1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 #include <linux/part_stat.h> 31 32 #include <trace/events/block.h> 33 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-pm.h" 39 #include "blk-stat.h" 40 #include "blk-mq-sched.h" 41 #include "blk-rq-qos.h" 42 43 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 44 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 45 46 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 47 static void blk_mq_request_bypass_insert(struct request *rq, 48 blk_insert_t flags); 49 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 50 struct list_head *list); 51 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 52 struct io_comp_batch *iob, unsigned int flags); 53 54 /* 55 * Check if any of the ctx, dispatch list or elevator 56 * have pending work in this hardware queue. 57 */ 58 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 59 { 60 return !list_empty_careful(&hctx->dispatch) || 61 sbitmap_any_bit_set(&hctx->ctx_map) || 62 blk_mq_sched_has_work(hctx); 63 } 64 65 /* 66 * Mark this ctx as having pending work in this hardware queue 67 */ 68 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 69 struct blk_mq_ctx *ctx) 70 { 71 const int bit = ctx->index_hw[hctx->type]; 72 73 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 74 sbitmap_set_bit(&hctx->ctx_map, bit); 75 } 76 77 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 78 struct blk_mq_ctx *ctx) 79 { 80 const int bit = ctx->index_hw[hctx->type]; 81 82 sbitmap_clear_bit(&hctx->ctx_map, bit); 83 } 84 85 struct mq_inflight { 86 struct block_device *part; 87 unsigned int inflight[2]; 88 }; 89 90 static bool blk_mq_check_inflight(struct request *rq, void *priv) 91 { 92 struct mq_inflight *mi = priv; 93 94 if (rq->part && blk_do_io_stat(rq) && 95 (!mi->part->bd_partno || rq->part == mi->part) && 96 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 97 mi->inflight[rq_data_dir(rq)]++; 98 99 return true; 100 } 101 102 unsigned int blk_mq_in_flight(struct request_queue *q, 103 struct block_device *part) 104 { 105 struct mq_inflight mi = { .part = part }; 106 107 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 108 109 return mi.inflight[0] + mi.inflight[1]; 110 } 111 112 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 113 unsigned int inflight[2]) 114 { 115 struct mq_inflight mi = { .part = part }; 116 117 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 118 inflight[0] = mi.inflight[0]; 119 inflight[1] = mi.inflight[1]; 120 } 121 122 void blk_freeze_queue_start(struct request_queue *q) 123 { 124 mutex_lock(&q->mq_freeze_lock); 125 if (++q->mq_freeze_depth == 1) { 126 percpu_ref_kill(&q->q_usage_counter); 127 mutex_unlock(&q->mq_freeze_lock); 128 if (queue_is_mq(q)) 129 blk_mq_run_hw_queues(q, false); 130 } else { 131 mutex_unlock(&q->mq_freeze_lock); 132 } 133 } 134 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 135 136 void blk_mq_freeze_queue_wait(struct request_queue *q) 137 { 138 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 139 } 140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 141 142 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 143 unsigned long timeout) 144 { 145 return wait_event_timeout(q->mq_freeze_wq, 146 percpu_ref_is_zero(&q->q_usage_counter), 147 timeout); 148 } 149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 150 151 /* 152 * Guarantee no request is in use, so we can change any data structure of 153 * the queue afterward. 154 */ 155 void blk_freeze_queue(struct request_queue *q) 156 { 157 /* 158 * In the !blk_mq case we are only calling this to kill the 159 * q_usage_counter, otherwise this increases the freeze depth 160 * and waits for it to return to zero. For this reason there is 161 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 162 * exported to drivers as the only user for unfreeze is blk_mq. 163 */ 164 blk_freeze_queue_start(q); 165 blk_mq_freeze_queue_wait(q); 166 } 167 168 void blk_mq_freeze_queue(struct request_queue *q) 169 { 170 /* 171 * ...just an alias to keep freeze and unfreeze actions balanced 172 * in the blk_mq_* namespace 173 */ 174 blk_freeze_queue(q); 175 } 176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 177 178 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 179 { 180 mutex_lock(&q->mq_freeze_lock); 181 if (force_atomic) 182 q->q_usage_counter.data->force_atomic = true; 183 q->mq_freeze_depth--; 184 WARN_ON_ONCE(q->mq_freeze_depth < 0); 185 if (!q->mq_freeze_depth) { 186 percpu_ref_resurrect(&q->q_usage_counter); 187 wake_up_all(&q->mq_freeze_wq); 188 } 189 mutex_unlock(&q->mq_freeze_lock); 190 } 191 192 void blk_mq_unfreeze_queue(struct request_queue *q) 193 { 194 __blk_mq_unfreeze_queue(q, false); 195 } 196 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 197 198 /* 199 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 200 * mpt3sas driver such that this function can be removed. 201 */ 202 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 203 { 204 unsigned long flags; 205 206 spin_lock_irqsave(&q->queue_lock, flags); 207 if (!q->quiesce_depth++) 208 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 209 spin_unlock_irqrestore(&q->queue_lock, flags); 210 } 211 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 212 213 /** 214 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 215 * @set: tag_set to wait on 216 * 217 * Note: it is driver's responsibility for making sure that quiesce has 218 * been started on or more of the request_queues of the tag_set. This 219 * function only waits for the quiesce on those request_queues that had 220 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 221 */ 222 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 223 { 224 if (set->flags & BLK_MQ_F_BLOCKING) 225 synchronize_srcu(set->srcu); 226 else 227 synchronize_rcu(); 228 } 229 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 230 231 /** 232 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 233 * @q: request queue. 234 * 235 * Note: this function does not prevent that the struct request end_io() 236 * callback function is invoked. Once this function is returned, we make 237 * sure no dispatch can happen until the queue is unquiesced via 238 * blk_mq_unquiesce_queue(). 239 */ 240 void blk_mq_quiesce_queue(struct request_queue *q) 241 { 242 blk_mq_quiesce_queue_nowait(q); 243 /* nothing to wait for non-mq queues */ 244 if (queue_is_mq(q)) 245 blk_mq_wait_quiesce_done(q->tag_set); 246 } 247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 248 249 /* 250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 251 * @q: request queue. 252 * 253 * This function recovers queue into the state before quiescing 254 * which is done by blk_mq_quiesce_queue. 255 */ 256 void blk_mq_unquiesce_queue(struct request_queue *q) 257 { 258 unsigned long flags; 259 bool run_queue = false; 260 261 spin_lock_irqsave(&q->queue_lock, flags); 262 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 263 ; 264 } else if (!--q->quiesce_depth) { 265 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 266 run_queue = true; 267 } 268 spin_unlock_irqrestore(&q->queue_lock, flags); 269 270 /* dispatch requests which are inserted during quiescing */ 271 if (run_queue) 272 blk_mq_run_hw_queues(q, true); 273 } 274 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 275 276 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 277 { 278 struct request_queue *q; 279 280 mutex_lock(&set->tag_list_lock); 281 list_for_each_entry(q, &set->tag_list, tag_set_list) { 282 if (!blk_queue_skip_tagset_quiesce(q)) 283 blk_mq_quiesce_queue_nowait(q); 284 } 285 blk_mq_wait_quiesce_done(set); 286 mutex_unlock(&set->tag_list_lock); 287 } 288 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 289 290 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 291 { 292 struct request_queue *q; 293 294 mutex_lock(&set->tag_list_lock); 295 list_for_each_entry(q, &set->tag_list, tag_set_list) { 296 if (!blk_queue_skip_tagset_quiesce(q)) 297 blk_mq_unquiesce_queue(q); 298 } 299 mutex_unlock(&set->tag_list_lock); 300 } 301 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 302 303 void blk_mq_wake_waiters(struct request_queue *q) 304 { 305 struct blk_mq_hw_ctx *hctx; 306 unsigned long i; 307 308 queue_for_each_hw_ctx(q, hctx, i) 309 if (blk_mq_hw_queue_mapped(hctx)) 310 blk_mq_tag_wakeup_all(hctx->tags, true); 311 } 312 313 void blk_rq_init(struct request_queue *q, struct request *rq) 314 { 315 memset(rq, 0, sizeof(*rq)); 316 317 INIT_LIST_HEAD(&rq->queuelist); 318 rq->q = q; 319 rq->__sector = (sector_t) -1; 320 INIT_HLIST_NODE(&rq->hash); 321 RB_CLEAR_NODE(&rq->rb_node); 322 rq->tag = BLK_MQ_NO_TAG; 323 rq->internal_tag = BLK_MQ_NO_TAG; 324 rq->start_time_ns = blk_time_get_ns(); 325 rq->part = NULL; 326 blk_crypto_rq_set_defaults(rq); 327 } 328 EXPORT_SYMBOL(blk_rq_init); 329 330 /* Set start and alloc time when the allocated request is actually used */ 331 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 332 { 333 if (blk_mq_need_time_stamp(rq)) 334 rq->start_time_ns = blk_time_get_ns(); 335 else 336 rq->start_time_ns = 0; 337 338 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 339 if (blk_queue_rq_alloc_time(rq->q)) 340 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 341 else 342 rq->alloc_time_ns = 0; 343 #endif 344 } 345 346 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 347 struct blk_mq_tags *tags, unsigned int tag) 348 { 349 struct blk_mq_ctx *ctx = data->ctx; 350 struct blk_mq_hw_ctx *hctx = data->hctx; 351 struct request_queue *q = data->q; 352 struct request *rq = tags->static_rqs[tag]; 353 354 rq->q = q; 355 rq->mq_ctx = ctx; 356 rq->mq_hctx = hctx; 357 rq->cmd_flags = data->cmd_flags; 358 359 if (data->flags & BLK_MQ_REQ_PM) 360 data->rq_flags |= RQF_PM; 361 if (blk_queue_io_stat(q)) 362 data->rq_flags |= RQF_IO_STAT; 363 rq->rq_flags = data->rq_flags; 364 365 if (data->rq_flags & RQF_SCHED_TAGS) { 366 rq->tag = BLK_MQ_NO_TAG; 367 rq->internal_tag = tag; 368 } else { 369 rq->tag = tag; 370 rq->internal_tag = BLK_MQ_NO_TAG; 371 } 372 rq->timeout = 0; 373 374 rq->part = NULL; 375 rq->io_start_time_ns = 0; 376 rq->stats_sectors = 0; 377 rq->nr_phys_segments = 0; 378 #if defined(CONFIG_BLK_DEV_INTEGRITY) 379 rq->nr_integrity_segments = 0; 380 #endif 381 rq->end_io = NULL; 382 rq->end_io_data = NULL; 383 384 blk_crypto_rq_set_defaults(rq); 385 INIT_LIST_HEAD(&rq->queuelist); 386 /* tag was already set */ 387 WRITE_ONCE(rq->deadline, 0); 388 req_ref_set(rq, 1); 389 390 if (rq->rq_flags & RQF_USE_SCHED) { 391 struct elevator_queue *e = data->q->elevator; 392 393 INIT_HLIST_NODE(&rq->hash); 394 RB_CLEAR_NODE(&rq->rb_node); 395 396 if (e->type->ops.prepare_request) 397 e->type->ops.prepare_request(rq); 398 } 399 400 return rq; 401 } 402 403 static inline struct request * 404 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 405 { 406 unsigned int tag, tag_offset; 407 struct blk_mq_tags *tags; 408 struct request *rq; 409 unsigned long tag_mask; 410 int i, nr = 0; 411 412 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 413 if (unlikely(!tag_mask)) 414 return NULL; 415 416 tags = blk_mq_tags_from_data(data); 417 for (i = 0; tag_mask; i++) { 418 if (!(tag_mask & (1UL << i))) 419 continue; 420 tag = tag_offset + i; 421 prefetch(tags->static_rqs[tag]); 422 tag_mask &= ~(1UL << i); 423 rq = blk_mq_rq_ctx_init(data, tags, tag); 424 rq_list_add(data->cached_rq, rq); 425 nr++; 426 } 427 if (!(data->rq_flags & RQF_SCHED_TAGS)) 428 blk_mq_add_active_requests(data->hctx, nr); 429 /* caller already holds a reference, add for remainder */ 430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 431 data->nr_tags -= nr; 432 433 return rq_list_pop(data->cached_rq); 434 } 435 436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 437 { 438 struct request_queue *q = data->q; 439 u64 alloc_time_ns = 0; 440 struct request *rq; 441 unsigned int tag; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = blk_time_get_ns(); 446 447 if (data->cmd_flags & REQ_NOWAIT) 448 data->flags |= BLK_MQ_REQ_NOWAIT; 449 450 if (q->elevator) { 451 /* 452 * All requests use scheduler tags when an I/O scheduler is 453 * enabled for the queue. 454 */ 455 data->rq_flags |= RQF_SCHED_TAGS; 456 457 /* 458 * Flush/passthrough requests are special and go directly to the 459 * dispatch list. 460 */ 461 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 462 !blk_op_is_passthrough(data->cmd_flags)) { 463 struct elevator_mq_ops *ops = &q->elevator->type->ops; 464 465 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 466 467 data->rq_flags |= RQF_USE_SCHED; 468 if (ops->limit_depth) 469 ops->limit_depth(data->cmd_flags, data); 470 } 471 } 472 473 retry: 474 data->ctx = blk_mq_get_ctx(q); 475 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 476 if (!(data->rq_flags & RQF_SCHED_TAGS)) 477 blk_mq_tag_busy(data->hctx); 478 479 if (data->flags & BLK_MQ_REQ_RESERVED) 480 data->rq_flags |= RQF_RESV; 481 482 /* 483 * Try batched alloc if we want more than 1 tag. 484 */ 485 if (data->nr_tags > 1) { 486 rq = __blk_mq_alloc_requests_batch(data); 487 if (rq) { 488 blk_mq_rq_time_init(rq, alloc_time_ns); 489 return rq; 490 } 491 data->nr_tags = 1; 492 } 493 494 /* 495 * Waiting allocations only fail because of an inactive hctx. In that 496 * case just retry the hctx assignment and tag allocation as CPU hotplug 497 * should have migrated us to an online CPU by now. 498 */ 499 tag = blk_mq_get_tag(data); 500 if (tag == BLK_MQ_NO_TAG) { 501 if (data->flags & BLK_MQ_REQ_NOWAIT) 502 return NULL; 503 /* 504 * Give up the CPU and sleep for a random short time to 505 * ensure that thread using a realtime scheduling class 506 * are migrated off the CPU, and thus off the hctx that 507 * is going away. 508 */ 509 msleep(3); 510 goto retry; 511 } 512 513 if (!(data->rq_flags & RQF_SCHED_TAGS)) 514 blk_mq_inc_active_requests(data->hctx); 515 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 516 blk_mq_rq_time_init(rq, alloc_time_ns); 517 return rq; 518 } 519 520 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 521 struct blk_plug *plug, 522 blk_opf_t opf, 523 blk_mq_req_flags_t flags) 524 { 525 struct blk_mq_alloc_data data = { 526 .q = q, 527 .flags = flags, 528 .cmd_flags = opf, 529 .nr_tags = plug->nr_ios, 530 .cached_rq = &plug->cached_rq, 531 }; 532 struct request *rq; 533 534 if (blk_queue_enter(q, flags)) 535 return NULL; 536 537 plug->nr_ios = 1; 538 539 rq = __blk_mq_alloc_requests(&data); 540 if (unlikely(!rq)) 541 blk_queue_exit(q); 542 return rq; 543 } 544 545 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 546 blk_opf_t opf, 547 blk_mq_req_flags_t flags) 548 { 549 struct blk_plug *plug = current->plug; 550 struct request *rq; 551 552 if (!plug) 553 return NULL; 554 555 if (rq_list_empty(plug->cached_rq)) { 556 if (plug->nr_ios == 1) 557 return NULL; 558 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 559 if (!rq) 560 return NULL; 561 } else { 562 rq = rq_list_peek(&plug->cached_rq); 563 if (!rq || rq->q != q) 564 return NULL; 565 566 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 567 return NULL; 568 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 569 return NULL; 570 571 plug->cached_rq = rq_list_next(rq); 572 blk_mq_rq_time_init(rq, 0); 573 } 574 575 rq->cmd_flags = opf; 576 INIT_LIST_HEAD(&rq->queuelist); 577 return rq; 578 } 579 580 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 581 blk_mq_req_flags_t flags) 582 { 583 struct request *rq; 584 585 rq = blk_mq_alloc_cached_request(q, opf, flags); 586 if (!rq) { 587 struct blk_mq_alloc_data data = { 588 .q = q, 589 .flags = flags, 590 .cmd_flags = opf, 591 .nr_tags = 1, 592 }; 593 int ret; 594 595 ret = blk_queue_enter(q, flags); 596 if (ret) 597 return ERR_PTR(ret); 598 599 rq = __blk_mq_alloc_requests(&data); 600 if (!rq) 601 goto out_queue_exit; 602 } 603 rq->__data_len = 0; 604 rq->__sector = (sector_t) -1; 605 rq->bio = rq->biotail = NULL; 606 return rq; 607 out_queue_exit: 608 blk_queue_exit(q); 609 return ERR_PTR(-EWOULDBLOCK); 610 } 611 EXPORT_SYMBOL(blk_mq_alloc_request); 612 613 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 614 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 615 { 616 struct blk_mq_alloc_data data = { 617 .q = q, 618 .flags = flags, 619 .cmd_flags = opf, 620 .nr_tags = 1, 621 }; 622 u64 alloc_time_ns = 0; 623 struct request *rq; 624 unsigned int cpu; 625 unsigned int tag; 626 int ret; 627 628 /* alloc_time includes depth and tag waits */ 629 if (blk_queue_rq_alloc_time(q)) 630 alloc_time_ns = blk_time_get_ns(); 631 632 /* 633 * If the tag allocator sleeps we could get an allocation for a 634 * different hardware context. No need to complicate the low level 635 * allocator for this for the rare use case of a command tied to 636 * a specific queue. 637 */ 638 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 639 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 640 return ERR_PTR(-EINVAL); 641 642 if (hctx_idx >= q->nr_hw_queues) 643 return ERR_PTR(-EIO); 644 645 ret = blk_queue_enter(q, flags); 646 if (ret) 647 return ERR_PTR(ret); 648 649 /* 650 * Check if the hardware context is actually mapped to anything. 651 * If not tell the caller that it should skip this queue. 