 {
380 	struct request_queue *q = rq->q;
381 
382 	if (!q->softirq_done_fn)
383 		blk_mq_end_request(rq, rq->errors);
384 	else
385 		blk_mq_ipi_complete_request(rq);
386 }
387 
388 /**
389  * blk_mq_complete_request - end I/O on a request
390  * @rq:		the request being processed
391  *
392  * Description:
393  *	Ends all I/O on a request. It does not handle partial completions.
394  *	The actual completion happens out-of-order, through a IPI handler.
395  **/
396 void blk_mq_complete_request(struct request *rq)
397 {
398 	struct request_queue *q = rq->q;
399 
400 	if (unlikely(blk_should_fake_timeout(q)))
401 		return;
402 	if (!blk_mark_rq_complete(rq))
403 		__blk_mq_complete_request(rq);
404 }
405 EXPORT_SYMBOL(blk_mq_complete_request);
406 
407 int blk_mq_request_started(struct request *rq)
408 {
409 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
410 }
411 EXPORT_SYMBOL_GPL(blk_mq_request_started);
412 
413 void blk_mq_start_request(struct request *rq)
414 {
415 	struct request_queue *q = rq->q;
416 
417 	trace_block_rq_issue(q, rq);
418 
419 	rq->resid_len = blk_rq_bytes(rq);
420 	if (unlikely(blk_bidi_rq(rq)))
421 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
422 
423 	blk_add_timer(rq);
424 
425 	/*
426 	 * Ensure that ->deadline is visible before set the started
427 	 * flag and clear the completed flag.
428 	 */
429 	smp_mb__before_atomic();
430 
431 	/*
432 	 * Mark us as started and clear complete. Complete might have been
433 	 * set if requeue raced with timeout, which then marked it as
434 	 * complete. So be sure to clear complete again when we start
435 	 * the request, otherwise we'll ignore the completion event.
436 	 */
437 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
441 
442 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
443 		/*
444 		 * Make sure space for the drain appears.  We know we can do
445 		 * this because max_hw_segments has been adjusted to be one
446 		 * fewer than the device can handle.
447 		 */
448 		rq->nr_phys_segments++;
449 	}
450 }
451 EXPORT_SYMBOL(blk_mq_start_request);
452 
453 static void __blk_mq_requeue_request(struct request *rq)
454 {
455 	struct request_queue *q = rq->q;
456 
457 	trace_block_rq_requeue(q, rq);
458 
459 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460 		if (q->dma_drain_size && blk_rq_bytes(rq))
461 			rq->nr_phys_segments--;
462 	}
463 }
464 
465 void blk_mq_requeue_request(struct request *rq)
466 {
467 	__blk_mq_requeue_request(rq);
468 
469 	BUG_ON(blk_queued_rq(rq));
470 	blk_mq_add_to_requeue_list(rq, true);
471 }
472 EXPORT_SYMBOL(blk_mq_requeue_request);
473 
474 static void blk_mq_requeue_work(struct work_struct *work)
475 {
476 	struct request_queue *q =
477 		container_of(work, struct request_queue, requeue_work);
478 	LIST_HEAD(rq_list);
479 	struct request *rq, *next;
480 	unsigned long flags;
481 
482 	spin_lock_irqsave(&q->requeue_lock, flags);
483 	list_splice_init(&q->requeue_list, &rq_list);
484 	spin_unlock_irqrestore(&q->requeue_lock, flags);
485 
486 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 			continue;
489 
490 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 		list_del_init(&rq->queuelist);
492 		blk_mq_insert_request(rq, true, false, false);
493 	}
494 
495 	while (!list_empty(&rq_list)) {
496 		rq = list_entry(rq_list.next, struct request, queuelist);
497 		list_del_init(&rq->queuelist);
498 		blk_mq_insert_request(rq, false, false, false);
499 	}
500 
501 	/*
502 	 * Use the start variant of queue running here, so that running
503 	 * the requeue work will kick stopped queues.
504 	 */
505 	blk_mq_start_hw_queues(q);
506 }
507 
508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
509 {
510 	struct request_queue *q = rq->q;
511 	unsigned long flags;
512 
513 	/*
514 	 * We abuse this flag that is otherwise used by the I/O scheduler to
515 	 * request head insertation from the workqueue.
516 	 */
517 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
518 
519 	spin_lock_irqsave(&q->requeue_lock, flags);
520 	if (at_head) {
521 		rq->cmd_flags |= REQ_SOFTBARRIER;
522 		list_add(&rq->queuelist, &q->requeue_list);
523 	} else {
524 		list_add_tail(&rq->queuelist, &q->requeue_list);
525 	}
526 	spin_unlock_irqrestore(&q->requeue_lock, flags);
527 }
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
529 
530 void blk_mq_cancel_requeue_work(struct request_queue *q)
531 {
532 	cancel_work_sync(&q->requeue_work);
533 }
534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
535 
536 void blk_mq_kick_requeue_list(struct request_queue *q)
537 {
538 	kblockd_schedule_work(&q->requeue_work);
539 }
540 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
541 
542 void blk_mq_abort_requeue_list(struct request_queue *q)
543 {
544 	unsigned long flags;
545 	LIST_HEAD(rq_list);
546 
547 	spin_lock_irqsave(&q->requeue_lock, flags);
548 	list_splice_init(&q->requeue_list, &rq_list);
549 	spin_unlock_irqrestore(&q->requeue_lock, flags);
550 
551 	while (!list_empty(&rq_list)) {
552 		struct request *rq;
553 
554 		rq = list_first_entry(&rq_list, struct request, queuelist);
555 		list_del_init(&rq->queuelist);
556 		rq->errors = -EIO;
557 		blk_mq_end_request(rq, rq->errors);
558 	}
559 }
560 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
561 
562 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
563 {
564 	return tags->rqs[tag];
565 }
566 EXPORT_SYMBOL(blk_mq_tag_to_rq);
567 
568 struct blk_mq_timeout_data {
569 	unsigned long next;
570 	unsigned int next_set;
571 };
572 
573 void blk_mq_rq_timed_out(struct request *req, bool reserved)
574 {
575 	struct blk_mq_ops *ops = req->q->mq_ops;
576 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
577 
578 	/*
579 	 * We know that complete is set at this point. If STARTED isn't set
580 	 * anymore, then the request isn't active and the "timeout" should
581 	 * just be ignored. This can happen due to the bitflag ordering.
582 	 * Timeout first checks if STARTED is set, and if it is, assumes
583 	 * the request is active. But if we race with completion, then
584 	 * we both flags will get cleared. So check here again, and ignore
585 	 * a timeout event with a request that isn't active.
586 	 */
587 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
588 		return;
589 
590 	if (ops->timeout)
591 		ret = ops->timeout(req, reserved);
592 
593 	switch (ret) {
594 	case BLK_EH_HANDLED:
595 		__blk_mq_complete_request(req);
596 		break;
597 	case BLK_EH_RESET_TIMER:
598 		blk_add_timer(req);
599 		blk_clear_rq_complete(req);
600 		break;
601 	case BLK_EH_NOT_HANDLED:
602 		break;
603 	default:
604 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
605 		break;
606 	}
607 }
608 
609 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
610 		struct request *rq, void *priv, bool reserved)
611 {
612 	struct blk_mq_timeout_data *data = priv;
613 
614 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
615 		/*
616 		 * If a request wasn't started before the queue was
617 		 * marked dying, kill it here or it'll go unnoticed.
