1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 #include "blk-ioprio.h" 46 47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 48 49 static void blk_mq_poll_stats_start(struct request_queue *q); 50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 51 52 static int blk_mq_poll_stats_bkt(const struct request *rq) 53 { 54 int ddir, sectors, bucket; 55 56 ddir = rq_data_dir(rq); 57 sectors = blk_rq_stats_sectors(rq); 58 59 bucket = ddir + 2 * ilog2(sectors); 60 61 if (bucket < 0) 62 return -1; 63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 65 66 return bucket; 67 } 68 69 #define BLK_QC_T_SHIFT 16 70 #define BLK_QC_T_INTERNAL (1U << 31) 71 72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 73 blk_qc_t qc) 74 { 75 return xa_load(&q->hctx_table, 76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); 77 } 78 79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 80 blk_qc_t qc) 81 { 82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 83 84 if (qc & BLK_QC_T_INTERNAL) 85 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 86 return blk_mq_tag_to_rq(hctx->tags, tag); 87 } 88 89 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 90 { 91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 92 (rq->tag != -1 ? 93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 94 } 95 96 /* 97 * Check if any of the ctx, dispatch list or elevator 98 * have pending work in this hardware queue. 99 */ 100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 101 { 102 return !list_empty_careful(&hctx->dispatch) || 103 sbitmap_any_bit_set(&hctx->ctx_map) || 104 blk_mq_sched_has_work(hctx); 105 } 106 107 /* 108 * Mark this ctx as having pending work in this hardware queue 109 */ 110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 111 struct blk_mq_ctx *ctx) 112 { 113 const int bit = ctx->index_hw[hctx->type]; 114 115 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 116 sbitmap_set_bit(&hctx->ctx_map, bit); 117 } 118 119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 120 struct blk_mq_ctx *ctx) 121 { 122 const int bit = ctx->index_hw[hctx->type]; 123 124 sbitmap_clear_bit(&hctx->ctx_map, bit); 125 } 126 127 struct mq_inflight { 128 struct block_device *part; 129 unsigned int inflight[2]; 130 }; 131 132 static bool blk_mq_check_inflight(struct request *rq, void *priv) 133 { 134 struct mq_inflight *mi = priv; 135 136 if (rq->part && blk_do_io_stat(rq) && 137 (!mi->part->bd_partno || rq->part == mi->part) && 138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 139 mi->inflight[rq_data_dir(rq)]++; 140 141 return true; 142 } 143 144 unsigned int blk_mq_in_flight(struct request_queue *q, 145 struct block_device *part) 146 { 147 struct mq_inflight mi = { .part = part }; 148 149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 150 151 return mi.inflight[0] + mi.inflight[1]; 152 } 153 154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 155 unsigned int inflight[2]) 156 { 157 struct mq_inflight mi = { .part = part }; 158 159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 160 inflight[0] = mi.inflight[0]; 161 inflight[1] = mi.inflight[1]; 162 } 163 164 void blk_freeze_queue_start(struct request_queue *q) 165 { 166 mutex_lock(&q->mq_freeze_lock); 167 if (++q->mq_freeze_depth == 1) { 168 percpu_ref_kill(&q->q_usage_counter); 169 mutex_unlock(&q->mq_freeze_lock); 170 if (queue_is_mq(q)) 171 blk_mq_run_hw_queues(q, false); 172 } else { 173 mutex_unlock(&q->mq_freeze_lock); 174 } 175 } 176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 177 178 void blk_mq_freeze_queue_wait(struct request_queue *q) 179 { 180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 181 } 182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 183 184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 185 unsigned long timeout) 186 { 187 return wait_event_timeout(q->mq_freeze_wq, 188 percpu_ref_is_zero(&q->q_usage_counter), 189 timeout); 190 } 191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 192 193 /* 194 * Guarantee no request is in use, so we can change any data structure of 195 * the queue afterward. 196 */ 197 void blk_freeze_queue(struct request_queue *q) 198 { 199 /* 200 * In the !blk_mq case we are only calling this to kill the 201 * q_usage_counter, otherwise this increases the freeze depth 202 * and waits for it to return to zero. For this reason there is 203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 204 * exported to drivers as the only user for unfreeze is blk_mq. 205 */ 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 /* 213 * ...just an alias to keep freeze and unfreeze actions balanced 214 * in the blk_mq_* namespace 215 */ 216 blk_freeze_queue(q); 217 } 218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 219 220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 221 { 222 mutex_lock(&q->mq_freeze_lock); 223 if (force_atomic) 224 q->q_usage_counter.data->force_atomic = true; 225 q->mq_freeze_depth--; 226 WARN_ON_ONCE(q->mq_freeze_depth < 0); 227 if (!q->mq_freeze_depth) { 228 percpu_ref_resurrect(&q->q_usage_counter); 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 mutex_unlock(&q->mq_freeze_lock); 232 } 233 234 void blk_mq_unfreeze_queue(struct request_queue *q) 235 { 236 __blk_mq_unfreeze_queue(q, false); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 239 240 /* 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 242 * mpt3sas driver such that this function can be removed. 243 */ 244 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&q->queue_lock, flags); 249 if (!q->quiesce_depth++) 250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 251 spin_unlock_irqrestore(&q->queue_lock, flags); 252 } 253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 254 255 /** 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 257 * @set: tag_set to wait on 258 * 259 * Note: it is driver's responsibility for making sure that quiesce has 260 * been started on or more of the request_queues of the tag_set. This 261 * function only waits for the quiesce on those request_queues that had 262 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 263 */ 264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 265 { 266 if (set->flags & BLK_MQ_F_BLOCKING) 267 synchronize_srcu(set->srcu); 268 else 269 synchronize_rcu(); 270 } 271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 272 273 /** 274 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 275 * @q: request queue. 276 * 277 * Note: this function does not prevent that the struct request end_io() 278 * callback function is invoked. Once this function is returned, we make 279 * sure no dispatch can happen until the queue is unquiesced via 280 * blk_mq_unquiesce_queue(). 281 */ 282 void blk_mq_quiesce_queue(struct request_queue *q) 283 { 284 blk_mq_quiesce_queue_nowait(q); 285 /* nothing to wait for non-mq queues */ 286 if (queue_is_mq(q)) 287 blk_mq_wait_quiesce_done(q->tag_set); 288 } 289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 290 291 /* 292 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 293 * @q: request queue. 294 * 295 * This function recovers queue into the state before quiescing 296 * which is done by blk_mq_quiesce_queue. 297 */ 298 void blk_mq_unquiesce_queue(struct request_queue *q) 299 { 300 unsigned long flags; 301 bool run_queue = false; 302 303 spin_lock_irqsave(&q->queue_lock, flags); 304 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 305 ; 306 } else if (!--q->quiesce_depth) { 307 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 308 run_queue = true; 309 } 310 spin_unlock_irqrestore(&q->queue_lock, flags); 311 312 /* dispatch requests which are inserted during quiescing */ 313 if (run_queue) 314 blk_mq_run_hw_queues(q, true); 315 } 316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 317 318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 319 { 320 struct request_queue *q; 321 322 mutex_lock(&set->tag_list_lock); 323 list_for_each_entry(q, &set->tag_list, tag_set_list) { 324 if (!blk_queue_skip_tagset_quiesce(q)) 325 blk_mq_quiesce_queue_nowait(q); 326 } 327 blk_mq_wait_quiesce_done(set); 328 mutex_unlock(&set->tag_list_lock); 329 } 330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 331 332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 333 { 334 struct request_queue *q; 335 336 mutex_lock(&set->tag_list_lock); 337 list_for_each_entry(q, &set->tag_list, tag_set_list) { 338 if (!blk_queue_skip_tagset_quiesce(q)) 339 blk_mq_unquiesce_queue(q); 340 } 341 mutex_unlock(&set->tag_list_lock); 342 } 343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 344 345 void blk_mq_wake_waiters(struct request_queue *q) 346 { 347 struct blk_mq_hw_ctx *hctx; 348 unsigned long i; 349 350 queue_for_each_hw_ctx(q, hctx, i) 351 if (blk_mq_hw_queue_mapped(hctx)) 352 blk_mq_tag_wakeup_all(hctx->tags, true); 353 } 354 355 void blk_rq_init(struct request_queue *q, struct request *rq) 356 { 357 memset(rq, 0, sizeof(*rq)); 358 359 INIT_LIST_HEAD(&rq->queuelist); 360 rq->q = q; 361 rq->__sector = (sector_t) -1; 362 INIT_HLIST_NODE(&rq->hash); 363 RB_CLEAR_NODE(&rq->rb_node); 364 rq->tag = BLK_MQ_NO_TAG; 365 rq->internal_tag = BLK_MQ_NO_TAG; 366 rq->start_time_ns = ktime_get_ns(); 367 rq->part = NULL; 368 blk_crypto_rq_set_defaults(rq); 369 } 370 EXPORT_SYMBOL(blk_rq_init); 371 372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 373 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 374 { 375 struct blk_mq_ctx *ctx = data->ctx; 376 struct blk_mq_hw_ctx *hctx = data->hctx; 377 struct request_queue *q = data->q; 378 struct request *rq = tags->static_rqs[tag]; 379 380 rq->q = q; 381 rq->mq_ctx = ctx; 382 rq->mq_hctx = hctx; 383 rq->cmd_flags = data->cmd_flags; 384 385 if (data->flags & BLK_MQ_REQ_PM) 386 data->rq_flags |= RQF_PM; 387 if (blk_queue_io_stat(q)) 388 data->rq_flags |= RQF_IO_STAT; 389 rq->rq_flags = data->rq_flags; 390 391 if (!