652 */ 653 ret = -EXDEV; 654 data.hctx = xa_load(&q->hctx_table, hctx_idx); 655 if (!blk_mq_hw_queue_mapped(data.hctx)) 656 goto out_queue_exit; 657 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 658 if (cpu >= nr_cpu_ids) 659 goto out_queue_exit; 660 data.ctx = __blk_mq_get_ctx(q, cpu); 661 662 if (q->elevator) 663 data.rq_flags |= RQF_SCHED_TAGS; 664 else 665 blk_mq_tag_busy(data.hctx); 666 667 if (flags & BLK_MQ_REQ_RESERVED) 668 data.rq_flags |= RQF_RESV; 669 670 ret = -EWOULDBLOCK; 671 tag = blk_mq_get_tag(&data); 672 if (tag == BLK_MQ_NO_TAG) 673 goto out_queue_exit; 674 if (!(data.rq_flags & RQF_SCHED_TAGS)) 675 blk_mq_inc_active_requests(data.hctx); 676 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 677 blk_mq_rq_time_init(rq, alloc_time_ns); 678 rq->__data_len = 0; 679 rq->__sector = (sector_t) -1; 680 rq->bio = rq->biotail = NULL; 681 return rq; 682 683 out_queue_exit: 684 blk_queue_exit(q); 685 return ERR_PTR(ret); 686 } 687 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 688 689 static void blk_mq_finish_request(struct request *rq) 690 { 691 struct request_queue *q = rq->q; 692 693 if (rq->rq_flags & RQF_USE_SCHED) { 694 q->elevator->type->ops.finish_request(rq); 695 /* 696 * For postflush request that may need to be 697 * completed twice, we should clear this flag 698 * to avoid double finish_request() on the rq. 699 */ 700 rq->rq_flags &= ~RQF_USE_SCHED; 701 } 702 } 703 704 static void __blk_mq_free_request(struct request *rq) 705 { 706 struct request_queue *q = rq->q; 707 struct blk_mq_ctx *ctx = rq->mq_ctx; 708 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 709 const int sched_tag = rq->internal_tag; 710 711 blk_crypto_free_request(rq); 712 blk_pm_mark_last_busy(rq); 713 rq->mq_hctx = NULL; 714 715 if (rq->tag != BLK_MQ_NO_TAG) { 716 blk_mq_dec_active_requests(hctx); 717 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 718 } 719 if (sched_tag != BLK_MQ_NO_TAG) 720 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 721 blk_mq_sched_restart(hctx); 722 blk_queue_exit(q); 723 } 724 725 void blk_mq_free_request(struct request *rq) 726 { 727 struct request_queue *q = rq->q; 728 729 blk_mq_finish_request(rq); 730 731 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 732 laptop_io_completion(q->disk->bdi); 733 734 rq_qos_done(q, rq); 735 736 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 737 if (req_ref_put_and_test(rq)) 738 __blk_mq_free_request(rq); 739 } 740 EXPORT_SYMBOL_GPL(blk_mq_free_request); 741 742 void blk_mq_free_plug_rqs(struct blk_plug *plug) 743 { 744 struct request *rq; 745 746 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 747 blk_mq_free_request(rq); 748 } 749 750 void blk_dump_rq_flags(struct request *rq, char *msg) 751 { 752 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 753 rq->q->disk ? rq->q->disk->disk_name : "?", 754 (__force unsigned long long) rq->cmd_flags); 755 756 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 757 (unsigned long long)blk_rq_pos(rq), 758 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 759 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 760 rq->bio, rq->biotail, blk_rq_bytes(rq)); 761 } 762 EXPORT_SYMBOL(blk_dump_rq_flags); 763 764 static void req_bio_endio(struct request *rq, struct bio *bio, 765 unsigned int nbytes, blk_status_t error) 766 { 767 if (unlikely(error)) { 768 bio->bi_status = error; 769 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 770 /* 771 * Partial zone append completions cannot be supported as the 772 * BIO fragments may end up not being written sequentially. 773 * For such case, force the completed nbytes to be equal to 774 * the BIO size so that bio_advance() sets the BIO remaining 775 * size to 0 and we end up calling bio_endio() before returning. 776 */ 777 if (bio->bi_iter.bi_size != nbytes) { 778 bio->bi_status = BLK_STS_IOERR; 779 nbytes = bio->bi_iter.bi_size; 780 } else { 781 bio->bi_iter.bi_sector = rq->__sector; 782 } 783 } 784 785 bio_advance(bio, nbytes); 786 787 if (unlikely(rq->rq_flags & RQF_QUIET)) 788 bio_set_flag(bio, BIO_QUIET); 789 /* don't actually finish bio if it's part of flush sequence */ 790 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 791 bio_endio(bio); 792 } 793 794 static void blk_account_io_completion(struct request *req, unsigned int bytes) 795 { 796 if (req->part && blk_do_io_stat(req)) { 797 const int sgrp = op_stat_group(req_op(req)); 798 799 part_stat_lock(); 800 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 801 part_stat_unlock(); 802 } 803 } 804 805 static void blk_print_req_error(struct request *req, blk_status_t status) 806 { 807 printk_ratelimited(KERN_ERR 808 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 809 "phys_seg %u prio class %u\n", 810 blk_status_to_str(status), 811 req->q->disk ? req->q->disk->disk_name : "?", 812 blk_rq_pos(req), (__force u32)req_op(req), 813 blk_op_str(req_op(req)), 814 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 815 req->nr_phys_segments, 816 IOPRIO_PRIO_CLASS(req->ioprio)); 817 } 818 819 /* 820 * Fully end IO on a request. Does not support partial completions, or 821 * errors. 822 */ 823 static void blk_complete_request(struct request *req) 824 { 825 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 826 int total_bytes = blk_rq_bytes(req); 827 struct bio *bio = req->bio; 828 829 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 830 831 if (!bio) 832 return; 833 834 #ifdef CONFIG_BLK_DEV_INTEGRITY 835 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 836 req->q->integrity.profile->complete_fn(req, total_bytes); 837 #endif 838 839 /* 840 * Upper layers may call blk_crypto_evict_key() anytime after the last 841 * bio_endio(). Therefore, the keyslot must be released before that. 842 */ 843 blk_crypto_rq_put_keyslot(req); 844 845 blk_account_io_completion(req, total_bytes); 846 847 do { 848 struct bio *next = bio->bi_next; 849 850 /* Completion has already been traced */ 851 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 852 853 if (req_op(req) == REQ_OP_ZONE_APPEND) 854 bio->bi_iter.bi_sector = req->__sector; 855 856 if (!is_flush) 857 bio_endio(bio); 858 bio = next; 859 } while (bio); 860 861 /* 862 * Reset counters so that the request stacking driver 863 * can find how many bytes remain in the request 864 * later. 865 */ 866 if (!req->end_io) { 867 req->bio = NULL; 868 req->__data_len = 0; 869 } 870 } 871 872 /** 873 * blk_update_request - Complete multiple bytes without completing the request 874 * @req: the request being processed 875 * @error: block status code 876 * @nr_bytes: number of bytes to complete for @req 877 * 878 * Description: 879 * Ends I/O on a number of bytes attached to @req, but doesn't complete 880 * the request structure even if @req doesn't have leftover. 881 * If @req has leftover, sets it up for the next range of segments. 882 * 883 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 884 * %false return from this function. 885 * 886 * Note: 887 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 888 * except in the consistency check at the end of this function. 889 * 890 * Return: 891 * %false - this request doesn't have any more data 892 * %true - this request has more data 893 **/ 894 bool blk_update_request(struct request *req, blk_status_t error, 895 unsigned int nr_bytes) 896 { 897 int total_bytes; 898 899 trace_block_rq_complete(req, error, nr_bytes); 900 901 if (!req->bio) 902 return false; 903 904 #ifdef CONFIG_BLK_DEV_INTEGRITY 905 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 906 error == BLK_STS_OK) 907 req->q->integrity.profile->complete_fn(req, nr_bytes); 908 #endif 909 910 /* 911 * Upper layers may call blk_crypto_evict_key() anytime after the last 912 * bio_endio(). Therefore, the keyslot must be released before that. 913 */ 914 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 915 __blk_crypto_rq_put_keyslot(req); 916 917 if (unlikely(error && !blk_rq_is_passthrough(req) && 918 !(req->rq_flags & RQF_QUIET)) && 919 !test_bit(GD_DEAD, &req->q->disk->state)) { 920 blk_print_req_error(req, error); 921 trace_block_rq_error(req, error, nr_bytes); 922 } 923 924 blk_account_io_completion(req, nr_bytes); 925 926 total_bytes = 0; 927 while (req->bio) { 928 struct bio *bio = req->bio; 929 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 930 931 if (bio_bytes == bio->bi_iter.bi_size) 932 req->bio = bio->bi_next; 933 934 /* Completion has already been traced */ 935 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 936 req_bio_endio(req, bio, bio_bytes, error); 937 938 total_bytes += bio_bytes; 939 nr_bytes -= bio_bytes; 940 941 if (!nr_bytes) 942 break; 943 } 944 945 /* 946 * completely done 947 */ 948 if (!req->bio) { 949 /* 950 * Reset counters so that the request stacking driver 951 * can find how many bytes remain in the request 952 * later. 953 */ 954 req->__data_len = 0; 955 return false; 956 } 957 958 req->__data_len -= total_bytes; 959 960 /* update sector only for requests with clear definition of sector */ 961 if (!blk_rq_is_passthrough(req)) 962 req->__sector += total_bytes >> 9; 963 964 /* mixed attributes always follow the first bio */ 965 if (req->rq_flags & RQF_MIXED_MERGE) { 966 req->cmd_flags &= ~REQ_FAILFAST_MASK; 967 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 968 } 969 970 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 971 /* 972 * If total number of sectors is less than the first segment 973 * size, something has gone terribly wrong. 974 */ 975 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 976 blk_dump_rq_flags(req, "request botched"); 977 req->__data_len = blk_rq_cur_bytes(req); 978 } 979 980 /* recalculate the number of segments */ 981 req->nr_phys_segments = blk_recalc_rq_segments(req); 982 } 983 984 return true; 985 } 986 EXPORT_SYMBOL_GPL(blk_update_request); 987 988 static inline void blk_account_io_done(struct request *req, u64 now) 989 { 990 trace_block_io_done(req); 991 992 /* 993 * Account IO completion. flush_rq isn't accounted as a 994 * normal IO on queueing nor completion. Accounting the 995 * containing request is enough. 996 */ 997 if (blk_do_io_stat(req) && req->part && 998 !(req->rq_flags & RQF_FLUSH_SEQ)) { 999 const int sgrp = op_stat_group(req_op(req)); 1000 1001 part_stat_lock(); 1002 update_io_ticks(req->part, jiffies, true); 1003 part_stat_inc(req->part, ios[sgrp]); 1004 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1005 part_stat_unlock(); 1006 } 1007 } 1008 1009 static inline void blk_account_io_start(struct request *req) 1010 { 1011 trace_block_io_start(req); 1012 1013 if (blk_do_io_stat(req)) { 1014 /* 1015 * All non-passthrough requests are created from a bio with one 1016 * exception: when a flush command that is part of a flush sequence 1017 * generated by the state machine in blk-flush.c is cloned onto the 1018 * lower device by dm-multipath we can get here without a bio. 1019 */ 1020 if (req->bio) 1021 req->part = req->bio->bi_bdev; 1022 else 1023 req->part = req->q->disk->part0; 1024 1025 part_stat_lock(); 1026 update_io_ticks(req->part, jiffies, false); 1027 part_stat_unlock(); 1028 } 1029 } 1030 1031 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1032 { 1033 if (rq->rq_flags & RQF_STATS) 1034 blk_stat_add(rq, now); 1035 1036 blk_mq_sched_completed_request(rq, now); 1037 blk_account_io_done(rq, now); 1038 } 1039 1040 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1041 { 1042 if (blk_mq_need_time_stamp(rq)) 1043 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1044 1045 blk_mq_finish_request(rq); 1046 1047 if (rq->end_io) { 1048 rq_qos_done(rq->q, rq); 1049 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1050 blk_mq_free_request(rq); 1051 } else { 1052 blk_mq_free_request(rq); 1053 } 1054 } 1055 EXPORT_SYMBOL(__blk_mq_end_request); 1056 1057 void blk_mq_end_request(struct request *rq, blk_status_t error) 1058 { 1059 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1060 BUG(); 1061 __blk_mq_end_request(rq, error); 1062 } 1063 EXPORT_SYMBOL(blk_mq_end_request); 1064 1065 #define TAG_COMP_BATCH 32 1066 1067 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1068 int *tag_array, int nr_tags) 1069 { 1070 struct request_queue *q = hctx->queue; 1071 1072 blk_mq_sub_active_requests(hctx, nr_tags); 1073 1074 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1075 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1076 } 1077 1078 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1079 { 1080 int tags[TAG_COMP_BATCH], nr_tags = 0; 1081 struct blk_mq_hw_ctx *cur_hctx = NULL; 1082 struct request *rq; 1083 u64 now = 0; 1084 1085 if (iob->need_ts) 1086 now = blk_time_get_ns(); 1087 1088 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1089 prefetch(rq->bio); 1090 prefetch(rq->rq_next); 1091 1092 blk_complete_request(rq); 1093 if (iob->need_ts) 1094 __blk_mq_end_request_acct(rq, now); 1095 1096 blk_mq_finish_request(rq); 1097 1098 rq_qos_done(rq->q, rq); 1099 1100 /* 1101 * If end_io handler returns NONE, then it still has 1102 * ownership of the request. 1103 */ 1104 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1105 continue; 1106 1107 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1108 if (!req_ref_put_and_test(rq)) 1109 continue; 1110 1111 blk_crypto_free_request(rq); 1112 blk_pm_mark_last_busy(rq); 1113 1114 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1115 if (cur_hctx) 1116 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1117 nr_tags = 0; 1118 cur_hctx = rq->mq_hctx; 1119 } 1120 tags[nr_tags++] = rq->tag; 1121 } 1122 1123 if (nr_tags) 1124 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1125 } 1126 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1127 1128 static void blk_complete_reqs(struct llist_head *list) 1129 { 1130 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1131 struct request *rq, *next; 1132 1133 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1134 rq->q->mq_ops->complete(rq); 1135 } 1136 1137 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1138 { 1139 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1140 } 1141 1142 static int blk_softirq_cpu_dead(unsigned int cpu) 1143 { 1144 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1145 return 0; 1146 } 1147 1148 static void __blk_mq_complete_request_remote(void *data) 1149 { 1150 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1151 } 1152 1153 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1154 { 1155 int cpu = raw_smp_processor_id(); 1156 1157 if (!IS_ENABLED(CONFIG_SMP) || 1158 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1159 return false; 1160 /* 1161 * With force threaded interrupts enabled, raising softirq from an SMP 1162 * function call will always result in waking the ksoftirqd thread. 1163 * This is probably worse than completing the request on a different 1164 * cache domain. 1165 */ 1166 if (force_irqthreads()) 1167 return false; 1168 1169 /* same CPU or cache domain and capacity? Complete locally */ 1170 if (cpu == rq->mq_ctx->cpu || 1171 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1172 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1173 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1174 return false; 1175 1176 /* don't try to IPI to an offline CPU */ 1177 return cpu_online(rq->mq_ctx->cpu); 1178 } 1179 1180 static void blk_mq_complete_send_ipi(struct request *rq) 1181 { 1182 unsigned int cpu; 1183 1184 cpu = rq->mq_ctx->cpu; 1185 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1186 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1187 } 1188 1189 static void blk_mq_raise_softirq(struct request *rq) 1190 { 1191 struct llist_head *list; 1192 1193 preempt_disable(); 1194 list = this_cpu_ptr(&blk_cpu_done); 1195 if (llist_add(&rq->ipi_list, list)) 1196 raise_softirq(BLOCK_SOFTIRQ); 1197 preempt_enable(); 1198 } 1199 1200 bool blk_mq_complete_request_remote(struct request *rq) 1201 { 1202 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1203 1204 /* 1205 * For request which hctx has only one ctx mapping, 1206 * or a polled request, always complete locally, 1207 * it's pointless to redirect the completion. 1208 */ 1209 if ((rq->mq_hctx->nr_ctx == 1 && 1210 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1211 rq->cmd_flags & REQ_POLLED) 1212 return false; 1213 1214 if (blk_mq_complete_need_ipi(rq)) { 1215 blk_mq_complete_send_ipi(rq); 1216 return true; 1217 } 1218 1219 if (rq->q->nr_hw_queues == 1) { 1220 blk_mq_raise_softirq(rq); 1221 return true; 1222 } 1223 return false; 1224 } 1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1226 1227 /** 1228 * blk_mq_complete_request - end I/O on a request 1229 * @rq: the request being processed 1230 * 1231 * Description: 1232 * Complete a request by scheduling the ->complete_rq operation. 1233 **/ 1234 void blk_mq_complete_request(struct request *rq) 1235 { 1236 if (!blk_mq_complete_request_remote(rq)) 1237 rq->q->mq_ops->complete(rq); 1238 } 1239 EXPORT_SYMBOL(blk_mq_complete_request); 1240 1241 /** 1242 * blk_mq_start_request - Start processing a request 1243 * @rq: Pointer to request to be started 1244 * 1245 * Function used by device drivers to notify the block layer that a request 1246 * is going to be processed now, so blk layer can do proper initializations 1247 * such as starting the timeout timer. 