618 		 */
619 		if (unlikely(blk_queue_dying(rq->q))) {
620 			rq->errors = -EIO;
621 			blk_mq_complete_request(rq);
622 		}
623 		return;
624 	}
625 	if (rq->cmd_flags & REQ_NO_TIMEOUT)
626 		return;
627 
628 	if (time_after_eq(jiffies, rq->deadline)) {
629 		if (!blk_mark_rq_complete(rq))
630 			blk_mq_rq_timed_out(rq, reserved);
631 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
632 		data->next = rq->deadline;
633 		data->next_set = 1;
634 	}
635 }
636 
637 static void blk_mq_rq_timer(unsigned long priv)
638 {
639 	struct request_queue *q = (struct request_queue *)priv;
640 	struct blk_mq_timeout_data data = {
641 		.next		= 0,
642 		.next_set	= 0,
643 	};
644 	struct blk_mq_hw_ctx *hctx;
645 	int i;
646 
647 	queue_for_each_hw_ctx(q, hctx, i) {
648 		/*
649 		 * If not software queues are currently mapped to this
650 		 * hardware queue, there's nothing to check
651 		 */
652 		if (!blk_mq_hw_queue_mapped(hctx))
653 			continue;
654 
655 		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
656 	}
657 
658 	if (data.next_set) {
659 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
660 		mod_timer(&q->timeout, data.next);
661 	} else {
662 		queue_for_each_hw_ctx(q, hctx, i) {
663 			/* the hctx may be unmapped, so check it here */
664 			if (blk_mq_hw_queue_mapped(hctx))
665 				blk_mq_tag_idle(hctx);
666 		}
667 	}
668 }
669 
670 /*
671  * Reverse check our software queue for entries that we could potentially
672  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
673  * too much time checking for merges.
674  */
675 static bool blk_mq_attempt_merge(struct request_queue *q,
676 				 struct blk_mq_ctx *ctx, struct bio *bio)
677 {
678 	struct request *rq;
679 	int checked = 8;
680 
681 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
682 		int el_ret;
683 
684 		if (!checked--)
685 			break;
686 
687 		if (!blk_rq_merge_ok(rq, bio))
688 			continue;
689 
690 		el_ret = blk_try_merge(rq, bio);
691 		if (el_ret == ELEVATOR_BACK_MERGE) {
692 			if (bio_attempt_back_merge(q, rq, bio)) {
693 				ctx->rq_merged++;
694 				return true;
695 			}
696 			break;
697 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
698 			if (bio_attempt_front_merge(q, rq, bio)) {
699 				ctx->rq_merged++;
700 				return true;
701 			}
702 			break;
703 		}
704 	}
705 
706 	return false;
707 }
708 
709 /*
710  * Process software queues that have been marked busy, splicing them
711  * to the for-dispatch
712  */
713 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
714 {
715 	struct blk_mq_ctx *ctx;
716 	int i;
717 
718 	for (i = 0; i < hctx->ctx_map.size; i++) {
719 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
720 		unsigned int off, bit;
721 
722 		if (!bm->word)
723 			continue;
724 
725 		bit = 0;
726 		off = i * hctx->ctx_map.bits_per_word;
727 		do {
728 			bit = find_next_bit(&bm->word, bm->depth, bit);
729 			if (bit >= bm->depth)
730 				break;
731 
732 			ctx = hctx->ctxs[bit + off];
733 			clear_bit(bit, &bm->word);
734 			spin_lock(&ctx->lock);
735 			list_splice_tail_init(&ctx->rq_list, list);
736 			spin_unlock(&ctx->lock);
737 
738 			bit++;
739 		} while (1);
740 	}
741 }
742 
743 /*
744  * Run this hardware queue, pulling any software queues mapped to it in.
745  * Note that this function currently has various problems around ordering
746  * of IO. In particular, we'd like FIFO behaviour on handling existing
747  * items on the hctx->dispatch list. Ignore that for now.
748  */
749 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
750 {
751 	struct request_queue *q = hctx->queue;
752 	struct request *rq;
753 	LIST_HEAD(rq_list);
754 	LIST_HEAD(driver_list);
755 	struct list_head *dptr;
756 	int queued;
757 
758 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
759 
760 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
761 		return;
762 
763 	hctx->run++;
764 
765 	/*
766 	 * Touch any software queue that has pending entries.
767 	 */
768 	flush_busy_ctxs(hctx, &rq_list);
769 
770 	/*
771 	 * If we have previous entries on our dispatch list, grab them
772 	 * and stuff them at the front for more fair dispatch.
773 	 */
774 	if (!list_empty_careful(&hctx->dispatch)) {
775 		spin_lock(&hctx->lock);
776 		if (!list_empty(&hctx->dispatch))
777 			list_splice_init(&hctx->dispatch, &rq_list);
778 		spin_unlock(&hctx->lock);
779 	}
780 
781 	/*
782 	 * Start off with dptr being NULL, so we start the first request
783 	 * immediately, even if we have more pending.
784 	 */
785 	dptr = NULL;
786 
787 	/*
788 	 * Now process all the entries, sending them to the driver.
789 	 */
790 	queued = 0;
791 	while (!list_empty(&rq_list)) {
792 		struct blk_mq_queue_data bd;
793 		int ret;
794 
795 		rq = list_first_entry(&rq_list, struct request, queuelist);
796 		list_del_init(&rq->queuelist);
797 
798 		bd.rq = rq;
799 		bd.list = dptr;
800 		bd.last = list_empty(&rq_list);
801 
802 		ret = q->mq_ops->queue_rq(hctx, &bd);
803 		switch (ret) {
804 		case BLK_MQ_RQ_QUEUE_OK:
805 			queued++;
806 			continue;
807 		case BLK_MQ_RQ_QUEUE_BUSY:
808 			list_add(&rq->queuelist, &rq_list);
809 			__blk_mq_requeue_request(rq);
810 			break;
811 		default:
812 			pr_err("blk-mq: bad return on queue: %d\n", ret);
813 		case BLK_MQ_RQ_QUEUE_ERROR:
814 			rq->errors = -EIO;
815 			blk_mq_end_request(rq, rq->errors);
816 			break;
817 		}
818 
819 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
820 			break;
821 
822 		/*
823 		 * We've done the first request. If we have more than 1
824 		 * left in the list, set dptr to defer issue.
825 		 */
826 		if (!dptr && rq_list.next != rq_list.prev)
827 			dptr = &driver_list;
828 	}
829 
830 	if (!queued)
831 		hctx->dispatched[0]++;
832 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
833 		hctx->dispatched[ilog2(queued) + 1]++;
834 
835 	/*
836 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
837 	 * that is where we will continue on next queue run.
838 	 */
839 	if (!list_empty(&rq_list)) {
840 		spin_lock(&hctx->lock);
841 		list_splice(&rq_list, &hctx->dispatch);
842 		spin_unlock(&hctx->lock);
843 		/*
844 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
845 		 * it's possible the queue is stopped and restarted again
846 		 * before this. Queue restart will dispatch requests. And since
847 		 * requests in rq_list aren't added into hctx->dispatch yet,
848 		 * the requests in rq_list might get lost.
849 		 *
850 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
851 		 **/
852 		blk_mq_run_hw_queue(hctx, true);
853 	}
854 }
855 
856 /*
857  * It'd be great if the workqueue API had a way to pass
858  * in a mask and had some smarts for more clever placement.
859  * For now we just round-robin here, switching for every
860  * BLK_MQ_CPU_WORK_BATCH queued items.
