xref: /linux/block/blk-mq.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 
32 #include <trace/events/block.h>
33 
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
42 
43 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
44 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
45 
46 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
47 static void blk_mq_request_bypass_insert(struct request *rq,
48 		blk_insert_t flags);
49 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
50 		struct list_head *list);
51 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
52 			 struct io_comp_batch *iob, unsigned int flags);
53 
54 /*
55  * Check if any of the ctx, dispatch list or elevator
56  * have pending work in this hardware queue.
57  */
58 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
59 {
60 	return !list_empty_careful(&hctx->dispatch) ||
61 		sbitmap_any_bit_set(&hctx->ctx_map) ||
62 			blk_mq_sched_has_work(hctx);
63 }
64 
65 /*
66  * Mark this ctx as having pending work in this hardware queue
67  */
68 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
69 				     struct blk_mq_ctx *ctx)
70 {
71 	const int bit = ctx->index_hw[hctx->type];
72 
73 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
74 		sbitmap_set_bit(&hctx->ctx_map, bit);
75 }
76 
77 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
78 				      struct blk_mq_ctx *ctx)
79 {
80 	const int bit = ctx->index_hw[hctx->type];
81 
82 	sbitmap_clear_bit(&hctx->ctx_map, bit);
83 }
84 
85 struct mq_inflight {
86 	struct block_device *part;
87 	unsigned int inflight[2];
88 };
89 
90 static bool blk_mq_check_inflight(struct request *rq, void *priv)
91 {
92 	struct mq_inflight *mi = priv;
93 
94 	if (rq->part && blk_do_io_stat(rq) &&
95 	    (!mi->part->bd_partno || rq->part == mi->part) &&
96 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
97 		mi->inflight[rq_data_dir(rq)]++;
98 
99 	return true;
100 }
101 
102 unsigned int blk_mq_in_flight(struct request_queue *q,
103 		struct block_device *part)
104 {
105 	struct mq_inflight mi = { .part = part };
106 
107 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
108 
109 	return mi.inflight[0] + mi.inflight[1];
110 }
111 
112 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
113 		unsigned int inflight[2])
114 {
115 	struct mq_inflight mi = { .part = part };
116 
117 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 	inflight[0] = mi.inflight[0];
119 	inflight[1] = mi.inflight[1];
120 }
121 
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 	mutex_lock(&q->mq_freeze_lock);
125 	if (++q->mq_freeze_depth == 1) {
126 		percpu_ref_kill(&q->q_usage_counter);
127 		mutex_unlock(&q->mq_freeze_lock);
128 		if (queue_is_mq(q))
129 			blk_mq_run_hw_queues(q, false);
130 	} else {
131 		mutex_unlock(&q->mq_freeze_lock);
132 	}
133 }
134 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
135 
136 void blk_mq_freeze_queue_wait(struct request_queue *q)
137 {
138 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
141 
142 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
143 				     unsigned long timeout)
144 {
145 	return wait_event_timeout(q->mq_freeze_wq,
146 					percpu_ref_is_zero(&q->q_usage_counter),
147 					timeout);
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
150 
151 /*
152  * Guarantee no request is in use, so we can change any data structure of
153  * the queue afterward.
154  */
155 void blk_freeze_queue(struct request_queue *q)
156 {
157 	/*
158 	 * In the !blk_mq case we are only calling this to kill the
159 	 * q_usage_counter, otherwise this increases the freeze depth
160 	 * and waits for it to return to zero.  For this reason there is
161 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
162 	 * exported to drivers as the only user for unfreeze is blk_mq.
163 	 */
164 	blk_freeze_queue_start(q);
165 	blk_mq_freeze_queue_wait(q);
166 }
167 
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * ...just an alias to keep freeze and unfreeze actions balanced
172 	 * in the blk_mq_* namespace
173 	 */
174 	blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177 
178 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
179 {
180 	mutex_lock(&q->mq_freeze_lock);
181 	if (force_atomic)
182 		q->q_usage_counter.data->force_atomic = true;
183 	q->mq_freeze_depth--;
184 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
185 	if (!q->mq_freeze_depth) {
186 		percpu_ref_resurrect(&q->q_usage_counter);
187 		wake_up_all(&q->mq_freeze_wq);
188 	}
189 	mutex_unlock(&q->mq_freeze_lock);
190 }
191 
192 void blk_mq_unfreeze_queue(struct request_queue *q)
193 {
194 	__blk_mq_unfreeze_queue(q, false);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
197 
198 /*
199  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
200  * mpt3sas driver such that this function can be removed.
201  */
202 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
203 {
204 	unsigned long flags;
205 
206 	spin_lock_irqsave(&q->queue_lock, flags);
207 	if (!q->quiesce_depth++)
208 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 	spin_unlock_irqrestore(&q->queue_lock, flags);
210 }
211 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
212 
213 /**
214  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
215  * @set: tag_set to wait on
216  *
217  * Note: it is driver's responsibility for making sure that quiesce has
218  * been started on or more of the request_queues of the tag_set.  This
219  * function only waits for the quiesce on those request_queues that had
220  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
221  */
222 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
223 {
224 	if (set->flags & BLK_MQ_F_BLOCKING)
225 		synchronize_srcu(set->srcu);
226 	else
227 		synchronize_rcu();
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
230 
231 /**
232  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
233  * @q: request queue.
234  *
235  * Note: this function does not prevent that the struct request end_io()
236  * callback function is invoked. Once this function is returned, we make
237  * sure no dispatch can happen until the queue is unquiesced via
238  * blk_mq_unquiesce_queue().
239  */
240 void blk_mq_quiesce_queue(struct request_queue *q)
241 {
242 	blk_mq_quiesce_queue_nowait(q);
243 	/* nothing to wait for non-mq queues */
244 	if (queue_is_mq(q))
245 		blk_mq_wait_quiesce_done(q->tag_set);
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248 
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 	unsigned long flags;
259 	bool run_queue = false;
260 
261 	spin_lock_irqsave(&q->queue_lock, flags);
262 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
263 		;
264 	} else if (!--q->quiesce_depth) {
265 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266 		run_queue = true;
267 	}
268 	spin_unlock_irqrestore(&q->queue_lock, flags);
269 
270 	/* dispatch requests which are inserted during quiescing */
271 	if (run_queue)
272 		blk_mq_run_hw_queues(q, true);
273 }
274 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
275 
276 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
277 {
278 	struct request_queue *q;
279 
280 	mutex_lock(&set->tag_list_lock);
281 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
282 		if (!blk_queue_skip_tagset_quiesce(q))
283 			blk_mq_quiesce_queue_nowait(q);
284 	}
285 	blk_mq_wait_quiesce_done(set);
286 	mutex_unlock(&set->tag_list_lock);
287 }
288 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
289 
290 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
291 {
292 	struct request_queue *q;
293 
294 	mutex_lock(&set->tag_list_lock);
295 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
296 		if (!blk_queue_skip_tagset_quiesce(q))
297 			blk_mq_unquiesce_queue(q);
298 	}
299 	mutex_unlock(&set->tag_list_lock);
300 }
301 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
302 
303 void blk_mq_wake_waiters(struct request_queue *q)
304 {
305 	struct blk_mq_hw_ctx *hctx;
306 	unsigned long i;
307 
308 	queue_for_each_hw_ctx(q, hctx, i)
309 		if (blk_mq_hw_queue_mapped(hctx))
310 			blk_mq_tag_wakeup_all(hctx->tags, true);
311 }
312 
313 void blk_rq_init(struct request_queue *q, struct request *rq)
314 {
315 	memset(rq, 0, sizeof(*rq));
316 
317 	INIT_LIST_HEAD(&rq->queuelist);
318 	rq->q = q;
319 	rq->__sector = (sector_t) -1;
320 	INIT_HLIST_NODE(&rq->hash);
321 	RB_CLEAR_NODE(&rq->rb_node);
322 	rq->tag = BLK_MQ_NO_TAG;
323 	rq->internal_tag = BLK_MQ_NO_TAG;
324 	rq->start_time_ns = blk_time_get_ns();
325 	rq->part = NULL;
326 	blk_crypto_rq_set_defaults(rq);
327 }
328 EXPORT_SYMBOL(blk_rq_init);
329 
330 /* Set start and alloc time when the allocated request is actually used */
331 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
332 {
333 	if (blk_mq_need_time_stamp(rq))
334 		rq->start_time_ns = blk_time_get_ns();
335 	else
336 		rq->start_time_ns = 0;
337 
338 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
339 	if (blk_queue_rq_alloc_time(rq->q))
340 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
341 	else
342 		rq->alloc_time_ns = 0;
343 #endif
344 }
345 
346 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
347 		struct blk_mq_tags *tags, unsigned int tag)
348 {
349 	struct blk_mq_ctx *ctx = data->ctx;
350 	struct blk_mq_hw_ctx *hctx = data->hctx;
351 	struct request_queue *q = data->q;
352 	struct request *rq = tags->static_rqs[tag];
353 
354 	rq->q = q;
355 	rq->mq_ctx = ctx;
356 	rq->mq_hctx = hctx;
357 	rq->cmd_flags = data->cmd_flags;
358 
359 	if (data->flags & BLK_MQ_REQ_PM)
360 		data->rq_flags |= RQF_PM;
361 	if (blk_queue_io_stat(q))
362 		data->rq_flags |= RQF_IO_STAT;
363 	rq->rq_flags = data->rq_flags;
364 
365 	if (data->rq_flags & RQF_SCHED_TAGS) {
366 		rq->tag = BLK_MQ_NO_TAG;
367 		rq->internal_tag = tag;
368 	} else {
369 		rq->tag = tag;
370 		rq->internal_tag = BLK_MQ_NO_TAG;
371 	}
372 	rq->timeout = 0;
373 
374 	rq->part = NULL;
375 	rq->io_start_time_ns = 0;
376 	rq->stats_sectors = 0;
377 	rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379 	rq->nr_integrity_segments = 0;
380 #endif
381 	rq->end_io = NULL;
382 	rq->end_io_data = NULL;
383 
384 	blk_crypto_rq_set_defaults(rq);
385 	INIT_LIST_HEAD(&rq->queuelist);
386 	/* tag was already set */
387 	WRITE_ONCE(rq->deadline, 0);
388 	req_ref_set(rq, 1);
389 
390 	if (rq->rq_flags & RQF_USE_SCHED) {
391 		struct elevator_queue *e = data->q->elevator;
392 
393 		INIT_HLIST_NODE(&rq->hash);
394 		RB_CLEAR_NODE(&rq->rb_node);
395 
396 		if (e->type->ops.prepare_request)
397 			e->type->ops.prepare_request(rq);
398 	}
399 
400 	return rq;
401 }
402 
403 static inline struct request *
404 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
405 {
406 	unsigned int tag, tag_offset;
407 	struct blk_mq_tags *tags;
408 	struct request *rq;
409 	unsigned long tag_mask;
410 	int i, nr = 0;
411 
412 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413 	if (unlikely(!tag_mask))
414 		return NULL;
415 
416 	tags = blk_mq_tags_from_data(data);
417 	for (i = 0; tag_mask; i++) {
418 		if (!(tag_mask & (1UL << i)))
419 			continue;
420 		tag = tag_offset + i;
421 		prefetch(tags->static_rqs[tag]);
422 		tag_mask &= ~(1UL << i);
423 		rq = blk_mq_rq_ctx_init(data, tags, tag);
424 		rq_list_add(data->cached_rq, rq);
425 		nr++;
426 	}
427 	if (!(data->rq_flags & RQF_SCHED_TAGS))
428 		blk_mq_add_active_requests(data->hctx, nr);
429 	/* caller already holds a reference, add for remainder */
430 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431 	data->nr_tags -= nr;
432 
433 	return rq_list_pop(data->cached_rq);
434 }
435 
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438 	struct request_queue *q = data->q;
439 	u64 alloc_time_ns = 0;
440 	struct request *rq;
441 	unsigned int tag;
442 
443 	/* alloc_time includes depth and tag waits */
444 	if (blk_queue_rq_alloc_time(q))
445 		alloc_time_ns = blk_time_get_ns();
446 
447 	if (data->cmd_flags & REQ_NOWAIT)
448 		data->flags |= BLK_MQ_REQ_NOWAIT;
449 
450 	if (q->elevator) {
451 		/*
452 		 * All requests use scheduler tags when an I/O scheduler is
453 		 * enabled for the queue.
454 		 */
455 		data->rq_flags |= RQF_SCHED_TAGS;
456 
457 		/*
458 		 * Flush/passthrough requests are special and go directly to the
459 		 * dispatch list.
460 		 */
461 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462 		    !blk_op_is_passthrough(data->cmd_flags)) {
463 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
464 
465 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466 
467 			data->rq_flags |= RQF_USE_SCHED;
468 			if (ops->limit_depth)
469 				ops->limit_depth(data->cmd_flags, data);
470 		}
471 	}
472 
473 retry:
474 	data->ctx = blk_mq_get_ctx(q);
475 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476 	if (!(data->rq_flags & RQF_SCHED_TAGS))
477 		blk_mq_tag_busy(data->hctx);
478 
479 	if (data->flags & BLK_MQ_REQ_RESERVED)
480 		data->rq_flags |= RQF_RESV;
481 
482 	/*
483 	 * Try batched alloc if we want more than 1 tag.
484 	 */
485 	if (data->nr_tags > 1) {
486 		rq = __blk_mq_alloc_requests_batch(data);
487 		if (rq) {
488 			blk_mq_rq_time_init(rq, alloc_time_ns);
489 			return rq;
490 		}
491 		data->nr_tags = 1;
492 	}
493 
494 	/*
495 	 * Waiting allocations only fail because of an inactive hctx.  In that
496 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
497 	 * should have migrated us to an online CPU by now.
498 	 */
499 	tag = blk_mq_get_tag(data);
500 	if (tag == BLK_MQ_NO_TAG) {
501 		if (data->flags & BLK_MQ_REQ_NOWAIT)
502 			return NULL;
503 		/*
504 		 * Give up the CPU and sleep for a random short time to
505 		 * ensure that thread using a realtime scheduling class
506 		 * are migrated off the CPU, and thus off the hctx that
507 		 * is going away.
508 		 */
509 		msleep(3);
510 		goto retry;
511 	}
512 
513 	if (!(data->rq_flags & RQF_SCHED_TAGS))
514 		blk_mq_inc_active_requests(data->hctx);
515 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
516 	blk_mq_rq_time_init(rq, alloc_time_ns);
517 	return rq;
518 }
519 
520 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
521 					    struct blk_plug *plug,
522 					    blk_opf_t opf,
523 					    blk_mq_req_flags_t flags)
524 {
525 	struct blk_mq_alloc_data data = {
526 		.q		= q,
527 		.flags		= flags,
528 		.cmd_flags	= opf,
529 		.nr_tags	= plug->nr_ios,
530 		.cached_rq	= &plug->cached_rq,
531 	};
532 	struct request *rq;
533 
534 	if (blk_queue_enter(q, flags))
535 		return NULL;
536 
537 	plug->nr_ios = 1;
538 
539 	rq = __blk_mq_alloc_requests(&data);
540 	if (unlikely(!rq))
541 		blk_queue_exit(q);
542 	return rq;
543 }
544 
545 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
546 						   blk_opf_t opf,
547 						   blk_mq_req_flags_t flags)
548 {
549 	struct blk_plug *plug = current->plug;
550 	struct request *rq;
551 
552 	if (!plug)
553 		return NULL;
554 
555 	if (rq_list_empty(plug->cached_rq)) {
556 		if (plug->nr_ios == 1)
557 			return NULL;
558 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
559 		if (!rq)
560 			return NULL;
561 	} else {
562 		rq = rq_list_peek(&plug->cached_rq);
563 		if (!rq || rq->q != q)
564 			return NULL;
565 
566 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
567 			return NULL;
568 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
569 			return NULL;
570 
571 		plug->cached_rq = rq_list_next(rq);
572 		blk_mq_rq_time_init(rq, 0);
573 	}
574 
575 	rq->cmd_flags = opf;
576 	INIT_LIST_HEAD(&rq->queuelist);
577 	return rq;
578 }
579 
580 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
581 		blk_mq_req_flags_t flags)
582 {
583 	struct request *rq;
584 
585 	rq = blk_mq_alloc_cached_request(q, opf, flags);
586 	if (!rq) {
587 		struct blk_mq_alloc_data data = {
588 			.q		= q,
589 			.flags		= flags,
590 			.cmd_flags	= opf,
591 			.nr_tags	= 1,
592 		};
593 		int ret;
594 
595 		ret = blk_queue_enter(q, flags);
596 		if (ret)
597 			return ERR_PTR(ret);
598 
599 		rq = __blk_mq_alloc_requests(&data);
600 		if (!rq)
601 			goto out_queue_exit;
602 	}
603 	rq->__data_len = 0;
604 	rq->__sector = (sector_t) -1;
605 	rq->bio = rq->biotail = NULL;
606 	return rq;
607 out_queue_exit:
608 	blk_queue_exit(q);
609 	return ERR_PTR(-EWOULDBLOCK);
610 }
611 EXPORT_SYMBOL(blk_mq_alloc_request);
612 
613 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
614 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
615 {
616 	struct blk_mq_alloc_data data = {
617 		.q		= q,
618 		.flags		= flags,
619 		.cmd_flags	= opf,
620 		.nr_tags	= 1,
621 	};
622 	u64 alloc_time_ns = 0;
623 	struct request *rq;
624 	unsigned int cpu;
625 	unsigned int tag;
626 	int ret;
627 
628 	/* alloc_time includes depth and tag waits */
629 	if (blk_queue_rq_alloc_time(q))
630 		alloc_time_ns = blk_time_get_ns();
631 
632 	/*
633 	 * If the tag allocator sleeps we could get an allocation for a
634 	 * different hardware context.  No need to complicate the low level
635 	 * allocator for this for the rare use case of a command tied to
636 	 * a specific queue.
637 	 */
638 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
639 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
640 		return ERR_PTR(-EINVAL);
641 
642 	if (hctx_idx >= q->nr_hw_queues)
643 		return ERR_PTR(-EIO);
644 
645 	ret = blk_queue_enter(q, flags);
646 	if (ret)
647 		return ERR_PTR(ret);
648 
649 	/*
650 	 * Check if the hardware context is actually mapped to anything.
651 	 * If not tell the caller that it should skip this queue.