(data->rq_flags & RQF_ELV)) { 392 rq->tag = tag; 393 rq->internal_tag = BLK_MQ_NO_TAG; 394 } else { 395 rq->tag = BLK_MQ_NO_TAG; 396 rq->internal_tag = tag; 397 } 398 rq->timeout = 0; 399 400 if (blk_mq_need_time_stamp(rq)) 401 rq->start_time_ns = ktime_get_ns(); 402 else 403 rq->start_time_ns = 0; 404 rq->part = NULL; 405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 406 rq->alloc_time_ns = alloc_time_ns; 407 #endif 408 rq->io_start_time_ns = 0; 409 rq->stats_sectors = 0; 410 rq->nr_phys_segments = 0; 411 #if defined(CONFIG_BLK_DEV_INTEGRITY) 412 rq->nr_integrity_segments = 0; 413 #endif 414 rq->end_io = NULL; 415 rq->end_io_data = NULL; 416 417 blk_crypto_rq_set_defaults(rq); 418 INIT_LIST_HEAD(&rq->queuelist); 419 /* tag was already set */ 420 WRITE_ONCE(rq->deadline, 0); 421 req_ref_set(rq, 1); 422 423 if (rq->rq_flags & RQF_ELV) { 424 struct elevator_queue *e = data->q->elevator; 425 426 INIT_HLIST_NODE(&rq->hash); 427 RB_CLEAR_NODE(&rq->rb_node); 428 429 if (!op_is_flush(data->cmd_flags) && 430 e->type->ops.prepare_request) { 431 e->type->ops.prepare_request(rq); 432 rq->rq_flags |= RQF_ELVPRIV; 433 } 434 } 435 436 return rq; 437 } 438 439 static inline struct request * 440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 441 u64 alloc_time_ns) 442 { 443 unsigned int tag, tag_offset; 444 struct blk_mq_tags *tags; 445 struct request *rq; 446 unsigned long tag_mask; 447 int i, nr = 0; 448 449 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 450 if (unlikely(!tag_mask)) 451 return NULL; 452 453 tags = blk_mq_tags_from_data(data); 454 for (i = 0; tag_mask; i++) { 455 if (!(tag_mask & (1UL << i))) 456 continue; 457 tag = tag_offset + i; 458 prefetch(tags->static_rqs[tag]); 459 tag_mask &= ~(1UL << i); 460 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 461 rq_list_add(data->cached_rq, rq); 462 nr++; 463 } 464 /* caller already holds a reference, add for remainder */ 465 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 466 data->nr_tags -= nr; 467 468 return rq_list_pop(data->cached_rq); 469 } 470 471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 472 { 473 struct request_queue *q = data->q; 474 u64 alloc_time_ns = 0; 475 struct request *rq; 476 unsigned int tag; 477 478 /* alloc_time includes depth and tag waits */ 479 if (blk_queue_rq_alloc_time(q)) 480 alloc_time_ns = ktime_get_ns(); 481 482 if (data->cmd_flags & REQ_NOWAIT) 483 data->flags |= BLK_MQ_REQ_NOWAIT; 484 485 if (q->elevator) { 486 struct elevator_queue *e = q->elevator; 487 488 data->rq_flags |= RQF_ELV; 489 490 /* 491 * Flush/passthrough requests are special and go directly to the 492 * dispatch list. Don't include reserved tags in the 493 * limiting, as it isn't useful. 494 */ 495 if (!op_is_flush(data->cmd_flags) && 496 !blk_op_is_passthrough(data->cmd_flags) && 497 e->type->ops.limit_depth && 498 !(data->flags & BLK_MQ_REQ_RESERVED)) 499 e->type->ops.limit_depth(data->cmd_flags, data); 500 } 501 502 retry: 503 data->ctx = blk_mq_get_ctx(q); 504 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 505 if (!(data->rq_flags & RQF_ELV)) 506 blk_mq_tag_busy(data->hctx); 507 508 if (data->flags & BLK_MQ_REQ_RESERVED) 509 data->rq_flags |= RQF_RESV; 510 511 /* 512 * Try batched alloc if we want more than 1 tag. 513 */ 514 if (data->nr_tags > 1) { 515 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 516 if (rq) 517 return rq; 518 data->nr_tags = 1; 519 } 520 521 /* 522 * Waiting allocations only fail because of an inactive hctx. In that 523 * case just retry the hctx assignment and tag allocation as CPU hotplug 524 * should have migrated us to an online CPU by now. 525 */ 526 tag = blk_mq_get_tag(data); 527 if (tag == BLK_MQ_NO_TAG) { 528 if (data->flags & BLK_MQ_REQ_NOWAIT) 529 return NULL; 530 /* 531 * Give up the CPU and sleep for a random short time to 532 * ensure that thread using a realtime scheduling class 533 * are migrated off the CPU, and thus off the hctx that 534 * is going away. 535 */ 536 msleep(3); 537 goto retry; 538 } 539 540 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 541 alloc_time_ns); 542 } 543 544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 545 struct blk_plug *plug, 546 blk_opf_t opf, 547 blk_mq_req_flags_t flags) 548 { 549 struct blk_mq_alloc_data data = { 550 .q = q, 551 .flags = flags, 552 .cmd_flags = opf, 553 .nr_tags = plug->nr_ios, 554 .cached_rq = &plug->cached_rq, 555 }; 556 struct request *rq; 557 558 if (blk_queue_enter(q, flags)) 559 return NULL; 560 561 plug->nr_ios = 1; 562 563 rq = __blk_mq_alloc_requests(&data); 564 if (unlikely(!rq)) 565 blk_queue_exit(q); 566 return rq; 567 } 568 569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 570 blk_opf_t opf, 571 blk_mq_req_flags_t flags) 572 { 573 struct blk_plug *plug = current->plug; 574 struct request *rq; 575 576 if (!plug) 577 return NULL; 578 579 if (rq_list_empty(plug->cached_rq)) { 580 if (plug->nr_ios == 1) 581 return NULL; 582 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 583 if (!rq) 584 return NULL; 585 } else { 586 rq = rq_list_peek(&plug->cached_rq); 587 if (!rq || rq->q != q) 588 return NULL; 589 590 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 591 return NULL; 592 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 593 return NULL; 594 595 plug->cached_rq = rq_list_next(rq); 596 } 597 598 rq->cmd_flags = opf; 599 INIT_LIST_HEAD(&rq->queuelist); 600 return rq; 601 } 602 603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 604 blk_mq_req_flags_t flags) 605 { 606 struct request *rq; 607 608 rq = blk_mq_alloc_cached_request(q, opf, flags); 609 if (!rq) { 610 struct blk_mq_alloc_data data = { 611 .q = q, 612 .flags = flags, 613 .cmd_flags = opf, 614 .nr_tags = 1, 615 }; 616 int ret; 617 618 ret = blk_queue_enter(q, flags); 619 if (ret) 620 return ERR_PTR(ret); 621 622 rq = __blk_mq_alloc_requests(&data); 623 if (!rq) 624 goto out_queue_exit; 625 } 626 rq->__data_len = 0; 627 rq->__sector = (sector_t) -1; 628 rq->bio = rq->biotail = NULL; 629 return rq; 630 out_queue_exit: 631 blk_queue_exit(q); 632 return ERR_PTR(-EWOULDBLOCK); 633 } 634 EXPORT_SYMBOL(blk_mq_alloc_request); 635 636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 637 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 638 { 639 struct blk_mq_alloc_data data = { 640 .q = q, 641 .flags = flags, 642 .cmd_flags = opf, 643 .nr_tags = 1, 644 }; 645 u64 alloc_time_ns = 0; 646 struct request *rq; 647 unsigned int cpu; 648 unsigned int tag; 649 int ret; 650 651 /* alloc_time includes depth and tag waits */ 652 if (blk_queue_rq_alloc_time(q)) 653 alloc_time_ns = ktime_get_ns(); 654 655 /* 656 * If the tag allocator sleeps we could get an allocation for a 657 * different hardware context. No need to complicate the low level 658 * allocator for this for the rare use case of a command tied to 659 * a specific queue. 660 */ 661 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 662 return ERR_PTR(-EINVAL); 663 664 if (hctx_idx >= q->nr_hw_queues) 665 return ERR_PTR(-EIO); 666 667 ret = blk_queue_enter(q, flags); 668 if (ret) 669 return ERR_PTR(ret); 670 671 /* 672 * Check if the hardware context is actually mapped to anything. 673 * If not tell the caller that it should skip this queue. 674 */ 675 ret = -EXDEV; 676 data.hctx = xa_load(&q->hctx_table, hctx_idx); 677 if (!blk_mq_hw_queue_mapped(data.hctx)) 678 goto out_queue_exit; 679 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 680 if (cpu >= nr_cpu_ids) 681 goto out_queue_exit; 682 data.ctx = __blk_mq_get_ctx(q, cpu); 683 684 if (!q->elevator) 685 blk_mq_tag_busy(data.hctx); 686 else 687 data.rq_flags |= RQF_ELV; 688 689 if (flags & BLK_MQ_REQ_RESERVED) 690 data.rq_flags |= RQF_RESV; 691 692 ret = -EWOULDBLOCK; 693 tag = blk_mq_get_tag(&data); 694 if (tag == BLK_MQ_NO_TAG) 695 goto out_queue_exit; 696 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 697 alloc_time_ns); 698 rq->__data_len = 0; 699 rq->__sector = (sector_t) -1; 700 rq->bio = rq->biotail = NULL; 701 return rq; 702 703 out_queue_exit: 704 blk_queue_exit(q); 705 return ERR_PTR(ret); 706 } 707 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 708 709 static void __blk_mq_free_request(struct request *rq) 710 { 711 struct request_queue *q = rq->q; 712 struct blk_mq_ctx *ctx = rq->mq_ctx; 713 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 714 const int sched_tag = rq->internal_tag; 715 716 blk_crypto_free_request(rq); 717 blk_pm_mark_last_busy(rq); 718 rq->mq_hctx = NULL; 719 if (rq->tag != BLK_MQ_NO_TAG) 720 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 721 if (sched_tag != BLK_MQ_NO_TAG) 722 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 723 blk_mq_sched_restart(hctx); 724 blk_queue_exit(q); 725 } 726 727 void blk_mq_free_request(struct request *rq) 728 { 729 struct request_queue *q = rq->q; 730 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 731 732 if ((rq->rq_flags & RQF_ELVPRIV) && 733 q->elevator->type->ops.finish_request) 734 q->elevator->type->ops.finish_request(rq); 735 736 if (rq->rq_flags & RQF_MQ_INFLIGHT) 737 __blk_mq_dec_active_requests(hctx); 738 739 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 740 laptop_io_completion(q->disk->bdi); 741 742 rq_qos_done(q, rq); 743 744 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 745 if (req_ref_put_and_test(rq)) 746 __blk_mq_free_request(rq); 747 } 748 EXPORT_SYMBOL_GPL(blk_mq_free_request); 749 750 void blk_mq_free_plug_rqs(struct blk_plug *plug) 751 { 752 struct request *rq; 753 754 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 755 blk_mq_free_request(rq); 756 } 757 758 void blk_dump_rq_flags(struct request *rq, char *msg) 759 { 760 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 761 rq->q->disk ? rq->q->disk->disk_name : "?", 762 (__force unsigned long long) rq->cmd_flags); 763 764 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 765 (unsigned long long)blk_rq_pos(rq), 766 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 767 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 768 rq->bio, rq->biotail, blk_rq_bytes(rq)); 769 } 770 EXPORT_SYMBOL(blk_dump_rq_flags); 771 772 static void req_bio_endio(struct request *rq, struct bio *bio, 773 unsigned int nbytes, blk_status_t error) 774 { 775 if (unlikely(error)) { 776 bio->bi_status = error; 777 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 778 /* 779 * Partial zone append completions cannot be supported as the 780 * BIO fragments may end up not being written sequentially. 