861  */
862 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
863 {
864 	if (hctx->queue->nr_hw_queues == 1)
865 		return WORK_CPU_UNBOUND;
866 
867 	if (--hctx->next_cpu_batch <= 0) {
868 		int cpu = hctx->next_cpu, next_cpu;
869 
870 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
871 		if (next_cpu >= nr_cpu_ids)
872 			next_cpu = cpumask_first(hctx->cpumask);
873 
874 		hctx->next_cpu = next_cpu;
875 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
876 
877 		return cpu;
878 	}
879 
880 	return hctx->next_cpu;
881 }
882 
883 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
884 {
885 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
886 	    !blk_mq_hw_queue_mapped(hctx)))
887 		return;
888 
889 	if (!async) {
890 		int cpu = get_cpu();
891 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
892 			__blk_mq_run_hw_queue(hctx);
893 			put_cpu();
894 			return;
895 		}
896 
897 		put_cpu();
898 	}
899 
900 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
901 			&hctx->run_work, 0);
902 }
903 
904 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
905 {
906 	struct blk_mq_hw_ctx *hctx;
907 	int i;
908 
909 	queue_for_each_hw_ctx(q, hctx, i) {
910 		if ((!blk_mq_hctx_has_pending(hctx) &&
911 		    list_empty_careful(&hctx->dispatch)) ||
912 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
913 			continue;
914 
915 		blk_mq_run_hw_queue(hctx, async);
916 	}
917 }
918 EXPORT_SYMBOL(blk_mq_run_hw_queues);
919 
920 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
921 {
922 	cancel_delayed_work(&hctx->run_work);
923 	cancel_delayed_work(&hctx->delay_work);
924 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
925 }
926 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
927 
928 void blk_mq_stop_hw_queues(struct request_queue *q)
929 {
930 	struct blk_mq_hw_ctx *hctx;
931 	int i;
932 
933 	queue_for_each_hw_ctx(q, hctx, i)
934 		blk_mq_stop_hw_queue(hctx);
935 }
936 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
937 
938 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
939 {
940 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
941 
942 	blk_mq_run_hw_queue(hctx, false);
943 }
944 EXPORT_SYMBOL(blk_mq_start_hw_queue);
945 
946 void blk_mq_start_hw_queues(struct request_queue *q)
947 {
948 	struct blk_mq_hw_ctx *hctx;
949 	int i;
950 
951 	queue_for_each_hw_ctx(q, hctx, i)
952 		blk_mq_start_hw_queue(hctx);
953 }
954 EXPORT_SYMBOL(blk_mq_start_hw_queues);
955 
956 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
957 {
958 	struct blk_mq_hw_ctx *hctx;
959 	int i;
960 
961 	queue_for_each_hw_ctx(q, hctx, i) {
962 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
963 			continue;
964 
965 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
966 		blk_mq_run_hw_queue(hctx, async);
967 	}
968 }
969 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
970 
971 static void blk_mq_run_work_fn(struct work_struct *work)
972 {
973 	struct blk_mq_hw_ctx *hctx;
974 
975 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
976 
977 	__blk_mq_run_hw_queue(hctx);
978 }
979 
980 static void blk_mq_delay_work_fn(struct work_struct *work)
981 {
982 	struct blk_mq_hw_ctx *hctx;
983 
984 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
985 
986 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
987 		__blk_mq_run_hw_queue(hctx);
988 }
989 
990 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
991 {
992 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
993 		return;
994 
995 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
996 			&hctx->delay_work, msecs_to_jiffies(msecs));
997 }
998 EXPORT_SYMBOL(blk_mq_delay_queue);
999 
1000 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1001 				    struct request *rq, bool at_head)
1002 {
1003 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1004 
1005 	trace_block_rq_insert(hctx->queue, rq);
1006 
1007 	if (at_head)
1008 		list_add(&rq->queuelist, &ctx->rq_list);
1009 	else
1010 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1011 
1012 	blk_mq_hctx_mark_pending(hctx, ctx);
1013 }
1014 
1015 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1016 		bool async)
1017 {
1018 	struct request_queue *q = rq->q;
1019 	struct blk_mq_hw_ctx *hctx;
1020 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1021 
1022 	current_ctx = blk_mq_get_ctx(q);
1023 	if (!cpu_online(ctx->cpu))
1024 		rq->mq_ctx = ctx = current_ctx;
1025 
1026 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1027 
1028 	spin_lock(&ctx->lock);
1029 	__blk_mq_insert_request(hctx, rq, at_head);
1030 	spin_unlock(&ctx->lock);
1031 
1032 	if (run_queue)
1033 		blk_mq_run_hw_queue(hctx, async);
1034 
1035 	blk_mq_put_ctx(current_ctx);
1036 }
1037 
1038 static void blk_mq_insert_requests(struct request_queue *q,
1039 				     struct blk_mq_ctx *ctx,
1040 				     struct list_head *list,
1041 				     int depth,
1042 				     bool from_schedule)
1043 
1044 {
1045 	struct blk_mq_hw_ctx *hctx;
1046 	struct blk_mq_ctx *current_ctx;
1047 
1048 	trace_block_unplug(q, depth, !from_schedule);
1049 
1050 	current_ctx = blk_mq_get_ctx(q);
1051 
1052 	if (!cpu_online(ctx->cpu))
1053 		ctx = current_ctx;
1054 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1055 
1056 	/*
1057 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1058 	 * offline now
1059 	 */
1060 	spin_lock(&ctx->lock);
1061 	while (!list_empty(list)) {
1062 		struct request *rq;
1063 
1064 		rq = list_first_entry(list, struct request, queuelist);
1065 		list_del_init(&rq->queuelist);
1066 		rq->mq_ctx = ctx;
1067 		__blk_mq_insert_request(hctx, rq, false);
1068 	}
1069 	spin_unlock(&ctx->lock);
1070 
1071 	blk_mq_run_hw_queue(hctx, from_schedule);
1072 	blk_mq_put_ctx(current_ctx);
1073 }
1074 
1075 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1076 {
1077 	struct request *rqa = container_of(a, struct request, queuelist);
1078 	struct request *rqb = container_of(b, struct request, queuelist);
1079 
1080 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1081 		 (rqa->mq_ctx == rqb->mq_ctx &&
1082 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1083 }
1084 
1085 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1086 {
1087 	struct blk_mq_ctx *this_ctx;
1088 	struct request_queue *this_q;
1089 	struct request *rq;
1090 	LIST_HEAD(list);
1091 	LIST_HEAD(ctx_list);
1092 	unsigned int depth;
1093 
1094 	list_splice_init(&plug->mq_list, &list);
1095 
1096 	list_sort(NULL, &list, plug_ctx_cmp);
1097 
1098 	this_q = NULL;
1099 	this_ctx = NULL;
1100 	depth = 0;
1101 
1102 	while (!list_empty(&list)) {
1103 		rq = list_entry_rq(list.next);
1104 		list_del_init(&rq->queuelist);
1105 		BUG_ON(!rq->q);
1106 		if (rq->mq_ctx != this_ctx) {
1107 			if (this_ctx) {
1108 				blk_mq_insert_requests(this_q, this_ctx,
1109 							&ctx_list, depth,
1110 							from_schedule);
1111 			}
1112 
1113 			this_ctx = rq->mq_ctx;
1114 			this_q = rq->q;
1115 			depth = 0;
1116 		}
1117 
1118 		depth++;
1119 		list_add_tail(&rq->queuelist, &ctx_list);
1120 	}
1121 
1122 	/*
1123 	 * If 'this_ctx' is set, we know we have entries to complete
1124 	 * on 'ctx_list'. Do those.