652 	 */
653 	ret = -EXDEV;
654 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
655 	if (!blk_mq_hw_queue_mapped(data.hctx))
656 		goto out_queue_exit;
657 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
658 	if (cpu >= nr_cpu_ids)
659 		goto out_queue_exit;
660 	data.ctx = __blk_mq_get_ctx(q, cpu);
661 
662 	if (q->elevator)
663 		data.rq_flags |= RQF_SCHED_TAGS;
664 	else
665 		blk_mq_tag_busy(data.hctx);
666 
667 	if (flags & BLK_MQ_REQ_RESERVED)
668 		data.rq_flags |= RQF_RESV;
669 
670 	ret = -EWOULDBLOCK;
671 	tag = blk_mq_get_tag(&data);
672 	if (tag == BLK_MQ_NO_TAG)
673 		goto out_queue_exit;
674 	if (!(data.rq_flags & RQF_SCHED_TAGS))
675 		blk_mq_inc_active_requests(data.hctx);
676 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
677 	blk_mq_rq_time_init(rq, alloc_time_ns);
678 	rq->__data_len = 0;
679 	rq->__sector = (sector_t) -1;
680 	rq->bio = rq->biotail = NULL;
681 	return rq;
682 
683 out_queue_exit:
684 	blk_queue_exit(q);
685 	return ERR_PTR(ret);
686 }
687 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
688 
689 static void blk_mq_finish_request(struct request *rq)
690 {
691 	struct request_queue *q = rq->q;
692 
693 	if (rq->rq_flags & RQF_USE_SCHED) {
694 		q->elevator->type->ops.finish_request(rq);
695 		/*
696 		 * For postflush request that may need to be
697 		 * completed twice, we should clear this flag
698 		 * to avoid double finish_request() on the rq.
699 		 */
700 		rq->rq_flags &= ~RQF_USE_SCHED;
701 	}
702 }
703 
704 static void __blk_mq_free_request(struct request *rq)
705 {
706 	struct request_queue *q = rq->q;
707 	struct blk_mq_ctx *ctx = rq->mq_ctx;
708 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
709 	const int sched_tag = rq->internal_tag;
710 
711 	blk_crypto_free_request(rq);
712 	blk_pm_mark_last_busy(rq);
713 	rq->mq_hctx = NULL;
714 
715 	if (rq->tag != BLK_MQ_NO_TAG) {
716 		blk_mq_dec_active_requests(hctx);
717 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
718 	}
719 	if (sched_tag != BLK_MQ_NO_TAG)
720 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
721 	blk_mq_sched_restart(hctx);
722 	blk_queue_exit(q);
723 }
724 
725 void blk_mq_free_request(struct request *rq)
726 {
727 	struct request_queue *q = rq->q;
728 
729 	blk_mq_finish_request(rq);
730 
731 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
732 		laptop_io_completion(q->disk->bdi);
733 
734 	rq_qos_done(q, rq);
735 
736 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
737 	if (req_ref_put_and_test(rq))
738 		__blk_mq_free_request(rq);
739 }
740 EXPORT_SYMBOL_GPL(blk_mq_free_request);
741 
742 void blk_mq_free_plug_rqs(struct blk_plug *plug)
743 {
744 	struct request *rq;
745 
746 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
747 		blk_mq_free_request(rq);
748 }
749 
750 void blk_dump_rq_flags(struct request *rq, char *msg)
751 {
752 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
753 		rq->q->disk ? rq->q->disk->disk_name : "?",
754 		(__force unsigned long long) rq->cmd_flags);
755 
756 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
757 	       (unsigned long long)blk_rq_pos(rq),
758 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
759 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
760 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
761 }
762 EXPORT_SYMBOL(blk_dump_rq_flags);
763 
764 static void req_bio_endio(struct request *rq, struct bio *bio,
765 			  unsigned int nbytes, blk_status_t error)
766 {
767 	if (unlikely(error)) {
768 		bio->bi_status = error;
769 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
770 		/*
771 		 * Partial zone append completions cannot be supported as the
772 		 * BIO fragments may end up not being written sequentially.
773 		 * For such case, force the completed nbytes to be equal to
774 		 * the BIO size so that bio_advance() sets the BIO remaining
775 		 * size to 0 and we end up calling bio_endio() before returning.
776 		 */
777 		if (bio->bi_iter.bi_size != nbytes) {
778 			bio->bi_status = BLK_STS_IOERR;
779 			nbytes = bio->bi_iter.bi_size;
780 		} else {
781 			bio->bi_iter.bi_sector = rq->__sector;
782 		}
783 	}
784 
785 	bio_advance(bio, nbytes);
786 
787 	if (unlikely(rq->rq_flags & RQF_QUIET))
788 		bio_set_flag(bio, BIO_QUIET);
789 	/* don't actually finish bio if it's part of flush sequence */
790 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
791 		bio_endio(bio);
792 }
793 
794 static void blk_account_io_completion(struct request *req, unsigned int bytes)
795 {
796 	if (req->part && blk_do_io_stat(req)) {
797 		const int sgrp = op_stat_group(req_op(req));
798 
799 		part_stat_lock();
800 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
801 		part_stat_unlock();
802 	}
803 }
804 
805 static void blk_print_req_error(struct request *req, blk_status_t status)
806 {
807 	printk_ratelimited(KERN_ERR
808 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
809 		"phys_seg %u prio class %u\n",
810 		blk_status_to_str(status),
811 		req->q->disk ? req->q->disk->disk_name : "?",
812 		blk_rq_pos(req), (__force u32)req_op(req),
813 		blk_op_str(req_op(req)),
814 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
815 		req->nr_phys_segments,
816 		IOPRIO_PRIO_CLASS(req->ioprio));
817 }
818 
819 /*
820  * Fully end IO on a request. Does not support partial completions, or
821  * errors.
822  */
823 static void blk_complete_request(struct request *req)
824 {
825 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
826 	int total_bytes = blk_rq_bytes(req);
827 	struct bio *bio = req->bio;
828 
829 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
830 
831 	if (!bio)
832 		return;
833 
834 #ifdef CONFIG_BLK_DEV_INTEGRITY
835 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
836 		req->q->integrity.profile->complete_fn(req, total_bytes);
837 #endif
838 
839 	/*
840 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
841 	 * bio_endio().  Therefore, the keyslot must be released before that.
842 	 */
843 	blk_crypto_rq_put_keyslot(req);
844 
845 	blk_account_io_completion(req, total_bytes);
846 
847 	do {
848 		struct bio *next = bio->bi_next;
849 
850 		/* Completion has already been traced */
851 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
852 
853 		if (req_op(req) == REQ_OP_ZONE_APPEND)
854 			bio->bi_iter.bi_sector = req->__sector;
855 
856 		if (!is_flush)
857 			bio_endio(bio);
858 		bio = next;
859 	} while (bio);
860 
861 	/*
862 	 * Reset counters so that the request stacking driver
863 	 * can find how many bytes remain in the request
864 	 * later.
865 	 */
866 	if (!req->end_io) {
867 		req->bio = NULL;
868 		req->__data_len = 0;
869 	}
870 }
871 
872 /**
873  * blk_update_request - Complete multiple bytes without completing the request
874  * @req:      the request being processed
875  * @error:    block status code
876  * @nr_bytes: number of bytes to complete for @req
877  *
878  * Description:
879  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
880  *     the request structure even if @req doesn't have leftover.
881  *     If @req has leftover, sets it up for the next range of segments.
882  *
883  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
884  *     %false return from this function.
885  *
886  * Note:
887  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
888  *      except in the consistency check at the end of this function.
889  *
890  * Return:
891  *     %false - this request doesn't have any more data
892  *     %true  - this request has more data
893  **/
894 bool blk_update_request(struct request *req, blk_status_t error,
895 		unsigned int nr_bytes)
896 {
897 	int total_bytes;
898 
899 	trace_block_rq_complete(req, error, nr_bytes);
900 
901 	if (!req->bio)
902 		return false;
903 
904 #ifdef CONFIG_BLK_DEV_INTEGRITY
905 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
906 	    error == BLK_STS_OK)
907 		req->q->integrity.profile->complete_fn(req, nr_bytes);
908 #endif
909 
910 	/*
911 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
912 	 * bio_endio().  Therefore, the keyslot must be released before that.
913 	 */
914 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
915 		__blk_crypto_rq_put_keyslot(req);
916 
917 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
918 		     !(req->rq_flags & RQF_QUIET)) &&
919 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
920 		blk_print_req_error(req, error);
921 		trace_block_rq_error(req, error, nr_bytes);
922 	}
923 
924 	blk_account_io_completion(req, nr_bytes);
925 
926 	total_bytes = 0;
927 	while (req->bio) {
928 		struct bio *bio = req->bio;
929 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
930 
931 		if (bio_bytes == bio->bi_iter.bi_size)
932 			req->bio = bio->bi_next;
933 
934 		/* Completion has already been traced */
935 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
936 		req_bio_endio(req, bio, bio_bytes, error);
937 
938 		total_bytes += bio_bytes;
939 		nr_bytes -= bio_bytes;
940 
941 		if (!nr_bytes)
942 			break;
943 	}
944 
945 	/*
946 	 * completely done
947 	 */
948 	if (!req->bio) {
949 		/*
950 		 * Reset counters so that the request stacking driver
951 		 * can find how many bytes remain in the request
952 		 * later.
953 		 */
954 		req->__data_len = 0;
955 		return false;
956 	}
957 
958 	req->__data_len -= total_bytes;
959 
960 	/* update sector only for requests with clear definition of sector */
961 	if (!blk_rq_is_passthrough(req))
962 		req->__sector += total_bytes >> 9;
963 
964 	/* mixed attributes always follow the first bio */
965 	if (req->rq_flags & RQF_MIXED_MERGE) {
966 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
967 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
968 	}
969 
970 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
971 		/*
972 		 * If total number of sectors is less than the first segment
973 		 * size, something has gone terribly wrong.
974 		 */
975 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
976 			blk_dump_rq_flags(req, "request botched");
977 			req->__data_len = blk_rq_cur_bytes(req);
978 		}
979 
980 		/* recalculate the number of segments */
981 		req->nr_phys_segments = blk_recalc_rq_segments(req);
982 	}
983 
984 	return true;
985 }
986 EXPORT_SYMBOL_GPL(blk_update_request);
987 
988 static inline void blk_account_io_done(struct request *req, u64 now)
989 {
990 	trace_block_io_done(req);
991 
992 	/*
993 	 * Account IO completion.  flush_rq isn't accounted as a
994 	 * normal IO on queueing nor completion.  Accounting the
995 	 * containing request is enough.
996 	 */
997 	if (blk_do_io_stat(req) && req->part &&
998 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
999 		const int sgrp = op_stat_group(req_op(req));
1000 
1001 		part_stat_lock();
1002 		update_io_ticks(req->part, jiffies, true);
1003 		part_stat_inc(req->part, ios[sgrp]);
1004 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1005 		part_stat_unlock();
1006 	}
1007 }
1008 
1009 static inline void blk_account_io_start(struct request *req)
1010 {
1011 	trace_block_io_start(req);
1012 
1013 	if (blk_do_io_stat(req)) {
1014 		/*
1015 		 * All non-passthrough requests are created from a bio with one
1016 		 * exception: when a flush command that is part of a flush sequence
1017 		 * generated by the state machine in blk-flush.c is cloned onto the
1018 		 * lower device by dm-multipath we can get here without a bio.
1019 		 */
1020 		if (req->bio)
1021 			req->part = req->bio->bi_bdev;
1022 		else
1023 			req->part = req->q->disk->part0;
1024 
1025 		part_stat_lock();
1026 		update_io_ticks(req->part, jiffies, false);
1027 		part_stat_unlock();
1028 	}
1029 }
1030 
1031 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1032 {
1033 	if (rq->rq_flags & RQF_STATS)
1034 		blk_stat_add(rq, now);
1035 
1036 	blk_mq_sched_completed_request(rq, now);
1037 	blk_account_io_done(rq, now);
1038 }
1039 
1040 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1041 {
1042 	if (blk_mq_need_time_stamp(rq))
1043 		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1044 
1045 	blk_mq_finish_request(rq);
1046 
1047 	if (rq->end_io) {
1048 		rq_qos_done(rq->q, rq);
1049 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1050 			blk_mq_free_request(rq);
1051 	} else {
1052 		blk_mq_free_request(rq);
1053 	}
1054 }
1055 EXPORT_SYMBOL(__blk_mq_end_request);
1056 
1057 void blk_mq_end_request(struct request *rq, blk_status_t error)
1058 {
1059 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1060 		BUG();
1061 	__blk_mq_end_request(rq, error);
1062 }
1063 EXPORT_SYMBOL(blk_mq_end_request);
1064 
1065 #define TAG_COMP_BATCH		32
1066 
1067 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1068 					  int *tag_array, int nr_tags)
1069 {
1070 	struct request_queue *q = hctx->queue;
1071 
1072 	blk_mq_sub_active_requests(hctx, nr_tags);
1073 
1074 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1076 }
1077 
1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 {
1080 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1081 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1082 	struct request *rq;
1083 	u64 now = 0;
1084 
1085 	if (iob->need_ts)
1086 		now = blk_time_get_ns();
1087 
1088 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089 		prefetch(rq->bio);
1090 		prefetch(rq->rq_next);
1091 
1092 		blk_complete_request(rq);
1093 		if (iob->need_ts)
1094 			__blk_mq_end_request_acct(rq, now);
1095 
1096 		blk_mq_finish_request(rq);
1097 
1098 		rq_qos_done(rq->q, rq);
1099 
1100 		/*
1101 		 * If end_io handler returns NONE, then it still has
1102 		 * ownership of the request.
1103 		 */
1104 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1105 			continue;
1106 
1107 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1108 		if (!req_ref_put_and_test(rq))
1109 			continue;
1110 
1111 		blk_crypto_free_request(rq);
1112 		blk_pm_mark_last_busy(rq);
1113 
1114 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1115 			if (cur_hctx)
1116 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1117 			nr_tags = 0;
1118 			cur_hctx = rq->mq_hctx;
1119 		}
1120 		tags[nr_tags++] = rq->tag;
1121 	}
1122 
1123 	if (nr_tags)
1124 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1125 }
1126 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1127 
1128 static void blk_complete_reqs(struct llist_head *list)
1129 {
1130 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1131 	struct request *rq, *next;
1132 
1133 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1134 		rq->q->mq_ops->complete(rq);
1135 }
1136 
1137 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1138 {
1139 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1140 }
1141 
1142 static int blk_softirq_cpu_dead(unsigned int cpu)
1143 {
1144 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1145 	return 0;
1146 }
1147 
1148 static void __blk_mq_complete_request_remote(void *data)
1149 {
1150 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1151 }
1152 
1153 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1154 {
1155 	int cpu = raw_smp_processor_id();
1156 
1157 	if (!IS_ENABLED(CONFIG_SMP) ||
1158 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1159 		return false;
1160 	/*
1161 	 * With force threaded interrupts enabled, raising softirq from an SMP
1162 	 * function call will always result in waking the ksoftirqd thread.
1163 	 * This is probably worse than completing the request on a different
1164 	 * cache domain.
1165 	 */
1166 	if (force_irqthreads())
1167 		return false;
1168 
1169 	/* same CPU or cache domain and capacity?  Complete locally */
1170 	if (cpu == rq->mq_ctx->cpu ||
1171 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1172 	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1173 	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1174 		return false;
1175 
1176 	/* don't try to IPI to an offline CPU */
1177 	return cpu_online(rq->mq_ctx->cpu);
1178 }
1179 
1180 static void blk_mq_complete_send_ipi(struct request *rq)
1181 {
1182 	unsigned int cpu;
1183 
1184 	cpu = rq->mq_ctx->cpu;
1185 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1186 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1187 }
1188 
1189 static void blk_mq_raise_softirq(struct request *rq)
1190 {
1191 	struct llist_head *list;
1192 
1193 	preempt_disable();
1194 	list = this_cpu_ptr(&blk_cpu_done);
1195 	if (llist_add(&rq->ipi_list, list))
1196 		raise_softirq(BLOCK_SOFTIRQ);
1197 	preempt_enable();
1198 }
1199 
1200 bool blk_mq_complete_request_remote(struct request *rq)
1201 {
1202 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203 
1204 	/*
1205 	 * For request which hctx has only one ctx mapping,
1206 	 * or a polled request, always complete locally,
1207 	 * it's pointless to redirect the completion.
1208 	 */
1209 	if ((rq->mq_hctx->nr_ctx == 1 &&
1210 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1211 	     rq->cmd_flags & REQ_POLLED)
1212 		return false;
1213 
1214 	if (blk_mq_complete_need_ipi(rq)) {
1215 		blk_mq_complete_send_ipi(rq);
1216 		return true;
1217 	}
1218 
1219 	if (rq->q->nr_hw_queues == 1) {
1220 		blk_mq_raise_softirq(rq);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226 
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:		the request being processed
1230  *
1231  * Description:
1232  *	Complete a request by scheduling the ->complete_rq operation.
1233  **/
1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236 	if (!blk_mq_complete_request_remote(rq))
1237 		rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240 
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
1249 void blk_mq_start_request(struct request *rq)
1250 {
1251 	struct request_queue *q = rq->q;
1252 
1253 	trace_block_rq_issue(rq);
1254 
1255 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1256 	    !blk_rq_is_passthrough(rq)) {
1257 		rq->io_start_time_ns = blk_time_get_ns();
1258 		rq->stats_sectors = blk_rq_sectors(rq);
1259 		rq->rq_flags |= RQF_STATS;
1260 		rq_qos_issue(q, rq);
1261 	}
1262 
1263 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1264 
1265 	blk_add_timer(rq);
1266 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1267 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1268 
1269 #ifdef CONFIG_BLK_DEV_INTEGRITY
1270 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1271 		q->integrity.profile->prepare_fn(rq);
1272 #endif
1273 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1274 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1275 }
1276 EXPORT_SYMBOL(blk_mq_start_request);
1277 
1278 /*
1279  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1280  * queues. This is important for md arrays to benefit from merging
1281  * requests.