781 */ 782 if (bio->bi_iter.bi_size != nbytes) 783 bio->bi_status = BLK_STS_IOERR; 784 else 785 bio->bi_iter.bi_sector = rq->__sector; 786 } 787 788 bio_advance(bio, nbytes); 789 790 if (unlikely(rq->rq_flags & RQF_QUIET)) 791 bio_set_flag(bio, BIO_QUIET); 792 /* don't actually finish bio if it's part of flush sequence */ 793 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 794 bio_endio(bio); 795 } 796 797 static void blk_account_io_completion(struct request *req, unsigned int bytes) 798 { 799 if (req->part && blk_do_io_stat(req)) { 800 const int sgrp = op_stat_group(req_op(req)); 801 802 part_stat_lock(); 803 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 804 part_stat_unlock(); 805 } 806 } 807 808 static void blk_print_req_error(struct request *req, blk_status_t status) 809 { 810 printk_ratelimited(KERN_ERR 811 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 812 "phys_seg %u prio class %u\n", 813 blk_status_to_str(status), 814 req->q->disk ? req->q->disk->disk_name : "?", 815 blk_rq_pos(req), (__force u32)req_op(req), 816 blk_op_str(req_op(req)), 817 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 818 req->nr_phys_segments, 819 IOPRIO_PRIO_CLASS(req->ioprio)); 820 } 821 822 /* 823 * Fully end IO on a request. Does not support partial completions, or 824 * errors. 825 */ 826 static void blk_complete_request(struct request *req) 827 { 828 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 829 int total_bytes = blk_rq_bytes(req); 830 struct bio *bio = req->bio; 831 832 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 833 834 if (!bio) 835 return; 836 837 #ifdef CONFIG_BLK_DEV_INTEGRITY 838 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 839 req->q->integrity.profile->complete_fn(req, total_bytes); 840 #endif 841 842 blk_account_io_completion(req, total_bytes); 843 844 do { 845 struct bio *next = bio->bi_next; 846 847 /* Completion has already been traced */ 848 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 849 850 if (req_op(req) == REQ_OP_ZONE_APPEND) 851 bio->bi_iter.bi_sector = req->__sector; 852 853 if (!is_flush) 854 bio_endio(bio); 855 bio = next; 856 } while (bio); 857 858 /* 859 * Reset counters so that the request stacking driver 860 * can find how many bytes remain in the request 861 * later. 862 */ 863 if (!req->end_io) { 864 req->bio = NULL; 865 req->__data_len = 0; 866 } 867 } 868 869 /** 870 * blk_update_request - Complete multiple bytes without completing the request 871 * @req: the request being processed 872 * @error: block status code 873 * @nr_bytes: number of bytes to complete for @req 874 * 875 * Description: 876 * Ends I/O on a number of bytes attached to @req, but doesn't complete 877 * the request structure even if @req doesn't have leftover. 878 * If @req has leftover, sets it up for the next range of segments. 879 * 880 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 881 * %false return from this function. 882 * 883 * Note: 884 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 885 * except in the consistency check at the end of this function. 886 * 887 * Return: 888 * %false - this request doesn't have any more data 889 * %true - this request has more data 890 **/ 891 bool blk_update_request(struct request *req, blk_status_t error, 892 unsigned int nr_bytes) 893 { 894 int total_bytes; 895 896 trace_block_rq_complete(req, error, nr_bytes); 897 898 if (!req->bio) 899 return false; 900 901 #ifdef CONFIG_BLK_DEV_INTEGRITY 902 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 903 error == BLK_STS_OK) 904 req->q->integrity.profile->complete_fn(req, nr_bytes); 905 #endif 906 907 if (unlikely(error && !blk_rq_is_passthrough(req) && 908 !(req->rq_flags & RQF_QUIET)) && 909 !test_bit(GD_DEAD, &req->q->disk->state)) { 910 blk_print_req_error(req, error); 911 trace_block_rq_error(req, error, nr_bytes); 912 } 913 914 blk_account_io_completion(req, nr_bytes); 915 916 total_bytes = 0; 917 while (req->bio) { 918 struct bio *bio = req->bio; 919 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 920 921 if (bio_bytes == bio->bi_iter.bi_size) 922 req->bio = bio->bi_next; 923 924 /* Completion has already been traced */ 925 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 926 req_bio_endio(req, bio, bio_bytes, error); 927 928 total_bytes += bio_bytes; 929 nr_bytes -= bio_bytes; 930 931 if (!nr_bytes) 932 break; 933 } 934 935 /* 936 * completely done 937 */ 938 if (!req->bio) { 939 /* 940 * Reset counters so that the request stacking driver 941 * can find how many bytes remain in the request 942 * later. 943 */ 944 req->__data_len = 0; 945 return false; 946 } 947 948 req->__data_len -= total_bytes; 949 950 /* update sector only for requests with clear definition of sector */ 951 if (!blk_rq_is_passthrough(req)) 952 req->__sector += total_bytes >> 9; 953 954 /* mixed attributes always follow the first bio */ 955 if (req->rq_flags & RQF_MIXED_MERGE) { 956 req->cmd_flags &= ~REQ_FAILFAST_MASK; 957 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 958 } 959 960 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 961 /* 962 * If total number of sectors is less than the first segment 963 * size, something has gone terribly wrong. 964 */ 965 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 966 blk_dump_rq_flags(req, "request botched"); 967 req->__data_len = blk_rq_cur_bytes(req); 968 } 969 970 /* recalculate the number of segments */ 971 req->nr_phys_segments = blk_recalc_rq_segments(req); 972 } 973 974 return true; 975 } 976 EXPORT_SYMBOL_GPL(blk_update_request); 977 978 static void __blk_account_io_done(struct request *req, u64 now) 979 { 980 const int sgrp = op_stat_group(req_op(req)); 981 982 part_stat_lock(); 983 update_io_ticks(req->part, jiffies, true); 984 part_stat_inc(req->part, ios[sgrp]); 985 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 986 part_stat_unlock(); 987 } 988 989 static inline void blk_account_io_done(struct request *req, u64 now) 990 { 991 /* 992 * Account IO completion. flush_rq isn't accounted as a 993 * normal IO on queueing nor completion. Accounting the 994 * containing request is enough. 995 */ 996 if (blk_do_io_stat(req) && req->part && 997 !(req->rq_flags & RQF_FLUSH_SEQ)) 998 __blk_account_io_done(req, now); 999 } 1000 1001 static void __blk_account_io_start(struct request *rq) 1002 { 1003 /* 1004 * All non-passthrough requests are created from a bio with one 1005 * exception: when a flush command that is part of a flush sequence 1006 * generated by the state machine in blk-flush.c is cloned onto the 1007 * lower device by dm-multipath we can get here without a bio. 1008 */ 1009 if (rq->bio) 1010 rq->part = rq->bio->bi_bdev; 1011 else 1012 rq->part = rq->q->disk->part0; 1013 1014 part_stat_lock(); 1015 update_io_ticks(rq->part, jiffies, false); 1016 part_stat_unlock(); 1017 } 1018 1019 static inline void blk_account_io_start(struct request *req) 1020 { 1021 if (blk_do_io_stat(req)) 1022 __blk_account_io_start(req); 1023 } 1024 1025 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1026 { 1027 if (rq->rq_flags & RQF_STATS) { 1028 blk_mq_poll_stats_start(rq->q); 1029 blk_stat_add(rq, now); 1030 } 1031 1032 blk_mq_sched_completed_request(rq, now); 1033 blk_account_io_done(rq, now); 1034 } 1035 1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1037 { 1038 if (blk_mq_need_time_stamp(rq)) 1039 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1040 1041 if (rq->end_io) { 1042 rq_qos_done(rq->q, rq); 1043 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1044 blk_mq_free_request(rq); 1045 } else { 1046 blk_mq_free_request(rq); 1047 } 1048 } 1049 EXPORT_SYMBOL(__blk_mq_end_request); 1050 1051 void blk_mq_end_request(struct request *rq, blk_status_t error) 1052 { 1053 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1054 BUG(); 1055 __blk_mq_end_request(rq, error); 1056 } 1057 EXPORT_SYMBOL(blk_mq_end_request); 1058 1059 #define TAG_COMP_BATCH 32 1060 1061 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1062 int *tag_array, int nr_tags) 1063 { 1064 struct request_queue *q = hctx->queue; 1065 1066 /* 1067 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1068 * update hctx->nr_active in batch 1069 */ 1070 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1071 __blk_mq_sub_active_requests(hctx, nr_tags); 1072 1073 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1074 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1075 } 1076 1077 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1078 { 1079 int tags[TAG_COMP_BATCH], nr_tags = 0; 1080 struct blk_mq_hw_ctx *cur_hctx = NULL; 1081 struct request *rq; 1082 u64 now = 0; 1083 1084 if (iob->need_ts) 1085 now = ktime_get_ns(); 1086 1087 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1088 prefetch(rq->bio); 1089 prefetch(rq->rq_next); 1090 1091 blk_complete_request(rq); 1092 if (iob->need_ts) 1093 __blk_mq_end_request_acct(rq, now); 1094 1095 rq_qos_done(rq->q, rq); 1096 1097 /* 1098 * If end_io handler returns NONE, then it still has 1099 * ownership of the request. 