1125 	 */
1126 	if (this_ctx) {
1127 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1128 				       from_schedule);
1129 	}
1130 }
1131 
1132 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1133 {
1134 	init_request_from_bio(rq, bio);
1135 
1136 	if (blk_do_io_stat(rq))
1137 		blk_account_io_start(rq, 1);
1138 }
1139 
1140 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1141 {
1142 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1143 		!blk_queue_nomerges(hctx->queue);
1144 }
1145 
1146 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1147 					 struct blk_mq_ctx *ctx,
1148 					 struct request *rq, struct bio *bio)
1149 {
1150 	if (!hctx_allow_merges(hctx)) {
1151 		blk_mq_bio_to_request(rq, bio);
1152 		spin_lock(&ctx->lock);
1153 insert_rq:
1154 		__blk_mq_insert_request(hctx, rq, false);
1155 		spin_unlock(&ctx->lock);
1156 		return false;
1157 	} else {
1158 		struct request_queue *q = hctx->queue;
1159 
1160 		spin_lock(&ctx->lock);
1161 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1162 			blk_mq_bio_to_request(rq, bio);
1163 			goto insert_rq;
1164 		}
1165 
1166 		spin_unlock(&ctx->lock);
1167 		__blk_mq_free_request(hctx, ctx, rq);
1168 		return true;
1169 	}
1170 }
1171 
1172 struct blk_map_ctx {
1173 	struct blk_mq_hw_ctx *hctx;
1174 	struct blk_mq_ctx *ctx;
1175 };
1176 
1177 static struct request *blk_mq_map_request(struct request_queue *q,
1178 					  struct bio *bio,
1179 					  struct blk_map_ctx *data)
1180 {
1181 	struct blk_mq_hw_ctx *hctx;
1182 	struct blk_mq_ctx *ctx;
1183 	struct request *rq;
1184 	int rw = bio_data_dir(bio);
1185 	struct blk_mq_alloc_data alloc_data;
1186 
1187 	if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1188 		bio_io_error(bio);
1189 		return NULL;
1190 	}
1191 
1192 	ctx = blk_mq_get_ctx(q);
1193 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1194 
1195 	if (rw_is_sync(bio->bi_rw))
1196 		rw |= REQ_SYNC;
1197 
1198 	trace_block_getrq(q, bio, rw);
1199 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1200 			hctx);
1201 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1202 	if (unlikely(!rq)) {
1203 		__blk_mq_run_hw_queue(hctx);
1204 		blk_mq_put_ctx(ctx);
1205 		trace_block_sleeprq(q, bio, rw);
1206 
1207 		ctx = blk_mq_get_ctx(q);
1208 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1209 		blk_mq_set_alloc_data(&alloc_data, q,
1210 				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1211 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1212 		ctx = alloc_data.ctx;
1213 		hctx = alloc_data.hctx;
1214 	}
1215 
1216 	hctx->queued++;
1217 	data->hctx = hctx;
1218 	data->ctx = ctx;
1219 	return rq;
1220 }
1221 
1222 static int blk_mq_direct_issue_request(struct request *rq)
1223 {
1224 	int ret;
1225 	struct request_queue *q = rq->q;
1226 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1227 			rq->mq_ctx->cpu);
1228 	struct blk_mq_queue_data bd = {
1229 		.rq = rq,
1230 		.list = NULL,
1231 		.last = 1
1232 	};
1233 
1234 	/*
1235 	 * For OK queue, we are done. For error, kill it. Any other
1236 	 * error (busy), just add it to our list as we previously
1237 	 * would have done
1238 	 */
1239 	ret = q->mq_ops->queue_rq(hctx, &bd);
1240 	if (ret == BLK_MQ_RQ_QUEUE_OK)
1241 		return 0;
1242 	else {
1243 		__blk_mq_requeue_request(rq);
1244 
1245 		if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1246 			rq->errors = -EIO;
1247 			blk_mq_end_request(rq, rq->errors);
1248 			return 0;
1249 		}
1250 		return -1;
1251 	}
1252 }
1253 
1254 /*
1255  * Multiple hardware queue variant. This will not use per-process plugs,
1256  * but will attempt to bypass the hctx queueing if we can go straight to
1257  * hardware for SYNC IO.
1258  */
1259 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1260 {
1261 	const int is_sync = rw_is_sync(bio->bi_rw);
1262 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1263 	struct blk_map_ctx data;
1264 	struct request *rq;
1265 	unsigned int request_count = 0;
1266 	struct blk_plug *plug;
1267 	struct request *same_queue_rq = NULL;
1268 
1269 	blk_queue_bounce(q, &bio);
1270 
1271 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1272 		bio_io_error(bio);
1273 		return;
1274 	}
1275 
1276 	blk_queue_split(q, &bio, q->bio_split);
1277 
1278 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1279 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1280 		return;
1281 
1282 	rq = blk_mq_map_request(q, bio, &data);
1283 	if (unlikely(!rq))
1284 		return;
1285 
1286 	if (unlikely(is_flush_fua)) {
1287 		blk_mq_bio_to_request(rq, bio);
1288 		blk_insert_flush(rq);
1289 		goto run_queue;
1290 	}
1291 
1292 	plug = current->plug;
1293 	/*
1294 	 * If the driver supports defer issued based on 'last', then
1295 	 * queue it up like normal since we can potentially save some
1296 	 * CPU this way.
1297 	 */
1298 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1299 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1300 		struct request *old_rq = NULL;
1301 
1302 		blk_mq_bio_to_request(rq, bio);
1303 
1304 		/*
1305 		 * we do limited pluging. If bio can be merged, do merge.
1306 		 * Otherwise the existing request in the plug list will be
1307 		 * issued. So the plug list will have one request at most
1308 		 */
1309 		if (plug) {
1310 			/*
1311 			 * The plug list might get flushed before this. If that
1312 			 * happens, same_queue_rq is invalid and plug list is empty
1313 			 **/
1314 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1315 				old_rq = same_queue_rq;
1316 				list_del_init(&old_rq->queuelist);
1317 			}
1318 			list_add_tail(&rq->queuelist, &plug->mq_list);
1319 		} else /* is_sync */
1320 			old_rq = rq;
1321 		blk_mq_put_ctx(data.ctx);
1322 		if (!old_rq)
1323 			return;
1324 		if (!blk_mq_direct_issue_request(old_rq))
1325 			return;
1326 		blk_mq_insert_request(old_rq, false, true, true);
1327 		return;
1328 	}
1329 
1330 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1331 		/*
1332 		 * For a SYNC request, send it to the hardware immediately. For
1333 		 * an ASYNC request, just ensure that we run it later on. The
1334 		 * latter allows for merging opportunities and more efficient
1335 		 * dispatching.
1336 		 */
1337 run_queue:
1338 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1339 	}
1340 	blk_mq_put_ctx(data.ctx);
1341 }
1342 
1343 /*
1344  * Single hardware queue variant. This will attempt to use any per-process
1345  * plug for merging and IO deferral.