1282  */
1283 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1284 {
1285 	if (plug->multiple_queues)
1286 		return BLK_MAX_REQUEST_COUNT * 2;
1287 	return BLK_MAX_REQUEST_COUNT;
1288 }
1289 
1290 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1291 {
1292 	struct request *last = rq_list_peek(&plug->mq_list);
1293 
1294 	if (!plug->rq_count) {
1295 		trace_block_plug(rq->q);
1296 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1297 		   (!blk_queue_nomerges(rq->q) &&
1298 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1299 		blk_mq_flush_plug_list(plug, false);
1300 		last = NULL;
1301 		trace_block_plug(rq->q);
1302 	}
1303 
1304 	if (!plug->multiple_queues && last && last->q != rq->q)
1305 		plug->multiple_queues = true;
1306 	/*
1307 	 * Any request allocated from sched tags can't be issued to
1308 	 * ->queue_rqs() directly
1309 	 */
1310 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1311 		plug->has_elevator = true;
1312 	rq->rq_next = NULL;
1313 	rq_list_add(&plug->mq_list, rq);
1314 	plug->rq_count++;
1315 }
1316 
1317 /**
1318  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1319  * @rq:		request to insert
1320  * @at_head:    insert request at head or tail of queue
1321  *
1322  * Description:
1323  *    Insert a fully prepared request at the back of the I/O scheduler queue
1324  *    for execution.  Don't wait for completion.
1325  *
1326  * Note:
1327  *    This function will invoke @done directly if the queue is dead.
1328  */
1329 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1330 {
1331 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1332 
1333 	WARN_ON(irqs_disabled());
1334 	WARN_ON(!blk_rq_is_passthrough(rq));
1335 
1336 	blk_account_io_start(rq);
1337 
1338 	/*
1339 	 * As plugging can be enabled for passthrough requests on a zoned
1340 	 * device, directly accessing the plug instead of using blk_mq_plug()
1341 	 * should not have any consequences.
1342 	 */
1343 	if (current->plug && !at_head) {
1344 		blk_add_rq_to_plug(current->plug, rq);
1345 		return;
1346 	}
1347 
1348 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1349 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1350 }
1351 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1352 
1353 struct blk_rq_wait {
1354 	struct completion done;
1355 	blk_status_t ret;
1356 };
1357 
1358 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1359 {
1360 	struct blk_rq_wait *wait = rq->end_io_data;
1361 
1362 	wait->ret = ret;
1363 	complete(&wait->done);
1364 	return RQ_END_IO_NONE;
1365 }
1366 
1367 bool blk_rq_is_poll(struct request *rq)
1368 {
1369 	if (!rq->mq_hctx)
1370 		return false;
1371 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1372 		return false;
1373 	return true;
1374 }
1375 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1376 
1377 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1378 {
1379 	do {
1380 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1381 		cond_resched();
1382 	} while (!completion_done(wait));
1383 }
1384 
1385 /**
1386  * blk_execute_rq - insert a request into queue for execution
1387  * @rq:		request to insert
1388  * @at_head:    insert request at head or tail of queue
1389  *
1390  * Description:
1391  *    Insert a fully prepared request at the back of the I/O scheduler queue
1392  *    for execution and wait for completion.
1393  * Return: The blk_status_t result provided to blk_mq_end_request().
1394  */
1395 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1396 {
1397 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1398 	struct blk_rq_wait wait = {
1399 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1400 	};
1401 
1402 	WARN_ON(irqs_disabled());
1403 	WARN_ON(!blk_rq_is_passthrough(rq));
1404 
1405 	rq->end_io_data = &wait;
1406 	rq->end_io = blk_end_sync_rq;
1407 
1408 	blk_account_io_start(rq);
1409 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1410 	blk_mq_run_hw_queue(hctx, false);
1411 
1412 	if (blk_rq_is_poll(rq))
1413 		blk_rq_poll_completion(rq, &wait.done);
1414 	else
1415 		blk_wait_io(&wait.done);
1416 
1417 	return wait.ret;
1418 }
1419 EXPORT_SYMBOL(blk_execute_rq);
1420 
1421 static void __blk_mq_requeue_request(struct request *rq)
1422 {
1423 	struct request_queue *q = rq->q;
1424 
1425 	blk_mq_put_driver_tag(rq);
1426 
1427 	trace_block_rq_requeue(rq);
1428 	rq_qos_requeue(q, rq);
1429 
1430 	if (blk_mq_request_started(rq)) {
1431 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1432 		rq->rq_flags &= ~RQF_TIMED_OUT;
1433 	}
1434 }
1435 
1436 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1437 {
1438 	struct request_queue *q = rq->q;
1439 	unsigned long flags;
1440 
1441 	__blk_mq_requeue_request(rq);
1442 
1443 	/* this request will be re-inserted to io scheduler queue */
1444 	blk_mq_sched_requeue_request(rq);
1445 
1446 	spin_lock_irqsave(&q->requeue_lock, flags);
1447 	list_add_tail(&rq->queuelist, &q->requeue_list);
1448 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1449 
1450 	if (kick_requeue_list)
1451 		blk_mq_kick_requeue_list(q);
1452 }
1453 EXPORT_SYMBOL(blk_mq_requeue_request);
1454 
1455 static void blk_mq_requeue_work(struct work_struct *work)
1456 {
1457 	struct request_queue *q =
1458 		container_of(work, struct request_queue, requeue_work.work);
1459 	LIST_HEAD(rq_list);
1460 	LIST_HEAD(flush_list);
1461 	struct request *rq;
1462 
1463 	spin_lock_irq(&q->requeue_lock);
1464 	list_splice_init(&q->requeue_list, &rq_list);
1465 	list_splice_init(&q->flush_list, &flush_list);
1466 	spin_unlock_irq(&q->requeue_lock);
1467 
1468 	while (!list_empty(&rq_list)) {
1469 		rq = list_entry(rq_list.next, struct request, queuelist);
1470 		/*
1471 		 * If RQF_DONTPREP ist set, the request has been started by the
1472 		 * driver already and might have driver-specific data allocated
1473 		 * already.  Insert it into the hctx dispatch list to avoid
1474 		 * block layer merges for the request.
1475 		 */
1476 		if (rq->rq_flags & RQF_DONTPREP) {
1477 			list_del_init(&rq->queuelist);
1478 			blk_mq_request_bypass_insert(rq, 0);
1479 		} else {
1480 			list_del_init(&rq->queuelist);
1481 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1482 		}
1483 	}
1484 
1485 	while (!list_empty(&flush_list)) {
1486 		rq = list_entry(flush_list.next, struct request, queuelist);
1487 		list_del_init(&rq->queuelist);
1488 		blk_mq_insert_request(rq, 0);
1489 	}
1490 
1491 	blk_mq_run_hw_queues(q, false);
1492 }
1493 
1494 void blk_mq_kick_requeue_list(struct request_queue *q)
1495 {
1496 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1497 }
1498 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1499 
1500 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1501 				    unsigned long msecs)
1502 {
1503 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1504 				    msecs_to_jiffies(msecs));
1505 }
1506 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1507 
1508 static bool blk_is_flush_data_rq(struct request *rq)
1509 {
1510 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1511 }
1512 
1513 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1514 {
1515 	/*
1516 	 * If we find a request that isn't idle we know the queue is busy
1517 	 * as it's checked in the iter.
1518 	 * Return false to stop the iteration.
1519 	 *
1520 	 * In case of queue quiesce, if one flush data request is completed,
1521 	 * don't count it as inflight given the flush sequence is suspended,
1522 	 * and the original flush data request is invisible to driver, just
1523 	 * like other pending requests because of quiesce
1524 	 */
1525 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1526 				blk_is_flush_data_rq(rq) &&
1527 				blk_mq_request_completed(rq))) {
1528 		bool *busy = priv;
1529 
1530 		*busy = true;
1531 		return false;
1532 	}
1533 
1534 	return true;
1535 }
1536 
1537 bool blk_mq_queue_inflight(struct request_queue *q)
1538 {
1539 	bool busy = false;
1540 
1541 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1542 	return busy;
1543 }
1544 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1545 
1546 static void blk_mq_rq_timed_out(struct request *req)
1547 {
1548 	req->rq_flags |= RQF_TIMED_OUT;
1549 	if (req->q->mq_ops->timeout) {
1550 		enum blk_eh_timer_return ret;
1551 
1552 		ret = req->q->mq_ops->timeout(req);
1553 		if (ret == BLK_EH_DONE)
1554 			return;
1555 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1556 	}
1557 
1558 	blk_add_timer(req);
1559 }
1560 
1561 struct blk_expired_data {
1562 	bool has_timedout_rq;
1563 	unsigned long next;
1564 	unsigned long timeout_start;
1565 };
1566 
1567 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1568 {
1569 	unsigned long deadline;
1570 
1571 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1572 		return false;
1573 	if (rq->rq_flags & RQF_TIMED_OUT)
1574 		return false;
1575 
1576 	deadline = READ_ONCE(rq->deadline);
1577 	if (time_after_eq(expired->timeout_start, deadline))
1578 		return true;
1579 
1580 	if (expired->next == 0)
1581 		expired->next = deadline;
1582 	else if (time_after(expired->next, deadline))
1583 		expired->next = deadline;
1584 	return false;
1585 }
1586 
1587 void blk_mq_put_rq_ref(struct request *rq)
1588 {
1589 	if (is_flush_rq(rq)) {
1590 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1591 			blk_mq_free_request(rq);
1592 	} else if (req_ref_put_and_test(rq)) {
1593 		__blk_mq_free_request(rq);
1594 	}
1595 }
1596 
1597 static bool blk_mq_check_expired(struct request *rq, void *priv)
1598 {
1599 	struct blk_expired_data *expired = priv;
1600 
1601 	/*
1602 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1603 	 * be reallocated underneath the timeout handler's processing, then
1604 	 * the expire check is reliable. If the request is not expired, then
1605 	 * it was completed and reallocated as a new request after returning
1606 	 * from blk_mq_check_expired().
1607 	 */
1608 	if (blk_mq_req_expired(rq, expired)) {
1609 		expired->has_timedout_rq = true;
1610 		return false;
1611 	}
1612 	return true;
1613 }
1614 
1615 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1616 {
1617 	struct blk_expired_data *expired = priv;
1618 
1619 	if (blk_mq_req_expired(rq, expired))
1620 		blk_mq_rq_timed_out(rq);
1621 	return true;
1622 }
1623 
1624 static void blk_mq_timeout_work(struct work_struct *work)
1625 {
1626 	struct request_queue *q =
1627 		container_of(work, struct request_queue, timeout_work);
1628 	struct blk_expired_data expired = {
1629 		.timeout_start = jiffies,
1630 	};
1631 	struct blk_mq_hw_ctx *hctx;
1632 	unsigned long i;
1633 
1634 	/* A deadlock might occur if a request is stuck requiring a
1635 	 * timeout at the same time a queue freeze is waiting
1636 	 * completion, since the timeout code would not be able to
1637 	 * acquire the queue reference here.
1638 	 *
1639 	 * That's why we don't use blk_queue_enter here; instead, we use
1640 	 * percpu_ref_tryget directly, because we need to be able to
1641 	 * obtain a reference even in the short window between the queue
1642 	 * starting to freeze, by dropping the first reference in
1643 	 * blk_freeze_queue_start, and the moment the last request is
1644 	 * consumed, marked by the instant q_usage_counter reaches
1645 	 * zero.
1646 	 */
1647 	if (!percpu_ref_tryget(&q->q_usage_counter))
1648 		return;
1649 
1650 	/* check if there is any timed-out request */
1651 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1652 	if (expired.has_timedout_rq) {
1653 		/*
1654 		 * Before walking tags, we must ensure any submit started
1655 		 * before the current time has finished. Since the submit
1656 		 * uses srcu or rcu, wait for a synchronization point to
1657 		 * ensure all running submits have finished
1658 		 */
1659 		blk_mq_wait_quiesce_done(q->tag_set);
1660 
1661 		expired.next = 0;
1662 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1663 	}
1664 
1665 	if (expired.next != 0) {
1666 		mod_timer(&q->timeout, expired.next);
1667 	} else {
1668 		/*
1669 		 * Request timeouts are handled as a forward rolling timer. If
1670 		 * we end up here it means that no requests are pending and
1671 		 * also that no request has been pending for a while. Mark
1672 		 * each hctx as idle.
1673 		 */
1674 		queue_for_each_hw_ctx(q, hctx, i) {
1675 			/* the hctx may be unmapped, so check it here */
1676 			if (blk_mq_hw_queue_mapped(hctx))
1677 				blk_mq_tag_idle(hctx);
1678 		}
1679 	}
1680 	blk_queue_exit(q);
1681 }
1682 
1683 struct flush_busy_ctx_data {
1684 	struct blk_mq_hw_ctx *hctx;
1685 	struct list_head *list;
1686 };
1687 
1688 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1689 {
1690 	struct flush_busy_ctx_data *flush_data = data;
1691 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1692 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1693 	enum hctx_type type = hctx->type;
1694 
1695 	spin_lock(&ctx->lock);
1696 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1697 	sbitmap_clear_bit(sb, bitnr);
1698 	spin_unlock(&ctx->lock);
1699 	return true;
1700 }
1701 
1702 /*
1703  * Process software queues that have been marked busy, splicing them
1704  * to the for-dispatch
1705  */
1706 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1707 {
1708 	struct flush_busy_ctx_data data = {
1709 		.hctx = hctx,
1710 		.list = list,
1711 	};
1712 
1713 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1714 }
1715 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1716 
1717 struct dispatch_rq_data {
1718 	struct blk_mq_hw_ctx *hctx;
1719 	struct request *rq;
1720 };
1721 
1722 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1723 		void *data)
1724 {
1725 	struct dispatch_rq_data *dispatch_data = data;
1726 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1727 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1728 	enum hctx_type type = hctx->type;
1729 
1730 	spin_lock(&ctx->lock);
1731 	if (!list_empty(&ctx->rq_lists[type])) {
1732 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1733 		list_del_init(&dispatch_data->rq->queuelist);
1734 		if (list_empty(&ctx->rq_lists[type]))
1735 			sbitmap_clear_bit(sb, bitnr);
1736 	}
1737 	spin_unlock(&ctx->lock);
1738 
1739 	return !dispatch_data->rq;
1740 }
1741 
1742 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1743 					struct blk_mq_ctx *start)
1744 {
1745 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1746 	struct dispatch_rq_data data = {
1747 		.hctx = hctx,
1748 		.rq   = NULL,
1749 	};
1750 
1751 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1752 			       dispatch_rq_from_ctx, &data);
1753 
1754 	return data.rq;
1755 }
1756 
1757 bool __blk_mq_alloc_driver_tag(struct request *rq)
1758 {
1759 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1760 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1761 	int tag;
1762 
1763 	blk_mq_tag_busy(rq->mq_hctx);
1764 
1765 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1766 		bt = &rq->mq_hctx->tags->breserved_tags;
1767 		tag_offset = 0;
1768 	} else {
1769 		if (!hctx_may_queue(rq->mq_hctx, bt))
1770 			return false;
1771 	}
1772 
1773 	tag = __sbitmap_queue_get(bt);
1774 	if (tag == BLK_MQ_NO_TAG)
1775 		return false;
1776 
1777 	rq->tag = tag + tag_offset;
1778 	blk_mq_inc_active_requests(rq->mq_hctx);
1779 	return true;
1780 }
1781 
1782 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1783 				int flags, void *key)
1784 {
1785 	struct blk_mq_hw_ctx *hctx;
1786 
1787 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1788 
1789 	spin_lock(&hctx->dispatch_wait_lock);
1790 	if (!list_empty(&wait->entry)) {
1791 		struct sbitmap_queue *sbq;
1792 
1793 		list_del_init(&wait->entry);
1794 		sbq = &hctx->tags->bitmap_tags;
1795 		atomic_dec(&sbq->ws_active);
1796 	}
1797 	spin_unlock(&hctx->dispatch_wait_lock);
1798 
1799 	blk_mq_run_hw_queue(hctx, true);
1800 	return 1;
1801 }
1802 
1803 /*
1804  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1805  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1806  * restart. For both cases, take care to check the condition again after
1807  * marking us as waiting.
1808  */
1809 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1810 				 struct request *rq)
1811 {
1812 	struct sbitmap_queue *sbq;
1813 	struct wait_queue_head *wq;
1814 	wait_queue_entry_t *wait;
1815 	bool ret;
1816 
1817 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1818 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1819 		blk_mq_sched_mark_restart_hctx(hctx);
1820 
1821 		/*
1822 		 * It's possible that a tag was freed in the window between the
1823 		 * allocation failure and adding the hardware queue to the wait
1824 		 * queue.
1825 		 *
1826 		 * Don't clear RESTART here, someone else could have set it.
1827 		 * At most this will cost an extra queue run.
1828 		 */
1829 		return blk_mq_get_driver_tag(rq);
1830 	}
1831 
1832 	wait = &hctx->dispatch_wait;
1833 	if (!list_empty_careful(&wait->entry))
1834 		return false;
1835 
1836 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1837 		sbq = &hctx->tags->breserved_tags;
1838 	else
1839 		sbq = &hctx->tags->bitmap_tags;
1840 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1841 
1842 	spin_lock_irq(&wq->lock);
1843 	spin_lock(&hctx->dispatch_wait_lock);
1844 	if (!list_empty(&wait->entry)) {
1845 		spin_unlock(&hctx->dispatch_wait_lock);
1846 		spin_unlock_irq(&wq->lock);
1847 		return false;
1848 	}
1849 
1850 	atomic_inc(&sbq->ws_active);
1851 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1852 	__add_wait_queue(wq, wait);
1853 
1854 	/*
1855 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1856 	 * not imply barrier in case of failure.
1857 	 *
1858 	 * Order adding us to wait queue and allocating driver tag.
1859 	 *
1860 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1861 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1862 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1863 	 *
1864 	 * Otherwise, re-order of adding wait queue and getting driver tag
1865 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1866 	 * the waitqueue_active() may not observe us in wait queue.
1867 	 */
1868 	smp_mb();
1869 
1870 	/*
1871 	 * It's possible that a tag was freed in the window between the
1872 	 * allocation failure and adding the hardware queue to the wait
1873 	 * queue.
1874 	 */
1875 	ret = blk_mq_get_driver_tag(rq);
1876 	if (!ret) {
1877 		spin_unlock(&hctx->dispatch_wait_lock);
1878 		spin_unlock_irq(&wq->lock);
1879 		return false;
1880 	}
1881 
1882 	/*
1883 	 * We got a tag, remove ourselves from the wait queue to ensure
1884 	 * someone else gets the wakeup.