1100 */ 1101 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1102 continue; 1103 1104 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1105 if (!req_ref_put_and_test(rq)) 1106 continue; 1107 1108 blk_crypto_free_request(rq); 1109 blk_pm_mark_last_busy(rq); 1110 1111 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1112 if (cur_hctx) 1113 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1114 nr_tags = 0; 1115 cur_hctx = rq->mq_hctx; 1116 } 1117 tags[nr_tags++] = rq->tag; 1118 } 1119 1120 if (nr_tags) 1121 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1122 } 1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1124 1125 static void blk_complete_reqs(struct llist_head *list) 1126 { 1127 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1128 struct request *rq, *next; 1129 1130 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1131 rq->q->mq_ops->complete(rq); 1132 } 1133 1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1135 { 1136 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1137 } 1138 1139 static int blk_softirq_cpu_dead(unsigned int cpu) 1140 { 1141 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1142 return 0; 1143 } 1144 1145 static void __blk_mq_complete_request_remote(void *data) 1146 { 1147 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1148 } 1149 1150 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1151 { 1152 int cpu = raw_smp_processor_id(); 1153 1154 if (!IS_ENABLED(CONFIG_SMP) || 1155 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1156 return false; 1157 /* 1158 * With force threaded interrupts enabled, raising softirq from an SMP 1159 * function call will always result in waking the ksoftirqd thread. 1160 * This is probably worse than completing the request on a different 1161 * cache domain. 1162 */ 1163 if (force_irqthreads()) 1164 return false; 1165 1166 /* same CPU or cache domain? Complete locally */ 1167 if (cpu == rq->mq_ctx->cpu || 1168 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1169 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1170 return false; 1171 1172 /* don't try to IPI to an offline CPU */ 1173 return cpu_online(rq->mq_ctx->cpu); 1174 } 1175 1176 static void blk_mq_complete_send_ipi(struct request *rq) 1177 { 1178 struct llist_head *list; 1179 unsigned int cpu; 1180 1181 cpu = rq->mq_ctx->cpu; 1182 list = &per_cpu(blk_cpu_done, cpu); 1183 if (llist_add(&rq->ipi_list, list)) { 1184 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1185 smp_call_function_single_async(cpu, &rq->csd); 1186 } 1187 } 1188 1189 static void blk_mq_raise_softirq(struct request *rq) 1190 { 1191 struct llist_head *list; 1192 1193 preempt_disable(); 1194 list = this_cpu_ptr(&blk_cpu_done); 1195 if (llist_add(&rq->ipi_list, list)) 1196 raise_softirq(BLOCK_SOFTIRQ); 1197 preempt_enable(); 1198 } 1199 1200 bool blk_mq_complete_request_remote(struct request *rq) 1201 { 1202 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1203 1204 /* 1205 * For request which hctx has only one ctx mapping, 1206 * or a polled request, always complete locally, 1207 * it's pointless to redirect the completion. 1208 */ 1209 if (rq->mq_hctx->nr_ctx == 1 || 1210 rq->cmd_flags & REQ_POLLED) 1211 return false; 1212 1213 if (blk_mq_complete_need_ipi(rq)) { 1214 blk_mq_complete_send_ipi(rq); 1215 return true; 1216 } 1217 1218 if (rq->q->nr_hw_queues == 1) { 1219 blk_mq_raise_softirq(rq); 1220 return true; 1221 } 1222 return false; 1223 } 1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1225 1226 /** 1227 * blk_mq_complete_request - end I/O on a request 1228 * @rq: the request being processed 1229 * 1230 * Description: 1231 * Complete a request by scheduling the ->complete_rq operation. 1232 **/ 1233 void blk_mq_complete_request(struct request *rq) 1234 { 1235 if (!blk_mq_complete_request_remote(rq)) 1236 rq->q->mq_ops->complete(rq); 1237 } 1238 EXPORT_SYMBOL(blk_mq_complete_request); 1239 1240 /** 1241 * blk_mq_start_request - Start processing a request 1242 * @rq: Pointer to request to be started 1243 * 1244 * Function used by device drivers to notify the block layer that a request 1245 * is going to be processed now, so blk layer can do proper initializations 1246 * such as starting the timeout timer. 1247 */ 1248 void blk_mq_start_request(struct request *rq) 1249 { 1250 struct request_queue *q = rq->q; 1251 1252 trace_block_rq_issue(rq); 1253 1254 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1255 rq->io_start_time_ns = ktime_get_ns(); 1256 rq->stats_sectors = blk_rq_sectors(rq); 1257 rq->rq_flags |= RQF_STATS; 1258 rq_qos_issue(q, rq); 1259 } 1260 1261 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1262 1263 blk_add_timer(rq); 1264 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1265 1266 #ifdef CONFIG_BLK_DEV_INTEGRITY 1267 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1268 q->integrity.profile->prepare_fn(rq); 1269 #endif 1270 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1271 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1272 } 1273 EXPORT_SYMBOL(blk_mq_start_request); 1274 1275 /* 1276 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1277 * queues. This is important for md arrays to benefit from merging 1278 * requests. 1279 */ 1280 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1281 { 1282 if (plug->multiple_queues) 1283 return BLK_MAX_REQUEST_COUNT * 2; 1284 return BLK_MAX_REQUEST_COUNT; 1285 } 1286 1287 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1288 { 1289 struct request *last = rq_list_peek(&plug->mq_list); 1290 1291 if (!plug->rq_count) { 1292 trace_block_plug(rq->q); 1293 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1294 (!blk_queue_nomerges(rq->q) && 1295 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1296 blk_mq_flush_plug_list(plug, false); 1297 last = NULL; 1298 trace_block_plug(rq->q); 1299 } 1300 1301 if (!plug->multiple_queues && last && last->q != rq->q) 1302 plug->multiple_queues = true; 1303 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1304 plug->has_elevator = true; 1305 rq->rq_next = NULL; 1306 rq_list_add(&plug->mq_list, rq); 1307 plug->rq_count++; 1308 } 1309 1310 /** 1311 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1312 * @rq: request to insert 1313 * @at_head: insert request at head or tail of queue 1314 * 1315 * Description: 1316 * Insert a fully prepared request at the back of the I/O scheduler queue 1317 * for execution. Don't wait for completion. 1318 * 1319 * Note: 1320 * This function will invoke @done directly if the queue is dead. 1321 */ 1322 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1323 { 1324 WARN_ON(irqs_disabled()); 1325 WARN_ON(!blk_rq_is_passthrough(rq)); 1326 1327 blk_account_io_start(rq); 1328 1329 /* 1330 * As plugging can be enabled for passthrough requests on a zoned 1331 * device, directly accessing the plug instead of using blk_mq_plug() 1332 * should not have any consequences. 1333 */ 1334 if (current->plug) 1335 blk_add_rq_to_plug(current->plug, rq); 1336 else 1337 blk_mq_sched_insert_request(rq, at_head, true, false); 1338 } 1339 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1340 1341 struct blk_rq_wait { 1342 struct completion done; 1343 blk_status_t ret; 1344 }; 1345 1346 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1347 { 1348 struct blk_rq_wait *wait = rq->end_io_data; 1349 1350 wait->ret = ret; 1351 complete(&wait->done); 1352 return RQ_END_IO_NONE; 1353 } 1354 1355 bool blk_rq_is_poll(struct request *rq) 1356 { 1357 if (!rq->mq_hctx) 1358 return false; 1359 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1360 return false; 1361 if (WARN_ON_ONCE(!rq->bio)) 1362 return false; 1363 return true; 1364 } 1365 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1366 1367 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1368 { 1369 do { 1370 bio_poll(rq->bio, NULL, 0); 1371 cond_resched(); 1372 } while (!completion_done(wait)); 1373 } 1374 1375 /** 1376 * blk_execute_rq - insert a request into queue for execution 1377 * @rq: request to insert 1378 * @at_head: insert request at head or tail of queue 1379 * 1380 * Description: 1381 * Insert a fully prepared request at the back of the I/O scheduler queue 1382 * for execution and wait for completion. 1383 * Return: The blk_status_t result provided to blk_mq_end_request(). 