1346  */
1347 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1348 {
1349 	const int is_sync = rw_is_sync(bio->bi_rw);
1350 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1351 	struct blk_plug *plug;
1352 	unsigned int request_count = 0;
1353 	struct blk_map_ctx data;
1354 	struct request *rq;
1355 
1356 	blk_queue_bounce(q, &bio);
1357 
1358 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1359 		bio_io_error(bio);
1360 		return;
1361 	}
1362 
1363 	blk_queue_split(q, &bio, q->bio_split);
1364 
1365 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1366 	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1367 		return;
1368 
1369 	rq = blk_mq_map_request(q, bio, &data);
1370 	if (unlikely(!rq))
1371 		return;
1372 
1373 	if (unlikely(is_flush_fua)) {
1374 		blk_mq_bio_to_request(rq, bio);
1375 		blk_insert_flush(rq);
1376 		goto run_queue;
1377 	}
1378 
1379 	/*
1380 	 * A task plug currently exists. Since this is completely lockless,
1381 	 * utilize that to temporarily store requests until the task is
1382 	 * either done or scheduled away.
1383 	 */
1384 	plug = current->plug;
1385 	if (plug) {
1386 		blk_mq_bio_to_request(rq, bio);
1387 		if (list_empty(&plug->mq_list))
1388 			trace_block_plug(q);
1389 		else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1390 			blk_flush_plug_list(plug, false);
1391 			trace_block_plug(q);
1392 		}
1393 		list_add_tail(&rq->queuelist, &plug->mq_list);
1394 		blk_mq_put_ctx(data.ctx);
1395 		return;
1396 	}
1397 
1398 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1399 		/*
1400 		 * For a SYNC request, send it to the hardware immediately. For
1401 		 * an ASYNC request, just ensure that we run it later on. The
1402 		 * latter allows for merging opportunities and more efficient
1403 		 * dispatching.
1404 		 */
1405 run_queue:
1406 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1407 	}
1408 
1409 	blk_mq_put_ctx(data.ctx);
1410 }
1411 
1412 /*
1413  * Default mapping to a software queue, since we use one per CPU.
1414  */
1415 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1416 {
1417 	return q->queue_hw_ctx[q->mq_map[cpu]];
1418 }
1419 EXPORT_SYMBOL(blk_mq_map_queue);
1420 
1421 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1422 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1423 {
1424 	struct page *page;
1425 
1426 	if (tags->rqs && set->ops->exit_request) {
1427 		int i;
1428 
1429 		for (i = 0; i < tags->nr_tags; i++) {
1430 			if (!tags->rqs[i])
1431 				continue;
1432 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1433 						hctx_idx, i);
1434 			tags->rqs[i] = NULL;
1435 		}
1436 	}
1437 
1438 	while (!list_empty(&tags->page_list)) {
1439 		page = list_first_entry(&tags->page_list, struct page, lru);
1440 		list_del_init(&page->lru);
1441 		__free_pages(page, page->private);
1442 	}
1443 
1444 	kfree(tags->rqs);
1445 
1446 	blk_mq_free_tags(tags);
1447 }
1448 
1449 static size_t order_to_size(unsigned int order)
1450 {
1451 	return (size_t)PAGE_SIZE << order;
1452 }
1453 
1454 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1455 		unsigned int hctx_idx)
1456 {
1457 	struct blk_mq_tags *tags;
1458 	unsigned int i, j, entries_per_page, max_order = 4;
1459 	size_t rq_size, left;
1460 
1461 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1462 				set->numa_node,
1463 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1464 	if (!tags)
1465 		return NULL;
1466 
1467 	INIT_LIST_HEAD(&tags->page_list);
1468 
1469 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1470 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1471 				 set->numa_node);
1472 	if (!tags->rqs) {
1473 		blk_mq_free_tags(tags);
1474 		return NULL;
1475 	}
1476 
1477 	/*
1478 	 * rq_size is the size of the request plus driver payload, rounded
1479 	 * to the cacheline size
1480 	 */
1481 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1482 				cache_line_size());
1483 	left = rq_size * set->queue_depth;
1484 
1485 	for (i = 0; i < set->queue_depth; ) {
1486 		int this_order = max_order;
1487 		struct page *page;
1488 		int to_do;
1489 		void *p;
1490 
1491 		while (left < order_to_size(this_order - 1) && this_order)
1492 			this_order--;
1493 
1494 		do {
1495 			page = alloc_pages_node(set->numa_node,
1496 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1497 				this_order);
1498 			if (page)
1499 				break;
1500 			if (!this_order--)
1501 				break;
1502 			if (order_to_size(this_order) < rq_size)
1503 				break;
1504 		} while (1);
1505 
1506 		if (!page)
1507 			goto fail;
1508 
1509 		page->private = this_order;
1510 		list_add_tail(&page->lru, &tags->page_list);
1511 
1512 		p = page_address(page);
1513 		entries_per_page = order_to_size(this_order) / rq_size;
1514 		to_do = min(entries_per_page, set->queue_depth - i);
1515 		left -= to_do * rq_size;
1516 		for (j = 0; j < to_do; j++) {
1517 			tags->rqs[i] = p;
1518 			if (set->ops->init_request) {
1519 				if (set->ops->init_request(set->driver_data,
1520 						tags->rqs[i], hctx_idx, i,
1521 						set->numa_node)) {
1522 					tags->rqs[i] = NULL;
1523 					goto fail;
1524 				}
1525 			}
1526 
1527 			p += rq_size;
1528 			i++;
1529 		}
1530 	}
1531 	return tags;
1532 
1533 fail:
1534 	blk_mq_free_rq_map(set, tags, hctx_idx);
1535 	return NULL;
1536 }
1537 
1538 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1539 {
1540 	kfree(bitmap->map);
1541 }
1542 
1543 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1544 {
1545 	unsigned int bpw = 8, total, num_maps, i;
1546 
1547 	bitmap->bits_per_word = bpw;
1548 
1549 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1550 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1551 					GFP_KERNEL, node);
1552 	if (!bitmap->map)
1553 		return -ENOMEM;
1554 
1555 	total = nr_cpu_ids;
1556 	for (i = 0; i < num_maps; i++) {
1557 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1558 		total -= bitmap->map[i].depth;
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1565 {
1566 	struct request_queue *q = hctx->queue;
1567 	struct blk_mq_ctx *ctx;
1568 	LIST_HEAD(tmp);
1569 
1570 	/*
1571 	 * Move ctx entries to new CPU, if this one is going away.
1572 	 */
1573 	ctx = __blk_mq_get_ctx(q, cpu);
1574 
1575 	spin_lock(&ctx->lock);
1576 	if (!list_empty(&ctx->rq_list)) {
1577 		list_splice_init(&ctx->rq_list, &tmp);
1578 		blk_mq_hctx_clear_pending(hctx, ctx);
1579 	}
1580 	spin_unlock(&ctx->lock);
1581 
1582 	if (list_empty(&tmp))
1583 		return NOTIFY_OK;
1584 
1585 	ctx = blk_mq_get_ctx(q);
1586 	spin_lock(&ctx->lock);
1587 
1588 	while (!list_empty(&tmp)) {
1589 		struct request *rq;
1590 
1591 		rq = list_first_entry(&tmp, struct request, queuelist);
1592 		rq->mq_ctx = ctx;
1593 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1594 	}
1595 
1596 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1597 	blk_mq_hctx_mark_pending(hctx, ctx);
1598 
1599 	spin_unlock(&ctx->lock);
1600 
1601 	blk_mq_run_hw_queue(hctx, true);
1602 	blk_mq_put_ctx(ctx);
1603 	return NOTIFY_OK;
1604 }
1605 
1606 static int blk_mq_hctx_notify(void *data, unsigned long action,
1607 			      unsigned int cpu)
1608 {
1609 	struct blk_mq_hw_ctx *hctx = data;
1610 
1611 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1612 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1613 
1614 	/*
1615 	 * In case of CPU online, tags may be reallocated
1616 	 * in blk_mq_map_swqueue() after mapping is updated.