1885 	 */
1886 	list_del_init(&wait->entry);
1887 	atomic_dec(&sbq->ws_active);
1888 	spin_unlock(&hctx->dispatch_wait_lock);
1889 	spin_unlock_irq(&wq->lock);
1890 
1891 	return true;
1892 }
1893 
1894 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1895 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1896 /*
1897  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1898  * - EWMA is one simple way to compute running average value
1899  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1900  * - take 4 as factor for avoiding to get too small(0) result, and this
1901  *   factor doesn't matter because EWMA decreases exponentially
1902  */
1903 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1904 {
1905 	unsigned int ewma;
1906 
1907 	ewma = hctx->dispatch_busy;
1908 
1909 	if (!ewma && !busy)
1910 		return;
1911 
1912 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1913 	if (busy)
1914 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1915 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1916 
1917 	hctx->dispatch_busy = ewma;
1918 }
1919 
1920 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1921 
1922 static void blk_mq_handle_dev_resource(struct request *rq,
1923 				       struct list_head *list)
1924 {
1925 	list_add(&rq->queuelist, list);
1926 	__blk_mq_requeue_request(rq);
1927 }
1928 
1929 static void blk_mq_handle_zone_resource(struct request *rq,
1930 					struct list_head *zone_list)
1931 {
1932 	/*
1933 	 * If we end up here it is because we cannot dispatch a request to a
1934 	 * specific zone due to LLD level zone-write locking or other zone
1935 	 * related resource not being available. In this case, set the request
1936 	 * aside in zone_list for retrying it later.
1937 	 */
1938 	list_add(&rq->queuelist, zone_list);
1939 	__blk_mq_requeue_request(rq);
1940 }
1941 
1942 enum prep_dispatch {
1943 	PREP_DISPATCH_OK,
1944 	PREP_DISPATCH_NO_TAG,
1945 	PREP_DISPATCH_NO_BUDGET,
1946 };
1947 
1948 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1949 						  bool need_budget)
1950 {
1951 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1952 	int budget_token = -1;
1953 
1954 	if (need_budget) {
1955 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1956 		if (budget_token < 0) {
1957 			blk_mq_put_driver_tag(rq);
1958 			return PREP_DISPATCH_NO_BUDGET;
1959 		}
1960 		blk_mq_set_rq_budget_token(rq, budget_token);
1961 	}
1962 
1963 	if (!blk_mq_get_driver_tag(rq)) {
1964 		/*
1965 		 * The initial allocation attempt failed, so we need to
1966 		 * rerun the hardware queue when a tag is freed. The
1967 		 * waitqueue takes care of that. If the queue is run
1968 		 * before we add this entry back on the dispatch list,
1969 		 * we'll re-run it below.
1970 		 */
1971 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1972 			/*
1973 			 * All budgets not got from this function will be put
1974 			 * together during handling partial dispatch
1975 			 */
1976 			if (need_budget)
1977 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1978 			return PREP_DISPATCH_NO_TAG;
1979 		}
1980 	}
1981 
1982 	return PREP_DISPATCH_OK;
1983 }
1984 
1985 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1986 static void blk_mq_release_budgets(struct request_queue *q,
1987 		struct list_head *list)
1988 {
1989 	struct request *rq;
1990 
1991 	list_for_each_entry(rq, list, queuelist) {
1992 		int budget_token = blk_mq_get_rq_budget_token(rq);
1993 
1994 		if (budget_token >= 0)
1995 			blk_mq_put_dispatch_budget(q, budget_token);
1996 	}
1997 }
1998 
1999 /*
2000  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2001  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2002  * details)
2003  * Attention, we should explicitly call this in unusual cases:
2004  *  1) did not queue everything initially scheduled to queue
2005  *  2) the last attempt to queue a request failed
2006  */
2007 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2008 			      bool from_schedule)
2009 {
2010 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2011 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2012 		hctx->queue->mq_ops->commit_rqs(hctx);
2013 	}
2014 }
2015 
2016 /*
2017  * Returns true if we did some work AND can potentially do more.
2018  */
2019 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2020 			     unsigned int nr_budgets)
2021 {
2022 	enum prep_dispatch prep;
2023 	struct request_queue *q = hctx->queue;
2024 	struct request *rq;
2025 	int queued;
2026 	blk_status_t ret = BLK_STS_OK;
2027 	LIST_HEAD(zone_list);
2028 	bool needs_resource = false;
2029 
2030 	if (list_empty(list))
2031 		return false;
2032 
2033 	/*
2034 	 * Now process all the entries, sending them to the driver.
2035 	 */
2036 	queued = 0;
2037 	do {
2038 		struct blk_mq_queue_data bd;
2039 
2040 		rq = list_first_entry(list, struct request, queuelist);
2041 
2042 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2043 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2044 		if (prep != PREP_DISPATCH_OK)
2045 			break;
2046 
2047 		list_del_init(&rq->queuelist);
2048 
2049 		bd.rq = rq;
2050 		bd.last = list_empty(list);
2051 
2052 		/*
2053 		 * once the request is queued to lld, no need to cover the
2054 		 * budget any more
2055 		 */
2056 		if (nr_budgets)
2057 			nr_budgets--;
2058 		ret = q->mq_ops->queue_rq(hctx, &bd);
2059 		switch (ret) {
2060 		case BLK_STS_OK:
2061 			queued++;
2062 			break;
2063 		case BLK_STS_RESOURCE:
2064 			needs_resource = true;
2065 			fallthrough;
2066 		case BLK_STS_DEV_RESOURCE:
2067 			blk_mq_handle_dev_resource(rq, list);
2068 			goto out;
2069 		case BLK_STS_ZONE_RESOURCE:
2070 			/*
2071 			 * Move the request to zone_list and keep going through
2072 			 * the dispatch list to find more requests the drive can
2073 			 * accept.
2074 			 */
2075 			blk_mq_handle_zone_resource(rq, &zone_list);
2076 			needs_resource = true;
2077 			break;
2078 		default:
2079 			blk_mq_end_request(rq, ret);
2080 		}
2081 	} while (!list_empty(list));
2082 out:
2083 	if (!list_empty(&zone_list))
2084 		list_splice_tail_init(&zone_list, list);
2085 
2086 	/* If we didn't flush the entire list, we could have told the driver
2087 	 * there was more coming, but that turned out to be a lie.
2088 	 */
2089 	if (!list_empty(list) || ret != BLK_STS_OK)
2090 		blk_mq_commit_rqs(hctx, queued, false);
2091 
2092 	/*
2093 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2094 	 * that is where we will continue on next queue run.
2095 	 */
2096 	if (!list_empty(list)) {
2097 		bool needs_restart;
2098 		/* For non-shared tags, the RESTART check will suffice */
2099 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2100 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2101 			blk_mq_is_shared_tags(hctx->flags));
2102 
2103 		if (nr_budgets)
2104 			blk_mq_release_budgets(q, list);
2105 
2106 		spin_lock(&hctx->lock);
2107 		list_splice_tail_init(list, &hctx->dispatch);
2108 		spin_unlock(&hctx->lock);
2109 
2110 		/*
2111 		 * Order adding requests to hctx->dispatch and checking
2112 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2113 		 * in blk_mq_sched_restart(). Avoid restart code path to
2114 		 * miss the new added requests to hctx->dispatch, meantime
2115 		 * SCHED_RESTART is observed here.
2116 		 */
2117 		smp_mb();
2118 
2119 		/*
2120 		 * If SCHED_RESTART was set by the caller of this function and
2121 		 * it is no longer set that means that it was cleared by another
2122 		 * thread and hence that a queue rerun is needed.
2123 		 *
2124 		 * If 'no_tag' is set, that means that we failed getting
2125 		 * a driver tag with an I/O scheduler attached. If our dispatch
2126 		 * waitqueue is no longer active, ensure that we run the queue
2127 		 * AFTER adding our entries back to the list.
2128 		 *
2129 		 * If no I/O scheduler has been configured it is possible that
2130 		 * the hardware queue got stopped and restarted before requests
2131 		 * were pushed back onto the dispatch list. Rerun the queue to
2132 		 * avoid starvation. Notes:
2133 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2134 		 *   been stopped before rerunning a queue.
2135 		 * - Some but not all block drivers stop a queue before
2136 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2137 		 *   and dm-rq.
2138 		 *
2139 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2140 		 * bit is set, run queue after a delay to avoid IO stalls
2141 		 * that could otherwise occur if the queue is idle.  We'll do
2142 		 * similar if we couldn't get budget or couldn't lock a zone
2143 		 * and SCHED_RESTART is set.
2144 		 */
2145 		needs_restart = blk_mq_sched_needs_restart(hctx);
2146 		if (prep == PREP_DISPATCH_NO_BUDGET)
2147 			needs_resource = true;
2148 		if (!needs_restart ||
2149 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2150 			blk_mq_run_hw_queue(hctx, true);
2151 		else if (needs_resource)
2152 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2153 
2154 		blk_mq_update_dispatch_busy(hctx, true);
2155 		return false;
2156 	}
2157 
2158 	blk_mq_update_dispatch_busy(hctx, false);
2159 	return true;
2160 }
2161 
2162 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2163 {
2164 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2165 
2166 	if (cpu >= nr_cpu_ids)
2167 		cpu = cpumask_first(hctx->cpumask);
2168 	return cpu;
2169 }
2170 
2171 /*
2172  * It'd be great if the workqueue API had a way to pass
2173  * in a mask and had some smarts for more clever placement.
2174  * For now we just round-robin here, switching for every
2175  * BLK_MQ_CPU_WORK_BATCH queued items.
2176  */
2177 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2178 {
2179 	bool tried = false;
2180 	int next_cpu = hctx->next_cpu;
2181 
2182 	if (hctx->queue->nr_hw_queues == 1)
2183 		return WORK_CPU_UNBOUND;
2184 
2185 	if (--hctx->next_cpu_batch <= 0) {
2186 select_cpu:
2187 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2188 				cpu_online_mask);
2189 		if (next_cpu >= nr_cpu_ids)
2190 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2191 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2192 	}
2193 
2194 	/*
2195 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2196 	 * and it should only happen in the path of handling CPU DEAD.
2197 	 */
2198 	if (!cpu_online(next_cpu)) {
2199 		if (!tried) {
2200 			tried = true;
2201 			goto select_cpu;
2202 		}
2203 
2204 		/*
2205 		 * Make sure to re-select CPU next time once after CPUs
2206 		 * in hctx->cpumask become online again.
2207 		 */
2208 		hctx->next_cpu = next_cpu;
2209 		hctx->next_cpu_batch = 1;
2210 		return WORK_CPU_UNBOUND;
2211 	}
2212 
2213 	hctx->next_cpu = next_cpu;
2214 	return next_cpu;
2215 }
2216 
2217 /**
2218  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2219  * @hctx: Pointer to the hardware queue to run.
2220  * @msecs: Milliseconds of delay to wait before running the queue.
2221  *
2222  * Run a hardware queue asynchronously with a delay of @msecs.
2223  */
2224 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2225 {
2226 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2227 		return;
2228 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2229 				    msecs_to_jiffies(msecs));
2230 }
2231 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2232 
2233 /**
2234  * blk_mq_run_hw_queue - Start to run a hardware queue.
2235  * @hctx: Pointer to the hardware queue to run.
2236  * @async: If we want to run the queue asynchronously.
2237  *
2238  * Check if the request queue is not in a quiesced state and if there are
2239  * pending requests to be sent. If this is true, run the queue to send requests
2240  * to hardware.
2241  */
2242 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2243 {
2244 	bool need_run;
2245 
2246 	/*
2247 	 * We can't run the queue inline with interrupts disabled.
2248 	 */
2249 	WARN_ON_ONCE(!async && in_interrupt());
2250 
2251 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2252 
2253 	/*
2254 	 * When queue is quiesced, we may be switching io scheduler, or
2255 	 * updating nr_hw_queues, or other things, and we can't run queue
2256 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2257 	 *
2258 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2259 	 * quiesced.
2260 	 */
2261 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2262 		need_run = !blk_queue_quiesced(hctx->queue) &&
2263 		blk_mq_hctx_has_pending(hctx));
2264 
2265 	if (!need_run)
2266 		return;
2267 
2268 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2269 		blk_mq_delay_run_hw_queue(hctx, 0);
2270 		return;
2271 	}
2272 
2273 	blk_mq_run_dispatch_ops(hctx->queue,
2274 				blk_mq_sched_dispatch_requests(hctx));
2275 }
2276 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2277 
2278 /*
2279  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2280  * scheduler.
2281  */
2282 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2283 {
2284 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2285 	/*
2286 	 * If the IO scheduler does not respect hardware queues when
2287 	 * dispatching, we just don't bother with multiple HW queues and
2288 	 * dispatch from hctx for the current CPU since running multiple queues
2289 	 * just causes lock contention inside the scheduler and pointless cache
2290 	 * bouncing.
2291 	 */
2292 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2293 
2294 	if (!blk_mq_hctx_stopped(hctx))
2295 		return hctx;
2296 	return NULL;
2297 }
2298 
2299 /**
2300  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2301  * @q: Pointer to the request queue to run.
2302  * @async: If we want to run the queue asynchronously.
2303  */
2304 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2305 {
2306 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2307 	unsigned long i;
2308 
2309 	sq_hctx = NULL;
2310 	if (blk_queue_sq_sched(q))
2311 		sq_hctx = blk_mq_get_sq_hctx(q);
2312 	queue_for_each_hw_ctx(q, hctx, i) {
2313 		if (blk_mq_hctx_stopped(hctx))
2314 			continue;
2315 		/*
2316 		 * Dispatch from this hctx either if there's no hctx preferred
2317 		 * by IO scheduler or if it has requests that bypass the
2318 		 * scheduler.
2319 		 */
2320 		if (!sq_hctx || sq_hctx == hctx ||
2321 		    !list_empty_careful(&hctx->dispatch))
2322 			blk_mq_run_hw_queue(hctx, async);
2323 	}
2324 }
2325 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2326 
2327 /**
2328  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2329  * @q: Pointer to the request queue to run.
2330  * @msecs: Milliseconds of delay to wait before running the queues.
2331  */
2332 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2333 {
2334 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2335 	unsigned long i;
2336 
2337 	sq_hctx = NULL;
2338 	if (blk_queue_sq_sched(q))
2339 		sq_hctx = blk_mq_get_sq_hctx(q);
2340 	queue_for_each_hw_ctx(q, hctx, i) {
2341 		if (blk_mq_hctx_stopped(hctx))
2342 			continue;
2343 		/*
2344 		 * If there is already a run_work pending, leave the
2345 		 * pending delay untouched. Otherwise, a hctx can stall
2346 		 * if another hctx is re-delaying the other's work
2347 		 * before the work executes.
2348 		 */
2349 		if (delayed_work_pending(&hctx->run_work))
2350 			continue;
2351 		/*
2352 		 * Dispatch from this hctx either if there's no hctx preferred
2353 		 * by IO scheduler or if it has requests that bypass the
2354 		 * scheduler.
2355 		 */
2356 		if (!sq_hctx || sq_hctx == hctx ||
2357 		    !list_empty_careful(&hctx->dispatch))
2358 			blk_mq_delay_run_hw_queue(hctx, msecs);
2359 	}
2360 }
2361 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2362 
2363 /*
2364  * This function is often used for pausing .queue_rq() by driver when
2365  * there isn't enough resource or some conditions aren't satisfied, and
2366  * BLK_STS_RESOURCE is usually returned.
2367  *
2368  * We do not guarantee that dispatch can be drained or blocked
2369  * after blk_mq_stop_hw_queue() returns. Please use
2370  * blk_mq_quiesce_queue() for that requirement.
2371  */
2372 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2373 {
2374 	cancel_delayed_work(&hctx->run_work);
2375 
2376 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2377 }
2378 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2379 
2380 /*
2381  * This function is often used for pausing .queue_rq() by driver when
2382  * there isn't enough resource or some conditions aren't satisfied, and
2383  * BLK_STS_RESOURCE is usually returned.
2384  *
2385  * We do not guarantee that dispatch can be drained or blocked
2386  * after blk_mq_stop_hw_queues() returns. Please use
2387  * blk_mq_quiesce_queue() for that requirement.
2388  */
2389 void blk_mq_stop_hw_queues(struct request_queue *q)
2390 {
2391 	struct blk_mq_hw_ctx *hctx;
2392 	unsigned long i;
2393 
2394 	queue_for_each_hw_ctx(q, hctx, i)
2395 		blk_mq_stop_hw_queue(hctx);
2396 }
2397 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2398 
2399 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2400 {
2401 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2402 
2403 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2404 }
2405 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2406 
2407 void blk_mq_start_hw_queues(struct request_queue *q)
2408 {
2409 	struct blk_mq_hw_ctx *hctx;
2410 	unsigned long i;
2411 
2412 	queue_for_each_hw_ctx(q, hctx, i)
2413 		blk_mq_start_hw_queue(hctx);
2414 }
2415 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2416 
2417 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2418 {
2419 	if (!blk_mq_hctx_stopped(hctx))
2420 		return;
2421 
2422 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2423 	blk_mq_run_hw_queue(hctx, async);
2424 }
2425 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2426 
2427 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2428 {
2429 	struct blk_mq_hw_ctx *hctx;
2430 	unsigned long i;
2431 
2432 	queue_for_each_hw_ctx(q, hctx, i)
2433 		blk_mq_start_stopped_hw_queue(hctx, async ||
2434 					(hctx->flags & BLK_MQ_F_BLOCKING));
2435 }
2436 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2437 
2438 static void blk_mq_run_work_fn(struct work_struct *work)
2439 {
2440 	struct blk_mq_hw_ctx *hctx =
2441 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2442 
2443 	blk_mq_run_dispatch_ops(hctx->queue,
2444 				blk_mq_sched_dispatch_requests(hctx));
2445 }
2446 
2447 /**
2448  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2449  * @rq: Pointer to request to be inserted.
2450  * @flags: BLK_MQ_INSERT_*
2451  *
2452  * Should only be used carefully, when the caller knows we want to
2453  * bypass a potential IO scheduler on the target device.
2454  */
2455 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2456 {
2457 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2458 
2459 	spin_lock(&hctx->lock);
2460 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2461 		list_add(&rq->queuelist, &hctx->dispatch);
2462 	else
2463 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2464 	spin_unlock(&hctx->lock);
2465 }
2466 
2467 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2468 		struct blk_mq_ctx *ctx, struct list_head *list,
2469 		bool run_queue_async)
2470 {
2471 	struct request *rq;
2472 	enum hctx_type type = hctx->type;
2473 
2474 	/*
2475 	 * Try to issue requests directly if the hw queue isn't busy to save an
2476 	 * extra enqueue & dequeue to the sw queue.