1248 */ 1249 void blk_mq_start_request(struct request *rq) 1250 { 1251 struct request_queue *q = rq->q; 1252 1253 trace_block_rq_issue(rq); 1254 1255 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1256 !blk_rq_is_passthrough(rq)) { 1257 rq->io_start_time_ns = blk_time_get_ns(); 1258 rq->stats_sectors = blk_rq_sectors(rq); 1259 rq->rq_flags |= RQF_STATS; 1260 rq_qos_issue(q, rq); 1261 } 1262 1263 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1264 1265 blk_add_timer(rq); 1266 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1267 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1268 1269 #ifdef CONFIG_BLK_DEV_INTEGRITY 1270 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1271 q->integrity.profile->prepare_fn(rq); 1272 #endif 1273 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1274 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1275 } 1276 EXPORT_SYMBOL(blk_mq_start_request); 1277 1278 /* 1279 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1280 * queues. This is important for md arrays to benefit from merging 1281 * requests. 1282 */ 1283 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1284 { 1285 if (plug->multiple_queues) 1286 return BLK_MAX_REQUEST_COUNT * 2; 1287 return BLK_MAX_REQUEST_COUNT; 1288 } 1289 1290 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1291 { 1292 struct request *last = rq_list_peek(&plug->mq_list); 1293 1294 if (!plug->rq_count) { 1295 trace_block_plug(rq->q); 1296 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1297 (!blk_queue_nomerges(rq->q) && 1298 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1299 blk_mq_flush_plug_list(plug, false); 1300 last = NULL; 1301 trace_block_plug(rq->q); 1302 } 1303 1304 if (!plug->multiple_queues && last && last->q != rq->q) 1305 plug->multiple_queues = true; 1306 /* 1307 * Any request allocated from sched tags can't be issued to 1308 * ->queue_rqs() directly 1309 */ 1310 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1311 plug->has_elevator = true; 1312 rq->rq_next = NULL; 1313 rq_list_add(&plug->mq_list, rq); 1314 plug->rq_count++; 1315 } 1316 1317 /** 1318 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1319 * @rq: request to insert 1320 * @at_head: insert request at head or tail of queue 1321 * 1322 * Description: 1323 * Insert a fully prepared request at the back of the I/O scheduler queue 1324 * for execution. Don't wait for completion. 1325 * 1326 * Note: 1327 * This function will invoke @done directly if the queue is dead. 1328 */ 1329 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1330 { 1331 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1332 1333 WARN_ON(irqs_disabled()); 1334 WARN_ON(!blk_rq_is_passthrough(rq)); 1335 1336 blk_account_io_start(rq); 1337 1338 /* 1339 * As plugging can be enabled for passthrough requests on a zoned 1340 * device, directly accessing the plug instead of using blk_mq_plug() 1341 * should not have any consequences. 1342 */ 1343 if (current->plug && !at_head) { 1344 blk_add_rq_to_plug(current->plug, rq); 1345 return; 1346 } 1347 1348 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1349 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1350 } 1351 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1352 1353 struct blk_rq_wait { 1354 struct completion done; 1355 blk_status_t ret; 1356 }; 1357 1358 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1359 { 1360 struct blk_rq_wait *wait = rq->end_io_data; 1361 1362 wait->ret = ret; 1363 complete(&wait->done); 1364 return RQ_END_IO_NONE; 1365 } 1366 1367 bool blk_rq_is_poll(struct request *rq) 1368 { 1369 if (!rq->mq_hctx) 1370 return false; 1371 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1372 return false; 1373 return true; 1374 } 1375 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1376 1377 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1378 { 1379 do { 1380 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1381 cond_resched(); 1382 } while (!completion_done(wait)); 1383 } 1384 1385 /** 1386 * blk_execute_rq - insert a request into queue for execution 1387 * @rq: request to insert 1388 * @at_head: insert request at head or tail of queue 1389 * 1390 * Description: 1391 * Insert a fully prepared request at the back of the I/O scheduler queue 1392 * for execution and wait for completion. 1393 * Return: The blk_status_t result provided to blk_mq_end_request(). 1394 */ 1395 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1396 { 1397 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1398 struct blk_rq_wait wait = { 1399 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1400 }; 1401 1402 WARN_ON(irqs_disabled()); 1403 WARN_ON(!blk_rq_is_passthrough(rq)); 1404 1405 rq->end_io_data = &wait; 1406 rq->end_io = blk_end_sync_rq; 1407 1408 blk_account_io_start(rq); 1409 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1410 blk_mq_run_hw_queue(hctx, false); 1411 1412 if (blk_rq_is_poll(rq)) 1413 blk_rq_poll_completion(rq, &wait.done); 1414 else 1415 blk_wait_io(&wait.done); 1416 1417 return wait.ret; 1418 } 1419 EXPORT_SYMBOL(blk_execute_rq); 1420 1421 static void __blk_mq_requeue_request(struct request *rq) 1422 { 1423 struct request_queue *q = rq->q; 1424 1425 blk_mq_put_driver_tag(rq); 1426 1427 trace_block_rq_requeue(rq); 1428 rq_qos_requeue(q, rq); 1429 1430 if (blk_mq_request_started(rq)) { 1431 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1432 rq->rq_flags &= ~RQF_TIMED_OUT; 1433 } 1434 } 1435 1436 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1437 { 1438 struct request_queue *q = rq->q; 1439 unsigned long flags; 1440 1441 __blk_mq_requeue_request(rq); 1442 1443 /* this request will be re-inserted to io scheduler queue */ 1444 blk_mq_sched_requeue_request(rq); 1445 1446 spin_lock_irqsave(&q->requeue_lock, flags); 1447 list_add_tail(&rq->queuelist, &q->requeue_list); 1448 spin_unlock_irqrestore(&q->requeue_lock, flags); 1449 1450 if (kick_requeue_list) 1451 blk_mq_kick_requeue_list(q); 1452 } 1453 EXPORT_SYMBOL(blk_mq_requeue_request); 1454 1455 static void blk_mq_requeue_work(struct work_struct *work) 1456 { 1457 struct request_queue *q = 1458 container_of(work, struct request_queue, requeue_work.work); 1459 LIST_HEAD(rq_list); 1460 LIST_HEAD(flush_list); 1461 struct request *rq; 1462 1463 spin_lock_irq(&q->requeue_lock); 1464 list_splice_init(&q->requeue_list, &rq_list); 1465 list_splice_init(&q->flush_list, &flush_list); 1466 spin_unlock_irq(&q->requeue_lock); 1467 1468 while (!list_empty(&rq_list)) { 1469 rq = list_entry(rq_list.next, struct request, queuelist); 1470 /* 1471 * If RQF_DONTPREP ist set, the request has been started by the 1472 * driver already and might have driver-specific data allocated 1473 * already. Insert it into the hctx dispatch list to avoid 1474 * block layer merges for the request. 1475 */ 1476 if (rq->rq_flags & RQF_DONTPREP) { 1477 list_del_init(&rq->queuelist); 1478 blk_mq_request_bypass_insert(rq, 0); 1479 } else { 1480 list_del_init(&rq->queuelist); 1481 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1482 } 1483 } 1484 1485 while (!list_empty(&flush_list)) { 1486 rq = list_entry(flush_list.next, struct request, queuelist); 1487 list_del_init(&rq->queuelist); 1488 blk_mq_insert_request(rq, 0); 1489 } 1490 1491 blk_mq_run_hw_queues(q, false); 1492 } 1493 1494 void blk_mq_kick_requeue_list(struct request_queue *q) 1495 { 1496 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1497 } 1498 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1499 1500 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1501 unsigned long msecs) 1502 { 1503 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1504 msecs_to_jiffies(msecs)); 1505 } 1506 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1507 1508 static bool blk_is_flush_data_rq(struct request *rq) 1509 { 1510 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1511 } 1512 1513 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1514 { 1515 /* 1516 * If we find a request that isn't idle we know the queue is busy 1517 * as it's checked in the iter. 1518 * Return false to stop the iteration. 1519 * 1520 * In case of queue quiesce, if one flush data request is completed, 1521 * don't count it as inflight given the flush sequence is suspended, 1522 * and the original flush data request is invisible to driver, just 1523 * like other pending requests because of quiesce 1524 */ 1525 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1526 blk_is_flush_data_rq(rq) && 1527 blk_mq_request_completed(rq))) { 1528 bool *busy = priv; 1529 1530 *busy = true; 1531 return false; 1532 } 1533 1534 return true; 1535 } 1536 1537 bool blk_mq_queue_inflight(struct request_queue *q) 1538 { 1539 bool busy = false; 1540 1541 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1542 return busy; 1543 } 1544 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1545 1546 static void blk_mq_rq_timed_out(struct request *req) 1547 { 1548 req->rq_flags |= RQF_TIMED_OUT; 1549 if (req->q->mq_ops->timeout) { 1550 enum blk_eh_timer_return ret; 1551 1552 ret = req->q->mq_ops->timeout(req); 1553 if (ret == BLK_EH_DONE) 1554 return; 1555 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1556 } 1557 1558 blk_add_timer(req); 1559 } 1560 1561 struct blk_expired_data { 1562 bool has_timedout_rq; 1563 unsigned long next; 1564 unsigned long timeout_start; 1565 }; 1566 1567 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1568 { 1569 unsigned long deadline; 1570 1571 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1572 return false; 1573 if (rq->rq_flags & RQF_TIMED_OUT) 1574 return false; 1575 1576 deadline = READ_ONCE(rq->deadline); 1577 if (time_after_eq(expired->timeout_start, deadline)) 1578 return true; 1579 1580 if (expired->next == 0) 1581 expired->next = deadline; 1582 else if (time_after(expired->next, deadline)) 1583 expired->next = deadline; 1584 return false; 1585 } 1586 1587 void blk_mq_put_rq_ref(struct request *rq) 1588 { 1589 if (is_flush_rq(rq)) { 1590 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1591 blk_mq_free_request(rq); 1592 } else if (req_ref_put_and_test(rq)) { 1593 __blk_mq_free_request(rq); 1594 } 1595 } 1596 1597 static bool blk_mq_check_expired(struct request *rq, void *priv) 1598 { 1599 struct blk_expired_data *expired = priv; 1600 1601 /* 1602 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1603 * be reallocated underneath the timeout handler's processing, then 1604 * the expire check is reliable. If the request is not expired, then 1605 * it was completed and reallocated as a new request after returning 1606 * from blk_mq_check_expired(). 1607 */ 1608 if (blk_mq_req_expired(rq, expired)) { 1609 expired->has_timedout_rq = true; 1610 return false; 1611 } 1612 return true; 1613 } 1614 1615 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1616 { 1617 struct blk_expired_data *expired = priv; 1618 1619 if (blk_mq_req_expired(rq, expired)) 1620 blk_mq_rq_timed_out(rq); 1621 return true; 1622 } 1623 1624 static void blk_mq_timeout_work(struct work_struct *work) 1625 { 1626 struct request_queue *q = 1627 container_of(work, struct request_queue, timeout_work); 1628 struct blk_expired_data expired = { 1629 .timeout_start = jiffies, 1630 }; 1631 struct blk_mq_hw_ctx *hctx; 1632 unsigned long i; 1633 1634 /* A deadlock might occur if a request is stuck requiring a 1635 * timeout at the same time a queue freeze is waiting 1636 * completion, since the timeout code would not be able to 1637 * acquire the queue reference here. 1638 * 1639 * That's why we don't use blk_queue_enter here; instead, we use 1640 * percpu_ref_tryget directly, because we need to be able to 1641 * obtain a reference even in the short window between the queue 1642 * starting to freeze, by dropping the first reference in 1643 * blk_freeze_queue_start, and the moment the last request is 1644 * consumed, marked by the instant q_usage_counter reaches 1645 * zero. 1646 */ 1647 if (!percpu_ref_tryget(&q->q_usage_counter)) 1648 return; 1649 1650 /* check if there is any timed-out request */ 1651 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1652 if (expired.has_timedout_rq) { 1653 /* 1654 * Before walking tags, we must ensure any submit started 1655 * before the current time has finished. Since the submit 1656 * uses srcu or rcu, wait for a synchronization point to 1657 * ensure all running submits have finished 1658 */ 1659 blk_mq_wait_quiesce_done(q->tag_set); 1660 1661 expired.next = 0; 1662 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1663 } 1664 1665 if (expired.next != 0) { 1666 mod_timer(&q->timeout, expired.next); 1667 } else { 1668 /* 1669 * Request timeouts are handled as a forward rolling timer. If 1670 * we end up here it means that no requests are pending and 1671 * also that no request has been pending for a while. Mark 1672 * each hctx as idle. 1673 */ 1674 queue_for_each_hw_ctx(q, hctx, i) { 1675 /* the hctx may be unmapped, so check it here */ 1676 if (blk_mq_hw_queue_mapped(hctx)) 1677 blk_mq_tag_idle(hctx); 1678 } 1679 } 1680 blk_queue_exit(q); 1681 } 1682 1683 struct flush_busy_ctx_data { 1684 struct blk_mq_hw_ctx *hctx; 1685 struct list_head *list; 1686 }; 1687 1688 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1689 { 1690 struct flush_busy_ctx_data *flush_data = data; 1691 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1692 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1693 enum hctx_type type = hctx->type; 1694 1695 spin_lock(&ctx->lock); 1696 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1697 sbitmap_clear_bit(sb, bitnr); 1698 spin_unlock(&ctx->lock); 1699 return true; 1700 } 1701 1702 /* 1703 * Process software queues that have been marked busy, splicing them 1704 * to the for-dispatch 1705 */ 1706 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1707 { 1708 struct flush_busy_ctx_data data = { 1709 .hctx = hctx, 1710 .list = list, 1711 }; 1712 1713 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1714 } 1715 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1716 1717 struct dispatch_rq_data { 1718 struct blk_mq_hw_ctx *hctx; 1719 struct request *rq; 1720 }; 1721 1722 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1723 void *data) 1724 { 1725 struct dispatch_rq_data *dispatch_data = data; 1726 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1727 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1728 enum hctx_type type = hctx->type; 1729 1730 spin_lock(&ctx->lock); 1731 if (!list_empty(&ctx->rq_lists[type])) { 1732 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1733 list_del_init(&dispatch_data->rq->queuelist); 1734 if (list_empty(&ctx->rq_lists[type])) 1735 sbitmap_clear_bit(sb, bitnr); 1736 } 1737 spin_unlock(&ctx->lock); 1738 1739 return !dispatch_data->rq; 1740 } 1741 1742 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1743 struct blk_mq_ctx *start) 1744 { 1745 unsigned off = start ? start->index_hw[hctx->type] : 0; 1746 struct dispatch_rq_data data = { 1747 .hctx = hctx, 1748 .rq = NULL, 1749 }; 1750 1751 __sbitmap_for_each_set(&hctx->ctx_map, off, 1752 dispatch_rq_from_ctx, &data); 1753 1754 return data.rq; 1755 } 1756 1757 bool __blk_mq_alloc_driver_tag(struct request *rq) 1758 { 1759 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1760 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1761 int tag; 1762 1763 blk_mq_tag_busy(rq->mq_hctx); 1764 1765 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1766 bt = &rq->mq_hctx->tags->breserved_tags; 1767 tag_offset = 0; 1768 } else { 1769 if (!hctx_may_queue(rq->mq_hctx, bt)) 1770 return false; 1771 } 1772 1773 tag = __sbitmap_queue_get(bt); 1774 if (tag == BLK_MQ_NO_TAG) 1775 return false; 1776 1777 rq->tag = tag + tag_offset; 1778 blk_mq_inc_active_requests(rq->mq_hctx); 1779 return true; 1780 } 1781 1782 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1783 int flags, void *key) 1784 { 1785 struct blk_mq_hw_ctx *hctx; 1786 1787 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1788 1789 spin_lock(&hctx->dispatch_wait_lock); 1790 if (!list_empty(&wait->entry)) { 1791 struct sbitmap_queue *sbq; 1792 1793 list_del_init(&wait->entry); 1794 sbq = &hctx->tags->bitmap_tags; 1795 atomic_dec(&sbq->ws_active); 1796 } 1797 spin_unlock(&hctx->dispatch_wait_lock); 1798 1799 blk_mq_run_hw_queue(hctx, true); 1800 return 1; 1801 } 1802 1803 /* 1804 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1805 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1806 * restart. For both cases, take care to check the condition again after 1807 * marking us as waiting. 1808 */ 1809 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1810 struct request *rq) 1811 { 1812 struct sbitmap_queue *sbq; 1813 struct wait_queue_head *wq; 1814 wait_queue_entry_t *wait; 1815 bool ret; 1816 1817 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1818 !(blk_mq_is_shared_tags(hctx->flags))) { 1819 blk_mq_sched_mark_restart_hctx(hctx); 1820 1821 /* 1822 * It's possible that a tag was freed in the window between the 1823 * allocation failure and adding the hardware queue to the wait 1824 * queue. 1825 * 1826 * Don't clear RESTART here, someone else could have set it. 1827 * At most this will cost an extra queue run. 1828 */ 1829 return blk_mq_get_driver_tag(rq); 1830 } 1831 1832 wait = &hctx->dispatch_wait; 1833 if (!list_empty_careful(&wait->entry)) 1834 return false; 1835 1836 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1837 sbq = &hctx->tags->breserved_tags; 1838 else 1839 sbq = &hctx->tags->bitmap_tags; 1840 wq = &bt_wait_ptr(sbq, hctx)->wait; 1841 1842 spin_lock_irq(&wq->lock); 1843 spin_lock(&hctx->dispatch_wait_lock); 1844 if (!list_empty(&wait->entry)) { 1845 spin_unlock(&hctx->dispatch_wait_lock); 1846 spin_unlock_irq(&wq->lock); 1847 return false; 1848 } 1849 1850 atomic_inc(&sbq->ws_active); 1851 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1852 __add_wait_queue(wq, wait); 1853 1854 /* 1855 * Add one explicit barrier since blk_mq_get_driver_tag() may 1856 * not imply barrier in case of failure. 