1384 */ 1385 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1386 { 1387 struct blk_rq_wait wait = { 1388 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1389 }; 1390 1391 WARN_ON(irqs_disabled()); 1392 WARN_ON(!blk_rq_is_passthrough(rq)); 1393 1394 rq->end_io_data = &wait; 1395 rq->end_io = blk_end_sync_rq; 1396 1397 blk_account_io_start(rq); 1398 blk_mq_sched_insert_request(rq, at_head, true, false); 1399 1400 if (blk_rq_is_poll(rq)) { 1401 blk_rq_poll_completion(rq, &wait.done); 1402 } else { 1403 /* 1404 * Prevent hang_check timer from firing at us during very long 1405 * I/O 1406 */ 1407 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1408 1409 if (hang_check) 1410 while (!wait_for_completion_io_timeout(&wait.done, 1411 hang_check * (HZ/2))) 1412 ; 1413 else 1414 wait_for_completion_io(&wait.done); 1415 } 1416 1417 return wait.ret; 1418 } 1419 EXPORT_SYMBOL(blk_execute_rq); 1420 1421 static void __blk_mq_requeue_request(struct request *rq) 1422 { 1423 struct request_queue *q = rq->q; 1424 1425 blk_mq_put_driver_tag(rq); 1426 1427 trace_block_rq_requeue(rq); 1428 rq_qos_requeue(q, rq); 1429 1430 if (blk_mq_request_started(rq)) { 1431 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1432 rq->rq_flags &= ~RQF_TIMED_OUT; 1433 } 1434 } 1435 1436 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1437 { 1438 __blk_mq_requeue_request(rq); 1439 1440 /* this request will be re-inserted to io scheduler queue */ 1441 blk_mq_sched_requeue_request(rq); 1442 1443 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1444 } 1445 EXPORT_SYMBOL(blk_mq_requeue_request); 1446 1447 static void blk_mq_requeue_work(struct work_struct *work) 1448 { 1449 struct request_queue *q = 1450 container_of(work, struct request_queue, requeue_work.work); 1451 LIST_HEAD(rq_list); 1452 struct request *rq, *next; 1453 1454 spin_lock_irq(&q->requeue_lock); 1455 list_splice_init(&q->requeue_list, &rq_list); 1456 spin_unlock_irq(&q->requeue_lock); 1457 1458 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1459 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1460 continue; 1461 1462 rq->rq_flags &= ~RQF_SOFTBARRIER; 1463 list_del_init(&rq->queuelist); 1464 /* 1465 * If RQF_DONTPREP, rq has contained some driver specific 1466 * data, so insert it to hctx dispatch list to avoid any 1467 * merge. 1468 */ 1469 if (rq->rq_flags & RQF_DONTPREP) 1470 blk_mq_request_bypass_insert(rq, false, false); 1471 else 1472 blk_mq_sched_insert_request(rq, true, false, false); 1473 } 1474 1475 while (!list_empty(&rq_list)) { 1476 rq = list_entry(rq_list.next, struct request, queuelist); 1477 list_del_init(&rq->queuelist); 1478 blk_mq_sched_insert_request(rq, false, false, false); 1479 } 1480 1481 blk_mq_run_hw_queues(q, false); 1482 } 1483 1484 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1485 bool kick_requeue_list) 1486 { 1487 struct request_queue *q = rq->q; 1488 unsigned long flags; 1489 1490 /* 1491 * We abuse this flag that is otherwise used by the I/O scheduler to 1492 * request head insertion from the workqueue. 1493 */ 1494 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1495 1496 spin_lock_irqsave(&q->requeue_lock, flags); 1497 if (at_head) { 1498 rq->rq_flags |= RQF_SOFTBARRIER; 1499 list_add(&rq->queuelist, &q->requeue_list); 1500 } else { 1501 list_add_tail(&rq->queuelist, &q->requeue_list); 1502 } 1503 spin_unlock_irqrestore(&q->requeue_lock, flags); 1504 1505 if (kick_requeue_list) 1506 blk_mq_kick_requeue_list(q); 1507 } 1508 1509 void blk_mq_kick_requeue_list(struct request_queue *q) 1510 { 1511 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1512 } 1513 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1514 1515 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1516 unsigned long msecs) 1517 { 1518 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1519 msecs_to_jiffies(msecs)); 1520 } 1521 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1522 1523 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1524 { 1525 /* 1526 * If we find a request that isn't idle we know the queue is busy 1527 * as it's checked in the iter. 1528 * Return false to stop the iteration. 1529 */ 1530 if (blk_mq_request_started(rq)) { 1531 bool *busy = priv; 1532 1533 *busy = true; 1534 return false; 1535 } 1536 1537 return true; 1538 } 1539 1540 bool blk_mq_queue_inflight(struct request_queue *q) 1541 { 1542 bool busy = false; 1543 1544 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1545 return busy; 1546 } 1547 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1548 1549 static void blk_mq_rq_timed_out(struct request *req) 1550 { 1551 req->rq_flags |= RQF_TIMED_OUT; 1552 if (req->q->mq_ops->timeout) { 1553 enum blk_eh_timer_return ret; 1554 1555 ret = req->q->mq_ops->timeout(req); 1556 if (ret == BLK_EH_DONE) 1557 return; 1558 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1559 } 1560 1561 blk_add_timer(req); 1562 } 1563 1564 struct blk_expired_data { 1565 bool has_timedout_rq; 1566 unsigned long next; 1567 unsigned long timeout_start; 1568 }; 1569 1570 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1571 { 1572 unsigned long deadline; 1573 1574 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1575 return false; 1576 if (rq->rq_flags & RQF_TIMED_OUT) 1577 return false; 1578 1579 deadline = READ_ONCE(rq->deadline); 1580 if (time_after_eq(expired->timeout_start, deadline)) 1581 return true; 1582 1583 if (expired->next == 0) 1584 expired->next = deadline; 1585 else if (time_after(expired->next, deadline)) 1586 expired->next = deadline; 1587 return false; 1588 } 1589 1590 void blk_mq_put_rq_ref(struct request *rq) 1591 { 1592 if (is_flush_rq(rq)) { 1593 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1594 blk_mq_free_request(rq); 1595 } else if (req_ref_put_and_test(rq)) { 1596 __blk_mq_free_request(rq); 1597 } 1598 } 1599 1600 static bool blk_mq_check_expired(struct request *rq, void *priv) 1601 { 1602 struct blk_expired_data *expired = priv; 1603 1604 /* 1605 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1606 * be reallocated underneath the timeout handler's processing, then 1607 * the expire check is reliable. If the request is not expired, then 1608 * it was completed and reallocated as a new request after returning 1609 * from blk_mq_check_expired(). 1610 */ 1611 if (blk_mq_req_expired(rq, expired)) { 1612 expired->has_timedout_rq = true; 1613 return false; 1614 } 1615 return true; 1616 } 1617 1618 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1619 { 1620 struct blk_expired_data *expired = priv; 1621 1622 if (blk_mq_req_expired(rq, expired)) 1623 blk_mq_rq_timed_out(rq); 1624 return true; 1625 } 1626 1627 static void blk_mq_timeout_work(struct work_struct *work) 1628 { 1629 struct request_queue *q = 1630 container_of(work, struct request_queue, timeout_work); 1631 struct blk_expired_data expired = { 1632 .timeout_start = jiffies, 1633 }; 1634 struct blk_mq_hw_ctx *hctx; 1635 unsigned long i; 1636 1637 /* A deadlock might occur if a request is stuck requiring a 1638 * timeout at the same time a queue freeze is waiting 1639 * completion, since the timeout code would not be able to 1640 * acquire the queue reference here. 1641 * 1642 * That's why we don't use blk_queue_enter here; instead, we use 1643 * percpu_ref_tryget directly, because we need to be able to 1644 * obtain a reference even in the short window between the queue 1645 * starting to freeze, by dropping the first reference in 1646 * blk_freeze_queue_start, and the moment the last request is 1647 * consumed, marked by the instant q_usage_counter reaches 1648 * zero. 1649 */ 1650 if (!percpu_ref_tryget(&q->q_usage_counter)) 1651 return; 1652 1653 /* check if there is any timed-out request */ 1654 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1655 if (expired.has_timedout_rq) { 1656 /* 1657 * Before walking tags, we must ensure any submit started 1658 * before the current time has finished. Since the submit 1659 * uses srcu or rcu, wait for a synchronization point to 1660 * ensure all running submits have finished 1661 */ 1662 blk_mq_wait_quiesce_done(q->tag_set); 1663 1664 expired.next = 0; 1665 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1666 } 1667 1668 if (expired.next != 0) { 1669 mod_timer(&q->timeout, expired.next); 1670 } else { 1671 /* 1672 * Request timeouts are handled as a forward rolling timer. If 1673 * we end up here it means that no requests are pending and 1674 * also that no request has been pending for a while. Mark 1675 * each hctx as idle. 1676 */ 1677 queue_for_each_hw_ctx(q, hctx, i) { 1678 /* the hctx may be unmapped, so check it here */ 1679 if (blk_mq_hw_queue_mapped(hctx)) 1680 blk_mq_tag_idle(hctx); 1681 } 1682 } 1683 blk_queue_exit(q); 1684 } 1685 1686 struct flush_busy_ctx_data { 1687 struct blk_mq_hw_ctx *hctx; 1688 struct list_head *list; 1689 }; 1690 1691 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1692 { 1693 struct flush_busy_ctx_data *flush_data = data; 1694 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1695 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1696 enum hctx_type type = hctx->type; 1697 1698 spin_lock(&ctx->lock); 1699 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1700 sbitmap_clear_bit(sb, bitnr); 1701 spin_unlock(&ctx->lock); 1702 return true; 1703 } 1704 1705 /* 1706 * Process software queues that have been marked busy, splicing them 1707 * to the for-dispatch 1708 */ 1709 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1710 { 1711 struct flush_busy_ctx_data data = { 1712 .hctx = hctx, 1713 .list = list, 1714 }; 1715 1716 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1717 } 1718 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1719 1720 struct dispatch_rq_data { 1721 struct blk_mq_hw_ctx *hctx; 1722 struct request *rq; 1723 }; 1724 1725 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1726 void *data) 1727 { 1728 struct dispatch_rq_data *dispatch_data = data; 1729 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1730 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1731 enum hctx_type type = hctx->type; 1732 1733 spin_lock(&ctx->lock); 1734 if (!list_empty(&ctx->rq_lists[type])) { 1735 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1736 list_del_init(&dispatch_data->rq->queuelist); 1737 if (list_empty(&ctx->rq_lists[type])) 1738 sbitmap_clear_bit(sb, bitnr); 1739 } 1740 spin_unlock(&ctx->lock); 1741 1742 return !dispatch_data->rq; 1743 } 1744 1745 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1746 struct blk_mq_ctx *start) 1747 { 1748 unsigned off = start ? start->index_hw[hctx->type] : 0; 1749 struct dispatch_rq_data data = { 1750 .hctx = hctx, 1751 .rq = NULL, 1752 }; 1753 1754 __sbitmap_for_each_set(&hctx->ctx_map, off, 1755 dispatch_rq_from_ctx, &data); 1756 1757 