2477 	 */
2478 	if (!hctx->dispatch_busy && !run_queue_async) {
2479 		blk_mq_run_dispatch_ops(hctx->queue,
2480 			blk_mq_try_issue_list_directly(hctx, list));
2481 		if (list_empty(list))
2482 			goto out;
2483 	}
2484 
2485 	/*
2486 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2487 	 * offline now
2488 	 */
2489 	list_for_each_entry(rq, list, queuelist) {
2490 		BUG_ON(rq->mq_ctx != ctx);
2491 		trace_block_rq_insert(rq);
2492 		if (rq->cmd_flags & REQ_NOWAIT)
2493 			run_queue_async = true;
2494 	}
2495 
2496 	spin_lock(&ctx->lock);
2497 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2498 	blk_mq_hctx_mark_pending(hctx, ctx);
2499 	spin_unlock(&ctx->lock);
2500 out:
2501 	blk_mq_run_hw_queue(hctx, run_queue_async);
2502 }
2503 
2504 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2505 {
2506 	struct request_queue *q = rq->q;
2507 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2508 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2509 
2510 	if (blk_rq_is_passthrough(rq)) {
2511 		/*
2512 		 * Passthrough request have to be added to hctx->dispatch
2513 		 * directly.  The device may be in a situation where it can't
2514 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2515 		 * them, which gets them added to hctx->dispatch.
2516 		 *
2517 		 * If a passthrough request is required to unblock the queues,
2518 		 * and it is added to the scheduler queue, there is no chance to
2519 		 * dispatch it given we prioritize requests in hctx->dispatch.
2520 		 */
2521 		blk_mq_request_bypass_insert(rq, flags);
2522 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2523 		/*
2524 		 * Firstly normal IO request is inserted to scheduler queue or
2525 		 * sw queue, meantime we add flush request to dispatch queue(
2526 		 * hctx->dispatch) directly and there is at most one in-flight
2527 		 * flush request for each hw queue, so it doesn't matter to add
2528 		 * flush request to tail or front of the dispatch queue.
2529 		 *
2530 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2531 		 * command, and queueing it will fail when there is any
2532 		 * in-flight normal IO request(NCQ command). When adding flush
2533 		 * rq to the front of hctx->dispatch, it is easier to introduce
2534 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2535 		 * compared with adding to the tail of dispatch queue, then
2536 		 * chance of flush merge is increased, and less flush requests
2537 		 * will be issued to controller. It is observed that ~10% time
2538 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2539 		 * drive when adding flush rq to the front of hctx->dispatch.
2540 		 *
2541 		 * Simply queue flush rq to the front of hctx->dispatch so that
2542 		 * intensive flush workloads can benefit in case of NCQ HW.
2543 		 */
2544 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2545 	} else if (q->elevator) {
2546 		LIST_HEAD(list);
2547 
2548 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2549 
2550 		list_add(&rq->queuelist, &list);
2551 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2552 	} else {
2553 		trace_block_rq_insert(rq);
2554 
2555 		spin_lock(&ctx->lock);
2556 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2557 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2558 		else
2559 			list_add_tail(&rq->queuelist,
2560 				      &ctx->rq_lists[hctx->type]);
2561 		blk_mq_hctx_mark_pending(hctx, ctx);
2562 		spin_unlock(&ctx->lock);
2563 	}
2564 }
2565 
2566 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2567 		unsigned int nr_segs)
2568 {
2569 	int err;
2570 
2571 	if (bio->bi_opf & REQ_RAHEAD)
2572 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2573 
2574 	rq->__sector = bio->bi_iter.bi_sector;
2575 	rq->write_hint = bio->bi_write_hint;
2576 	blk_rq_bio_prep(rq, bio, nr_segs);
2577 
2578 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2579 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2580 	WARN_ON_ONCE(err);
2581 
2582 	blk_account_io_start(rq);
2583 }
2584 
2585 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2586 					    struct request *rq, bool last)
2587 {
2588 	struct request_queue *q = rq->q;
2589 	struct blk_mq_queue_data bd = {
2590 		.rq = rq,
2591 		.last = last,
2592 	};
2593 	blk_status_t ret;
2594 
2595 	/*
2596 	 * For OK queue, we are done. For error, caller may kill it.
2597 	 * Any other error (busy), just add it to our list as we
2598 	 * previously would have done.
2599 	 */
2600 	ret = q->mq_ops->queue_rq(hctx, &bd);
2601 	switch (ret) {
2602 	case BLK_STS_OK:
2603 		blk_mq_update_dispatch_busy(hctx, false);
2604 		break;
2605 	case BLK_STS_RESOURCE:
2606 	case BLK_STS_DEV_RESOURCE:
2607 		blk_mq_update_dispatch_busy(hctx, true);
2608 		__blk_mq_requeue_request(rq);
2609 		break;
2610 	default:
2611 		blk_mq_update_dispatch_busy(hctx, false);
2612 		break;
2613 	}
2614 
2615 	return ret;
2616 }
2617 
2618 static bool blk_mq_get_budget_and_tag(struct request *rq)
2619 {
2620 	int budget_token;
2621 
2622 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2623 	if (budget_token < 0)
2624 		return false;
2625 	blk_mq_set_rq_budget_token(rq, budget_token);
2626 	if (!blk_mq_get_driver_tag(rq)) {
2627 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2628 		return false;
2629 	}
2630 	return true;
2631 }
2632 
2633 /**
2634  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2635  * @hctx: Pointer of the associated hardware queue.
2636  * @rq: Pointer to request to be sent.
2637  *
2638  * If the device has enough resources to accept a new request now, send the
2639  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2640  * we can try send it another time in the future. Requests inserted at this
2641  * queue have higher priority.
2642  */
2643 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2644 		struct request *rq)
2645 {
2646 	blk_status_t ret;
2647 
2648 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2649 		blk_mq_insert_request(rq, 0);
2650 		return;
2651 	}
2652 
2653 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2654 		blk_mq_insert_request(rq, 0);
2655 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2656 		return;
2657 	}
2658 
2659 	ret = __blk_mq_issue_directly(hctx, rq, true);
2660 	switch (ret) {
2661 	case BLK_STS_OK:
2662 		break;
2663 	case BLK_STS_RESOURCE:
2664 	case BLK_STS_DEV_RESOURCE:
2665 		blk_mq_request_bypass_insert(rq, 0);
2666 		blk_mq_run_hw_queue(hctx, false);
2667 		break;
2668 	default:
2669 		blk_mq_end_request(rq, ret);
2670 		break;
2671 	}
2672 }
2673 
2674 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2675 {
2676 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2677 
2678 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2679 		blk_mq_insert_request(rq, 0);
2680 		return BLK_STS_OK;
2681 	}
2682 
2683 	if (!blk_mq_get_budget_and_tag(rq))
2684 		return BLK_STS_RESOURCE;
2685 	return __blk_mq_issue_directly(hctx, rq, last);
2686 }
2687 
2688 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2689 {
2690 	struct blk_mq_hw_ctx *hctx = NULL;
2691 	struct request *rq;
2692 	int queued = 0;
2693 	blk_status_t ret = BLK_STS_OK;
2694 
2695 	while ((rq = rq_list_pop(&plug->mq_list))) {
2696 		bool last = rq_list_empty(plug->mq_list);
2697 
2698 		if (hctx != rq->mq_hctx) {
2699 			if (hctx) {
2700 				blk_mq_commit_rqs(hctx, queued, false);
2701 				queued = 0;
2702 			}
2703 			hctx = rq->mq_hctx;
2704 		}
2705 
2706 		ret = blk_mq_request_issue_directly(rq, last);
2707 		switch (ret) {
2708 		case BLK_STS_OK:
2709 			queued++;
2710 			break;
2711 		case BLK_STS_RESOURCE:
2712 		case BLK_STS_DEV_RESOURCE:
2713 			blk_mq_request_bypass_insert(rq, 0);
2714 			blk_mq_run_hw_queue(hctx, false);
2715 			goto out;
2716 		default:
2717 			blk_mq_end_request(rq, ret);
2718 			break;
2719 		}
2720 	}
2721 
2722 out:
2723 	if (ret != BLK_STS_OK)
2724 		blk_mq_commit_rqs(hctx, queued, false);
2725 }
2726 
2727 static void __blk_mq_flush_plug_list(struct request_queue *q,
2728 				     struct blk_plug *plug)
2729 {
2730 	if (blk_queue_quiesced(q))
2731 		return;
2732 	q->mq_ops->queue_rqs(&plug->mq_list);
2733 }
2734 
2735 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2736 {
2737 	struct blk_mq_hw_ctx *this_hctx = NULL;
2738 	struct blk_mq_ctx *this_ctx = NULL;
2739 	struct request *requeue_list = NULL;
2740 	struct request **requeue_lastp = &requeue_list;
2741 	unsigned int depth = 0;
2742 	bool is_passthrough = false;
2743 	LIST_HEAD(list);
2744 
2745 	do {
2746 		struct request *rq = rq_list_pop(&plug->mq_list);
2747 
2748 		if (!this_hctx) {
2749 			this_hctx = rq->mq_hctx;
2750 			this_ctx = rq->mq_ctx;
2751 			is_passthrough = blk_rq_is_passthrough(rq);
2752 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2753 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2754 			rq_list_add_tail(&requeue_lastp, rq);
2755 			continue;
2756 		}
2757 		list_add(&rq->queuelist, &list);
2758 		depth++;
2759 	} while (!rq_list_empty(plug->mq_list));
2760 
2761 	plug->mq_list = requeue_list;
2762 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2763 
2764 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2765 	/* passthrough requests should never be issued to the I/O scheduler */
2766 	if (is_passthrough) {
2767 		spin_lock(&this_hctx->lock);
2768 		list_splice_tail_init(&list, &this_hctx->dispatch);
2769 		spin_unlock(&this_hctx->lock);
2770 		blk_mq_run_hw_queue(this_hctx, from_sched);
2771 	} else if (this_hctx->queue->elevator) {
2772 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2773 				&list, 0);
2774 		blk_mq_run_hw_queue(this_hctx, from_sched);
2775 	} else {
2776 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2777 	}
2778 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2779 }
2780 
2781 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2782 {
2783 	struct request *rq;
2784 
2785 	/*
2786 	 * We may have been called recursively midway through handling
2787 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2788 	 * To avoid mq_list changing under our feet, clear rq_count early and
2789 	 * bail out specifically if rq_count is 0 rather than checking
2790 	 * whether the mq_list is empty.
2791 	 */
2792 	if (plug->rq_count == 0)
2793 		return;
2794 	plug->rq_count = 0;
2795 
2796 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2797 		struct request_queue *q;
2798 
2799 		rq = rq_list_peek(&plug->mq_list);
2800 		q = rq->q;
2801 
2802 		/*
2803 		 * Peek first request and see if we have a ->queue_rqs() hook.
2804 		 * If we do, we can dispatch the whole plug list in one go. We
2805 		 * already know at this point that all requests belong to the
2806 		 * same queue, caller must ensure that's the case.
2807 		 */
2808 		if (q->mq_ops->queue_rqs) {
2809 			blk_mq_run_dispatch_ops(q,
2810 				__blk_mq_flush_plug_list(q, plug));
2811 			if (rq_list_empty(plug->mq_list))
2812 				return;
2813 		}
2814 
2815 		blk_mq_run_dispatch_ops(q,
2816 				blk_mq_plug_issue_direct(plug));
2817 		if (rq_list_empty(plug->mq_list))
2818 			return;
2819 	}
2820 
2821 	do {
2822 		blk_mq_dispatch_plug_list(plug, from_schedule);
2823 	} while (!rq_list_empty(plug->mq_list));
2824 }
2825 
2826 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2827 		struct list_head *list)
2828 {
2829 	int queued = 0;
2830 	blk_status_t ret = BLK_STS_OK;
2831 
2832 	while (!list_empty(list)) {
2833 		struct request *rq = list_first_entry(list, struct request,
2834 				queuelist);
2835 
2836 		list_del_init(&rq->queuelist);
2837 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2838 		switch (ret) {
2839 		case BLK_STS_OK:
2840 			queued++;
2841 			break;
2842 		case BLK_STS_RESOURCE:
2843 		case BLK_STS_DEV_RESOURCE:
2844 			blk_mq_request_bypass_insert(rq, 0);
2845 			if (list_empty(list))
2846 				blk_mq_run_hw_queue(hctx, false);
2847 			goto out;
2848 		default:
2849 			blk_mq_end_request(rq, ret);
2850 			break;
2851 		}
2852 	}
2853 
2854 out:
2855 	if (ret != BLK_STS_OK)
2856 		blk_mq_commit_rqs(hctx, queued, false);
2857 }
2858 
2859 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2860 				     struct bio *bio, unsigned int nr_segs)
2861 {
2862 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2863 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2864 			return true;
2865 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2866 			return true;
2867 	}
2868 	return false;
2869 }
2870 
2871 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2872 					       struct blk_plug *plug,
2873 					       struct bio *bio,
2874 					       unsigned int nsegs)
2875 {
2876 	struct blk_mq_alloc_data data = {
2877 		.q		= q,
2878 		.nr_tags	= 1,
2879 		.cmd_flags	= bio->bi_opf,
2880 	};
2881 	struct request *rq;
2882 
2883 	rq_qos_throttle(q, bio);
2884 
2885 	if (plug) {
2886 		data.nr_tags = plug->nr_ios;
2887 		plug->nr_ios = 1;
2888 		data.cached_rq = &plug->cached_rq;
2889 	}
2890 
2891 	rq = __blk_mq_alloc_requests(&data);
2892 	if (rq)
2893 		return rq;
2894 	rq_qos_cleanup(q, bio);
2895 	if (bio->bi_opf & REQ_NOWAIT)
2896 		bio_wouldblock_error(bio);
2897 	return NULL;
2898 }
2899 
2900 /*
2901  * Check if there is a suitable cached request and return it.
2902  */
2903 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2904 		struct request_queue *q, blk_opf_t opf)
2905 {
2906 	enum hctx_type type = blk_mq_get_hctx_type(opf);
2907 	struct request *rq;
2908 
2909 	if (!plug)
2910 		return NULL;
2911 	rq = rq_list_peek(&plug->cached_rq);
2912 	if (!rq || rq->q != q)
2913 		return NULL;
2914 	if (type != rq->mq_hctx->type &&
2915 	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2916 		return NULL;
2917 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2918 		return NULL;
2919 	return rq;
2920 }
2921 
2922 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2923 		struct bio *bio)
2924 {
2925 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2926 
2927 	/*
2928 	 * If any qos ->throttle() end up blocking, we will have flushed the
2929 	 * plug and hence killed the cached_rq list as well. Pop this entry
2930 	 * before we throttle.
2931 	 */
2932 	plug->cached_rq = rq_list_next(rq);
2933 	rq_qos_throttle(rq->q, bio);
2934 
2935 	blk_mq_rq_time_init(rq, 0);
2936 	rq->cmd_flags = bio->bi_opf;
2937 	INIT_LIST_HEAD(&rq->queuelist);
2938 }
2939 
2940 /**
2941  * blk_mq_submit_bio - Create and send a request to block device.
2942  * @bio: Bio pointer.
2943  *
2944  * Builds up a request structure from @q and @bio and send to the device. The
2945  * request may not be queued directly to hardware if:
2946  * * This request can be merged with another one
2947  * * We want to place request at plug queue for possible future merging
2948  * * There is an IO scheduler active at this queue
2949  *
2950  * It will not queue the request if there is an error with the bio, or at the
2951  * request creation.
2952  */
2953 void blk_mq_submit_bio(struct bio *bio)
2954 {
2955 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2956 	struct blk_plug *plug = blk_mq_plug(bio);
2957 	const int is_sync = op_is_sync(bio->bi_opf);
2958 	struct blk_mq_hw_ctx *hctx;
2959 	unsigned int nr_segs = 1;
2960 	struct request *rq;
2961 	blk_status_t ret;
2962 
2963 	bio = blk_queue_bounce(bio, q);
2964 
2965 	/*
2966 	 * If the plug has a cached request for this queue, try use it.
2967 	 *
2968 	 * The cached request already holds a q_usage_counter reference and we
2969 	 * don't have to acquire a new one if we use it.
2970 	 */
2971 	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2972 	if (!rq) {
2973 		if (unlikely(bio_queue_enter(bio)))
2974 			return;
2975 	}
2976 
2977 	if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2978 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2979 		if (!bio)
2980 			goto queue_exit;
2981 	}
2982 	if (!bio_integrity_prep(bio))
2983 		goto queue_exit;
2984 
2985 	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2986 		goto queue_exit;
2987 
2988 	if (!rq) {
2989 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2990 		if (unlikely(!rq))
2991 			goto queue_exit;
2992 	} else {
2993 		blk_mq_use_cached_rq(rq, plug, bio);
2994 	}
2995 
2996 	trace_block_getrq(bio);
2997 
2998 	rq_qos_track(q, rq, bio);
2999 
3000 	blk_mq_bio_to_request(rq, bio, nr_segs);
3001 
3002 	ret = blk_crypto_rq_get_keyslot(rq);
3003 	if (ret != BLK_STS_OK) {
3004 		bio->bi_status = ret;
3005 		bio_endio(bio);
3006 		blk_mq_free_request(rq);
3007 		return;
3008 	}
3009 
3010 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3011 		return;
3012 
3013 	if (plug) {
3014 		blk_add_rq_to_plug(plug, rq);
3015 		return;
3016 	}
3017 
3018 	hctx = rq->mq_hctx;
3019 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3020 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3021 		blk_mq_insert_request(rq, 0);
3022 		blk_mq_run_hw_queue(hctx, true);
3023 	} else {
3024 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3025 	}
3026 	return;
3027 
3028 queue_exit:
3029 	/*
3030 	 * Don't drop the queue reference if we were trying to use a cached
3031 	 * request and thus didn't acquire one.
3032 	 */
3033 	if (!rq)
3034 		blk_queue_exit(q);
3035 }
3036 
3037 #ifdef CONFIG_BLK_MQ_STACKING
3038 /**
3039  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3040  * @rq: the request being queued
3041  */
3042 blk_status_t blk_insert_cloned_request(struct request *rq)
3043 {
3044 	struct request_queue *q = rq->q;
3045 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3046 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3047 	blk_status_t ret;
3048 
3049 	if (blk_rq_sectors(rq) > max_sectors) {
3050 		/*
3051 		 * SCSI device does not have a good way to return if
3052 		 * Write Same/Zero is actually supported. If a device rejects
3053 		 * a non-read/write command (discard, write same,etc.) the
3054 		 * low-level device driver will set the relevant queue limit to
3055 		 * 0 to prevent blk-lib from issuing more of the offending
3056 		 * operations. Commands queued prior to the queue limit being
3057 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3058 		 * errors being propagated to upper layers.