1617 	 */
1618 
1619 	return NOTIFY_OK;
1620 }
1621 
1622 /* hctx->ctxs will be freed in queue's release handler */
1623 static void blk_mq_exit_hctx(struct request_queue *q,
1624 		struct blk_mq_tag_set *set,
1625 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1626 {
1627 	unsigned flush_start_tag = set->queue_depth;
1628 
1629 	blk_mq_tag_idle(hctx);
1630 
1631 	if (set->ops->exit_request)
1632 		set->ops->exit_request(set->driver_data,
1633 				       hctx->fq->flush_rq, hctx_idx,
1634 				       flush_start_tag + hctx_idx);
1635 
1636 	if (set->ops->exit_hctx)
1637 		set->ops->exit_hctx(hctx, hctx_idx);
1638 
1639 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1640 	blk_free_flush_queue(hctx->fq);
1641 	blk_mq_free_bitmap(&hctx->ctx_map);
1642 }
1643 
1644 static void blk_mq_exit_hw_queues(struct request_queue *q,
1645 		struct blk_mq_tag_set *set, int nr_queue)
1646 {
1647 	struct blk_mq_hw_ctx *hctx;
1648 	unsigned int i;
1649 
1650 	queue_for_each_hw_ctx(q, hctx, i) {
1651 		if (i == nr_queue)
1652 			break;
1653 		blk_mq_exit_hctx(q, set, hctx, i);
1654 	}
1655 }
1656 
1657 static void blk_mq_free_hw_queues(struct request_queue *q,
1658 		struct blk_mq_tag_set *set)
1659 {
1660 	struct blk_mq_hw_ctx *hctx;
1661 	unsigned int i;
1662 
1663 	queue_for_each_hw_ctx(q, hctx, i)
1664 		free_cpumask_var(hctx->cpumask);
1665 }
1666 
1667 static int blk_mq_init_hctx(struct request_queue *q,
1668 		struct blk_mq_tag_set *set,
1669 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1670 {
1671 	int node;
1672 	unsigned flush_start_tag = set->queue_depth;
1673 
1674 	node = hctx->numa_node;
1675 	if (node == NUMA_NO_NODE)
1676 		node = hctx->numa_node = set->numa_node;
1677 
1678 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1679 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1680 	spin_lock_init(&hctx->lock);
1681 	INIT_LIST_HEAD(&hctx->dispatch);
1682 	hctx->queue = q;
1683 	hctx->queue_num = hctx_idx;
1684 	hctx->flags = set->flags;
1685 
1686 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1687 					blk_mq_hctx_notify, hctx);
1688 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1689 
1690 	hctx->tags = set->tags[hctx_idx];
1691 
1692 	/*
1693 	 * Allocate space for all possible cpus to avoid allocation at
1694 	 * runtime
1695 	 */
1696 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1697 					GFP_KERNEL, node);
1698 	if (!hctx->ctxs)
1699 		goto unregister_cpu_notifier;
1700 
1701 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1702 		goto free_ctxs;
1703 
1704 	hctx->nr_ctx = 0;
1705 
1706 	if (set->ops->init_hctx &&
1707 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1708 		goto free_bitmap;
1709 
1710 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1711 	if (!hctx->fq)
1712 		goto exit_hctx;
1713 
1714 	if (set->ops->init_request &&
1715 	    set->ops->init_request(set->driver_data,
1716 				   hctx->fq->flush_rq, hctx_idx,
1717 				   flush_start_tag + hctx_idx, node))
1718 		goto free_fq;
1719 
1720 	return 0;
1721 
1722  free_fq:
1723 	kfree(hctx->fq);
1724  exit_hctx:
1725 	if (set->ops->exit_hctx)
1726 		set->ops->exit_hctx(hctx, hctx_idx);
1727  free_bitmap:
1728 	blk_mq_free_bitmap(&hctx->ctx_map);
1729  free_ctxs:
1730 	kfree(hctx->ctxs);
1731  unregister_cpu_notifier:
1732 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1733 
1734 	return -1;
1735 }
1736 
1737 static int blk_mq_init_hw_queues(struct request_queue *q,
1738 		struct blk_mq_tag_set *set)
1739 {
1740 	struct blk_mq_hw_ctx *hctx;
1741 	unsigned int i;
1742 
1743 	/*
1744 	 * Initialize hardware queues
1745 	 */
1746 	queue_for_each_hw_ctx(q, hctx, i) {
1747 		if (blk_mq_init_hctx(q, set, hctx, i))
1748 			break;
1749 	}
1750 
1751 	if (i == q->nr_hw_queues)
1752 		return 0;
1753 
1754 	/*
1755 	 * Init failed
1756 	 */
1757 	blk_mq_exit_hw_queues(q, set, i);
1758 
1759 	return 1;
1760 }
1761 
1762 static void blk_mq_init_cpu_queues(struct request_queue *q,
1763 				   unsigned int nr_hw_queues)
1764 {
1765 	unsigned int i;
1766 
1767 	for_each_possible_cpu(i) {
1768 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1769 		struct blk_mq_hw_ctx *hctx;
1770 
1771 		memset(__ctx, 0, sizeof(*__ctx));
1772 		__ctx->cpu = i;
1773 		spin_lock_init(&__ctx->lock);
1774 		INIT_LIST_HEAD(&__ctx->rq_list);
1775 		__ctx->queue = q;
1776 
1777 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1778 		if (!cpu_online(i))
1779 			continue;
1780 
1781 		hctx = q->mq_ops->map_queue(q, i);
1782 
1783 		/*
1784 		 * Set local node, IFF we have more than one hw queue. If
1785 		 * not, we remain on the home node of the device
1786 		 */
1787 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1788 			hctx->numa_node = cpu_to_node(i);
1789 	}
1790 }
1791 
1792 static void blk_mq_map_swqueue(struct request_queue *q)
1793 {
1794 	unsigned int i;
1795 	struct blk_mq_hw_ctx *hctx;
1796 	struct blk_mq_ctx *ctx;
1797 	struct blk_mq_tag_set *set = q->tag_set;
1798 
1799 	queue_for_each_hw_ctx(q, hctx, i) {
1800 		cpumask_clear(hctx->cpumask);
1801 		hctx->nr_ctx = 0;
1802 	}
1803 
1804 	/*
1805 	 * Map software to hardware queues
1806 	 */
1807 	queue_for_each_ctx(q, ctx, i) {
1808 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1809 		if (!cpu_online(i))
1810 			continue;
1811 
1812 		hctx = q->mq_ops->map_queue(q, i);
1813 		cpumask_set_cpu(i, hctx->cpumask);
1814 		cpumask_set_cpu(i, hctx->tags->cpumask);
1815 		ctx->index_hw = hctx->nr_ctx;
1816 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1817 	}
1818 
1819 	queue_for_each_hw_ctx(q, hctx, i) {
1820 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1821 
1822 		/*
1823 		 * If no software queues are mapped to this hardware queue,
1824 		 * disable it and free the request entries.