1857 * 1858 * Order adding us to wait queue and allocating driver tag. 1859 * 1860 * The pair is the one implied in sbitmap_queue_wake_up() which 1861 * orders clearing sbitmap tag bits and waitqueue_active() in 1862 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1863 * 1864 * Otherwise, re-order of adding wait queue and getting driver tag 1865 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1866 * the waitqueue_active() may not observe us in wait queue. 1867 */ 1868 smp_mb(); 1869 1870 /* 1871 * It's possible that a tag was freed in the window between the 1872 * allocation failure and adding the hardware queue to the wait 1873 * queue. 1874 */ 1875 ret = blk_mq_get_driver_tag(rq); 1876 if (!ret) { 1877 spin_unlock(&hctx->dispatch_wait_lock); 1878 spin_unlock_irq(&wq->lock); 1879 return false; 1880 } 1881 1882 /* 1883 * We got a tag, remove ourselves from the wait queue to ensure 1884 * someone else gets the wakeup. 1885 */ 1886 list_del_init(&wait->entry); 1887 atomic_dec(&sbq->ws_active); 1888 spin_unlock(&hctx->dispatch_wait_lock); 1889 spin_unlock_irq(&wq->lock); 1890 1891 return true; 1892 } 1893 1894 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1895 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1896 /* 1897 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1898 * - EWMA is one simple way to compute running average value 1899 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1900 * - take 4 as factor for avoiding to get too small(0) result, and this 1901 * factor doesn't matter because EWMA decreases exponentially 1902 */ 1903 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1904 { 1905 unsigned int ewma; 1906 1907 ewma = hctx->dispatch_busy; 1908 1909 if (!ewma && !busy) 1910 return; 1911 1912 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1913 if (busy) 1914 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1915 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1916 1917 hctx->dispatch_busy = ewma; 1918 } 1919 1920 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1921 1922 static void blk_mq_handle_dev_resource(struct request *rq, 1923 struct list_head *list) 1924 { 1925 list_add(&rq->queuelist, list); 1926 __blk_mq_requeue_request(rq); 1927 } 1928 1929 static void blk_mq_handle_zone_resource(struct request *rq, 1930 struct list_head *zone_list) 1931 { 1932 /* 1933 * If we end up here it is because we cannot dispatch a request to a 1934 * specific zone due to LLD level zone-write locking or other zone 1935 * related resource not being available. In this case, set the request 1936 * aside in zone_list for retrying it later. 1937 */ 1938 list_add(&rq->queuelist, zone_list); 1939 __blk_mq_requeue_request(rq); 1940 } 1941 1942 enum prep_dispatch { 1943 PREP_DISPATCH_OK, 1944 PREP_DISPATCH_NO_TAG, 1945 PREP_DISPATCH_NO_BUDGET, 1946 }; 1947 1948 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1949 bool need_budget) 1950 { 1951 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1952 int budget_token = -1; 1953 1954 if (need_budget) { 1955 budget_token = blk_mq_get_dispatch_budget(rq->q); 1956 if (budget_token < 0) { 1957 blk_mq_put_driver_tag(rq); 1958 return PREP_DISPATCH_NO_BUDGET; 1959 } 1960 blk_mq_set_rq_budget_token(rq, budget_token); 1961 } 1962 1963 if (!blk_mq_get_driver_tag(rq)) { 1964 /* 1965 * The initial allocation attempt failed, so we need to 1966 * rerun the hardware queue when a tag is freed. The 1967 * waitqueue takes care of that. If the queue is run 1968 * before we add this entry back on the dispatch list, 1969 * we'll re-run it below. 1970 */ 1971 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1972 /* 1973 * All budgets not got from this function will be put 1974 * together during handling partial dispatch 1975 */ 1976 if (need_budget) 1977 blk_mq_put_dispatch_budget(rq->q, budget_token); 1978 return PREP_DISPATCH_NO_TAG; 1979 } 1980 } 1981 1982 return PREP_DISPATCH_OK; 1983 } 1984 1985 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1986 static void blk_mq_release_budgets(struct request_queue *q, 1987 struct list_head *list) 1988 { 1989 struct request *rq; 1990 1991 list_for_each_entry(rq, list, queuelist) { 1992 int budget_token = blk_mq_get_rq_budget_token(rq); 1993 1994 if (budget_token >= 0) 1995 blk_mq_put_dispatch_budget(q, budget_token); 1996 } 1997 } 1998 1999 /* 2000 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2001 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2002 * details) 2003 * Attention, we should explicitly call this in unusual cases: 2004 * 1) did not queue everything initially scheduled to queue 2005 * 2) the last attempt to queue a request failed 2006 */ 2007 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2008 bool from_schedule) 2009 { 2010 if (hctx->queue->mq_ops->commit_rqs && queued) { 2011 trace_block_unplug(hctx->queue, queued, !from_schedule); 2012 hctx->queue->mq_ops->commit_rqs(hctx); 2013 } 2014 } 2015 2016 /* 2017 * Returns true if we did some work AND can potentially do more. 2018 */ 2019 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2020 unsigned int nr_budgets) 2021 { 2022 enum prep_dispatch prep; 2023 struct request_queue *q = hctx->queue; 2024 struct request *rq; 2025 int queued; 2026 blk_status_t ret = BLK_STS_OK; 2027 LIST_HEAD(zone_list); 2028 bool needs_resource = false; 2029 2030 if (list_empty(list)) 2031 return false; 2032 2033 /* 2034 * Now process all the entries, sending them to the driver. 2035 */ 2036 queued = 0; 2037 do { 2038 struct blk_mq_queue_data bd; 2039 2040 rq = list_first_entry(list, struct request, queuelist); 2041 2042 WARN_ON_ONCE(hctx != rq->mq_hctx); 2043 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2044 if (prep != PREP_DISPATCH_OK) 2045 break; 2046 2047 list_del_init(&rq->queuelist); 2048 2049 bd.rq = rq; 2050 bd.last = list_empty(list); 2051 2052 /* 2053 * once the request is queued to lld, no need to cover the 2054 * budget any more 2055 */ 2056 if (nr_budgets) 2057 nr_budgets--; 2058 ret = q->mq_ops->queue_rq(hctx, &bd); 2059 switch (ret) { 2060 case BLK_STS_OK: 2061 queued++; 2062 break; 2063 case BLK_STS_RESOURCE: 2064 needs_resource = true; 2065 fallthrough; 2066 case BLK_STS_DEV_RESOURCE: 2067 blk_mq_handle_dev_resource(rq, list); 2068 goto out; 2069 case BLK_STS_ZONE_RESOURCE: 2070 /* 2071 * Move the request to zone_list and keep going through 2072 * the dispatch list to find more requests the drive can 2073 * accept. 2074 */ 2075 blk_mq_handle_zone_resource(rq, &zone_list); 2076 needs_resource = true; 2077 break; 2078 default: 2079 blk_mq_end_request(rq, ret); 2080 } 2081 } while (!list_empty(list)); 2082 out: 2083 if (!list_empty(&zone_list)) 2084 list_splice_tail_init(&zone_list, list); 2085 2086 /* If we didn't flush the entire list, we could have told the driver 2087 * there was more coming, but that turned out to be a lie. 2088 */ 2089 if (!list_empty(list) || ret != BLK_STS_OK) 2090 blk_mq_commit_rqs(hctx, queued, false); 2091 2092 /* 2093 * Any items that need requeuing? Stuff them into hctx->dispatch, 2094 * that is where we will continue on next queue run. 2095 */ 2096 if (!list_empty(list)) { 2097 bool needs_restart; 2098 /* For non-shared tags, the RESTART check will suffice */ 2099 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2100 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2101 blk_mq_is_shared_tags(hctx->flags)); 2102 2103 if (nr_budgets) 2104 blk_mq_release_budgets(q, list); 2105 2106 spin_lock(&hctx->lock); 2107 list_splice_tail_init(list, &hctx->dispatch); 2108 spin_unlock(&hctx->lock); 2109 2110 /* 2111 * Order adding requests to hctx->dispatch and checking 2112 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2113 * in blk_mq_sched_restart(). Avoid restart code path to 2114 * miss the new added requests to hctx->dispatch, meantime 2115 * SCHED_RESTART is observed here. 2116 */ 2117 smp_mb(); 2118 2119 /* 2120 * If SCHED_RESTART was set by the caller of this function and 2121 * it is no longer set that means that it was cleared by another 2122 * thread and hence that a queue rerun is needed. 2123 * 2124 * If 'no_tag' is set, that means that we failed getting 2125 * a driver tag with an I/O scheduler attached. If our dispatch 2126 * waitqueue is no longer active, ensure that we run the queue 2127 * AFTER adding our entries back to the list. 2128 * 2129 * If no I/O scheduler has been configured it is possible that 2130 * the hardware queue got stopped and restarted before requests 2131 * were pushed back onto the dispatch list. Rerun the queue to 2132 * avoid starvation. Notes: 2133 * - blk_mq_run_hw_queue() checks whether or not a queue has 2134 * been stopped before rerunning a queue. 2135 * - Some but not all block drivers stop a queue before 2136 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2137 * and dm-rq. 2138 * 2139 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2140 * bit is set, run queue after a delay to avoid IO stalls 2141 * that could otherwise occur if the queue is idle. We'll do 2142 * similar if we couldn't get budget or couldn't lock a zone 2143 * and SCHED_RESTART is set. 2144 */ 2145 needs_restart = blk_mq_sched_needs_restart(hctx); 2146 if (prep == PREP_DISPATCH_NO_BUDGET) 2147 needs_resource = true; 2148 if (!needs_restart || 2149 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2150 blk_mq_run_hw_queue(hctx, true); 2151 else if (needs_resource) 2152 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2153 2154 blk_mq_update_dispatch_busy(hctx, true); 2155 return false; 2156 } 2157 2158 blk_mq_update_dispatch_busy(hctx, false); 2159 return true; 2160 } 2161 2162 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2163 { 2164 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2165 2166 if (cpu >= nr_cpu_ids) 2167 cpu = cpumask_first(hctx->cpumask); 2168 return cpu; 2169 } 2170 2171 /* 2172 * It'd be great if the workqueue API had a way to pass 2173 * in a mask and had some smarts for more clever placement. 2174 * For now we just round-robin here, switching for every 2175 * BLK_MQ_CPU_WORK_BATCH queued items. 2176 */ 2177 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2178 { 2179 bool tried = false; 2180 int next_cpu = hctx->next_cpu; 2181 2182 if (hctx->queue->nr_hw_queues == 1) 2183 return WORK_CPU_UNBOUND; 2184 2185 if (--hctx->next_cpu_batch <= 0) { 2186 select_cpu: 2187 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2188 cpu_online_mask); 2189 if (next_cpu >= nr_cpu_ids) 2190 next_cpu = blk_mq_first_mapped_cpu(hctx); 2191 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2192 } 2193 2194 /* 2195 * Do unbound schedule if we can't find a online CPU for this hctx, 2196 * and it should only happen in the path of handling CPU DEAD. 2197 */ 2198 if (!cpu_online(next_cpu)) { 2199 if (!tried) { 2200 tried = true; 2201 goto select_cpu; 2202 } 2203 2204 /* 2205 * Make sure to re-select CPU next time once after CPUs 2206 * in hctx->cpumask become online again. 2207 */ 2208 hctx->next_cpu = next_cpu; 2209 hctx->next_cpu_batch = 1; 2210 return WORK_CPU_UNBOUND; 2211 } 2212 2213 hctx->next_cpu = next_cpu; 2214 return next_cpu; 2215 } 2216 2217 /** 2218 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2219 * @hctx: Pointer to the hardware queue to run. 2220 * @msecs: Milliseconds of delay to wait before running the queue. 2221 * 2222 * Run a hardware queue asynchronously with a delay of @msecs. 2223 */ 2224 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2225 { 2226 if (unlikely(blk_mq_hctx_stopped(hctx))) 2227 return; 2228 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2229 msecs_to_jiffies(msecs)); 2230 } 2231 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2232 2233 /** 2234 * blk_mq_run_hw_queue - Start to run a hardware queue. 2235 * @hctx: Pointer to the hardware queue to run. 2236 * @async: If we want to run the queue asynchronously. 2237 * 2238 * Check if the request queue is not in a quiesced state and if there are 2239 * pending requests to be sent. If this is true, run the queue to send requests 2240 * to hardware. 2241 */ 2242 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2243 { 2244 bool need_run; 2245 2246 /* 2247 * We can't run the queue inline with interrupts disabled. 2248 */ 2249 WARN_ON_ONCE(!async && in_interrupt()); 2250 2251 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2252 2253 /* 2254 * When queue is quiesced, we may be switching io scheduler, or 2255 * updating nr_hw_queues, or other things, and we can't run queue 2256 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2257 * 2258 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2259 * quiesced. 2260 */ 2261 __blk_mq_run_dispatch_ops(hctx->queue, false, 2262 need_run = !blk_queue_quiesced(hctx->queue) && 2263 blk_mq_hctx_has_pending(hctx)); 2264 2265 if (!need_run) 2266 return; 2267 2268 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2269 blk_mq_delay_run_hw_queue(hctx, 0); 2270 return; 2271 } 2272 2273 blk_mq_run_dispatch_ops(hctx->queue, 2274 blk_mq_sched_dispatch_requests(hctx)); 2275 } 2276 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2277 2278 /* 2279 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2280 * scheduler. 2281 */ 2282 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2283 { 2284 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2285 /* 2286 * If the IO scheduler does not respect hardware queues when 2287 * dispatching, we just don't bother with multiple HW queues and 2288 * dispatch from hctx for the current CPU since running multiple queues 2289 * just causes lock contention inside the scheduler and pointless cache 2290 * bouncing. 2291 */ 2292 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2293 2294 if (!blk_mq_hctx_stopped(hctx)) 2295 return hctx; 2296 return NULL; 2297 } 2298 2299 /** 2300 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2301 * @q: Pointer to the request queue to run. 2302 * @async: If we want to run the queue asynchronously. 2303 */ 2304 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2305 { 2306 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2307 unsigned long i; 2308 2309 sq_hctx = NULL; 2310 if (blk_queue_sq_sched(q)) 2311 sq_hctx = blk_mq_get_sq_hctx(q); 2312 queue_for_each_hw_ctx(q, hctx, i) { 2313 if (blk_mq_hctx_stopped(hctx)) 2314 continue; 2315 /* 2316 * Dispatch from this hctx either if there's no hctx preferred 2317 * by IO scheduler or if it has requests that bypass the 2318 * scheduler. 2319 */ 2320 if (!sq_hctx || sq_hctx == hctx || 2321 !list_empty_careful(&hctx->dispatch)) 2322 blk_mq_run_hw_queue(hctx, async); 2323 } 2324 } 2325 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2326 2327 /** 2328 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2329 * @q: Pointer to the request queue to run. 2330 * @msecs: Milliseconds of delay to wait before running the queues. 2331 */ 2332 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2333 { 2334 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2335 unsigned long i; 2336 2337 sq_hctx = NULL; 2338 if (blk_queue_sq_sched(q)) 2339 sq_hctx = blk_mq_get_sq_hctx(q); 2340 queue_for_each_hw_ctx(q, hctx, i) { 2341 if (blk_mq_hctx_stopped(hctx)) 2342 continue; 2343 /* 2344 * If there is already a run_work pending, leave the 2345 * pending delay untouched. Otherwise, a hctx can stall 2346 * if another hctx is re-delaying the other's work 2347 * before the work executes. 2348 */ 2349 if (delayed_work_pending(&hctx->run_work)) 2350 continue; 2351 /* 2352 * Dispatch from this hctx either if there's no hctx preferred 2353 * by IO scheduler or if it has requests that bypass the 2354 * scheduler. 2355 */ 2356 if (!sq_hctx || sq_hctx == hctx || 2357 !list_empty_careful(&hctx->dispatch)) 2358 blk_mq_delay_run_hw_queue(hctx, msecs); 2359 } 2360 } 2361 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2362 2363 /* 2364 * This function is often used for pausing .queue_rq() by driver when 2365 * there isn't enough resource or some conditions aren't satisfied, and 2366 * BLK_STS_RESOURCE is usually returned. 2367 * 2368 * We do not guarantee that dispatch can be drained or blocked 2369 * after blk_mq_stop_hw_queue() returns. Please use 2370 * blk_mq_quiesce_queue() for that requirement. 2371 */ 2372 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2373 { 2374 cancel_delayed_work(&hctx->run_work); 2375 2376 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2377 } 2378 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2379 2380 /* 2381 * This function is often used for pausing .queue_rq() by driver when 2382 * there isn't enough resource or some conditions aren't satisfied, and 2383 * BLK_STS_RESOURCE is usually returned. 2384 * 2385 * We do not guarantee that dispatch can be drained or blocked 2386 * after blk_mq_stop_hw_queues() returns. Please use 2387 * blk_mq_quiesce_queue() for that requirement. 