3059 		 */
3060 		if (max_sectors == 0)
3061 			return BLK_STS_NOTSUPP;
3062 
3063 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3064 			__func__, blk_rq_sectors(rq), max_sectors);
3065 		return BLK_STS_IOERR;
3066 	}
3067 
3068 	/*
3069 	 * The queue settings related to segment counting may differ from the
3070 	 * original queue.
3071 	 */
3072 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3073 	if (rq->nr_phys_segments > max_segments) {
3074 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3075 			__func__, rq->nr_phys_segments, max_segments);
3076 		return BLK_STS_IOERR;
3077 	}
3078 
3079 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3080 		return BLK_STS_IOERR;
3081 
3082 	ret = blk_crypto_rq_get_keyslot(rq);
3083 	if (ret != BLK_STS_OK)
3084 		return ret;
3085 
3086 	blk_account_io_start(rq);
3087 
3088 	/*
3089 	 * Since we have a scheduler attached on the top device,
3090 	 * bypass a potential scheduler on the bottom device for
3091 	 * insert.
3092 	 */
3093 	blk_mq_run_dispatch_ops(q,
3094 			ret = blk_mq_request_issue_directly(rq, true));
3095 	if (ret)
3096 		blk_account_io_done(rq, blk_time_get_ns());
3097 	return ret;
3098 }
3099 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3100 
3101 /**
3102  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3103  * @rq: the clone request to be cleaned up
3104  *
3105  * Description:
3106  *     Free all bios in @rq for a cloned request.
3107  */
3108 void blk_rq_unprep_clone(struct request *rq)
3109 {
3110 	struct bio *bio;
3111 
3112 	while ((bio = rq->bio) != NULL) {
3113 		rq->bio = bio->bi_next;
3114 
3115 		bio_put(bio);
3116 	}
3117 }
3118 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3119 
3120 /**
3121  * blk_rq_prep_clone - Helper function to setup clone request
3122  * @rq: the request to be setup
3123  * @rq_src: original request to be cloned
3124  * @bs: bio_set that bios for clone are allocated from
3125  * @gfp_mask: memory allocation mask for bio
3126  * @bio_ctr: setup function to be called for each clone bio.
3127  *           Returns %0 for success, non %0 for failure.
3128  * @data: private data to be passed to @bio_ctr
3129  *
3130  * Description:
3131  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3132  *     Also, pages which the original bios are pointing to are not copied
3133  *     and the cloned bios just point same pages.
3134  *     So cloned bios must be completed before original bios, which means
3135  *     the caller must complete @rq before @rq_src.
3136  */
3137 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3138 		      struct bio_set *bs, gfp_t gfp_mask,
3139 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3140 		      void *data)
3141 {
3142 	struct bio *bio, *bio_src;
3143 
3144 	if (!bs)
3145 		bs = &fs_bio_set;
3146 
3147 	__rq_for_each_bio(bio_src, rq_src) {
3148 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3149 				      bs);
3150 		if (!bio)
3151 			goto free_and_out;
3152 
3153 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3154 			goto free_and_out;
3155 
3156 		if (rq->bio) {
3157 			rq->biotail->bi_next = bio;
3158 			rq->biotail = bio;
3159 		} else {
3160 			rq->bio = rq->biotail = bio;
3161 		}
3162 		bio = NULL;
3163 	}
3164 
3165 	/* Copy attributes of the original request to the clone request. */
3166 	rq->__sector = blk_rq_pos(rq_src);
3167 	rq->__data_len = blk_rq_bytes(rq_src);
3168 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3169 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3170 		rq->special_vec = rq_src->special_vec;
3171 	}
3172 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3173 	rq->ioprio = rq_src->ioprio;
3174 	rq->write_hint = rq_src->write_hint;
3175 
3176 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3177 		goto free_and_out;
3178 
3179 	return 0;
3180 
3181 free_and_out:
3182 	if (bio)
3183 		bio_put(bio);
3184 	blk_rq_unprep_clone(rq);
3185 
3186 	return -ENOMEM;
3187 }
3188 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3189 #endif /* CONFIG_BLK_MQ_STACKING */
3190 
3191 /*
3192  * Steal bios from a request and add them to a bio list.
3193  * The request must not have been partially completed before.
3194  */
3195 void blk_steal_bios(struct bio_list *list, struct request *rq)
3196 {
3197 	if (rq->bio) {
3198 		if (list->tail)
3199 			list->tail->bi_next = rq->bio;
3200 		else
3201 			list->head = rq->bio;
3202 		list->tail = rq->biotail;
3203 
3204 		rq->bio = NULL;
3205 		rq->biotail = NULL;
3206 	}
3207 
3208 	rq->__data_len = 0;
3209 }
3210 EXPORT_SYMBOL_GPL(blk_steal_bios);
3211 
3212 static size_t order_to_size(unsigned int order)
3213 {
3214 	return (size_t)PAGE_SIZE << order;
3215 }
3216 
3217 /* called before freeing request pool in @tags */
3218 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3219 				    struct blk_mq_tags *tags)
3220 {
3221 	struct page *page;
3222 	unsigned long flags;
3223 
3224 	/*
3225 	 * There is no need to clear mapping if driver tags is not initialized
3226 	 * or the mapping belongs to the driver tags.
3227 	 */
3228 	if (!drv_tags || drv_tags == tags)
3229 		return;
3230 
3231 	list_for_each_entry(page, &tags->page_list, lru) {
3232 		unsigned long start = (unsigned long)page_address(page);
3233 		unsigned long end = start + order_to_size(page->private);
3234 		int i;
3235 
3236 		for (i = 0; i < drv_tags->nr_tags; i++) {
3237 			struct request *rq = drv_tags->rqs[i];
3238 			unsigned long rq_addr = (unsigned long)rq;
3239 
3240 			if (rq_addr >= start && rq_addr < end) {
3241 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3242 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3243 			}
3244 		}
3245 	}
3246 
3247 	/*
3248 	 * Wait until all pending iteration is done.
3249 	 *
3250 	 * Request reference is cleared and it is guaranteed to be observed
3251 	 * after the ->lock is released.
3252 	 */
3253 	spin_lock_irqsave(&drv_tags->lock, flags);
3254 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3255 }
3256 
3257 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3258 		     unsigned int hctx_idx)
3259 {
3260 	struct blk_mq_tags *drv_tags;
3261 	struct page *page;
3262 
3263 	if (list_empty(&tags->page_list))
3264 		return;
3265 
3266 	if (blk_mq_is_shared_tags(set->flags))
3267 		drv_tags = set->shared_tags;
3268 	else
3269 		drv_tags = set->tags[hctx_idx];
3270 
3271 	if (tags->static_rqs && set->ops->exit_request) {
3272 		int i;
3273 
3274 		for (i = 0; i < tags->nr_tags; i++) {
3275 			struct request *rq = tags->static_rqs[i];
3276 
3277 			if (!rq)
3278 				continue;
3279 			set->ops->exit_request(set, rq, hctx_idx);
3280 			tags->static_rqs[i] = NULL;
3281 		}
3282 	}
3283 
3284 	blk_mq_clear_rq_mapping(drv_tags, tags);
3285 
3286 	while (!list_empty(&tags->page_list)) {
3287 		page = list_first_entry(&tags->page_list, struct page, lru);
3288 		list_del_init(&page->lru);
3289 		/*
3290 		 * Remove kmemleak object previously allocated in
3291 		 * blk_mq_alloc_rqs().
3292 		 */
3293 		kmemleak_free(page_address(page));
3294 		__free_pages(page, page->private);
3295 	}
3296 }
3297 
3298 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3299 {
3300 	kfree(tags->rqs);
3301 	tags->rqs = NULL;
3302 	kfree(tags->static_rqs);
3303 	tags->static_rqs = NULL;
3304 
3305 	blk_mq_free_tags(tags);
3306 }
3307 
3308 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3309 		unsigned int hctx_idx)
3310 {
3311 	int i;
3312 
3313 	for (i = 0; i < set->nr_maps; i++) {
3314 		unsigned int start = set->map[i].queue_offset;
3315 		unsigned int end = start + set->map[i].nr_queues;
3316 
3317 		if (hctx_idx >= start && hctx_idx < end)
3318 			break;
3319 	}
3320 
3321 	if (i >= set->nr_maps)
3322 		i = HCTX_TYPE_DEFAULT;
3323 
3324 	return i;
3325 }
3326 
3327 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3328 		unsigned int hctx_idx)
3329 {
3330 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3331 
3332 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3333 }
3334 
3335 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3336 					       unsigned int hctx_idx,
3337 					       unsigned int nr_tags,
3338 					       unsigned int reserved_tags)
3339 {
3340 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3341 	struct blk_mq_tags *tags;
3342 
3343 	if (node == NUMA_NO_NODE)
3344 		node = set->numa_node;
3345 
3346 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3347 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3348 	if (!tags)
3349 		return NULL;
3350 
3351 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3352 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3353 				 node);
3354 	if (!tags->rqs)
3355 		goto err_free_tags;
3356 
3357 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3358 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3359 					node);
3360 	if (!tags->static_rqs)
3361 		goto err_free_rqs;
3362 
3363 	return tags;
3364 
3365 err_free_rqs:
3366 	kfree(tags->rqs);
3367 err_free_tags:
3368 	blk_mq_free_tags(tags);
3369 	return NULL;
3370 }
3371 
3372 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3373 			       unsigned int hctx_idx, int node)
3374 {
3375 	int ret;
3376 
3377 	if (set->ops->init_request) {
3378 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3379 		if (ret)
3380 			return ret;
3381 	}
3382 
3383 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3384 	return 0;
3385 }
3386 
3387 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3388 			    struct blk_mq_tags *tags,
3389 			    unsigned int hctx_idx, unsigned int depth)
3390 {
3391 	unsigned int i, j, entries_per_page, max_order = 4;
3392 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3393 	size_t rq_size, left;
3394 
3395 	if (node == NUMA_NO_NODE)
3396 		node = set->numa_node;
3397 
3398 	INIT_LIST_HEAD(&tags->page_list);
3399 
3400 	/*
3401 	 * rq_size is the size of the request plus driver payload, rounded
3402 	 * to the cacheline size
3403 	 */
3404 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3405 				cache_line_size());
3406 	left = rq_size * depth;
3407 
3408 	for (i = 0; i < depth; ) {
3409 		int this_order = max_order;
3410 		struct page *page;
3411 		int to_do;
3412 		void *p;
3413 
3414 		while (this_order && left < order_to_size(this_order - 1))
3415 			this_order--;
3416 
3417 		do {
3418 			page = alloc_pages_node(node,
3419 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3420 				this_order);
3421 			if (page)
3422 				break;
3423 			if (!this_order--)
3424 				break;
3425 			if (order_to_size(this_order) < rq_size)
3426 				break;
3427 		} while (1);
3428 
3429 		if (!page)
3430 			goto fail;
3431 
3432 		page->private = this_order;
3433 		list_add_tail(&page->lru, &tags->page_list);
3434 
3435 		p = page_address(page);
3436 		/*
3437 		 * Allow kmemleak to scan these pages as they contain pointers
3438 		 * to additional allocations like via ops->init_request().
3439 		 */
3440 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3441 		entries_per_page = order_to_size(this_order) / rq_size;
3442 		to_do = min(entries_per_page, depth - i);
3443 		left -= to_do * rq_size;
3444 		for (j = 0; j < to_do; j++) {
3445 			struct request *rq = p;
3446 
3447 			tags->static_rqs[i] = rq;
3448 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3449 				tags->static_rqs[i] = NULL;
3450 				goto fail;
3451 			}
3452 
3453 			p += rq_size;
3454 			i++;
3455 		}
3456 	}
3457 	return 0;
3458 
3459 fail:
3460 	blk_mq_free_rqs(set, tags, hctx_idx);
3461 	return -ENOMEM;
3462 }
3463 
3464 struct rq_iter_data {
3465 	struct blk_mq_hw_ctx *hctx;
3466 	bool has_rq;
3467 };
3468 
3469 static bool blk_mq_has_request(struct request *rq, void *data)
3470 {
3471 	struct rq_iter_data *iter_data = data;
3472 
3473 	if (rq->mq_hctx != iter_data->hctx)
3474 		return true;
3475 	iter_data->has_rq = true;
3476 	return false;
3477 }
3478 
3479 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3480 {
3481 	struct blk_mq_tags *tags = hctx->sched_tags ?
3482 			hctx->sched_tags : hctx->tags;
3483 	struct rq_iter_data data = {
3484 		.hctx	= hctx,
3485 	};
3486 
3487 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3488 	return data.has_rq;
3489 }
3490 
3491 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3492 		struct blk_mq_hw_ctx *hctx)
3493 {
3494 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3495 		return false;
3496 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3497 		return false;
3498 	return true;
3499 }
3500 
3501 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3502 {
3503 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3504 			struct blk_mq_hw_ctx, cpuhp_online);
3505 
3506 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3507 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3508 		return 0;
3509 
3510 	/*
3511 	 * Prevent new request from being allocated on the current hctx.
3512 	 *
3513 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3514 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3515 	 * seen once we return from the tag allocator.
3516 	 */
3517 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3518 	smp_mb__after_atomic();
3519 
3520 	/*
3521 	 * Try to grab a reference to the queue and wait for any outstanding
3522 	 * requests.  If we could not grab a reference the queue has been
3523 	 * frozen and there are no requests.
3524 	 */
3525 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3526 		while (blk_mq_hctx_has_requests(hctx))
3527 			msleep(5);
3528 		percpu_ref_put(&hctx->queue->q_usage_counter);
3529 	}
3530 
3531 	return 0;
3532 }
3533 
3534 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3535 {
3536 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3537 			struct blk_mq_hw_ctx, cpuhp_online);
3538 
3539 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3540 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3541 	return 0;
3542 }
3543 
3544 /*
3545  * 'cpu' is going away. splice any existing rq_list entries from this
3546  * software queue to the hw queue dispatch list, and ensure that it
3547  * gets run.
3548  */
3549 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3550 {
3551 	struct blk_mq_hw_ctx *hctx;
3552 	struct blk_mq_ctx *ctx;
3553 	LIST_HEAD(tmp);
3554 	enum hctx_type type;
3555 
3556 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3557 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3558 		return 0;
3559 
3560 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3561 	type = hctx->type;
3562 
3563 	spin_lock(&ctx->lock);
3564 	if (!list_empty(&ctx->rq_lists[type])) {
3565 		list_splice_init(&ctx->rq_lists[type], &tmp);
3566 		blk_mq_hctx_clear_pending(hctx, ctx);
3567 	}
3568 	spin_unlock(&ctx->lock);
3569 
3570 	if (list_empty(&tmp))
3571 		return 0;
3572 
3573 	spin_lock(&hctx->lock);
3574 	list_splice_tail_init(&tmp, &hctx->dispatch);
3575 	spin_unlock(&hctx->lock);
3576 
3577 	blk_mq_run_hw_queue(hctx, true);
3578 	return 0;
3579 }
3580 
3581 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3582 {
3583 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3584 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3585 						    &hctx->cpuhp_online);
3586 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3587 					    &hctx->cpuhp_dead);
3588 }
3589 
3590 /*
3591  * Before freeing hw queue, clearing the flush request reference in
3592  * tags->rqs[] for avoiding potential UAF.
3593  */
3594 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3595 		unsigned int queue_depth, struct request *flush_rq)
3596 {
3597 	int i;
3598 	unsigned long flags;
3599 
3600 	/* The hw queue may not be mapped yet */
3601 	if (!tags)
3602 		return;
3603 
3604 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3605 
3606 	for (i = 0; i < queue_depth; i++)
3607 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3608 
3609 	/*
3610 	 * Wait until all pending iteration is done.
3611 	 *
3612 	 * Request reference is cleared and it is guaranteed to be observed
3613 	 * after the ->lock is released.