1825 		 */
1826 		if (!hctx->nr_ctx) {
1827 			if (set->tags[i]) {
1828 				blk_mq_free_rq_map(set, set->tags[i], i);
1829 				set->tags[i] = NULL;
1830 			}
1831 			hctx->tags = NULL;
1832 			continue;
1833 		}
1834 
1835 		/* unmapped hw queue can be remapped after CPU topo changed */
1836 		if (!set->tags[i])
1837 			set->tags[i] = blk_mq_init_rq_map(set, i);
1838 		hctx->tags = set->tags[i];
1839 		WARN_ON(!hctx->tags);
1840 
1841 		/*
1842 		 * Set the map size to the number of mapped software queues.
1843 		 * This is more accurate and more efficient than looping
1844 		 * over all possibly mapped software queues.
1845 		 */
1846 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1847 
1848 		/*
1849 		 * Initialize batch roundrobin counts
1850 		 */
1851 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1852 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1853 	}
1854 }
1855 
1856 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1857 {
1858 	struct blk_mq_hw_ctx *hctx;
1859 	struct request_queue *q;
1860 	bool shared;
1861 	int i;
1862 
1863 	if (set->tag_list.next == set->tag_list.prev)
1864 		shared = false;
1865 	else
1866 		shared = true;
1867 
1868 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1869 		blk_mq_freeze_queue(q);
1870 
1871 		queue_for_each_hw_ctx(q, hctx, i) {
1872 			if (shared)
1873 				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1874 			else
1875 				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1876 		}
1877 		blk_mq_unfreeze_queue(q);
1878 	}
1879 }
1880 
1881 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1882 {
1883 	struct blk_mq_tag_set *set = q->tag_set;
1884 
1885 	mutex_lock(&set->tag_list_lock);
1886 	list_del_init(&q->tag_set_list);
1887 	blk_mq_update_tag_set_depth(set);
1888 	mutex_unlock(&set->tag_list_lock);
1889 }
1890 
1891 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1892 				     struct request_queue *q)
1893 {
1894 	q->tag_set = set;
1895 
1896 	mutex_lock(&set->tag_list_lock);
1897 	list_add_tail(&q->tag_set_list, &set->tag_list);
1898 	blk_mq_update_tag_set_depth(set);
1899 	mutex_unlock(&set->tag_list_lock);
1900 }
1901 
1902 /*
1903  * It is the actual release handler for mq, but we do it from
1904  * request queue's release handler for avoiding use-after-free
1905  * and headache because q->mq_kobj shouldn't have been introduced,
1906  * but we can't group ctx/kctx kobj without it.
1907  */
1908 void blk_mq_release(struct request_queue *q)
1909 {
1910 	struct blk_mq_hw_ctx *hctx;
1911 	unsigned int i;
1912 
1913 	/* hctx kobj stays in hctx */
1914 	queue_for_each_hw_ctx(q, hctx, i) {
1915 		if (!hctx)
1916 			continue;
1917 		kfree(hctx->ctxs);
1918 		kfree(hctx);
1919 	}
1920 
1921 	kfree(q->queue_hw_ctx);
1922 
1923 	/* ctx kobj stays in queue_ctx */
1924 	free_percpu(q->queue_ctx);
1925 }
1926 
1927 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1928 {
1929 	struct request_queue *uninit_q, *q;
1930 
1931 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1932 	if (!uninit_q)
1933 		return ERR_PTR(-ENOMEM);
1934 
1935 	q = blk_mq_init_allocated_queue(set, uninit_q);
1936 	if (IS_ERR(q))
1937 		blk_cleanup_queue(uninit_q);
1938 
1939 	return q;
1940 }
1941 EXPORT_SYMBOL(blk_mq_init_queue);
1942 
1943 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1944 						  struct request_queue *q)
1945 {
1946 	struct blk_mq_hw_ctx **hctxs;
1947 	struct blk_mq_ctx __percpu *ctx;
1948 	unsigned int *map;
1949 	int i;
1950 
1951 	ctx = alloc_percpu(struct blk_mq_ctx);
1952 	if (!ctx)
1953 		return ERR_PTR(-ENOMEM);
1954 
1955 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1956 			set->numa_node);
1957 
1958 	if (!hctxs)
1959 		goto err_percpu;
1960 
1961 	map = blk_mq_make_queue_map(set);
1962 	if (!map)
1963 		goto err_map;
1964 
1965 	for (i = 0; i < set->nr_hw_queues; i++) {
1966 		int node = blk_mq_hw_queue_to_node(map, i);
1967 
1968 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1969 					GFP_KERNEL, node);
1970 		if (!hctxs[i])
1971 			goto err_hctxs;
1972 
1973 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1974 						node))
1975 			goto err_hctxs;
1976 
1977 		atomic_set(&hctxs[i]->nr_active, 0);
1978 		hctxs[i]->numa_node = node;
1979 		hctxs[i]->queue_num = i;
1980 	}
1981 
1982 	/*
1983 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1984 	 * See blk_register_queue() for details.
1985 	 */
1986 	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1987 			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1988 		goto err_hctxs;
1989 
1990 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1991 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1992 
1993 	q->nr_queues = nr_cpu_ids;
1994 	q->nr_hw_queues = set->nr_hw_queues;
1995 	q->mq_map = map;
1996 
1997 	q->queue_ctx = ctx;
1998 	q->queue_hw_ctx = hctxs;
1999 
2000 	q->mq_ops = set->ops;
2001 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2002 
2003 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2004 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2005 
2006 	q->sg_reserved_size = INT_MAX;
2007 
2008 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2009 	INIT_LIST_HEAD(&q->requeue_list);
2010 	spin_lock_init(&q->requeue_lock);
2011 
2012 	if (q->nr_hw_queues > 1)
2013 		blk_queue_make_request(q, blk_mq_make_request);
2014 	else
2015 		blk_queue_make_request(q, blk_sq_make_request);
2016 
2017 	/*
2018 	 * Do this after blk_queue_make_request() overrides it...
2019 	 */
2020 	q->nr_requests = set->queue_depth;
2021 
2022 	if (set->ops->complete)
2023 		blk_queue_softirq_done(q, set->ops->complete);
2024 
2025 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2026 
2027 	if (blk_mq_init_hw_queues(q, set))
2028 		goto err_hctxs;
2029 
2030 	mutex_lock(&all_q_mutex);
2031 	list_add_tail(&q->all_q_node, &all_q_list);
2032 	mutex_unlock(&all_q_mutex);
2033 
2034 	blk_mq_add_queue_tag_set(set, q);
2035 
2036 	blk_mq_map_swqueue(q);
2037 
2038 	return q;
2039 
2040 err_hctxs:
2041 	kfree(map);
2042 	for (i = 0; i < set->nr_hw_queues; i++) {
2043 		if (!hctxs[i])
2044 			break;
2045 		free_cpumask_var(hctxs[i]->cpumask);
2046 		kfree(hctxs[i]);
2047 	}
2048 err_map:
2049 	kfree(hctxs);
2050 err_percpu:
2051 	free_percpu(ctx);
2052 	return ERR_PTR(-ENOMEM);
2053 }
2054 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2055 
2056 void blk_mq_free_queue(struct request_queue *q)
2057 {
2058 	struct blk_mq_tag_set	*set = q->tag_set;
2059 
2060 	blk_mq_del_queue_tag_set(q);
2061 
2062 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2063 	blk_mq_free_hw_queues(q, set);
2064 
2065 	percpu_ref_exit(&q->mq_usage_counter);
2066 
2067 	kfree(q->mq_map);
2068 
2069 	q->mq_map = NULL;
2070 
2071 	mutex_lock(&all_q_mutex);
2072 	list_del_init(&q->all_q_node);
2073 	mutex_unlock(&all_q_mutex);
2074 }
2075 
2076 /* Basically redo blk_mq_init_queue with queue frozen */
2077 static void blk_mq_queue_reinit(struct request_queue *q)
2078 {
2079 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2080 
2081 	blk_mq_sysfs_unregister(q);
2082 
2083 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2084 
2085 	/*
2086 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2087 	 * we should change hctx numa_node according to new topology (this
2088 	 * involves free and re-allocate memory, worthy doing?)