return data.rq; 1758 } 1759 1760 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1761 { 1762 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1763 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1764 int tag; 1765 1766 blk_mq_tag_busy(rq->mq_hctx); 1767 1768 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1769 bt = &rq->mq_hctx->tags->breserved_tags; 1770 tag_offset = 0; 1771 } else { 1772 if (!hctx_may_queue(rq->mq_hctx, bt)) 1773 return false; 1774 } 1775 1776 tag = __sbitmap_queue_get(bt); 1777 if (tag == BLK_MQ_NO_TAG) 1778 return false; 1779 1780 rq->tag = tag + tag_offset; 1781 return true; 1782 } 1783 1784 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1785 { 1786 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1787 return false; 1788 1789 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1790 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1791 rq->rq_flags |= RQF_MQ_INFLIGHT; 1792 __blk_mq_inc_active_requests(hctx); 1793 } 1794 hctx->tags->rqs[rq->tag] = rq; 1795 return true; 1796 } 1797 1798 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1799 int flags, void *key) 1800 { 1801 struct blk_mq_hw_ctx *hctx; 1802 1803 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1804 1805 spin_lock(&hctx->dispatch_wait_lock); 1806 if (!list_empty(&wait->entry)) { 1807 struct sbitmap_queue *sbq; 1808 1809 list_del_init(&wait->entry); 1810 sbq = &hctx->tags->bitmap_tags; 1811 atomic_dec(&sbq->ws_active); 1812 } 1813 spin_unlock(&hctx->dispatch_wait_lock); 1814 1815 blk_mq_run_hw_queue(hctx, true); 1816 return 1; 1817 } 1818 1819 /* 1820 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1821 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1822 * restart. For both cases, take care to check the condition again after 1823 * marking us as waiting. 1824 */ 1825 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1826 struct request *rq) 1827 { 1828 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1829 struct wait_queue_head *wq; 1830 wait_queue_entry_t *wait; 1831 bool ret; 1832 1833 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1834 blk_mq_sched_mark_restart_hctx(hctx); 1835 1836 /* 1837 * It's possible that a tag was freed in the window between the 1838 * allocation failure and adding the hardware queue to the wait 1839 * queue. 1840 * 1841 * Don't clear RESTART here, someone else could have set it. 1842 * At most this will cost an extra queue run. 1843 */ 1844 return blk_mq_get_driver_tag(rq); 1845 } 1846 1847 wait = &hctx->dispatch_wait; 1848 if (!list_empty_careful(&wait->entry)) 1849 return false; 1850 1851 wq = &bt_wait_ptr(sbq, hctx)->wait; 1852 1853 spin_lock_irq(&wq->lock); 1854 spin_lock(&hctx->dispatch_wait_lock); 1855 if (!list_empty(&wait->entry)) { 1856 spin_unlock(&hctx->dispatch_wait_lock); 1857 spin_unlock_irq(&wq->lock); 1858 return false; 1859 } 1860 1861 atomic_inc(&sbq->ws_active); 1862 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1863 __add_wait_queue(wq, wait); 1864 1865 /* 1866 * It's possible that a tag was freed in the window between the 1867 * allocation failure and adding the hardware queue to the wait 1868 * queue. 1869 */ 1870 ret = blk_mq_get_driver_tag(rq); 1871 if (!ret) { 1872 spin_unlock(&hctx->dispatch_wait_lock); 1873 spin_unlock_irq(&wq->lock); 1874 return false; 1875 } 1876 1877 /* 1878 * We got a tag, remove ourselves from the wait queue to ensure 1879 * someone else gets the wakeup. 1880 */ 1881 list_del_init(&wait->entry); 1882 atomic_dec(&sbq->ws_active); 1883 spin_unlock(&hctx->dispatch_wait_lock); 1884 spin_unlock_irq(&wq->lock); 1885 1886 return true; 1887 } 1888 1889 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1890 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1891 /* 1892 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1893 * - EWMA is one simple way to compute running average value 1894 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1895 * - take 4 as factor for avoiding to get too small(0) result, and this 1896 * factor doesn't matter because EWMA decreases exponentially 1897 */ 1898 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1899 { 1900 unsigned int ewma; 1901 1902 ewma = hctx->dispatch_busy; 1903 1904 if (!ewma && !busy) 1905 return; 1906 1907 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1908 if (busy) 1909 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1910 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1911 1912 hctx->dispatch_busy = ewma; 1913 } 1914 1915 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1916 1917 static void blk_mq_handle_dev_resource(struct request *rq, 1918 struct list_head *list) 1919 { 1920 struct request *next = 1921 list_first_entry_or_null(list, struct request, queuelist); 1922 1923 /* 1924 * If an I/O scheduler has been configured and we got a driver tag for 1925 * the next request already, free it. 1926 */ 1927 if (next) 1928 blk_mq_put_driver_tag(next); 1929 1930 list_add(&rq->queuelist, list); 1931 __blk_mq_requeue_request(rq); 1932 } 1933 1934 static void blk_mq_handle_zone_resource(struct request *rq, 1935 struct list_head *zone_list) 1936 { 1937 /* 1938 * If we end up here it is because we cannot dispatch a request to a 1939 * specific zone due to LLD level zone-write locking or other zone 1940 * related resource not being available. In this case, set the request 1941 * aside in zone_list for retrying it later. 1942 */ 1943 list_add(&rq->queuelist, zone_list); 1944 __blk_mq_requeue_request(rq); 1945 } 1946 1947 enum prep_dispatch { 1948 PREP_DISPATCH_OK, 1949 PREP_DISPATCH_NO_TAG, 1950 PREP_DISPATCH_NO_BUDGET, 1951 }; 1952 1953 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1954 bool need_budget) 1955 { 1956 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1957 int budget_token = -1; 1958 1959 if (need_budget) { 1960 budget_token = blk_mq_get_dispatch_budget(rq->q); 1961 if (budget_token < 0) { 1962 blk_mq_put_driver_tag(rq); 1963 return PREP_DISPATCH_NO_BUDGET; 1964 } 1965 blk_mq_set_rq_budget_token(rq, budget_token); 1966 } 1967 1968 if (!blk_mq_get_driver_tag(rq)) { 1969 /* 1970 * The initial allocation attempt failed, so we need to 1971 * rerun the hardware queue when a tag is freed. The 1972 * waitqueue takes care of that. If the queue is run 1973 * before we add this entry back on the dispatch list, 1974 * we'll re-run it below. 1975 */ 1976 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1977 /* 1978 * All budgets not got from this function will be put 1979 * together during handling partial dispatch 1980 */ 1981 if (need_budget) 1982 blk_mq_put_dispatch_budget(rq->q, budget_token); 1983 return PREP_DISPATCH_NO_TAG; 1984 } 1985 } 1986 1987 return PREP_DISPATCH_OK; 1988 } 1989 1990 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1991 static void blk_mq_release_budgets(struct request_queue *q, 1992 struct list_head *list) 1993 { 1994 struct request *rq; 1995 1996 list_for_each_entry(rq, list, queuelist) { 1997 int budget_token = blk_mq_get_rq_budget_token(rq); 1998 1999 if (budget_token >= 0) 2000 blk_mq_put_dispatch_budget(q, budget_token); 2001 } 2002 } 2003 2004 /* 2005 * Returns true if we did some work AND can potentially do more. 2006 */ 2007 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2008 unsigned int nr_budgets) 2009 { 2010 enum prep_dispatch prep; 2011 struct request_queue *q = hctx->queue; 2012 struct request *rq, *nxt; 2013 int errors, queued; 2014 blk_status_t ret = BLK_STS_OK; 2015 LIST_HEAD(zone_list); 2016 bool needs_resource = false; 2017 2018 if (list_empty(list)) 2019 return false; 2020 2021 /* 2022 * Now process all the entries, sending them to the driver. 2023 */ 2024 errors = queued = 0; 2025 do { 2026 struct blk_mq_queue_data bd; 2027 2028 rq = list_first_entry(list, struct request, queuelist); 2029 2030 WARN_ON_ONCE(hctx != rq->mq_hctx); 2031 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2032 if (prep != PREP_DISPATCH_OK) 2033 break; 2034 2035 list_del_init(&rq->queuelist); 2036 2037 bd.rq = rq; 2038 2039 /* 2040 * Flag last if we have no more requests, or if we have more 2041 * but can't assign a driver tag to it. 2042 */ 2043 if (list_empty(list)) 2044 bd.last = true; 2045 else { 2046 nxt = list_first_entry(list, struct request, queuelist); 2047 bd.last = !blk_mq_get_driver_tag(nxt); 2048 } 2049 2050 /* 2051 * once the request is queued to lld, no need to cover the 2052 * budget any more 2053 */ 2054 if (nr_budgets) 2055 nr_budgets--; 2056 ret = q->mq_ops->queue_rq(hctx, &bd); 2057 switch (ret) { 2058 case BLK_STS_OK: 2059 queued++; 2060 break; 2061 case BLK_STS_RESOURCE: 2062 needs_resource = true; 2063 fallthrough; 2064 case BLK_STS_DEV_RESOURCE: 2065 blk_mq_handle_dev_resource(rq, list); 2066 goto out; 2067 case BLK_STS_ZONE_RESOURCE: 2068 /* 2069 * Move the request to zone_list and keep going through 2070 * the dispatch list to find more requests the drive can 2071 * accept. 