3614 	 */
3615 	spin_lock_irqsave(&tags->lock, flags);
3616 	spin_unlock_irqrestore(&tags->lock, flags);
3617 }
3618 
3619 /* hctx->ctxs will be freed in queue's release handler */
3620 static void blk_mq_exit_hctx(struct request_queue *q,
3621 		struct blk_mq_tag_set *set,
3622 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3623 {
3624 	struct request *flush_rq = hctx->fq->flush_rq;
3625 
3626 	if (blk_mq_hw_queue_mapped(hctx))
3627 		blk_mq_tag_idle(hctx);
3628 
3629 	if (blk_queue_init_done(q))
3630 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3631 				set->queue_depth, flush_rq);
3632 	if (set->ops->exit_request)
3633 		set->ops->exit_request(set, flush_rq, hctx_idx);
3634 
3635 	if (set->ops->exit_hctx)
3636 		set->ops->exit_hctx(hctx, hctx_idx);
3637 
3638 	blk_mq_remove_cpuhp(hctx);
3639 
3640 	xa_erase(&q->hctx_table, hctx_idx);
3641 
3642 	spin_lock(&q->unused_hctx_lock);
3643 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3644 	spin_unlock(&q->unused_hctx_lock);
3645 }
3646 
3647 static void blk_mq_exit_hw_queues(struct request_queue *q,
3648 		struct blk_mq_tag_set *set, int nr_queue)
3649 {
3650 	struct blk_mq_hw_ctx *hctx;
3651 	unsigned long i;
3652 
3653 	queue_for_each_hw_ctx(q, hctx, i) {
3654 		if (i == nr_queue)
3655 			break;
3656 		blk_mq_exit_hctx(q, set, hctx, i);
3657 	}
3658 }
3659 
3660 static int blk_mq_init_hctx(struct request_queue *q,
3661 		struct blk_mq_tag_set *set,
3662 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3663 {
3664 	hctx->queue_num = hctx_idx;
3665 
3666 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3667 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3668 				&hctx->cpuhp_online);
3669 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3670 
3671 	hctx->tags = set->tags[hctx_idx];
3672 
3673 	if (set->ops->init_hctx &&
3674 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3675 		goto unregister_cpu_notifier;
3676 
3677 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3678 				hctx->numa_node))
3679 		goto exit_hctx;
3680 
3681 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3682 		goto exit_flush_rq;
3683 
3684 	return 0;
3685 
3686  exit_flush_rq:
3687 	if (set->ops->exit_request)
3688 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3689  exit_hctx:
3690 	if (set->ops->exit_hctx)
3691 		set->ops->exit_hctx(hctx, hctx_idx);
3692  unregister_cpu_notifier:
3693 	blk_mq_remove_cpuhp(hctx);
3694 	return -1;
3695 }
3696 
3697 static struct blk_mq_hw_ctx *
3698 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3699 		int node)
3700 {
3701 	struct blk_mq_hw_ctx *hctx;
3702 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3703 
3704 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3705 	if (!hctx)
3706 		goto fail_alloc_hctx;
3707 
3708 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3709 		goto free_hctx;
3710 
3711 	atomic_set(&hctx->nr_active, 0);
3712 	if (node == NUMA_NO_NODE)
3713 		node = set->numa_node;
3714 	hctx->numa_node = node;
3715 
3716 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3717 	spin_lock_init(&hctx->lock);
3718 	INIT_LIST_HEAD(&hctx->dispatch);
3719 	hctx->queue = q;
3720 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3721 
3722 	INIT_LIST_HEAD(&hctx->hctx_list);
3723 
3724 	/*
3725 	 * Allocate space for all possible cpus to avoid allocation at
3726 	 * runtime
3727 	 */
3728 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3729 			gfp, node);
3730 	if (!hctx->ctxs)
3731 		goto free_cpumask;
3732 
3733 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3734 				gfp, node, false, false))
3735 		goto free_ctxs;
3736 	hctx->nr_ctx = 0;
3737 
3738 	spin_lock_init(&hctx->dispatch_wait_lock);
3739 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3740 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3741 
3742 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3743 	if (!hctx->fq)
3744 		goto free_bitmap;
3745 
3746 	blk_mq_hctx_kobj_init(hctx);
3747 
3748 	return hctx;
3749 
3750  free_bitmap:
3751 	sbitmap_free(&hctx->ctx_map);
3752  free_ctxs:
3753 	kfree(hctx->ctxs);
3754  free_cpumask:
3755 	free_cpumask_var(hctx->cpumask);
3756  free_hctx:
3757 	kfree(hctx);
3758  fail_alloc_hctx:
3759 	return NULL;
3760 }
3761 
3762 static void blk_mq_init_cpu_queues(struct request_queue *q,
3763 				   unsigned int nr_hw_queues)
3764 {
3765 	struct blk_mq_tag_set *set = q->tag_set;
3766 	unsigned int i, j;
3767 
3768 	for_each_possible_cpu(i) {
3769 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3770 		struct blk_mq_hw_ctx *hctx;
3771 		int k;
3772 
3773 		__ctx->cpu = i;
3774 		spin_lock_init(&__ctx->lock);
3775 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3776 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3777 
3778 		__ctx->queue = q;
3779 
3780 		/*
3781 		 * Set local node, IFF we have more than one hw queue. If
3782 		 * not, we remain on the home node of the device
3783 		 */
3784 		for (j = 0; j < set->nr_maps; j++) {
3785 			hctx = blk_mq_map_queue_type(q, j, i);
3786 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3787 				hctx->numa_node = cpu_to_node(i);
3788 		}
3789 	}
3790 }
3791 
3792 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3793 					     unsigned int hctx_idx,
3794 					     unsigned int depth)
3795 {
3796 	struct blk_mq_tags *tags;
3797 	int ret;
3798 
3799 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3800 	if (!tags)
3801 		return NULL;
3802 
3803 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3804 	if (ret) {
3805 		blk_mq_free_rq_map(tags);
3806 		return NULL;
3807 	}
3808 
3809 	return tags;
3810 }
3811 
3812 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3813 				       int hctx_idx)
3814 {
3815 	if (blk_mq_is_shared_tags(set->flags)) {
3816 		set->tags[hctx_idx] = set->shared_tags;
3817 
3818 		return true;
3819 	}
3820 
3821 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3822 						       set->queue_depth);
3823 
3824 	return set->tags[hctx_idx];
3825 }
3826 
3827 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3828 			     struct blk_mq_tags *tags,
3829 			     unsigned int hctx_idx)
3830 {
3831 	if (tags) {
3832 		blk_mq_free_rqs(set, tags, hctx_idx);
3833 		blk_mq_free_rq_map(tags);
3834 	}
3835 }
3836 
3837 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3838 				      unsigned int hctx_idx)
3839 {
3840 	if (!blk_mq_is_shared_tags(set->flags))
3841 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3842 
3843 	set->tags[hctx_idx] = NULL;
3844 }
3845 
3846 static void blk_mq_map_swqueue(struct request_queue *q)
3847 {
3848 	unsigned int j, hctx_idx;
3849 	unsigned long i;
3850 	struct blk_mq_hw_ctx *hctx;
3851 	struct blk_mq_ctx *ctx;
3852 	struct blk_mq_tag_set *set = q->tag_set;
3853 
3854 	queue_for_each_hw_ctx(q, hctx, i) {
3855 		cpumask_clear(hctx->cpumask);
3856 		hctx->nr_ctx = 0;
3857 		hctx->dispatch_from = NULL;
3858 	}
3859 
3860 	/*
3861 	 * Map software to hardware queues.
3862 	 *
3863 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3864 	 */
3865 	for_each_possible_cpu(i) {
3866 
3867 		ctx = per_cpu_ptr(q->queue_ctx, i);
3868 		for (j = 0; j < set->nr_maps; j++) {
3869 			if (!set->map[j].nr_queues) {
3870 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3871 						HCTX_TYPE_DEFAULT, i);
3872 				continue;
3873 			}
3874 			hctx_idx = set->map[j].mq_map[i];
3875 			/* unmapped hw queue can be remapped after CPU topo changed */
3876 			if (!set->tags[hctx_idx] &&
3877 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3878 				/*
3879 				 * If tags initialization fail for some hctx,
3880 				 * that hctx won't be brought online.  In this
3881 				 * case, remap the current ctx to hctx[0] which
3882 				 * is guaranteed to always have tags allocated
3883 				 */
3884 				set->map[j].mq_map[i] = 0;
3885 			}
3886 
3887 			hctx = blk_mq_map_queue_type(q, j, i);
3888 			ctx->hctxs[j] = hctx;
3889 			/*
3890 			 * If the CPU is already set in the mask, then we've
3891 			 * mapped this one already. This can happen if
3892 			 * devices share queues across queue maps.
3893 			 */
3894 			if (cpumask_test_cpu(i, hctx->cpumask))
3895 				continue;
3896 
3897 			cpumask_set_cpu(i, hctx->cpumask);
3898 			hctx->type = j;
3899 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3900 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3901 
3902 			/*
3903 			 * If the nr_ctx type overflows, we have exceeded the
3904 			 * amount of sw queues we can support.
3905 			 */
3906 			BUG_ON(!hctx->nr_ctx);
3907 		}
3908 
3909 		for (; j < HCTX_MAX_TYPES; j++)
3910 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3911 					HCTX_TYPE_DEFAULT, i);
3912 	}
3913 
3914 	queue_for_each_hw_ctx(q, hctx, i) {
3915 		/*
3916 		 * If no software queues are mapped to this hardware queue,
3917 		 * disable it and free the request entries.
3918 		 */
3919 		if (!hctx->nr_ctx) {
3920 			/* Never unmap queue 0.  We need it as a
3921 			 * fallback in case of a new remap fails
3922 			 * allocation
3923 			 */
3924 			if (i)
3925 				__blk_mq_free_map_and_rqs(set, i);
3926 
3927 			hctx->tags = NULL;
3928 			continue;
3929 		}
3930 
3931 		hctx->tags = set->tags[i];
3932 		WARN_ON(!hctx->tags);
3933 
3934 		/*
3935 		 * Set the map size to the number of mapped software queues.
3936 		 * This is more accurate and more efficient than looping
3937 		 * over all possibly mapped software queues.
3938 		 */
3939 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3940 
3941 		/*
3942 		 * Initialize batch roundrobin counts
3943 		 */
3944 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3945 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3946 	}
3947 }
3948 
3949 /*
3950  * Caller needs to ensure that we're either frozen/quiesced, or that
3951  * the queue isn't live yet.
3952  */
3953 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3954 {
3955 	struct blk_mq_hw_ctx *hctx;
3956 	unsigned long i;
3957 
3958 	queue_for_each_hw_ctx(q, hctx, i) {
3959 		if (shared) {
3960 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3961 		} else {
3962 			blk_mq_tag_idle(hctx);
3963 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3964 		}
3965 	}
3966 }
3967 
3968 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3969 					 bool shared)
3970 {
3971 	struct request_queue *q;
3972 
3973 	lockdep_assert_held(&set->tag_list_lock);
3974 
3975 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3976 		blk_mq_freeze_queue(q);
3977 		queue_set_hctx_shared(q, shared);
3978 		blk_mq_unfreeze_queue(q);
3979 	}
3980 }
3981 
3982 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3983 {
3984 	struct blk_mq_tag_set *set = q->tag_set;
3985 
3986 	mutex_lock(&set->tag_list_lock);
3987 	list_del(&q->tag_set_list);
3988 	if (list_is_singular(&set->tag_list)) {
3989 		/* just transitioned to unshared */
3990 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3991 		/* update existing queue */
3992 		blk_mq_update_tag_set_shared(set, false);
3993 	}
3994 	mutex_unlock(&set->tag_list_lock);
3995 	INIT_LIST_HEAD(&q->tag_set_list);
3996 }
3997 
3998 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3999 				     struct request_queue *q)
4000 {
4001 	mutex_lock(&set->tag_list_lock);
4002 
4003 	/*
4004 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4005 	 */
4006 	if (!list_empty(&set->tag_list) &&
4007 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4008 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4009 		/* update existing queue */
4010 		blk_mq_update_tag_set_shared(set, true);
4011 	}
4012 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4013 		queue_set_hctx_shared(q, true);
4014 	list_add_tail(&q->tag_set_list, &set->tag_list);
4015 
4016 	mutex_unlock(&set->tag_list_lock);
4017 }
4018 
4019 /* All allocations will be freed in release handler of q->mq_kobj */
4020 static int blk_mq_alloc_ctxs(struct request_queue *q)
4021 {
4022 	struct blk_mq_ctxs *ctxs;
4023 	int cpu;
4024 
4025 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4026 	if (!ctxs)
4027 		return -ENOMEM;
4028 
4029 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4030 	if (!ctxs->queue_ctx)
4031 		goto fail;
4032 
4033 	for_each_possible_cpu(cpu) {
4034 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4035 		ctx->ctxs = ctxs;
4036 	}
4037 
4038 	q->mq_kobj = &ctxs->kobj;
4039 	q->queue_ctx = ctxs->queue_ctx;
4040 
4041 	return 0;
4042  fail:
4043 	kfree(ctxs);
4044 	return -ENOMEM;
4045 }
4046 
4047 /*
4048  * It is the actual release handler for mq, but we do it from
4049  * request queue's release handler for avoiding use-after-free
4050  * and headache because q->mq_kobj shouldn't have been introduced,
4051  * but we can't group ctx/kctx kobj without it.
4052  */
4053 void blk_mq_release(struct request_queue *q)
4054 {
4055 	struct blk_mq_hw_ctx *hctx, *next;
4056 	unsigned long i;
4057 
4058 	queue_for_each_hw_ctx(q, hctx, i)
4059 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4060 
4061 	/* all hctx are in .unused_hctx_list now */
4062 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4063 		list_del_init(&hctx->hctx_list);
4064 		kobject_put(&hctx->kobj);
4065 	}
4066 
4067 	xa_destroy(&q->hctx_table);
4068 
4069 	/*
4070 	 * release .mq_kobj and sw queue's kobject now because
4071 	 * both share lifetime with request queue.
4072 	 */
4073 	blk_mq_sysfs_deinit(q);
4074 }
4075 
4076 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4077 		struct queue_limits *lim, void *queuedata)
4078 {
4079 	struct queue_limits default_lim = { };
4080 	struct request_queue *q;
4081 	int ret;
4082 
4083 	q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
4084 	if (IS_ERR(q))
4085 		return q;
4086 	q->queuedata = queuedata;
4087 	ret = blk_mq_init_allocated_queue(set, q);
4088 	if (ret) {
4089 		blk_put_queue(q);
4090 		return ERR_PTR(ret);
4091 	}
4092 	return q;
4093 }
4094 EXPORT_SYMBOL(blk_mq_alloc_queue);
4095 
4096 /**
4097  * blk_mq_destroy_queue - shutdown a request queue
4098  * @q: request queue to shutdown
4099  *
4100  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4101  * requests will be failed with -ENODEV. The caller is responsible for dropping
4102  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4103  *
4104  * Context: can sleep
4105  */
4106 void blk_mq_destroy_queue(struct request_queue *q)
4107 {
4108 	WARN_ON_ONCE(!queue_is_mq(q));
4109 	WARN_ON_ONCE(blk_queue_registered(q));
4110 
4111 	might_sleep();
4112 
4113 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4114 	blk_queue_start_drain(q);
4115 	blk_mq_freeze_queue_wait(q);
4116 
4117 	blk_sync_queue(q);
4118 	blk_mq_cancel_work_sync(q);
4119 	blk_mq_exit_queue(q);
4120 }
4121 EXPORT_SYMBOL(blk_mq_destroy_queue);
4122 
4123 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4124 		struct queue_limits *lim, void *queuedata,
4125 		struct lock_class_key *lkclass)
4126 {
4127 	struct request_queue *q;
4128 	struct gendisk *disk;
4129 
4130 	q = blk_mq_alloc_queue(set, lim, queuedata);
4131 	if (IS_ERR(q))
4132 		return ERR_CAST(q);
4133 
4134 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4135 	if (!disk) {
4136 		blk_mq_destroy_queue(q);
4137 		blk_put_queue(q);
4138 		return ERR_PTR(-ENOMEM);
4139 	}
4140 	set_bit(GD_OWNS_QUEUE, &disk->state);
4141 	return disk;
4142 }
4143 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4144 
4145 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4146 		struct lock_class_key *lkclass)
4147 {
4148 	struct gendisk *disk;
4149 
4150 	if (!blk_get_queue(q))
4151 		return NULL;
4152 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4153 	if (!disk)
4154 		blk_put_queue(q);
4155 	return disk;
4156 }
4157 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4158 
4159 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4160 		struct blk_mq_tag_set *set, struct request_queue *q,
4161 		int hctx_idx, int node)
4162 {
4163 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4164 
4165 	/* reuse dead hctx first */
4166 	spin_lock(&q->unused_hctx_lock);
4167 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4168 		if (tmp->numa_node == node) {
4169 			hctx = tmp;
4170 			break;
4171 		}
4172 	}
4173 	if (hctx)
4174 		list_del_init(&hctx->hctx_list);
4175 	spin_unlock(&q->unused_hctx_lock);
4176 
4177 	if (!hctx)
4178 		hctx = blk_mq_alloc_hctx(q, set, node);
4179 	if (!hctx)
4180 		goto fail;
4181 
4182 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4183 		goto free_hctx;
4184 
4185 	return hctx;
4186 
4187  free_hctx:
4188 	kobject_put(&hctx->kobj);
4189  fail:
4190 	return NULL;
4191 }
4192 
4193 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4194 						struct request_queue *q)
4195 {
4196 	struct blk_mq_hw_ctx *hctx;
4197 	unsigned long i, j;
4198 
4199 	/* protect against switching io scheduler  */
4200 	mutex_lock(&q->sysfs_lock);
4201 	for (i = 0; i < set->nr_hw_queues; i++) {
4202 		int old_node;
4203 		int node = blk_mq_get_hctx_node(set, i);
4204 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4205 
4206 		if (old_hctx) {
4207 			old_node = old_hctx->numa_node;
4208 			blk_mq_exit_hctx(q, set, old_hctx, i);
4209 		}
4210 
4211 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4212 			if (!old_hctx)
4213 				break;
4214 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4215 					node, old_node);
4216 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4217 			WARN_ON_ONCE(!hctx);
4218 		}
4219 	}
4220 	/*
4221 	 * Increasing nr_hw_queues fails. Free the newly allocated
4222 	 * hctxs and keep the previous q->nr_hw_queues.
4223 	 */
4224 	if (i != set->nr_hw_queues) {
4225 		j = q->nr_hw_queues;
4226 	} else {
4227 		j = i;
4228 		q->nr_hw_queues = set->nr_hw_queues;
4229 	}
4230 
4231 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4232 		blk_mq_exit_hctx(q, set, hctx, j);
4233 	mutex_unlock(&q->sysfs_lock);
4234 }
4235 
4236 static void blk_mq_update_poll_flag(struct request_queue *q)
4237 {
4238 	struct blk_mq_tag_set *set = q->tag_set;
4239 
4240 	if (set->nr_maps > HCTX_TYPE_POLL &&
4241 	    set->map[HCTX_TYPE_POLL].nr_queues)
4242 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4243 	else
4244 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4245 }
4246 
4247 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4248 		struct request_queue *q)
4249 {
4250 	/* mark the queue as mq asap */
4251 	q->mq_ops = set->ops;
4252 
4253 	if (blk_mq_alloc_ctxs(q))
4254 		goto err_exit;
4255 
4256 	/* init q->mq_kobj and sw queues' kobjects */
4257 	blk_mq_sysfs_init(q);
4258 
4259 	INIT_LIST_HEAD(&q->unused_hctx_list);
4260 	spin_lock_init(&q->unused_hctx_lock);
4261 
4262 	xa_init(&q->hctx_table);
4263 
4264 	blk_mq_realloc_hw_ctxs(set, q);
4265 	if (!q->nr_hw_queues)
4266 		goto err_hctxs;
4267 
4268 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4269 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4270 
4271 	q->tag_set = set;
4272 
4273 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4274 	blk_mq_update_poll_flag(q);
4275 
4276 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4277 	INIT_LIST_HEAD(&q->flush_list);
4278 	INIT_LIST_HEAD(&q->requeue_list);
4279 	spin_lock_init(&q->requeue_lock);
4280 
4281 	q->nr_requests = set->queue_depth;
4282 
4283 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4284 	blk_mq_add_queue_tag_set(set, q);
4285 	blk_mq_map_swqueue(q);
4286 	return 0;
4287 
4288 err_hctxs:
4289 	blk_mq_release(q);
4290 err_exit:
4291 	q->mq_ops = NULL;
4292 	return -ENOMEM;
4293 }
4294 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4295 
4296 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4297 void blk_mq_exit_queue(struct request_queue *q)
4298 {
4299 	struct blk_mq_tag_set *set = q->tag_set;
4300 
4301 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4302 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4303 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4304 	blk_mq_del_queue_tag_set(q);
4305 }
4306 
4307 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4308 {
4309 	int i;
4310 
4311 	if (blk_mq_is_shared_tags(set->flags)) {
4312 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4313 						BLK_MQ_NO_HCTX_IDX,
4314 						set->queue_depth);
4315 		if (!set->shared_tags)
4316 			return -ENOMEM;
4317 	}
4318 
4319 	for (i = 0; i < set->nr_hw_queues; i++) {
4320 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4321 			goto out_unwind;
4322 		cond_resched();
4323 	}
4324 
4325 	return 0;
4326 
4327 out_unwind:
4328 	while (--i >= 0)
4329 		__blk_mq_free_map_and_rqs(set, i);
4330 
4331 	if (blk_mq_is_shared_tags(set->flags)) {
4332 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4333 					BLK_MQ_NO_HCTX_IDX);
4334 	}
4335 
4336 	return -ENOMEM;
4337 }
4338 
4339 /*
4340  * Allocate the request maps associated with this tag_set. Note that this
4341  * may reduce the depth asked for, if memory is tight. set->queue_depth
4342  * will be updated to reflect the allocated depth.