2388 */ 2389 void blk_mq_stop_hw_queues(struct request_queue *q) 2390 { 2391 struct blk_mq_hw_ctx *hctx; 2392 unsigned long i; 2393 2394 queue_for_each_hw_ctx(q, hctx, i) 2395 blk_mq_stop_hw_queue(hctx); 2396 } 2397 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2398 2399 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2400 { 2401 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2402 2403 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2404 } 2405 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2406 2407 void blk_mq_start_hw_queues(struct request_queue *q) 2408 { 2409 struct blk_mq_hw_ctx *hctx; 2410 unsigned long i; 2411 2412 queue_for_each_hw_ctx(q, hctx, i) 2413 blk_mq_start_hw_queue(hctx); 2414 } 2415 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2416 2417 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2418 { 2419 if (!blk_mq_hctx_stopped(hctx)) 2420 return; 2421 2422 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2423 blk_mq_run_hw_queue(hctx, async); 2424 } 2425 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2426 2427 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2428 { 2429 struct blk_mq_hw_ctx *hctx; 2430 unsigned long i; 2431 2432 queue_for_each_hw_ctx(q, hctx, i) 2433 blk_mq_start_stopped_hw_queue(hctx, async || 2434 (hctx->flags & BLK_MQ_F_BLOCKING)); 2435 } 2436 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2437 2438 static void blk_mq_run_work_fn(struct work_struct *work) 2439 { 2440 struct blk_mq_hw_ctx *hctx = 2441 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2442 2443 blk_mq_run_dispatch_ops(hctx->queue, 2444 blk_mq_sched_dispatch_requests(hctx)); 2445 } 2446 2447 /** 2448 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2449 * @rq: Pointer to request to be inserted. 2450 * @flags: BLK_MQ_INSERT_* 2451 * 2452 * Should only be used carefully, when the caller knows we want to 2453 * bypass a potential IO scheduler on the target device. 2454 */ 2455 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2456 { 2457 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2458 2459 spin_lock(&hctx->lock); 2460 if (flags & BLK_MQ_INSERT_AT_HEAD) 2461 list_add(&rq->queuelist, &hctx->dispatch); 2462 else 2463 list_add_tail(&rq->queuelist, &hctx->dispatch); 2464 spin_unlock(&hctx->lock); 2465 } 2466 2467 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2468 struct blk_mq_ctx *ctx, struct list_head *list, 2469 bool run_queue_async) 2470 { 2471 struct request *rq; 2472 enum hctx_type type = hctx->type; 2473 2474 /* 2475 * Try to issue requests directly if the hw queue isn't busy to save an 2476 * extra enqueue & dequeue to the sw queue. 2477 */ 2478 if (!hctx->dispatch_busy && !run_queue_async) { 2479 blk_mq_run_dispatch_ops(hctx->queue, 2480 blk_mq_try_issue_list_directly(hctx, list)); 2481 if (list_empty(list)) 2482 goto out; 2483 } 2484 2485 /* 2486 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2487 * offline now 2488 */ 2489 list_for_each_entry(rq, list, queuelist) { 2490 BUG_ON(rq->mq_ctx != ctx); 2491 trace_block_rq_insert(rq); 2492 if (rq->cmd_flags & REQ_NOWAIT) 2493 run_queue_async = true; 2494 } 2495 2496 spin_lock(&ctx->lock); 2497 list_splice_tail_init(list, &ctx->rq_lists[type]); 2498 blk_mq_hctx_mark_pending(hctx, ctx); 2499 spin_unlock(&ctx->lock); 2500 out: 2501 blk_mq_run_hw_queue(hctx, run_queue_async); 2502 } 2503 2504 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2505 { 2506 struct request_queue *q = rq->q; 2507 struct blk_mq_ctx *ctx = rq->mq_ctx; 2508 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2509 2510 if (blk_rq_is_passthrough(rq)) { 2511 /* 2512 * Passthrough request have to be added to hctx->dispatch 2513 * directly. The device may be in a situation where it can't 2514 * handle FS request, and always returns BLK_STS_RESOURCE for 2515 * them, which gets them added to hctx->dispatch. 2516 * 2517 * If a passthrough request is required to unblock the queues, 2518 * and it is added to the scheduler queue, there is no chance to 2519 * dispatch it given we prioritize requests in hctx->dispatch. 2520 */ 2521 blk_mq_request_bypass_insert(rq, flags); 2522 } else if (req_op(rq) == REQ_OP_FLUSH) { 2523 /* 2524 * Firstly normal IO request is inserted to scheduler queue or 2525 * sw queue, meantime we add flush request to dispatch queue( 2526 * hctx->dispatch) directly and there is at most one in-flight 2527 * flush request for each hw queue, so it doesn't matter to add 2528 * flush request to tail or front of the dispatch queue. 2529 * 2530 * Secondly in case of NCQ, flush request belongs to non-NCQ 2531 * command, and queueing it will fail when there is any 2532 * in-flight normal IO request(NCQ command). When adding flush 2533 * rq to the front of hctx->dispatch, it is easier to introduce 2534 * extra time to flush rq's latency because of S_SCHED_RESTART 2535 * compared with adding to the tail of dispatch queue, then 2536 * chance of flush merge is increased, and less flush requests 2537 * will be issued to controller. It is observed that ~10% time 2538 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2539 * drive when adding flush rq to the front of hctx->dispatch. 2540 * 2541 * Simply queue flush rq to the front of hctx->dispatch so that 2542 * intensive flush workloads can benefit in case of NCQ HW. 2543 */ 2544 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2545 } else if (q->elevator) { 2546 LIST_HEAD(list); 2547 2548 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2549 2550 list_add(&rq->queuelist, &list); 2551 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2552 } else { 2553 trace_block_rq_insert(rq); 2554 2555 spin_lock(&ctx->lock); 2556 if (flags & BLK_MQ_INSERT_AT_HEAD) 2557 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2558 else 2559 list_add_tail(&rq->queuelist, 2560 &ctx->rq_lists[hctx->type]); 2561 blk_mq_hctx_mark_pending(hctx, ctx); 2562 spin_unlock(&ctx->lock); 2563 } 2564 } 2565 2566 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2567 unsigned int nr_segs) 2568 { 2569 int err; 2570 2571 if (bio->bi_opf & REQ_RAHEAD) 2572 rq->cmd_flags |= REQ_FAILFAST_MASK; 2573 2574 rq->__sector = bio->bi_iter.bi_sector; 2575 rq->write_hint = bio->bi_write_hint; 2576 blk_rq_bio_prep(rq, bio, nr_segs); 2577 2578 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2579 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2580 WARN_ON_ONCE(err); 2581 2582 blk_account_io_start(rq); 2583 } 2584 2585 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2586 struct request *rq, bool last) 2587 { 2588 struct request_queue *q = rq->q; 2589 struct blk_mq_queue_data bd = { 2590 .rq = rq, 2591 .last = last, 2592 }; 2593 blk_status_t ret; 2594 2595 /* 2596 * For OK queue, we are done. For error, caller may kill it. 2597 * Any other error (busy), just add it to our list as we 2598 * previously would have done. 2599 */ 2600 ret = q->mq_ops->queue_rq(hctx, &bd); 2601 switch (ret) { 2602 case BLK_STS_OK: 2603 blk_mq_update_dispatch_busy(hctx, false); 2604 break; 2605 case BLK_STS_RESOURCE: 2606 case BLK_STS_DEV_RESOURCE: 2607 blk_mq_update_dispatch_busy(hctx, true); 2608 __blk_mq_requeue_request(rq); 2609 break; 2610 default: 2611 blk_mq_update_dispatch_busy(hctx, false); 2612 break; 2613 } 2614 2615 return ret; 2616 } 2617 2618 static bool blk_mq_get_budget_and_tag(struct request *rq) 2619 { 2620 int budget_token; 2621 2622 budget_token = blk_mq_get_dispatch_budget(rq->q); 2623 if (budget_token < 0) 2624 return false; 2625 blk_mq_set_rq_budget_token(rq, budget_token); 2626 if (!blk_mq_get_driver_tag(rq)) { 2627 blk_mq_put_dispatch_budget(rq->q, budget_token); 2628 return false; 2629 } 2630 return true; 2631 } 2632 2633 /** 2634 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2635 * @hctx: Pointer of the associated hardware queue. 2636 * @rq: Pointer to request to be sent. 2637 * 2638 * If the device has enough resources to accept a new request now, send the 2639 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2640 * we can try send it another time in the future. Requests inserted at this 2641 * queue have higher priority. 2642 */ 2643 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2644 struct request *rq) 2645 { 2646 blk_status_t ret; 2647 2648 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2649 blk_mq_insert_request(rq, 0); 2650 return; 2651 } 2652 2653 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2654 blk_mq_insert_request(rq, 0); 2655 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2656 return; 2657 } 2658 2659 ret = __blk_mq_issue_directly(hctx, rq, true); 2660 switch (ret) { 2661 case BLK_STS_OK: 2662 break; 2663 case BLK_STS_RESOURCE: 2664 case BLK_STS_DEV_RESOURCE: 2665 blk_mq_request_bypass_insert(rq, 0); 2666 blk_mq_run_hw_queue(hctx, false); 2667 break; 2668 default: 2669 blk_mq_end_request(rq, ret); 2670 break; 2671 } 2672 } 2673 2674 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2675 { 2676 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2677 2678 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2679 blk_mq_insert_request(rq, 0); 2680 return BLK_STS_OK; 2681 } 2682 2683 if (!blk_mq_get_budget_and_tag(rq)) 2684 return BLK_STS_RESOURCE; 2685 return __blk_mq_issue_directly(hctx, rq, last); 2686 } 2687 2688 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2689 { 2690 struct blk_mq_hw_ctx *hctx = NULL; 2691 struct request *rq; 2692 int queued = 0; 2693 blk_status_t ret = BLK_STS_OK; 2694 2695 while ((rq = rq_list_pop(&plug->mq_list))) { 2696 bool last = rq_list_empty(plug->mq_list); 2697 2698 if (hctx != rq->mq_hctx) { 2699 if (hctx) { 2700 blk_mq_commit_rqs(hctx, queued, false); 2701 queued = 0; 2702 } 2703 hctx = rq->mq_hctx; 2704 } 2705 2706 ret = blk_mq_request_issue_directly(rq, last); 2707 switch (ret) { 2708 case BLK_STS_OK: 2709 queued++; 2710 break; 2711 case BLK_STS_RESOURCE: 2712 case BLK_STS_DEV_RESOURCE: 2713 blk_mq_request_bypass_insert(rq, 0); 2714 blk_mq_run_hw_queue(hctx, false); 2715 goto out; 2716 default: 2717 blk_mq_end_request(rq, ret); 2718 break; 2719 } 2720 } 2721 2722 out: 2723 if (ret != BLK_STS_OK) 2724 blk_mq_commit_rqs(hctx, queued, false); 2725 } 2726 2727 static void __blk_mq_flush_plug_list(struct request_queue *q, 2728 struct blk_plug *plug) 2729 { 2730 if (blk_queue_quiesced(q)) 2731 return; 2732 q->mq_ops->queue_rqs(&plug->mq_list); 2733 } 2734 2735 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2736 { 2737 struct blk_mq_hw_ctx *this_hctx = NULL; 2738 struct blk_mq_ctx *this_ctx = NULL; 2739 struct request *requeue_list = NULL; 2740 struct request **requeue_lastp = &requeue_list; 2741 unsigned int depth = 0; 2742 bool is_passthrough = false; 2743 LIST_HEAD(list); 2744 2745 do { 2746 struct request *rq = rq_list_pop(&plug->mq_list); 2747 2748 if (!this_hctx) { 2749 this_hctx = rq->mq_hctx; 2750 this_ctx = rq->mq_ctx; 2751 is_passthrough = blk_rq_is_passthrough(rq); 2752 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2753 is_passthrough != blk_rq_is_passthrough(rq)) { 2754 rq_list_add_tail(&requeue_lastp, rq); 2755 continue; 2756 } 2757 list_add(&rq->queuelist, &list); 2758 depth++; 2759 } while (!rq_list_empty(plug->mq_list)); 2760 2761 plug->mq_list = requeue_list; 2762 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2763 2764 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2765 /* passthrough requests should never be issued to the I/O scheduler */ 2766 if (is_passthrough) { 2767 spin_lock(&this_hctx->lock); 2768 list_splice_tail_init(&list, &this_hctx->dispatch); 2769 spin_unlock(&this_hctx->lock); 2770 blk_mq_run_hw_queue(this_hctx, from_sched); 2771 } else if (this_hctx->queue->elevator) { 2772 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2773 &list, 0); 2774 blk_mq_run_hw_queue(this_hctx, from_sched); 2775 } else { 2776 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2777 } 2778 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2779 } 2780 2781 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2782 { 2783 struct request *rq; 2784 2785 /* 2786 * We may have been called recursively midway through handling 2787 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2788 * To avoid mq_list changing under our feet, clear rq_count early and 2789 * bail out specifically if rq_count is 0 rather than checking 2790 * whether the mq_list is empty. 2791 */ 2792 if (plug->rq_count == 0) 2793 return; 2794 plug->rq_count = 0; 2795 2796 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2797 struct request_queue *q; 2798 2799 rq = rq_list_peek(&plug->mq_list); 2800 q = rq->q; 2801 2802 /* 2803 * Peek first request and see if we have a ->queue_rqs() hook. 2804 * If we do, we can dispatch the whole plug list in one go. We 2805 * already know at this point that all requests belong to the 2806 * same queue, caller must ensure that's the case. 2807 */ 2808 if (q->mq_ops->queue_rqs) { 2809 blk_mq_run_dispatch_ops(q, 2810 __blk_mq_flush_plug_list(q, plug)); 2811 if (rq_list_empty(plug->mq_list)) 2812 return; 2813 } 2814 2815 blk_mq_run_dispatch_ops(q, 2816 blk_mq_plug_issue_direct(plug)); 2817 if (rq_list_empty(plug->mq_list)) 2818 return; 2819 } 2820 2821 do { 2822 blk_mq_dispatch_plug_list(plug, from_schedule); 2823 } while (!rq_list_empty(plug->mq_list)); 2824 } 2825 2826 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2827 struct list_head *list) 2828 { 2829 int queued = 0; 2830 blk_status_t ret = BLK_STS_OK; 2831 2832 while (!list_empty(list)) { 2833 struct request *rq = list_first_entry(list, struct request, 2834 queuelist); 2835 2836 list_del_init(&rq->queuelist); 2837 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2838 switch (ret) { 2839 case BLK_STS_OK: 2840 queued++; 2841 break; 2842 case BLK_STS_RESOURCE: 2843 case BLK_STS_DEV_RESOURCE: 2844 blk_mq_request_bypass_insert(rq, 0); 2845 if (list_empty(list)) 2846 blk_mq_run_hw_queue(hctx, false); 2847 goto out; 2848 default: 2849 blk_mq_end_request(rq, ret); 2850 break; 2851 } 2852 } 2853 2854 out: 2855 if (ret != BLK_STS_OK) 2856 blk_mq_commit_rqs(hctx, queued, false); 2857 } 2858 2859 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2860 struct bio *bio, unsigned int nr_segs) 2861 { 2862 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2863 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2864 return true; 2865 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2866 return true; 2867 } 2868 return false; 2869 } 2870 2871 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2872 struct blk_plug *plug, 2873 struct bio *bio, 2874 unsigned int nsegs) 2875 { 2876 struct blk_mq_alloc_data data = { 2877 .q = q, 2878 .nr_tags = 1, 2879 .cmd_flags = bio->bi_opf, 2880 }; 2881 struct request *rq; 2882 2883 rq_qos_throttle(q, bio); 2884 2885 if (plug) { 2886 data.nr_tags = plug->nr_ios; 2887 plug->nr_ios = 1; 2888 data.cached_rq = &plug->cached_rq; 2889 } 2890 2891 rq = __blk_mq_alloc_requests(&data); 2892 if (rq) 2893 return rq; 2894 rq_qos_cleanup(q, bio); 2895 if (bio->bi_opf & REQ_NOWAIT) 2896 bio_wouldblock_error(bio); 2897 return NULL; 2898 } 2899 2900 /* 2901 * Check if there is a suitable cached request and return it. 2902 */ 2903 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 2904 struct request_queue *q, blk_opf_t opf) 2905 { 2906 enum hctx_type type = blk_mq_get_hctx_type(opf); 2907 struct request *rq; 2908 2909 if (!plug) 2910 return NULL; 2911 rq = rq_list_peek(&plug->cached_rq); 2912 if (!rq || rq->q != q) 2913 return NULL; 2914 if (type != rq->mq_hctx->type && 2915 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 2916 return NULL; 2917 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 2918 return NULL; 2919 return rq; 2920 } 2921 2922 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 2923 struct bio *bio) 2924 { 2925 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2926 2927 /* 2928 * If any qos ->throttle() end up blocking, we will have flushed the 2929 * plug and hence killed the cached_rq list as well. Pop this entry 2930 * before we throttle. 2931 */ 2932 plug->cached_rq = rq_list_next(rq); 2933 rq_qos_throttle(rq->q, bio); 2934 2935 blk_mq_rq_time_init(rq, 0); 2936 rq->cmd_flags = bio->bi_opf; 2937 INIT_LIST_HEAD(&rq->queuelist); 2938 } 2939 2940 /** 2941 * blk_mq_submit_bio - Create and send a request to block device. 2942 * @bio: Bio pointer. 2943 * 2944 * Builds up a request structure from @q and @bio and send to the device. The 2945 * request may not be queued directly to hardware if: 2946 * * This request can be merged with another one 2947 * * We want to place request at plug queue for possible future merging 2948 * * There is an IO scheduler active at this queue 2949 * 2950 * It will not queue the request if there is an error with the bio, or at the 2951 * request creation. 