2072 */ 2073 blk_mq_handle_zone_resource(rq, &zone_list); 2074 needs_resource = true; 2075 break; 2076 default: 2077 errors++; 2078 blk_mq_end_request(rq, ret); 2079 } 2080 } while (!list_empty(list)); 2081 out: 2082 if (!list_empty(&zone_list)) 2083 list_splice_tail_init(&zone_list, list); 2084 2085 /* If we didn't flush the entire list, we could have told the driver 2086 * there was more coming, but that turned out to be a lie. 2087 */ 2088 if ((!list_empty(list) || errors || needs_resource || 2089 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued) 2090 q->mq_ops->commit_rqs(hctx); 2091 /* 2092 * Any items that need requeuing? Stuff them into hctx->dispatch, 2093 * that is where we will continue on next queue run. 2094 */ 2095 if (!list_empty(list)) { 2096 bool needs_restart; 2097 /* For non-shared tags, the RESTART check will suffice */ 2098 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2099 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 2100 2101 if (nr_budgets) 2102 blk_mq_release_budgets(q, list); 2103 2104 spin_lock(&hctx->lock); 2105 list_splice_tail_init(list, &hctx->dispatch); 2106 spin_unlock(&hctx->lock); 2107 2108 /* 2109 * Order adding requests to hctx->dispatch and checking 2110 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2111 * in blk_mq_sched_restart(). Avoid restart code path to 2112 * miss the new added requests to hctx->dispatch, meantime 2113 * SCHED_RESTART is observed here. 2114 */ 2115 smp_mb(); 2116 2117 /* 2118 * If SCHED_RESTART was set by the caller of this function and 2119 * it is no longer set that means that it was cleared by another 2120 * thread and hence that a queue rerun is needed. 2121 * 2122 * If 'no_tag' is set, that means that we failed getting 2123 * a driver tag with an I/O scheduler attached. If our dispatch 2124 * waitqueue is no longer active, ensure that we run the queue 2125 * AFTER adding our entries back to the list. 2126 * 2127 * If no I/O scheduler has been configured it is possible that 2128 * the hardware queue got stopped and restarted before requests 2129 * were pushed back onto the dispatch list. Rerun the queue to 2130 * avoid starvation. Notes: 2131 * - blk_mq_run_hw_queue() checks whether or not a queue has 2132 * been stopped before rerunning a queue. 2133 * - Some but not all block drivers stop a queue before 2134 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2135 * and dm-rq. 2136 * 2137 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2138 * bit is set, run queue after a delay to avoid IO stalls 2139 * that could otherwise occur if the queue is idle. We'll do 2140 * similar if we couldn't get budget or couldn't lock a zone 2141 * and SCHED_RESTART is set. 2142 */ 2143 needs_restart = blk_mq_sched_needs_restart(hctx); 2144 if (prep == PREP_DISPATCH_NO_BUDGET) 2145 needs_resource = true; 2146 if (!needs_restart || 2147 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2148 blk_mq_run_hw_queue(hctx, true); 2149 else if (needs_resource) 2150 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2151 2152 blk_mq_update_dispatch_busy(hctx, true); 2153 return false; 2154 } else 2155 blk_mq_update_dispatch_busy(hctx, false); 2156 2157 return (queued + errors) != 0; 2158 } 2159 2160 /** 2161 * __blk_mq_run_hw_queue - Run a hardware queue. 2162 * @hctx: Pointer to the hardware queue to run. 2163 * 2164 * Send pending requests to the hardware. 2165 */ 2166 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 2167 { 2168 /* 2169 * We can't run the queue inline with ints disabled. Ensure that 2170 * we catch bad users of this early. 2171 */ 2172 WARN_ON_ONCE(in_interrupt()); 2173 2174 blk_mq_run_dispatch_ops(hctx->queue, 2175 blk_mq_sched_dispatch_requests(hctx)); 2176 } 2177 2178 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2179 { 2180 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2181 2182 if (cpu >= nr_cpu_ids) 2183 cpu = cpumask_first(hctx->cpumask); 2184 return cpu; 2185 } 2186 2187 /* 2188 * It'd be great if the workqueue API had a way to pass 2189 * in a mask and had some smarts for more clever placement. 2190 * For now we just round-robin here, switching for every 2191 * BLK_MQ_CPU_WORK_BATCH queued items. 2192 */ 2193 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2194 { 2195 bool tried = false; 2196 int next_cpu = hctx->next_cpu; 2197 2198 if (hctx->queue->nr_hw_queues == 1) 2199 return WORK_CPU_UNBOUND; 2200 2201 if (--hctx->next_cpu_batch <= 0) { 2202 select_cpu: 2203 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2204 cpu_online_mask); 2205 if (next_cpu >= nr_cpu_ids) 2206 next_cpu = blk_mq_first_mapped_cpu(hctx); 2207 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2208 } 2209 2210 /* 2211 * Do unbound schedule if we can't find a online CPU for this hctx, 2212 * and it should only happen in the path of handling CPU DEAD. 2213 */ 2214 if (!cpu_online(next_cpu)) { 2215 if (!tried) { 2216 tried = true; 2217 goto select_cpu; 2218 } 2219 2220 /* 2221 * Make sure to re-select CPU next time once after CPUs 2222 * in hctx->cpumask become online again. 2223 */ 2224 hctx->next_cpu = next_cpu; 2225 hctx->next_cpu_batch = 1; 2226 return WORK_CPU_UNBOUND; 2227 } 2228 2229 hctx->next_cpu = next_cpu; 2230 return next_cpu; 2231 } 2232 2233 /** 2234 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2235 * @hctx: Pointer to the hardware queue to run. 2236 * @async: If we want to run the queue asynchronously. 2237 * @msecs: Milliseconds of delay to wait before running the queue. 2238 * 2239 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2240 * with a delay of @msecs. 2241 */ 2242 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2243 unsigned long msecs) 2244 { 2245 if (unlikely(blk_mq_hctx_stopped(hctx))) 2246 return; 2247 2248 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2249 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2250 __blk_mq_run_hw_queue(hctx); 2251 return; 2252 } 2253 } 2254 2255 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2256 msecs_to_jiffies(msecs)); 2257 } 2258 2259 /** 2260 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2261 * @hctx: Pointer to the hardware queue to run. 2262 * @msecs: Milliseconds of delay to wait before running the queue. 2263 * 2264 * Run a hardware queue asynchronously with a delay of @msecs. 2265 */ 2266 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2267 { 2268 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2269 } 2270 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2271 2272 /** 2273 * blk_mq_run_hw_queue - Start to run a hardware queue. 2274 * @hctx: Pointer to the hardware queue to run. 2275 * @async: If we want to run the queue asynchronously. 2276 * 2277 * Check if the request queue is not in a quiesced state and if there are 2278 * pending requests to be sent. If this is true, run the queue to send requests 2279 * to hardware. 2280 */ 2281 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2282 { 2283 bool need_run; 2284 2285 /* 2286 * When queue is quiesced, we may be switching io scheduler, or 2287 * updating nr_hw_queues, or other things, and we can't run queue 2288 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2289 * 2290 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2291 * quiesced. 2292 */ 2293 __blk_mq_run_dispatch_ops(hctx->queue, false, 2294 need_run = !blk_queue_quiesced(hctx->queue) && 2295 blk_mq_hctx_has_pending(hctx)); 2296 2297 if (need_run) 2298 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2299 } 2300 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2301 2302 /* 2303 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2304 * scheduler. 2305 */ 2306 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2307 { 2308 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2309 /* 2310 * If the IO scheduler does not respect hardware queues when 2311 * dispatching, we just don't bother with multiple HW queues and 2312 * dispatch from hctx for the current CPU since running multiple queues 2313 * just causes lock contention inside the scheduler and pointless cache 2314 * bouncing. 2315 */ 2316 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2317 2318 if (!blk_mq_hctx_stopped(hctx)) 2319 return hctx; 2320 return NULL; 2321 } 2322 2323 /** 2324 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2325 * @q: Pointer to the request queue to run. 2326 * @async: If we want to run the queue asynchronously. 2327 */ 2328 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2329 { 2330 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2331 unsigned long i; 2332 2333 sq_hctx = NULL; 2334 if (blk_queue_sq_sched(q)) 2335 sq_hctx = blk_mq_get_sq_hctx(q); 2336 queue_for_each_hw_ctx(q, hctx, i) { 2337 if (blk_mq_hctx_stopped(hctx)) 2338 continue; 2339 /* 2340 * Dispatch from this hctx either if there's no hctx preferred 2341 * by IO scheduler or if it has requests that bypass the 2342 * scheduler. 2343 */ 2344 if (!sq_hctx || sq_hctx == hctx || 2345 !list_empty_careful(&hctx->dispatch)) 2346 blk_mq_run_hw_queue(hctx, async); 2347 } 2348 } 2349 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2350 2351 /** 2352 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2353 * @q: Pointer to the request queue to run. 2354 * @msecs: Milliseconds of delay to wait before running the queues. 2355 */ 2356 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2357 { 2358 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2359 unsigned long i; 2360 2361 sq_hctx = NULL; 2362 if (blk_queue_sq_sched(q)) 2363 sq_hctx = blk_mq_get_sq_hctx(q); 2364 queue_for_each_hw_ctx(q, hctx, i) { 2365 if (blk_mq_hctx_stopped(hctx)) 2366 continue; 2367 /* 2368 * If there is already a run_work pending, leave the 2369 * pending delay untouched. Otherwise, a hctx can stall 2370 * if another hctx is re-delaying the other's work 2371 * before the work executes. 2372 */ 2373 if (delayed_work_pending(&hctx->run_work)) 2374 continue; 2375 /* 2376 * Dispatch from this hctx either if there's no hctx preferred 2377 * by IO scheduler or if it has requests that bypass the 2378 * scheduler. 2379 */ 2380 if (!sq_hctx || sq_hctx == hctx || 2381 !list_empty_careful(&hctx->dispatch)) 2382 blk_mq_delay_run_hw_queue(hctx, msecs); 2383 } 2384 } 2385 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2386 2387 /* 2388 * This function is often used for pausing .queue_rq() by driver when 2389 * there isn't enough resource or some conditions aren't satisfied, and 2390 * BLK_STS_RESOURCE is usually returned. 