2089 	 */
2090 
2091 	blk_mq_map_swqueue(q);
2092 
2093 	blk_mq_sysfs_register(q);
2094 }
2095 
2096 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2097 				      unsigned long action, void *hcpu)
2098 {
2099 	struct request_queue *q;
2100 
2101 	/*
2102 	 * Before new mappings are established, hotadded cpu might already
2103 	 * start handling requests. This doesn't break anything as we map
2104 	 * offline CPUs to first hardware queue. We will re-init the queue
2105 	 * below to get optimal settings.
2106 	 */
2107 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2108 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2109 		return NOTIFY_OK;
2110 
2111 	mutex_lock(&all_q_mutex);
2112 
2113 	/*
2114 	 * We need to freeze and reinit all existing queues.  Freezing
2115 	 * involves synchronous wait for an RCU grace period and doing it
2116 	 * one by one may take a long time.  Start freezing all queues in
2117 	 * one swoop and then wait for the completions so that freezing can
2118 	 * take place in parallel.
2119 	 */
2120 	list_for_each_entry(q, &all_q_list, all_q_node)
2121 		blk_mq_freeze_queue_start(q);
2122 	list_for_each_entry(q, &all_q_list, all_q_node) {
2123 		blk_mq_freeze_queue_wait(q);
2124 
2125 		/*
2126 		 * timeout handler can't touch hw queue during the
2127 		 * reinitialization
2128 		 */
2129 		del_timer_sync(&q->timeout);
2130 	}
2131 
2132 	list_for_each_entry(q, &all_q_list, all_q_node)
2133 		blk_mq_queue_reinit(q);
2134 
2135 	list_for_each_entry(q, &all_q_list, all_q_node)
2136 		blk_mq_unfreeze_queue(q);
2137 
2138 	mutex_unlock(&all_q_mutex);
2139 	return NOTIFY_OK;
2140 }
2141 
2142 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2143 {
2144 	int i;
2145 
2146 	for (i = 0; i < set->nr_hw_queues; i++) {
2147 		set->tags[i] = blk_mq_init_rq_map(set, i);
2148 		if (!set->tags[i])
2149 			goto out_unwind;
2150 	}
2151 
2152 	return 0;
2153 
2154 out_unwind:
2155 	while (--i >= 0)
2156 		blk_mq_free_rq_map(set, set->tags[i], i);
2157 
2158 	return -ENOMEM;
2159 }
2160 
2161 /*
2162  * Allocate the request maps associated with this tag_set. Note that this
2163  * may reduce the depth asked for, if memory is tight. set->queue_depth
2164  * will be updated to reflect the allocated depth.
2165  */
2166 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2167 {
2168 	unsigned int depth;
2169 	int err;
2170 
2171 	depth = set->queue_depth;
2172 	do {
2173 		err = __blk_mq_alloc_rq_maps(set);
2174 		if (!err)
2175 			break;
2176 
2177 		set->queue_depth >>= 1;
2178 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2179 			err = -ENOMEM;
2180 			break;
2181 		}
2182 	} while (set->queue_depth);
2183 
2184 	if (!set->queue_depth || err) {
2185 		pr_err("blk-mq: failed to allocate request map\n");
2186 		return -ENOMEM;
2187 	}
2188 
2189 	if (depth != set->queue_depth)
2190 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2191 						depth, set->queue_depth);
2192 
2193 	return 0;
2194 }
2195 
2196 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2197 {
2198 	return tags->cpumask;
2199 }
2200 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2201 
2202 /*
2203  * Alloc a tag set to be associated with one or more request queues.
2204  * May fail with EINVAL for various error conditions. May adjust the
2205  * requested depth down, if if it too large. In that case, the set
2206  * value will be stored in set->queue_depth.
2207  */
2208 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2209 {
2210 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2211 
2212 	if (!set->nr_hw_queues)
2213 		return -EINVAL;
2214 	if (!set->queue_depth)
2215 		return -EINVAL;
2216 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2217 		return -EINVAL;
2218 
2219 	if (!set->ops->queue_rq || !set->ops->map_queue)
2220 		return -EINVAL;
2221 
2222 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2223 		pr_info("blk-mq: reduced tag depth to %u\n",
2224 			BLK_MQ_MAX_DEPTH);
2225 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2226 	}
2227 
2228 	/*
2229 	 * If a crashdump is active, then we are potentially in a very
2230 	 * memory constrained environment. Limit us to 1 queue and
2231 	 * 64 tags to prevent using too much memory.
2232 	 */
2233 	if (is_kdump_kernel()) {
2234 		set->nr_hw_queues = 1;
2235 		set->queue_depth = min(64U, set->queue_depth);
2236 	}
2237 
2238 	set->tags = kmalloc_node(set->nr_hw_queues *
2239 				 sizeof(struct blk_mq_tags *),
2240 				 GFP_KERNEL, set->numa_node);
2241 	if (!set->tags)
2242 		return -ENOMEM;
2243 
2244 	if (blk_mq_alloc_rq_maps(set))
2245 		goto enomem;
2246 
2247 	mutex_init(&set->tag_list_lock);
2248 	INIT_LIST_HEAD(&set->tag_list);
2249 
2250 	return 0;
2251 enomem:
2252 	kfree(set->tags);
2253 	set->tags = NULL;
2254 	return -ENOMEM;
2255 }
2256 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2257 
2258 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2259 {
2260 	int i;
2261 
2262 	for (i = 0; i < set->nr_hw_queues; i++) {
2263 		if (set->tags[i]) {
2264 			blk_mq_free_rq_map(set, set->tags[i], i);
2265 			free_cpumask_var(set->tags[i]->cpumask);
2266 		}
2267 	}
2268 
2269 	kfree(set->tags);
2270 	set->tags = NULL;
2271 }
2272 EXPORT_SYMBOL(blk_mq_free_tag_set);
2273 
2274 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2275 {
2276 	struct blk_mq_tag_set *set = q->tag_set;
2277 	struct blk_mq_hw_ctx *hctx;
2278 	int i, ret;
2279 
2280 	if (!set || nr > set->queue_depth)
2281 		return -EINVAL;
2282 
2283 	ret = 0;
2284 	queue_for_each_hw_ctx(q, hctx, i) {
2285 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2286 		if (ret)
2287 			break;
2288 	}
2289 
2290 	if (!ret)
2291 		q->nr_requests = nr;
2292 
2293 	return ret;
2294 }
2295 
2296 void blk_mq_disable_hotplug(void)
2297 {
2298 	mutex_lock(&all_q_mutex);
2299 }
2300 
2301 void blk_mq_enable_hotplug(void)
2302 {
2303 	mutex_unlock(&all_q_mutex);
2304 }
2305 
2306 static int __init blk_mq_init(void)
2307 {
2308 	blk_mq_cpu_init();
2309 
2310 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2311 
2312 	return 0;
2313 }
2314 subsys_initcall(blk_mq_init);
2315