2952 */ 2953 void blk_mq_submit_bio(struct bio *bio) 2954 { 2955 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2956 struct blk_plug *plug = blk_mq_plug(bio); 2957 const int is_sync = op_is_sync(bio->bi_opf); 2958 struct blk_mq_hw_ctx *hctx; 2959 unsigned int nr_segs = 1; 2960 struct request *rq; 2961 blk_status_t ret; 2962 2963 bio = blk_queue_bounce(bio, q); 2964 2965 /* 2966 * If the plug has a cached request for this queue, try use it. 2967 * 2968 * The cached request already holds a q_usage_counter reference and we 2969 * don't have to acquire a new one if we use it. 2970 */ 2971 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 2972 if (!rq) { 2973 if (unlikely(bio_queue_enter(bio))) 2974 return; 2975 } 2976 2977 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 2978 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2979 if (!bio) 2980 goto queue_exit; 2981 } 2982 if (!bio_integrity_prep(bio)) 2983 goto queue_exit; 2984 2985 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 2986 goto queue_exit; 2987 2988 if (!rq) { 2989 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2990 if (unlikely(!rq)) 2991 goto queue_exit; 2992 } else { 2993 blk_mq_use_cached_rq(rq, plug, bio); 2994 } 2995 2996 trace_block_getrq(bio); 2997 2998 rq_qos_track(q, rq, bio); 2999 3000 blk_mq_bio_to_request(rq, bio, nr_segs); 3001 3002 ret = blk_crypto_rq_get_keyslot(rq); 3003 if (ret != BLK_STS_OK) { 3004 bio->bi_status = ret; 3005 bio_endio(bio); 3006 blk_mq_free_request(rq); 3007 return; 3008 } 3009 3010 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3011 return; 3012 3013 if (plug) { 3014 blk_add_rq_to_plug(plug, rq); 3015 return; 3016 } 3017 3018 hctx = rq->mq_hctx; 3019 if ((rq->rq_flags & RQF_USE_SCHED) || 3020 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3021 blk_mq_insert_request(rq, 0); 3022 blk_mq_run_hw_queue(hctx, true); 3023 } else { 3024 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3025 } 3026 return; 3027 3028 queue_exit: 3029 /* 3030 * Don't drop the queue reference if we were trying to use a cached 3031 * request and thus didn't acquire one. 3032 */ 3033 if (!rq) 3034 blk_queue_exit(q); 3035 } 3036 3037 #ifdef CONFIG_BLK_MQ_STACKING 3038 /** 3039 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3040 * @rq: the request being queued 3041 */ 3042 blk_status_t blk_insert_cloned_request(struct request *rq) 3043 { 3044 struct request_queue *q = rq->q; 3045 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3046 unsigned int max_segments = blk_rq_get_max_segments(rq); 3047 blk_status_t ret; 3048 3049 if (blk_rq_sectors(rq) > max_sectors) { 3050 /* 3051 * SCSI device does not have a good way to return if 3052 * Write Same/Zero is actually supported. If a device rejects 3053 * a non-read/write command (discard, write same,etc.) the 3054 * low-level device driver will set the relevant queue limit to 3055 * 0 to prevent blk-lib from issuing more of the offending 3056 * operations. Commands queued prior to the queue limit being 3057 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3058 * errors being propagated to upper layers. 3059 */ 3060 if (max_sectors == 0) 3061 return BLK_STS_NOTSUPP; 3062 3063 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3064 __func__, blk_rq_sectors(rq), max_sectors); 3065 return BLK_STS_IOERR; 3066 } 3067 3068 /* 3069 * The queue settings related to segment counting may differ from the 3070 * original queue. 3071 */ 3072 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3073 if (rq->nr_phys_segments > max_segments) { 3074 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3075 __func__, rq->nr_phys_segments, max_segments); 3076 return BLK_STS_IOERR; 3077 } 3078 3079 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3080 return BLK_STS_IOERR; 3081 3082 ret = blk_crypto_rq_get_keyslot(rq); 3083 if (ret != BLK_STS_OK) 3084 return ret; 3085 3086 blk_account_io_start(rq); 3087 3088 /* 3089 * Since we have a scheduler attached on the top device, 3090 * bypass a potential scheduler on the bottom device for 3091 * insert. 3092 */ 3093 blk_mq_run_dispatch_ops(q, 3094 ret = blk_mq_request_issue_directly(rq, true)); 3095 if (ret) 3096 blk_account_io_done(rq, blk_time_get_ns()); 3097 return ret; 3098 } 3099 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3100 3101 /** 3102 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3103 * @rq: the clone request to be cleaned up 3104 * 3105 * Description: 3106 * Free all bios in @rq for a cloned request. 3107 */ 3108 void blk_rq_unprep_clone(struct request *rq) 3109 { 3110 struct bio *bio; 3111 3112 while ((bio = rq->bio) != NULL) { 3113 rq->bio = bio->bi_next; 3114 3115 bio_put(bio); 3116 } 3117 } 3118 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3119 3120 /** 3121 * blk_rq_prep_clone - Helper function to setup clone request 3122 * @rq: the request to be setup 3123 * @rq_src: original request to be cloned 3124 * @bs: bio_set that bios for clone are allocated from 3125 * @gfp_mask: memory allocation mask for bio 3126 * @bio_ctr: setup function to be called for each clone bio. 3127 * Returns %0 for success, non %0 for failure. 3128 * @data: private data to be passed to @bio_ctr 3129 * 3130 * Description: 3131 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3132 * Also, pages which the original bios are pointing to are not copied 3133 * and the cloned bios just point same pages. 3134 * So cloned bios must be completed before original bios, which means 3135 * the caller must complete @rq before @rq_src. 3136 */ 3137 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3138 struct bio_set *bs, gfp_t gfp_mask, 3139 int (*bio_ctr)(struct bio *, struct bio *, void *), 3140 void *data) 3141 { 3142 struct bio *bio, *bio_src; 3143 3144 if (!bs) 3145 bs = &fs_bio_set; 3146 3147 __rq_for_each_bio(bio_src, rq_src) { 3148 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3149 bs); 3150 if (!bio) 3151 goto free_and_out; 3152 3153 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3154 goto free_and_out; 3155 3156 if (rq->bio) { 3157 rq->biotail->bi_next = bio; 3158 rq->biotail = bio; 3159 } else { 3160 rq->bio = rq->biotail = bio; 3161 } 3162 bio = NULL; 3163 } 3164 3165 /* Copy attributes of the original request to the clone request. */ 3166 rq->__sector = blk_rq_pos(rq_src); 3167 rq->__data_len = blk_rq_bytes(rq_src); 3168 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3169 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3170 rq->special_vec = rq_src->special_vec; 3171 } 3172 rq->nr_phys_segments = rq_src->nr_phys_segments; 3173 rq->ioprio = rq_src->ioprio; 3174 rq->write_hint = rq_src->write_hint; 3175 3176 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3177 goto free_and_out; 3178 3179 return 0; 3180 3181 free_and_out: 3182 if (bio) 3183 bio_put(bio); 3184 blk_rq_unprep_clone(rq); 3185 3186 return -ENOMEM; 3187 } 3188 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3189 #endif /* CONFIG_BLK_MQ_STACKING */ 3190 3191 /* 3192 * Steal bios from a request and add them to a bio list. 3193 * The request must not have been partially completed before. 3194 */ 3195 void blk_steal_bios(struct bio_list *list, struct request *rq) 3196 { 3197 if (rq->bio) { 3198 if (list->tail) 3199 list->tail->bi_next = rq->bio; 3200 else 3201 list->head = rq->bio; 3202 list->tail = rq->biotail; 3203 3204 rq->bio = NULL; 3205 rq->biotail = NULL; 3206 } 3207 3208 rq->__data_len = 0; 3209 } 3210 EXPORT_SYMBOL_GPL(blk_steal_bios); 3211 3212 static size_t order_to_size(unsigned int order) 3213 { 3214 return (size_t)PAGE_SIZE << order; 3215 } 3216 3217 /* called before freeing request pool in @tags */ 3218 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3219 struct blk_mq_tags *tags) 3220 { 3221 struct page *page; 3222 unsigned long flags; 3223 3224 /* 3225 * There is no need to clear mapping if driver tags is not initialized 3226 * or the mapping belongs to the driver tags. 3227 */ 3228 if (!drv_tags || drv_tags == tags) 3229 return; 3230 3231 list_for_each_entry(page, &tags->page_list, lru) { 3232 unsigned long start = (unsigned long)page_address(page); 3233 unsigned long end = start + order_to_size(page->private); 3234 int i; 3235 3236 for (i = 0; i < drv_tags->nr_tags; i++) { 3237 struct request *rq = drv_tags->rqs[i]; 3238 unsigned long rq_addr = (unsigned long)rq; 3239 3240 if (rq_addr >= start && rq_addr < end) { 3241 WARN_ON_ONCE(req_ref_read(rq) != 0); 3242 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3243 } 3244 } 3245 } 3246 3247 /* 3248 * Wait until all pending iteration is done. 3249 * 3250 * Request reference is cleared and it is guaranteed to be observed 3251 * after the ->lock is released. 3252 */ 3253 spin_lock_irqsave(&drv_tags->lock, flags); 3254 spin_unlock_irqrestore(&drv_tags->lock, flags); 3255 } 3256 3257 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3258 unsigned int hctx_idx) 3259 { 3260 struct blk_mq_tags *drv_tags; 3261 struct page *page; 3262 3263 if (list_empty(&tags->page_list)) 3264 return; 3265 3266 if (blk_mq_is_shared_tags(set->flags)) 3267 drv_tags = set->shared_tags; 3268 else 3269 drv_tags = set->tags[hctx_idx]; 3270 3271 if (tags->static_rqs && set->ops->exit_request) { 3272 int i; 3273 3274 for (i = 0; i < tags->nr_tags; i++) { 3275 struct request *rq = tags->static_rqs[i]; 3276 3277 if (!rq) 3278 continue; 3279 set->ops->exit_request(set, rq, hctx_idx); 3280 tags->static_rqs[i] = NULL; 3281 } 3282 } 3283 3284 blk_mq_clear_rq_mapping(drv_tags, tags); 3285 3286 while (!list_empty(&tags->page_list)) { 3287 page = list_first_entry(&tags->page_list, struct page, lru); 3288 list_del_init(&page->lru); 3289 /* 3290 * Remove kmemleak object previously allocated in 3291 * blk_mq_alloc_rqs(). 3292 */ 3293 kmemleak_free(page_address(page)); 3294 __free_pages(page, page->private); 3295 } 3296 } 3297 3298 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3299 { 3300 kfree(tags->rqs); 3301 tags->rqs = NULL; 3302 kfree(tags->static_rqs); 3303 tags->static_rqs = NULL; 3304 3305 blk_mq_free_tags(tags); 3306 } 3307 3308 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3309 unsigned int hctx_idx) 3310 { 3311 int i; 3312 3313 for (i = 0; i < set->nr_maps; i++) { 3314 unsigned int start = set->map[i].queue_offset; 3315 unsigned int end = start + set->map[i].nr_queues; 3316 3317 if (hctx_idx >= start && hctx_idx < end) 3318 break; 3319 } 3320 3321 if (i >= set->nr_maps) 3322 i = HCTX_TYPE_DEFAULT; 3323 3324 return i; 3325 } 3326 3327 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3328 unsigned int hctx_idx) 3329 { 3330 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3331 3332 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3333 } 3334 3335 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3336 unsigned int hctx_idx, 3337 unsigned int nr_tags, 3338 unsigned int reserved_tags) 3339 { 3340 int node = blk_mq_get_hctx_node(set, hctx_idx); 3341 struct blk_mq_tags *tags; 3342 3343 if (node == NUMA_NO_NODE) 3344 node = set->numa_node; 3345 3346 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3347 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3348 if (!tags) 3349 return NULL; 3350 3351 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3352 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3353 node); 3354 if (!tags->rqs) 3355 goto err_free_tags; 3356 3357 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3358 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3359 node); 3360 if (!tags->static_rqs) 3361 goto err_free_rqs; 3362 3363 return tags; 3364 3365 err_free_rqs: 3366 kfree(tags->rqs); 3367 err_free_tags: 3368 blk_mq_free_tags(tags); 3369 return NULL; 3370 } 3371 3372 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3373 unsigned int hctx_idx, int node) 3374 { 3375 int ret; 3376 3377 if (set->ops->init_request) { 3378 ret = set->ops->init_request(set, rq, hctx_idx, node); 3379 if (ret) 3380 return ret; 3381 } 3382 3383 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3384 return 0; 3385 } 3386 3387 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3388 struct blk_mq_tags *tags, 3389 unsigned int hctx_idx, unsigned int depth) 3390 { 3391 unsigned int i, j, entries_per_page, max_order = 4; 3392 int node = blk_mq_get_hctx_node(set, hctx_idx); 3393 size_t rq_size, left; 3394 3395 if (node == NUMA_NO_NODE) 3396 node = set->numa_node; 3397 3398 INIT_LIST_HEAD(&tags->page_list); 3399 3400 /* 3401 * rq_size is the size of the request plus driver payload, rounded 3402 * to the cacheline size 3403 */ 3404 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3405 cache_line_size()); 3406 left = rq_size * depth; 3407 3408 for (i = 0; i < depth; ) { 3409 int this_order = max_order; 3410 struct page *page; 3411 int to_do; 3412 void *p; 3413 3414 while (this_order && left < order_to_size(this_order - 1)) 3415 this_order--; 3416 3417 do { 3418 page = alloc_pages_node(node, 3419 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3420 this_order); 3421 if (page) 3422 break; 3423 if (!this_order--) 3424 break; 3425 if (order_to_size(this_order) < rq_size) 3426 break; 3427 } while (1); 3428 3429 if (!page) 3430 goto fail; 3431 3432 page->private = this_order; 3433 list_add_tail(&page->lru, &tags->page_list); 3434 3435 p = page_address(page); 3436 /* 3437 * Allow kmemleak to scan these pages as they contain pointers 3438 * to additional allocations like via ops->init_request(). 3439 */ 3440 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3441 entries_per_page = order_to_size(this_order) / rq_size; 3442 to_do = min(entries_per_page, depth - i); 3443 left -= to_do * rq_size; 3444 for (j = 0; j < to_do; j++) { 3445 struct request *rq = p; 3446 3447 tags->static_rqs[i] = rq; 3448 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3449 tags->static_rqs[i] = NULL; 3450 goto fail; 3451 } 3452 3453 p += rq_size; 3454 i++; 3455 } 3456 } 3457 return 0; 3458 3459 fail: 3460 blk_mq_free_rqs(set, tags, hctx_idx); 3461 return -ENOMEM; 3462 } 3463 3464 struct rq_iter_data { 3465 struct blk_mq_hw_ctx *hctx; 3466 bool has_rq; 3467 }; 3468 3469 static bool blk_mq_has_request(struct request *rq, void *data) 3470 { 3471 struct rq_iter_data *iter_data = data; 3472 3473 if (rq->mq_hctx != iter_data->hctx) 3474 return true; 3475 iter_data->has_rq = true; 3476 return false; 3477 } 3478 3479 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3480 { 3481 struct blk_mq_tags *tags = hctx->sched_tags ? 3482 hctx->sched_tags : hctx->tags; 3483 struct rq_iter_data data = { 3484 .hctx = hctx, 3485 }; 3486 3487 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3488 return data.has_rq; 3489 } 3490 3491 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3492 struct blk_mq_hw_ctx *hctx) 3493 { 3494 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3495 return false; 3496 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3497 return false; 3498 return true; 3499 } 3500 3501 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3502 { 3503 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3504 struct blk_mq_hw_ctx, cpuhp_online); 3505 3506 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3507 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3508 return 0; 3509 3510 /* 3511 * Prevent new request from being allocated on the current hctx. 3512 * 3513 * The smp_mb__after_atomic() Pairs with the implied barrier in 3514 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3515 * seen once we return from the tag allocator. 3516 */ 3517 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3518 smp_mb__after_atomic(); 3519 3520 /* 3521 * Try to grab a reference to the queue and wait for any outstanding 3522 * requests. If we could not grab a reference the queue has been 3523 * frozen and there are no requests. 3524 */ 3525 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3526 while (blk_mq_hctx_has_requests(hctx)) 3527 msleep(5); 3528 percpu_ref_put(&hctx->queue->q_usage_counter); 3529 } 3530 3531 return 0; 3532 } 3533 3534 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3535 { 3536 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3537 struct blk_mq_hw_ctx, cpuhp_online); 3538 3539 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3540 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3541 return 0; 3542 } 3543 3544 /* 3545 * 'cpu' is going away. splice any existing rq_list entries from this 3546 * software queue to the hw queue dispatch list, and ensure that it 3547 * gets run. 3548 */ 3549 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3550 { 3551 struct blk_mq_hw_ctx *hctx; 3552 struct blk_mq_ctx *ctx; 3553 LIST_HEAD(tmp); 3554 enum hctx_type type; 3555 3556 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3557 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3558 return 0; 3559 3560 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3561 type = hctx->type; 3562 3563 spin_lock(&ctx->lock); 3564 if (!list_empty(&ctx->rq_lists[type])) { 3565 list_splice_init(&ctx->rq_lists[type], &tmp); 3566 blk_mq_hctx_clear_pending(hctx, ctx); 3567 } 3568 spin_unlock(&ctx->lock); 3569 3570 if (list_empty(&tmp)) 3571 return 0; 3572 3573 spin_lock(&hctx->lock); 3574 list_splice_tail_init(&tmp, &hctx->dispatch); 3575 spin_unlock(&hctx->lock); 3576 3577 blk_mq_run_hw_queue(hctx, true); 3578 return 0; 3579 } 3580 3581 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3582 { 3583 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3584 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3585 &hctx->cpuhp_online); 3586 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3587 &hctx->cpuhp_dead); 3588 } 3589 3590 /* 3591 * Before freeing hw queue, clearing the flush request reference in 3592 * tags->rqs[] for avoiding potential UAF. 3593 */ 3594 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3595 unsigned int queue_depth, struct request *flush_rq) 3596 { 3597 int i; 3598 unsigned long flags; 3599 3600 /* The hw queue may not be mapped yet */ 3601 if (!tags) 3602 return; 3603 3604 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3605 3606 for (i = 0; i < queue_depth; i++) 3607 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3608 3609 /* 3610 * Wait until all pending iteration is done. 3611 * 3612 * Request reference is cleared and it is guaranteed to be observed 3613 * after the ->lock is released. 