4343  */
4344 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4345 {
4346 	unsigned int depth;
4347 	int err;
4348 
4349 	depth = set->queue_depth;
4350 	do {
4351 		err = __blk_mq_alloc_rq_maps(set);
4352 		if (!err)
4353 			break;
4354 
4355 		set->queue_depth >>= 1;
4356 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4357 			err = -ENOMEM;
4358 			break;
4359 		}
4360 	} while (set->queue_depth);
4361 
4362 	if (!set->queue_depth || err) {
4363 		pr_err("blk-mq: failed to allocate request map\n");
4364 		return -ENOMEM;
4365 	}
4366 
4367 	if (depth != set->queue_depth)
4368 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4369 						depth, set->queue_depth);
4370 
4371 	return 0;
4372 }
4373 
4374 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4375 {
4376 	/*
4377 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4378 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4379 	 * number of hardware queues.
4380 	 */
4381 	if (set->nr_maps == 1)
4382 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4383 
4384 	if (set->ops->map_queues) {
4385 		int i;
4386 
4387 		/*
4388 		 * transport .map_queues is usually done in the following
4389 		 * way:
4390 		 *
4391 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4392 		 * 	mask = get_cpu_mask(queue)
4393 		 * 	for_each_cpu(cpu, mask)
4394 		 * 		set->map[x].mq_map[cpu] = queue;
4395 		 * }
4396 		 *
4397 		 * When we need to remap, the table has to be cleared for
4398 		 * killing stale mapping since one CPU may not be mapped
4399 		 * to any hw queue.
4400 		 */
4401 		for (i = 0; i < set->nr_maps; i++)
4402 			blk_mq_clear_mq_map(&set->map[i]);
4403 
4404 		set->ops->map_queues(set);
4405 	} else {
4406 		BUG_ON(set->nr_maps > 1);
4407 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4408 	}
4409 }
4410 
4411 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4412 				       int new_nr_hw_queues)
4413 {
4414 	struct blk_mq_tags **new_tags;
4415 	int i;
4416 
4417 	if (set->nr_hw_queues >= new_nr_hw_queues)
4418 		goto done;
4419 
4420 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4421 				GFP_KERNEL, set->numa_node);
4422 	if (!new_tags)
4423 		return -ENOMEM;
4424 
4425 	if (set->tags)
4426 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4427 		       sizeof(*set->tags));
4428 	kfree(set->tags);
4429 	set->tags = new_tags;
4430 
4431 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4432 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4433 			while (--i >= set->nr_hw_queues)
4434 				__blk_mq_free_map_and_rqs(set, i);
4435 			return -ENOMEM;
4436 		}
4437 		cond_resched();
4438 	}
4439 
4440 done:
4441 	set->nr_hw_queues = new_nr_hw_queues;
4442 	return 0;
4443 }
4444 
4445 /*
4446  * Alloc a tag set to be associated with one or more request queues.
4447  * May fail with EINVAL for various error conditions. May adjust the
4448  * requested depth down, if it's too large. In that case, the set
4449  * value will be stored in set->queue_depth.
4450  */
4451 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4452 {
4453 	int i, ret;
4454 
4455 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4456 
4457 	if (!set->nr_hw_queues)
4458 		return -EINVAL;
4459 	if (!set->queue_depth)
4460 		return -EINVAL;
4461 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4462 		return -EINVAL;
4463 
4464 	if (!set->ops->queue_rq)
4465 		return -EINVAL;
4466 
4467 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4468 		return -EINVAL;
4469 
4470 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4471 		pr_info("blk-mq: reduced tag depth to %u\n",
4472 			BLK_MQ_MAX_DEPTH);
4473 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4474 	}
4475 
4476 	if (!set->nr_maps)
4477 		set->nr_maps = 1;
4478 	else if (set->nr_maps > HCTX_MAX_TYPES)
4479 		return -EINVAL;
4480 
4481 	/*
4482 	 * If a crashdump is active, then we are potentially in a very
4483 	 * memory constrained environment. Limit us to  64 tags to prevent
4484 	 * using too much memory.
4485 	 */
4486 	if (is_kdump_kernel())
4487 		set->queue_depth = min(64U, set->queue_depth);
4488 
4489 	/*
4490 	 * There is no use for more h/w queues than cpus if we just have
4491 	 * a single map
4492 	 */
4493 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4494 		set->nr_hw_queues = nr_cpu_ids;
4495 
4496 	if (set->flags & BLK_MQ_F_BLOCKING) {
4497 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4498 		if (!set->srcu)
4499 			return -ENOMEM;
4500 		ret = init_srcu_struct(set->srcu);
4501 		if (ret)
4502 			goto out_free_srcu;
4503 	}
4504 
4505 	ret = -ENOMEM;
4506 	set->tags = kcalloc_node(set->nr_hw_queues,
4507 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4508 				 set->numa_node);
4509 	if (!set->tags)
4510 		goto out_cleanup_srcu;
4511 
4512 	for (i = 0; i < set->nr_maps; i++) {
4513 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4514 						  sizeof(set->map[i].mq_map[0]),
4515 						  GFP_KERNEL, set->numa_node);
4516 		if (!set->map[i].mq_map)
4517 			goto out_free_mq_map;
4518 		set->map[i].nr_queues = set->nr_hw_queues;
4519 	}
4520 
4521 	blk_mq_update_queue_map(set);
4522 
4523 	ret = blk_mq_alloc_set_map_and_rqs(set);
4524 	if (ret)
4525 		goto out_free_mq_map;
4526 
4527 	mutex_init(&set->tag_list_lock);
4528 	INIT_LIST_HEAD(&set->tag_list);
4529 
4530 	return 0;
4531 
4532 out_free_mq_map:
4533 	for (i = 0; i < set->nr_maps; i++) {
4534 		kfree(set->map[i].mq_map);
4535 		set->map[i].mq_map = NULL;
4536 	}
4537 	kfree(set->tags);
4538 	set->tags = NULL;
4539 out_cleanup_srcu:
4540 	if (set->flags & BLK_MQ_F_BLOCKING)
4541 		cleanup_srcu_struct(set->srcu);
4542 out_free_srcu:
4543 	if (set->flags & BLK_MQ_F_BLOCKING)
4544 		kfree(set->srcu);
4545 	return ret;
4546 }
4547 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4548 
4549 /* allocate and initialize a tagset for a simple single-queue device */
4550 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4551 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4552 		unsigned int set_flags)
4553 {
4554 	memset(set, 0, sizeof(*set));
4555 	set->ops = ops;
4556 	set->nr_hw_queues = 1;
4557 	set->nr_maps = 1;
4558 	set->queue_depth = queue_depth;
4559 	set->numa_node = NUMA_NO_NODE;
4560 	set->flags = set_flags;
4561 	return blk_mq_alloc_tag_set(set);
4562 }
4563 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4564 
4565 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4566 {
4567 	int i, j;
4568 
4569 	for (i = 0; i < set->nr_hw_queues; i++)
4570 		__blk_mq_free_map_and_rqs(set, i);
4571 
4572 	if (blk_mq_is_shared_tags(set->flags)) {
4573 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4574 					BLK_MQ_NO_HCTX_IDX);
4575 	}
4576 
4577 	for (j = 0; j < set->nr_maps; j++) {
4578 		kfree(set->map[j].mq_map);
4579 		set->map[j].mq_map = NULL;
4580 	}
4581 
4582 	kfree(set->tags);
4583 	set->tags = NULL;
4584 	if (set->flags & BLK_MQ_F_BLOCKING) {
4585 		cleanup_srcu_struct(set->srcu);
4586 		kfree(set->srcu);
4587 	}
4588 }
4589 EXPORT_SYMBOL(blk_mq_free_tag_set);
4590 
4591 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4592 {
4593 	struct blk_mq_tag_set *set = q->tag_set;
4594 	struct blk_mq_hw_ctx *hctx;
4595 	int ret;
4596 	unsigned long i;
4597 
4598 	if (!set)
4599 		return -EINVAL;
4600 
4601 	if (q->nr_requests == nr)
4602 		return 0;
4603 
4604 	blk_mq_freeze_queue(q);
4605 	blk_mq_quiesce_queue(q);
4606 
4607 	ret = 0;
4608 	queue_for_each_hw_ctx(q, hctx, i) {
4609 		if (!hctx->tags)
4610 			continue;
4611 		/*
4612 		 * If we're using an MQ scheduler, just update the scheduler
4613 		 * queue depth. This is similar to what the old code would do.
4614 		 */
4615 		if (hctx->sched_tags) {
4616 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4617 						      nr, true);
4618 		} else {
4619 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4620 						      false);
4621 		}
4622 		if (ret)
4623 			break;
4624 		if (q->elevator && q->elevator->type->ops.depth_updated)
4625 			q->elevator->type->ops.depth_updated(hctx);
4626 	}
4627 	if (!ret) {
4628 		q->nr_requests = nr;
4629 		if (blk_mq_is_shared_tags(set->flags)) {
4630 			if (q->elevator)
4631 				blk_mq_tag_update_sched_shared_tags(q);
4632 			else
4633 				blk_mq_tag_resize_shared_tags(set, nr);
4634 		}
4635 	}
4636 
4637 	blk_mq_unquiesce_queue(q);
4638 	blk_mq_unfreeze_queue(q);
4639 
4640 	return ret;
4641 }
4642 
4643 /*
4644  * request_queue and elevator_type pair.
4645  * It is just used by __blk_mq_update_nr_hw_queues to cache
4646  * the elevator_type associated with a request_queue.
4647  */
4648 struct blk_mq_qe_pair {
4649 	struct list_head node;
4650 	struct request_queue *q;
4651 	struct elevator_type *type;
4652 };
4653 
4654 /*
4655  * Cache the elevator_type in qe pair list and switch the
4656  * io scheduler to 'none'
4657  */
4658 static bool blk_mq_elv_switch_none(struct list_head *head,
4659 		struct request_queue *q)
4660 {
4661 	struct blk_mq_qe_pair *qe;
4662 
4663 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4664 	if (!qe)
4665 		return false;
4666 
4667 	/* q->elevator needs protection from ->sysfs_lock */
4668 	mutex_lock(&q->sysfs_lock);
4669 
4670 	/* the check has to be done with holding sysfs_lock */
4671 	if (!q->elevator) {
4672 		kfree(qe);
4673 		goto unlock;
4674 	}
4675 
4676 	INIT_LIST_HEAD(&qe->node);
4677 	qe->q = q;
4678 	qe->type = q->elevator->type;
4679 	/* keep a reference to the elevator module as we'll switch back */
4680 	__elevator_get(qe->type);
4681 	list_add(&qe->node, head);
4682 	elevator_disable(q);
4683 unlock:
4684 	mutex_unlock(&q->sysfs_lock);
4685 
4686 	return true;
4687 }
4688 
4689 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4690 						struct request_queue *q)
4691 {
4692 	struct blk_mq_qe_pair *qe;
4693 
4694 	list_for_each_entry(qe, head, node)
4695 		if (qe->q == q)
4696 			return qe;
4697 
4698 	return NULL;
4699 }
4700 
4701 static void blk_mq_elv_switch_back(struct list_head *head,
4702 				  struct request_queue *q)
4703 {
4704 	struct blk_mq_qe_pair *qe;
4705 	struct elevator_type *t;
4706 
4707 	qe = blk_lookup_qe_pair(head, q);
4708 	if (!qe)
4709 		return;
4710 	t = qe->type;
4711 	list_del(&qe->node);
4712 	kfree(qe);
4713 
4714 	mutex_lock(&q->sysfs_lock);
4715 	elevator_switch(q, t);
4716 	/* drop the reference acquired in blk_mq_elv_switch_none */
4717 	elevator_put(t);
4718 	mutex_unlock(&q->sysfs_lock);
4719 }
4720 
4721 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4722 							int nr_hw_queues)
4723 {
4724 	struct request_queue *q;
4725 	LIST_HEAD(head);
4726 	int prev_nr_hw_queues = set->nr_hw_queues;
4727 	int i;
4728 
4729 	lockdep_assert_held(&set->tag_list_lock);
4730 
4731 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4732 		nr_hw_queues = nr_cpu_ids;
4733 	if (nr_hw_queues < 1)
4734 		return;
4735 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4736 		return;
4737 
4738 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4739 		blk_mq_freeze_queue(q);
4740 	/*
4741 	 * Switch IO scheduler to 'none', cleaning up the data associated
4742 	 * with the previous scheduler. We will switch back once we are done
4743 	 * updating the new sw to hw queue mappings.
4744 	 */
4745 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4746 		if (!blk_mq_elv_switch_none(&head, q))
4747 			goto switch_back;
4748 
4749 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4750 		blk_mq_debugfs_unregister_hctxs(q);
4751 		blk_mq_sysfs_unregister_hctxs(q);
4752 	}
4753 
4754 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4755 		goto reregister;
4756 
4757 fallback:
4758 	blk_mq_update_queue_map(set);
4759 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4760 		blk_mq_realloc_hw_ctxs(set, q);
4761 		blk_mq_update_poll_flag(q);
4762 		if (q->nr_hw_queues != set->nr_hw_queues) {
4763 			int i = prev_nr_hw_queues;
4764 
4765 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4766 					nr_hw_queues, prev_nr_hw_queues);
4767 			for (; i < set->nr_hw_queues; i++)
4768 				__blk_mq_free_map_and_rqs(set, i);
4769 
4770 			set->nr_hw_queues = prev_nr_hw_queues;
4771 			goto fallback;
4772 		}
4773 		blk_mq_map_swqueue(q);
4774 	}
4775 
4776 reregister:
4777 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4778 		blk_mq_sysfs_register_hctxs(q);
4779 		blk_mq_debugfs_register_hctxs(q);
4780 	}
4781 
4782 switch_back:
4783 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4784 		blk_mq_elv_switch_back(&head, q);
4785 
4786 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4787 		blk_mq_unfreeze_queue(q);
4788 
4789 	/* Free the excess tags when nr_hw_queues shrink. */
4790 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4791 		__blk_mq_free_map_and_rqs(set, i);
4792 }
4793 
4794 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4795 {
4796 	mutex_lock(&set->tag_list_lock);
4797 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4798 	mutex_unlock(&set->tag_list_lock);
4799 }
4800 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4801 
4802 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4803 			 struct io_comp_batch *iob, unsigned int flags)
4804 {
4805 	long state = get_current_state();
4806 	int ret;
4807 
4808 	do {
4809 		ret = q->mq_ops->poll(hctx, iob);
4810 		if (ret > 0) {
4811 			__set_current_state(TASK_RUNNING);
4812 			return ret;
4813 		}
4814 
4815 		if (signal_pending_state(state, current))
4816 			__set_current_state(TASK_RUNNING);
4817 		if (task_is_running(current))
4818 			return 1;
4819 
4820 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4821 			break;
4822 		cpu_relax();
4823 	} while (!need_resched());
4824 
4825 	__set_current_state(TASK_RUNNING);
4826 	return 0;
4827 }
4828 
4829 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4830 		struct io_comp_batch *iob, unsigned int flags)
4831 {
4832 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4833 
4834 	return blk_hctx_poll(q, hctx, iob, flags);
4835 }
4836 
4837 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4838 		unsigned int poll_flags)
4839 {
4840 	struct request_queue *q = rq->q;
4841 	int ret;
4842 
4843 	if (!blk_rq_is_poll(rq))
4844 		return 0;
4845 	if (!percpu_ref_tryget(&q->q_usage_counter))
4846 		return 0;
4847 
4848 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4849 	blk_queue_exit(q);
4850 
4851 	return ret;
4852 }
4853 EXPORT_SYMBOL_GPL(blk_rq_poll);
4854 
4855 unsigned int blk_mq_rq_cpu(struct request *rq)
4856 {
4857 	return rq->mq_ctx->cpu;
4858 }
4859 EXPORT_SYMBOL(blk_mq_rq_cpu);
4860 
4861 void blk_mq_cancel_work_sync(struct request_queue *q)
4862 {
4863 	struct blk_mq_hw_ctx *hctx;
4864 	unsigned long i;
4865 
4866 	cancel_delayed_work_sync(&q->requeue_work);
4867 
4868 	queue_for_each_hw_ctx(q, hctx, i)
4869 		cancel_delayed_work_sync(&hctx->run_work);
4870 }
4871 
4872 static int __init blk_mq_init(void)
4873 {
4874 	int i;
4875 
4876 	for_each_possible_cpu(i)
4877 		init_llist_head(&per_cpu(blk_cpu_done, i));
4878 	for_each_possible_cpu(i)
4879 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4880 			 __blk_mq_complete_request_remote, NULL);
4881 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4882 
4883 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4884 				  "block/softirq:dead", NULL,
4885 				  blk_softirq_cpu_dead);
4886 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4887 				blk_mq_hctx_notify_dead);
4888 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4889 				blk_mq_hctx_notify_online,
4890 				blk_mq_hctx_notify_offline);
4891 	return 0;
4892 }
4893 subsys_initcall(blk_mq_init);
4894