3614 */ 3615 spin_lock_irqsave(&tags->lock, flags); 3616 spin_unlock_irqrestore(&tags->lock, flags); 3617 } 3618 3619 /* hctx->ctxs will be freed in queue's release handler */ 3620 static void blk_mq_exit_hctx(struct request_queue *q, 3621 struct blk_mq_tag_set *set, 3622 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3623 { 3624 struct request *flush_rq = hctx->fq->flush_rq; 3625 3626 if (blk_mq_hw_queue_mapped(hctx)) 3627 blk_mq_tag_idle(hctx); 3628 3629 if (blk_queue_init_done(q)) 3630 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3631 set->queue_depth, flush_rq); 3632 if (set->ops->exit_request) 3633 set->ops->exit_request(set, flush_rq, hctx_idx); 3634 3635 if (set->ops->exit_hctx) 3636 set->ops->exit_hctx(hctx, hctx_idx); 3637 3638 blk_mq_remove_cpuhp(hctx); 3639 3640 xa_erase(&q->hctx_table, hctx_idx); 3641 3642 spin_lock(&q->unused_hctx_lock); 3643 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3644 spin_unlock(&q->unused_hctx_lock); 3645 } 3646 3647 static void blk_mq_exit_hw_queues(struct request_queue *q, 3648 struct blk_mq_tag_set *set, int nr_queue) 3649 { 3650 struct blk_mq_hw_ctx *hctx; 3651 unsigned long i; 3652 3653 queue_for_each_hw_ctx(q, hctx, i) { 3654 if (i == nr_queue) 3655 break; 3656 blk_mq_exit_hctx(q, set, hctx, i); 3657 } 3658 } 3659 3660 static int blk_mq_init_hctx(struct request_queue *q, 3661 struct blk_mq_tag_set *set, 3662 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3663 { 3664 hctx->queue_num = hctx_idx; 3665 3666 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3667 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3668 &hctx->cpuhp_online); 3669 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3670 3671 hctx->tags = set->tags[hctx_idx]; 3672 3673 if (set->ops->init_hctx && 3674 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3675 goto unregister_cpu_notifier; 3676 3677 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3678 hctx->numa_node)) 3679 goto exit_hctx; 3680 3681 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3682 goto exit_flush_rq; 3683 3684 return 0; 3685 3686 exit_flush_rq: 3687 if (set->ops->exit_request) 3688 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3689 exit_hctx: 3690 if (set->ops->exit_hctx) 3691 set->ops->exit_hctx(hctx, hctx_idx); 3692 unregister_cpu_notifier: 3693 blk_mq_remove_cpuhp(hctx); 3694 return -1; 3695 } 3696 3697 static struct blk_mq_hw_ctx * 3698 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3699 int node) 3700 { 3701 struct blk_mq_hw_ctx *hctx; 3702 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3703 3704 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3705 if (!hctx) 3706 goto fail_alloc_hctx; 3707 3708 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3709 goto free_hctx; 3710 3711 atomic_set(&hctx->nr_active, 0); 3712 if (node == NUMA_NO_NODE) 3713 node = set->numa_node; 3714 hctx->numa_node = node; 3715 3716 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3717 spin_lock_init(&hctx->lock); 3718 INIT_LIST_HEAD(&hctx->dispatch); 3719 hctx->queue = q; 3720 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3721 3722 INIT_LIST_HEAD(&hctx->hctx_list); 3723 3724 /* 3725 * Allocate space for all possible cpus to avoid allocation at 3726 * runtime 3727 */ 3728 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3729 gfp, node); 3730 if (!hctx->ctxs) 3731 goto free_cpumask; 3732 3733 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3734 gfp, node, false, false)) 3735 goto free_ctxs; 3736 hctx->nr_ctx = 0; 3737 3738 spin_lock_init(&hctx->dispatch_wait_lock); 3739 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3740 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3741 3742 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3743 if (!hctx->fq) 3744 goto free_bitmap; 3745 3746 blk_mq_hctx_kobj_init(hctx); 3747 3748 return hctx; 3749 3750 free_bitmap: 3751 sbitmap_free(&hctx->ctx_map); 3752 free_ctxs: 3753 kfree(hctx->ctxs); 3754 free_cpumask: 3755 free_cpumask_var(hctx->cpumask); 3756 free_hctx: 3757 kfree(hctx); 3758 fail_alloc_hctx: 3759 return NULL; 3760 } 3761 3762 static void blk_mq_init_cpu_queues(struct request_queue *q, 3763 unsigned int nr_hw_queues) 3764 { 3765 struct blk_mq_tag_set *set = q->tag_set; 3766 unsigned int i, j; 3767 3768 for_each_possible_cpu(i) { 3769 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3770 struct blk_mq_hw_ctx *hctx; 3771 int k; 3772 3773 __ctx->cpu = i; 3774 spin_lock_init(&__ctx->lock); 3775 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3776 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3777 3778 __ctx->queue = q; 3779 3780 /* 3781 * Set local node, IFF we have more than one hw queue. If 3782 * not, we remain on the home node of the device 3783 */ 3784 for (j = 0; j < set->nr_maps; j++) { 3785 hctx = blk_mq_map_queue_type(q, j, i); 3786 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3787 hctx->numa_node = cpu_to_node(i); 3788 } 3789 } 3790 } 3791 3792 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3793 unsigned int hctx_idx, 3794 unsigned int depth) 3795 { 3796 struct blk_mq_tags *tags; 3797 int ret; 3798 3799 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3800 if (!tags) 3801 return NULL; 3802 3803 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3804 if (ret) { 3805 blk_mq_free_rq_map(tags); 3806 return NULL; 3807 } 3808 3809 return tags; 3810 } 3811 3812 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3813 int hctx_idx) 3814 { 3815 if (blk_mq_is_shared_tags(set->flags)) { 3816 set->tags[hctx_idx] = set->shared_tags; 3817 3818 return true; 3819 } 3820 3821 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3822 set->queue_depth); 3823 3824 return set->tags[hctx_idx]; 3825 } 3826 3827 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3828 struct blk_mq_tags *tags, 3829 unsigned int hctx_idx) 3830 { 3831 if (tags) { 3832 blk_mq_free_rqs(set, tags, hctx_idx); 3833 blk_mq_free_rq_map(tags); 3834 } 3835 } 3836 3837 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3838 unsigned int hctx_idx) 3839 { 3840 if (!blk_mq_is_shared_tags(set->flags)) 3841 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3842 3843 set->tags[hctx_idx] = NULL; 3844 } 3845 3846 static void blk_mq_map_swqueue(struct request_queue *q) 3847 { 3848 unsigned int j, hctx_idx; 3849 unsigned long i; 3850 struct blk_mq_hw_ctx *hctx; 3851 struct blk_mq_ctx *ctx; 3852 struct blk_mq_tag_set *set = q->tag_set; 3853 3854 queue_for_each_hw_ctx(q, hctx, i) { 3855 cpumask_clear(hctx->cpumask); 3856 hctx->nr_ctx = 0; 3857 hctx->dispatch_from = NULL; 3858 } 3859 3860 /* 3861 * Map software to hardware queues. 3862 * 3863 * If the cpu isn't present, the cpu is mapped to first hctx. 3864 */ 3865 for_each_possible_cpu(i) { 3866 3867 ctx = per_cpu_ptr(q->queue_ctx, i); 3868 for (j = 0; j < set->nr_maps; j++) { 3869 if (!set->map[j].nr_queues) { 3870 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3871 HCTX_TYPE_DEFAULT, i); 3872 continue; 3873 } 3874 hctx_idx = set->map[j].mq_map[i]; 3875 /* unmapped hw queue can be remapped after CPU topo changed */ 3876 if (!set->tags[hctx_idx] && 3877 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3878 /* 3879 * If tags initialization fail for some hctx, 3880 * that hctx won't be brought online. In this 3881 * case, remap the current ctx to hctx[0] which 3882 * is guaranteed to always have tags allocated 3883 */ 3884 set->map[j].mq_map[i] = 0; 3885 } 3886 3887 hctx = blk_mq_map_queue_type(q, j, i); 3888 ctx->hctxs[j] = hctx; 3889 /* 3890 * If the CPU is already set in the mask, then we've 3891 * mapped this one already. This can happen if 3892 * devices share queues across queue maps. 3893 */ 3894 if (cpumask_test_cpu(i, hctx->cpumask)) 3895 continue; 3896 3897 cpumask_set_cpu(i, hctx->cpumask); 3898 hctx->type = j; 3899 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3900 hctx->ctxs[hctx->nr_ctx++] = ctx; 3901 3902 /* 3903 * If the nr_ctx type overflows, we have exceeded the 3904 * amount of sw queues we can support. 3905 */ 3906 BUG_ON(!hctx->nr_ctx); 3907 } 3908 3909 for (; j < HCTX_MAX_TYPES; j++) 3910 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3911 HCTX_TYPE_DEFAULT, i); 3912 } 3913 3914 queue_for_each_hw_ctx(q, hctx, i) { 3915 /* 3916 * If no software queues are mapped to this hardware queue, 3917 * disable it and free the request entries. 3918 */ 3919 if (!hctx->nr_ctx) { 3920 /* Never unmap queue 0. We need it as a 3921 * fallback in case of a new remap fails 3922 * allocation 3923 */ 3924 if (i) 3925 __blk_mq_free_map_and_rqs(set, i); 3926 3927 hctx->tags = NULL; 3928 continue; 3929 } 3930 3931 hctx->tags = set->tags[i]; 3932 WARN_ON(!hctx->tags); 3933 3934 /* 3935 * Set the map size to the number of mapped software queues. 3936 * This is more accurate and more efficient than looping 3937 * over all possibly mapped software queues. 3938 */ 3939 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3940 3941 /* 3942 * Initialize batch roundrobin counts 3943 */ 3944 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3945 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3946 } 3947 } 3948 3949 /* 3950 * Caller needs to ensure that we're either frozen/quiesced, or that 3951 * the queue isn't live yet. 3952 */ 3953 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3954 { 3955 struct blk_mq_hw_ctx *hctx; 3956 unsigned long i; 3957 3958 queue_for_each_hw_ctx(q, hctx, i) { 3959 if (shared) { 3960 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3961 } else { 3962 blk_mq_tag_idle(hctx); 3963 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3964 } 3965 } 3966 } 3967 3968 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3969 bool shared) 3970 { 3971 struct request_queue *q; 3972 3973 lockdep_assert_held(&set->tag_list_lock); 3974 3975 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3976 blk_mq_freeze_queue(q); 3977 queue_set_hctx_shared(q, shared); 3978 blk_mq_unfreeze_queue(q); 3979 } 3980 } 3981 3982 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3983 { 3984 struct blk_mq_tag_set *set = q->tag_set; 3985 3986 mutex_lock(&set->tag_list_lock); 3987 list_del(&q->tag_set_list); 3988 if (list_is_singular(&set->tag_list)) { 3989 /* just transitioned to unshared */ 3990 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3991 /* update existing queue */ 3992 blk_mq_update_tag_set_shared(set, false); 3993 } 3994 mutex_unlock(&set->tag_list_lock); 3995 INIT_LIST_HEAD(&q->tag_set_list); 3996 } 3997 3998 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3999 struct request_queue *q) 4000 { 4001 mutex_lock(&set->tag_list_lock); 4002 4003 /* 4004 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4005 */ 4006 if (!list_empty(&set->tag_list) && 4007 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4008 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4009 /* update existing queue */ 4010 blk_mq_update_tag_set_shared(set, true); 4011 } 4012 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4013 queue_set_hctx_shared(q, true); 4014 list_add_tail(&q->tag_set_list, &set->tag_list); 4015 4016 mutex_unlock(&set->tag_list_lock); 4017 } 4018 4019 /* All allocations will be freed in release handler of q->mq_kobj */ 4020 static int blk_mq_alloc_ctxs(struct request_queue *q) 4021 { 4022 struct blk_mq_ctxs *ctxs; 4023 int cpu; 4024 4025 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4026 if (!ctxs) 4027 return -ENOMEM; 4028 4029 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4030 if (!ctxs->queue_ctx) 4031 goto fail; 4032 4033 for_each_possible_cpu(cpu) { 4034 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4035 ctx->ctxs = ctxs; 4036 } 4037 4038 q->mq_kobj = &ctxs->kobj; 4039 q->queue_ctx = ctxs->queue_ctx; 4040 4041 return 0; 4042 fail: 4043 kfree(ctxs); 4044 return -ENOMEM; 4045 } 4046 4047 /* 4048 * It is the actual release handler for mq, but we do it from 4049 * request queue's release handler for avoiding use-after-free 4050 * and headache because q->mq_kobj shouldn't have been introduced, 4051 * but we can't group ctx/kctx kobj without it. 4052 */ 4053 void blk_mq_release(struct request_queue *q) 4054 { 4055 struct blk_mq_hw_ctx *hctx, *next; 4056 unsigned long i; 4057 4058 queue_for_each_hw_ctx(q, hctx, i) 4059 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4060 4061 /* all hctx are in .unused_hctx_list now */ 4062 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4063 list_del_init(&hctx->hctx_list); 4064 kobject_put(&hctx->kobj); 4065 } 4066 4067 xa_destroy(&q->hctx_table); 4068 4069 /* 4070 * release .mq_kobj and sw queue's kobject now because 4071 * both share lifetime with request queue. 4072 */ 4073 blk_mq_sysfs_deinit(q); 4074 } 4075 4076 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4077 struct queue_limits *lim, void *queuedata) 4078 { 4079 struct queue_limits default_lim = { }; 4080 struct request_queue *q; 4081 int ret; 4082 4083 q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node); 4084 if (IS_ERR(q)) 4085 return q; 4086 q->queuedata = queuedata; 4087 ret = blk_mq_init_allocated_queue(set, q); 4088 if (ret) { 4089 blk_put_queue(q); 4090 return ERR_PTR(ret); 4091 } 4092 return q; 4093 } 4094 EXPORT_SYMBOL(blk_mq_alloc_queue); 4095 4096 /** 4097 * blk_mq_destroy_queue - shutdown a request queue 4098 * @q: request queue to shutdown 4099 * 4100 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4101 * requests will be failed with -ENODEV. The caller is responsible for dropping 4102 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4103 * 4104 * Context: can sleep 4105 */ 4106 void blk_mq_destroy_queue(struct request_queue *q) 4107 { 4108 WARN_ON_ONCE(!queue_is_mq(q)); 4109 WARN_ON_ONCE(blk_queue_registered(q)); 4110 4111 might_sleep(); 4112 4113 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4114 blk_queue_start_drain(q); 4115 blk_mq_freeze_queue_wait(q); 4116 4117 blk_sync_queue(q); 4118 blk_mq_cancel_work_sync(q); 4119 blk_mq_exit_queue(q); 4120 } 4121 EXPORT_SYMBOL(blk_mq_destroy_queue); 4122 4123 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4124 struct queue_limits *lim, void *queuedata, 4125 struct lock_class_key *lkclass) 4126 { 4127 struct request_queue *q; 4128 struct gendisk *disk; 4129 4130 q = blk_mq_alloc_queue(set, lim, queuedata); 4131 if (IS_ERR(q)) 4132 return ERR_CAST(q); 4133 4134 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4135 if (!disk) { 4136 blk_mq_destroy_queue(q); 4137 blk_put_queue(q); 4138 return ERR_PTR(-ENOMEM); 4139 } 4140 set_bit(GD_OWNS_QUEUE, &disk->state); 4141 return disk; 4142 } 4143 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4144 4145 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4146 struct lock_class_key *lkclass) 4147 { 4148 struct gendisk *disk; 4149 4150 if (!blk_get_queue(q)) 4151 return NULL; 4152 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4153 if (!disk) 4154 blk_put_queue(q); 4155 return disk; 4156 } 4157 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4158 4159 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4160 struct blk_mq_tag_set *set, struct request_queue *q, 4161 int hctx_idx, int node) 4162 { 4163 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4164 4165 /* reuse dead hctx first */ 4166 spin_lock(&q->unused_hctx_lock); 4167 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4168 if (tmp->numa_node == node) { 4169 hctx = tmp; 4170 break; 4171 } 4172 } 4173 if (hctx) 4174 list_del_init(&hctx->hctx_list); 4175 spin_unlock(&q->unused_hctx_lock); 4176 4177 if (!hctx) 4178 hctx = blk_mq_alloc_hctx(q, set, node); 4179 if (!hctx) 4180 goto fail; 4181 4182 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4183 goto free_hctx; 4184 4185 return hctx; 4186 4187 free_hctx: 4188 kobject_put(&hctx->kobj); 4189 fail: 4190 return NULL; 4191 } 4192 4193 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4194 struct request_queue *q) 4195 { 4196 struct blk_mq_hw_ctx *hctx; 4197 unsigned long i, j; 4198 4199 /* protect against switching io scheduler */ 4200 mutex_lock(&q->sysfs_lock); 4201 for (i = 0; i < set->nr_hw_queues; i++) { 4202 int old_node; 4203 int node = blk_mq_get_hctx_node(set, i); 4204 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4205 4206 if (old_hctx) { 4207 old_node = old_hctx->numa_node; 4208 blk_mq_exit_hctx(q, set, old_hctx, i); 4209 } 4210 4211 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4212 if (!old_hctx) 4213 break; 4214 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4215 node, old_node); 4216 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4217 WARN_ON_ONCE(!hctx); 4218 } 4219 } 4220 /* 4221 * Increasing nr_hw_queues fails. Free the newly allocated 4222 * hctxs and keep the previous q->nr_hw_queues. 4223 */ 4224 if (i != set->nr_hw_queues) { 4225 j = q->nr_hw_queues; 4226 } else { 4227 j = i; 4228 q->nr_hw_queues = set->nr_hw_queues; 4229 } 4230 4231 xa_for_each_start(&q->hctx_table, j, hctx, j) 4232 blk_mq_exit_hctx(q, set, hctx, j); 4233 mutex_unlock(&q->sysfs_lock); 4234 } 4235 4236 static void blk_mq_update_poll_flag(struct request_queue *q) 4237 { 4238 struct blk_mq_tag_set *set = q->tag_set; 4239 4240 if (set->nr_maps > HCTX_TYPE_POLL && 4241 set->map[HCTX_TYPE_POLL].nr_queues) 4242 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4243 else 4244 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4245 } 4246 4247 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4248 struct request_queue *q) 4249 { 4250 /* mark the queue as mq asap */ 4251 q->mq_ops = set->ops; 4252 4253 if (blk_mq_alloc_ctxs(q)) 4254 goto err_exit; 4255 4256 /* init q->mq_kobj and sw queues' kobjects */ 4257 blk_mq_sysfs_init(q); 4258 4259 INIT_LIST_HEAD(&q->unused_hctx_list); 4260 spin_lock_init(&q->unused_hctx_lock); 4261 4262 xa_init(&q->hctx_table); 4263 4264 blk_mq_realloc_hw_ctxs(set, q); 4265 if (!q->nr_hw_queues) 4266 goto err_hctxs; 4267 4268 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4269 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4270 4271 q->tag_set = set; 4272 4273 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4274 blk_mq_update_poll_flag(q); 4275 4276 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4277 INIT_LIST_HEAD(&q->flush_list); 4278 INIT_LIST_HEAD(&q->requeue_list); 4279 spin_lock_init(&q->requeue_lock); 4280 4281 q->nr_requests = set->queue_depth; 4282 4283 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4284 blk_mq_add_queue_tag_set(set, q); 4285 blk_mq_map_swqueue(q); 4286 return 0; 4287 4288 err_hctxs: 4289 blk_mq_release(q); 4290 err_exit: 4291 q->mq_ops = NULL; 4292 return -ENOMEM; 4293 } 4294 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4295 4296 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4297 void blk_mq_exit_queue(struct request_queue *q) 4298 { 4299 struct blk_mq_tag_set *set = q->tag_set; 4300 4301 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4302 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4303 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4304 blk_mq_del_queue_tag_set(q); 4305 } 4306 4307 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4308 { 4309 int i; 4310 4311 if (blk_mq_is_shared_tags(set->flags)) { 4312 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4313 BLK_MQ_NO_HCTX_IDX, 4314 set->queue_depth); 4315 if (!set->shared_tags) 4316 return -ENOMEM; 4317 } 4318 4319 for (i = 0; i < set->nr_hw_queues; i++) { 4320 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4321 goto out_unwind; 4322 cond_resched(); 4323 } 4324 4325 return 0; 4326 4327 out_unwind: 4328 while (--i >= 0) 4329 __blk_mq_free_map_and_rqs(set, i); 4330 4331 if (blk_mq_is_shared_tags(set->flags)) { 4332 blk_mq_free_map_and_rqs(set, set->shared_tags, 4333 BLK_MQ_NO_HCTX_IDX); 4334 } 4335 4336 return -ENOMEM; 4337 } 4338 4339 /* 4340 * Allocate the request maps associated with this tag_set. Note that this 4341 * may reduce the depth asked for, if memory is tight. set->queue_depth 4342 * will be updated to reflect the allocated depth. 4343 */ 4344 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4345 { 4346 unsigned int depth; 4347 int err; 4348 4349 depth = set->queue_depth; 4350 do { 4351 err = __blk_mq_alloc_rq_maps(set); 4352 if (!err) 4353 break; 4354 4355 set->queue_depth >>= 1; 4356 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4357 err = -ENOMEM; 4358 break; 4359 } 4360 } while (set->queue_depth); 4361 4362 if (!set->queue_depth || err) { 4363 pr_err("blk-mq: failed to allocate request map\n"); 4364 return -ENOMEM; 4365 } 4366 4367 if (depth != set->queue_depth) 4368 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4369 depth, set->queue_depth); 4370 4371 return 0; 4372 } 4373 4374 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4375 { 4376 /* 4377 * blk_mq_map_queues() and multiple .map_queues() implementations 4378 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4379 * number of hardware queues. 4380 */ 4381 if (set->nr_maps == 1) 4382 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4383 4384 if (set->ops->map_queues) { 4385 int i; 4386 4387 /* 4388 * transport .map_queues is usually done in the following 4389 * way: 4390 * 4391 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4392 * mask = get_cpu_mask(queue) 4393 * for_each_cpu(cpu, mask) 4394 * set->map[x].mq_map[cpu] = queue; 4395 * } 4396 * 4397 * When we need to remap, the table has to be cleared for 4398 * killing stale mapping since one CPU may not be mapped 4399 * to any hw queue. 4400 */ 4401 for (i = 0; i < set->nr_maps; i++) 4402 blk_mq_clear_mq_map(&set->map[i]); 4403 4404 set->ops->map_queues(set); 4405 } else { 4406 BUG_ON(set->nr_maps > 1); 4407 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4408 } 4409 } 4410 4411 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4412 int new_nr_hw_queues) 4413 { 4414 struct blk_mq_tags **new_tags; 4415 int i; 4416 4417 if (set->nr_hw_queues >= new_nr_hw_queues) 4418 goto done; 4419 4420 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4421 GFP_KERNEL, set->numa_node); 4422 if (!new_tags) 4423 return -ENOMEM; 4424 4425 if (set->tags) 4426 memcpy(new_tags, set->tags, set->nr_hw_queues * 4427 sizeof(*set->tags)); 4428 kfree(set->tags); 4429 set->tags = new_tags; 4430 4431 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4432 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4433 while (--i >= set->nr_hw_queues) 4434 __blk_mq_free_map_and_rqs(set, i); 4435 return -ENOMEM; 4436 } 4437 cond_resched(); 4438 } 4439 4440 done: 4441 set->nr_hw_queues = new_nr_hw_queues; 4442 return 0; 4443 } 4444 4445 /* 4446 * Alloc a tag set to be associated with one or more request queues. 4447 * May fail with EINVAL for various error conditions. May adjust the 4448 * requested depth down, if it's too large. In that case, the set 4449 * value will be stored in set->queue_depth. 4450 */ 4451 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4452 { 4453 int i, ret; 4454 4455 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4456 4457 if (!set->nr_hw_queues) 4458 return -EINVAL; 4459 if (!set->queue_depth) 4460 return -EINVAL; 4461 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4462 return -EINVAL; 4463 4464 if (!set->ops->queue_rq) 4465 return -EINVAL; 4466 4467 if (!set->ops->get_budget ^ !set->ops->put_budget) 4468 return -EINVAL; 4469 4470 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4471 pr_info("blk-mq: reduced tag depth to %u\n", 4472 BLK_MQ_MAX_DEPTH); 4473 set->queue_depth = BLK_MQ_MAX_DEPTH; 4474 } 4475 4476 if (!set->nr_maps) 4477 set->nr_maps = 1; 4478 else if (set->nr_maps > HCTX_MAX_TYPES) 4479 return -EINVAL; 4480 4481 /* 4482 * If a crashdump is active, then we are potentially in a very 4483 * memory constrained environment. Limit us to 64 tags to prevent 4484 * using too much memory. 4485 */ 4486 if (is_kdump_kernel()) 4487 set->queue_depth = min(64U, set->queue_depth); 4488 4489 /* 4490 * There is no use for more h/w queues than cpus if we just have 4491 * a single map 4492 */ 4493 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4494 set->nr_hw_queues = nr_cpu_ids; 4495 4496 if (set->flags & BLK_MQ_F_BLOCKING) { 4497 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4498 if (!set->srcu) 4499 return -ENOMEM; 4500 ret = init_srcu_struct(set->srcu); 4501 if (ret) 4502 goto out_free_srcu; 4503 } 4504 4505 ret = -ENOMEM; 4506 set->tags = kcalloc_node(set->nr_hw_queues, 4507 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4508 set->numa_node); 4509 if (!set->tags) 4510 goto out_cleanup_srcu; 4511 4512 for (i = 0; i < set->nr_maps; i++) { 4513 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4514 sizeof(set->map[i].mq_map[0]), 4515 GFP_KERNEL, set->numa_node); 4516 if (!set->map[i].mq_map) 4517 goto out_free_mq_map; 4518 set->map[i].nr_queues = set->nr_hw_queues; 4519 } 4520 4521 blk_mq_update_queue_map(set); 4522 4523 ret = blk_mq_alloc_set_map_and_rqs(set); 4524 if (ret) 4525 goto out_free_mq_map; 4526 4527 mutex_init(&set->tag_list_lock); 4528 INIT_LIST_HEAD(&set->tag_list); 4529 4530 return 0; 4531 4532 out_free_mq_map: 4533 for (i = 0; i < set->nr_maps; i++) { 4534 kfree(set->map[i].mq_map); 4535 set->map[i].mq_map = NULL; 4536 } 4537 kfree(set->tags); 4538 set->tags = NULL; 4539 out_cleanup_srcu: 4540 if (set->flags & BLK_MQ_F_BLOCKING) 4541 cleanup_srcu_struct(set->srcu); 4542 out_free_srcu: 4543 if (set->flags & BLK_MQ_F_BLOCKING) 4544 kfree(set->srcu); 4545 return ret; 4546 } 4547 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4548 4549 /* allocate and initialize a tagset for a simple single-queue device */ 4550 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4551 const struct blk_mq_ops *ops, unsigned int queue_depth, 4552 unsigned int set_flags) 4553 { 4554 memset(set, 0, sizeof(*set)); 4555 set->ops = ops; 4556 set->nr_hw_queues = 1; 4557 set->nr_maps = 1; 4558 set->queue_depth = queue_depth; 4559 set->numa_node = NUMA_NO_NODE; 4560 set->flags = set_flags; 4561 return blk_mq_alloc_tag_set(set); 4562 } 4563 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4564 4565 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4566 { 4567 int i, j; 4568 4569 for (i = 0; i < set->nr_hw_queues; i++) 4570 __blk_mq_free_map_and_rqs(set, i); 4571 4572 if (blk_mq_is_shared_tags(set->flags)) { 4573 blk_mq_free_map_and_rqs(set, set->shared_tags, 4574 BLK_MQ_NO_HCTX_IDX); 4575 } 4576 4577 for (j = 0; j < set->nr_maps; j++) { 4578 kfree(set->map[j].mq_map); 4579 set->map[j].mq_map = NULL; 4580 } 4581 4582 kfree(set->tags); 4583 set->tags = NULL; 4584 if (set->flags & BLK_MQ_F_BLOCKING) { 4585 cleanup_srcu_struct(set->srcu); 4586 kfree(set->srcu); 4587 } 4588 } 4589 EXPORT_SYMBOL(blk_mq_free_tag_set); 4590 4591 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4592 { 4593 struct blk_mq_tag_set *set = q->tag_set; 4594 struct blk_mq_hw_ctx *hctx; 4595 int ret; 4596 unsigned long i; 4597 4598 if (!set) 4599 return -EINVAL; 4600 4601 if (q->nr_requests == nr) 4602 return 0; 4603 4604 blk_mq_freeze_queue(q); 4605 blk_mq_quiesce_queue(q); 4606 4607 ret = 0; 4608 queue_for_each_hw_ctx(q, hctx, i) { 4609 if (!hctx->tags) 4610 continue; 4611 /* 4612 * If we're using an MQ scheduler, just update the scheduler 4613 * queue depth. This is similar to what the old code would do. 4614 */ 4615 if (hctx->sched_tags) { 4616 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4617 nr, true); 4618 } else { 4619 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4620 false); 4621 } 4622 if (ret) 4623 break; 4624 if (q->elevator && q->elevator->type->ops.depth_updated) 4625 q->elevator->type->ops.depth_updated(hctx); 4626 } 4627 if (!ret) { 4628 q->nr_requests = nr; 4629 if (blk_mq_is_shared_tags(set->flags)) { 4630 if (q->elevator) 4631 blk_mq_tag_update_sched_shared_tags(q); 4632 else 4633 blk_mq_tag_resize_shared_tags(set, nr); 4634 } 4635 } 4636 4637 blk_mq_unquiesce_queue(q); 4638 blk_mq_unfreeze_queue(q); 4639 4640 return ret; 4641 } 4642 4643 /* 4644 * request_queue and elevator_type pair. 4645 * It is just used by __blk_mq_update_nr_hw_queues to cache 4646 * the elevator_type associated with a request_queue. 4647 */ 4648 struct blk_mq_qe_pair { 4649 struct list_head node; 4650 struct request_queue *q; 4651 struct elevator_type *type; 4652 }; 4653 4654 /* 4655 * Cache the elevator_type in qe pair list and switch the 4656 * io scheduler to 'none' 4657 */ 4658 static bool blk_mq_elv_switch_none(struct list_head *head, 4659 struct request_queue *q) 4660 { 4661 struct blk_mq_qe_pair *qe; 4662 4663 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4664 if (!qe) 4665 return false; 4666 4667 /* q->elevator needs protection from ->sysfs_lock */ 4668 mutex_lock(&q->sysfs_lock); 4669 4670 /* the check has to be done with holding sysfs_lock */ 4671 if (!q->elevator) { 4672 kfree(qe); 4673 goto unlock; 4674 } 4675 4676 INIT_LIST_HEAD(&qe->node); 4677 qe->q = q; 4678 qe->type = q->elevator->type; 4679 /* keep a reference to the elevator module as we'll switch back */ 4680 __elevator_get(qe->type); 4681 list_add(&qe->node, head); 4682 elevator_disable(q); 4683 unlock: 4684 mutex_unlock(&q->sysfs_lock); 4685 4686 return true; 4687 } 4688 4689 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4690 struct request_queue *q) 4691 { 4692 struct blk_mq_qe_pair *qe; 4693 4694 list_for_each_entry(qe, head, node) 4695 if (qe->q == q) 4696 return qe; 4697 4698 return NULL; 4699 } 4700 4701 static void blk_mq_elv_switch_back(struct list_head *head, 4702 struct request_queue *q) 4703 { 4704 struct blk_mq_qe_pair *qe; 4705 struct elevator_type *t; 4706 4707 qe = blk_lookup_qe_pair(head, q); 4708 if (!qe) 4709 return; 4710 t = qe->type; 4711 list_del(&qe->node); 4712 kfree(qe); 4713 4714 mutex_lock(&q->sysfs_lock); 4715 elevator_switch(q, t); 4716 /* drop the reference acquired in blk_mq_elv_switch_none */ 4717 elevator_put(t); 4718 mutex_unlock(&q->sysfs_lock); 4719 } 4720 4721 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4722 int nr_hw_queues) 4723 { 4724 struct request_queue *q; 4725 LIST_HEAD(head); 4726 int prev_nr_hw_queues = set->nr_hw_queues; 4727 int i; 4728 4729 lockdep_assert_held(&set->tag_list_lock); 4730 4731 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4732 nr_hw_queues = nr_cpu_ids; 4733 if (nr_hw_queues < 1) 4734 return; 4735 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4736 return; 4737 4738 list_for_each_entry(q, &set->tag_list, tag_set_list) 4739 blk_mq_freeze_queue(q); 4740 /* 4741 * Switch IO scheduler to 'none', cleaning up the data associated 4742 * with the previous scheduler. We will switch back once we are done 4743 * updating the new sw to hw queue mappings. 4744 */ 4745 list_for_each_entry(q, &set->tag_list, tag_set_list) 4746 if (!blk_mq_elv_switch_none(&head, q)) 4747 goto switch_back; 4748 4749 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4750 blk_mq_debugfs_unregister_hctxs(q); 4751 blk_mq_sysfs_unregister_hctxs(q); 4752 } 4753 4754 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4755 goto reregister; 4756 4757 fallback: 4758 blk_mq_update_queue_map(set); 4759 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4760 blk_mq_realloc_hw_ctxs(set, q); 4761 blk_mq_update_poll_flag(q); 4762 if (q->nr_hw_queues != set->nr_hw_queues) { 4763 int i = prev_nr_hw_queues; 4764 4765 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4766 nr_hw_queues, prev_nr_hw_queues); 4767 for (; i < set->nr_hw_queues; i++) 4768 __blk_mq_free_map_and_rqs(set, i); 4769 4770 set->nr_hw_queues = prev_nr_hw_queues; 4771 goto fallback; 4772 } 4773 blk_mq_map_swqueue(q); 4774 } 4775 4776 reregister: 4777 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4778 blk_mq_sysfs_register_hctxs(q); 4779 blk_mq_debugfs_register_hctxs(q); 4780 } 4781 4782 switch_back: 4783 list_for_each_entry(q, &set->tag_list, tag_set_list) 4784 blk_mq_elv_switch_back(&head, q); 4785 4786 list_for_each_entry(q, &set->tag_list, tag_set_list) 4787 blk_mq_unfreeze_queue(q); 4788 4789 /* Free the excess tags when nr_hw_queues shrink. */ 4790 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4791 __blk_mq_free_map_and_rqs(set, i); 4792 } 4793 4794 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4795 { 4796 mutex_lock(&set->tag_list_lock); 4797 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4798 mutex_unlock(&set->tag_list_lock); 4799 } 4800 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4801 4802 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4803 struct io_comp_batch *iob, unsigned int flags) 4804 { 4805 long state = get_current_state(); 4806 int ret; 4807 4808 do { 4809 ret = q->mq_ops->poll(hctx, iob); 4810 if (ret > 0) { 4811 __set_current_state(TASK_RUNNING); 4812 return ret; 4813 } 4814 4815 if (signal_pending_state(state, current)) 4816 __set_current_state(TASK_RUNNING); 4817 if (task_is_running(current)) 4818 return 1; 4819 4820 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4821 break; 4822 cpu_relax(); 4823 } while (!need_resched()); 4824 4825 __set_current_state(TASK_RUNNING); 4826 return 0; 4827 } 4828 4829 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4830 struct io_comp_batch *iob, unsigned int flags) 4831 { 4832 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4833 4834 return blk_hctx_poll(q, hctx, iob, flags); 4835 } 4836 4837 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4838 unsigned int poll_flags) 4839 { 4840 struct request_queue *q = rq->q; 4841 int ret; 4842 4843 if (!blk_rq_is_poll(rq)) 4844 return 0; 4845 if (!percpu_ref_tryget(&q->q_usage_counter)) 4846 return 0; 4847 4848 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4849 blk_queue_exit(q); 4850 4851 return ret; 4852 } 4853 EXPORT_SYMBOL_GPL(blk_rq_poll); 4854 4855 unsigned int blk_mq_rq_cpu(struct request *rq) 4856 { 4857 return rq->mq_ctx->cpu; 4858 } 4859 EXPORT_SYMBOL(blk_mq_rq_cpu); 4860 4861 void blk_mq_cancel_work_sync(struct request_queue *q) 4862 { 4863 struct blk_mq_hw_ctx *hctx; 4864 unsigned long i; 4865 4866 cancel_delayed_work_sync(&q->requeue_work); 4867 4868 queue_for_each_hw_ctx(q, hctx, i) 4869 cancel_delayed_work_sync(&hctx->run_work); 4870 } 4871 4872 static int __init blk_mq_init(void) 4873 { 4874 int i; 4875 4876 for_each_possible_cpu(i) 4877 init_llist_head(&per_cpu(blk_cpu_done, i)); 4878 for_each_possible_cpu(i) 4879 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4880 __blk_mq_complete_request_remote, NULL); 4881 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4882 4883 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4884 "block/softirq:dead", NULL, 4885 blk_softirq_cpu_dead); 4886 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4887 blk_mq_hctx_notify_dead); 4888 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4889 blk_mq_hctx_notify_online, 4890 blk_mq_hctx_notify_offline); 4891 return 0; 4892 } 4893 subsys_initcall(blk_mq_init); 4894