2391 * 2392 * We do not guarantee that dispatch can be drained or blocked 2393 * after blk_mq_stop_hw_queue() returns. Please use 2394 * blk_mq_quiesce_queue() for that requirement. 2395 */ 2396 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2397 { 2398 cancel_delayed_work(&hctx->run_work); 2399 2400 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2401 } 2402 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2403 2404 /* 2405 * This function is often used for pausing .queue_rq() by driver when 2406 * there isn't enough resource or some conditions aren't satisfied, and 2407 * BLK_STS_RESOURCE is usually returned. 2408 * 2409 * We do not guarantee that dispatch can be drained or blocked 2410 * after blk_mq_stop_hw_queues() returns. Please use 2411 * blk_mq_quiesce_queue() for that requirement. 2412 */ 2413 void blk_mq_stop_hw_queues(struct request_queue *q) 2414 { 2415 struct blk_mq_hw_ctx *hctx; 2416 unsigned long i; 2417 2418 queue_for_each_hw_ctx(q, hctx, i) 2419 blk_mq_stop_hw_queue(hctx); 2420 } 2421 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2422 2423 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2424 { 2425 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2426 2427 blk_mq_run_hw_queue(hctx, false); 2428 } 2429 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2430 2431 void blk_mq_start_hw_queues(struct request_queue *q) 2432 { 2433 struct blk_mq_hw_ctx *hctx; 2434 unsigned long i; 2435 2436 queue_for_each_hw_ctx(q, hctx, i) 2437 blk_mq_start_hw_queue(hctx); 2438 } 2439 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2440 2441 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2442 { 2443 if (!blk_mq_hctx_stopped(hctx)) 2444 return; 2445 2446 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2447 blk_mq_run_hw_queue(hctx, async); 2448 } 2449 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2450 2451 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2452 { 2453 struct blk_mq_hw_ctx *hctx; 2454 unsigned long i; 2455 2456 queue_for_each_hw_ctx(q, hctx, i) 2457 blk_mq_start_stopped_hw_queue(hctx, async); 2458 } 2459 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2460 2461 static void blk_mq_run_work_fn(struct work_struct *work) 2462 { 2463 struct blk_mq_hw_ctx *hctx; 2464 2465 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2466 2467 /* 2468 * If we are stopped, don't run the queue. 2469 */ 2470 if (blk_mq_hctx_stopped(hctx)) 2471 return; 2472 2473 __blk_mq_run_hw_queue(hctx); 2474 } 2475 2476 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2477 struct request *rq, 2478 bool at_head) 2479 { 2480 struct blk_mq_ctx *ctx = rq->mq_ctx; 2481 enum hctx_type type = hctx->type; 2482 2483 lockdep_assert_held(&ctx->lock); 2484 2485 trace_block_rq_insert(rq); 2486 2487 if (at_head) 2488 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2489 else 2490 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2491 } 2492 2493 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2494 bool at_head) 2495 { 2496 struct blk_mq_ctx *ctx = rq->mq_ctx; 2497 2498 lockdep_assert_held(&ctx->lock); 2499 2500 __blk_mq_insert_req_list(hctx, rq, at_head); 2501 blk_mq_hctx_mark_pending(hctx, ctx); 2502 } 2503 2504 /** 2505 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2506 * @rq: Pointer to request to be inserted. 2507 * @at_head: true if the request should be inserted at the head of the list. 2508 * @run_queue: If we should run the hardware queue after inserting the request. 2509 * 2510 * Should only be used carefully, when the caller knows we want to 2511 * bypass a potential IO scheduler on the target device. 2512 */ 2513 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2514 bool run_queue) 2515 { 2516 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2517 2518 spin_lock(&hctx->lock); 2519 if (at_head) 2520 list_add(&rq->queuelist, &hctx->dispatch); 2521 else 2522 list_add_tail(&rq->queuelist, &hctx->dispatch); 2523 spin_unlock(&hctx->lock); 2524 2525 if (run_queue) 2526 blk_mq_run_hw_queue(hctx, false); 2527 } 2528 2529 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2530 struct list_head *list) 2531 2532 { 2533 struct request *rq; 2534 enum hctx_type type = hctx->type; 2535 2536 /* 2537 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2538 * offline now 2539 */ 2540 list_for_each_entry(rq, list, queuelist) { 2541 BUG_ON(rq->mq_ctx != ctx); 2542 trace_block_rq_insert(rq); 2543 } 2544 2545 spin_lock(&ctx->lock); 2546 list_splice_tail_init(list, &ctx->rq_lists[type]); 2547 blk_mq_hctx_mark_pending(hctx, ctx); 2548 spin_unlock(&ctx->lock); 2549 } 2550 2551 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2552 bool from_schedule) 2553 { 2554 if (hctx->queue->mq_ops->commit_rqs) { 2555 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2556 hctx->queue->mq_ops->commit_rqs(hctx); 2557 } 2558 *queued = 0; 2559 } 2560 2561 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2562 unsigned int nr_segs) 2563 { 2564 int err; 2565 2566 if (bio->bi_opf & REQ_RAHEAD) 2567 rq->cmd_flags |= REQ_FAILFAST_MASK; 2568 2569 rq->__sector = bio->bi_iter.bi_sector; 2570 blk_rq_bio_prep(rq, bio, nr_segs); 2571 2572 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2573 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2574 WARN_ON_ONCE(err); 2575 2576 blk_account_io_start(rq); 2577 } 2578 2579 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2580 struct request *rq, bool last) 2581 { 2582 struct request_queue *q = rq->q; 2583 struct blk_mq_queue_data bd = { 2584 .rq = rq, 2585 .last = last, 2586 }; 2587 blk_status_t ret; 2588 2589 /* 2590 * For OK queue, we are done. For error, caller may kill it. 2591 * Any other error (busy), just add it to our list as we 2592 * previously would have done. 2593 */ 2594 ret = q->mq_ops->queue_rq(hctx, &bd); 2595 switch (ret) { 2596 case BLK_STS_OK: 2597 blk_mq_update_dispatch_busy(hctx, false); 2598 break; 2599 case BLK_STS_RESOURCE: 2600 case BLK_STS_DEV_RESOURCE: 2601 blk_mq_update_dispatch_busy(hctx, true); 2602 __blk_mq_requeue_request(rq); 2603 break; 2604 default: 2605 blk_mq_update_dispatch_busy(hctx, false); 2606 break; 2607 } 2608 2609 return ret; 2610 } 2611 2612 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2613 struct request *rq, 2614 bool bypass_insert, bool last) 2615 { 2616 struct request_queue *q = rq->q; 2617 bool run_queue = true; 2618 int budget_token; 2619 2620 /* 2621 * RCU or SRCU read lock is needed before checking quiesced flag. 2622 * 2623 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2624 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2625 * and avoid driver to try to dispatch again. 2626 */ 2627 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2628 run_queue = false; 2629 bypass_insert = false; 2630 goto insert; 2631 } 2632 2633 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2634 goto insert; 2635 2636 budget_token = blk_mq_get_dispatch_budget(q); 2637 if (budget_token < 0) 2638 goto insert; 2639 2640 blk_mq_set_rq_budget_token(rq, budget_token); 2641 2642 if (!blk_mq_get_driver_tag(rq)) { 2643 blk_mq_put_dispatch_budget(q, budget_token); 2644 goto insert; 2645 } 2646 2647 return __blk_mq_issue_directly(hctx, rq, last); 2648 insert: 2649 if (bypass_insert) 2650 return BLK_STS_RESOURCE; 2651 2652 blk_mq_sched_insert_request(rq, false, run_queue, false); 2653 2654 return BLK_STS_OK; 2655 } 2656 2657 /** 2658 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2659 * @hctx: Pointer of the associated hardware queue. 2660 * @rq: Pointer to request to be sent. 2661 * 2662 * If the device has enough resources to accept a new request now, send the 2663 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2664 * we can try send it another time in the future. Requests inserted at this 2665 * queue have higher priority. 2666 */ 2667 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2668 struct request *rq) 2669 { 2670 blk_status_t ret = 2671 __blk_mq_try_issue_directly(hctx, rq, false, true); 2672 2673 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2674 blk_mq_request_bypass_insert(rq, false, true); 2675 else if (ret != BLK_STS_OK) 2676 blk_mq_end_request(rq, ret); 2677 } 2678 2679 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2680 { 2681 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2682 } 2683 2684 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2685 { 2686 struct blk_mq_hw_ctx *hctx = NULL; 2687 struct request *rq; 2688 int queued = 0; 2689 int errors = 0; 2690 2691 while ((rq = rq_list_pop(&plug->mq_list))) { 2692 bool last = rq_list_empty(plug->mq_list); 2693 blk_status_t ret; 2694 2695 if (hctx != rq->mq_hctx) { 2696 if (hctx) 2697 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2698 hctx = rq->mq_hctx; 2699 } 2700 2701 ret = blk_mq_request_issue_directly(rq, last); 2702 switch (ret) { 2703 case BLK_STS_OK: 2704 queued++; 2705 break; 2706 case BLK_STS_RESOURCE: 2707 case BLK_STS_DEV_RESOURCE: 2708 blk_mq_request_bypass_insert(rq, false, true); 2709 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2710 return; 2711 default: 2712 blk_mq_end_request(rq, ret); 2713 errors++; 2714 break; 2715 } 2716 } 2717 2718 /* 2719 * If we didn't flush the entire list, we could have told the driver 2720 * there was more coming, but that turned out to be a lie. 2721 */ 2722 if (errors) 2723 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2724 } 2725 2726 static void __blk_mq_flush_plug_list(struct request_queue *q, 2727 struct blk_plug *plug) 2728 { 2729 if (blk_queue_quiesced(q)) 2730 return; 2731 q->mq_ops->queue_rqs(&plug->mq_list); 2732 } 2733 2734 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2735 { 2736 struct blk_mq_hw_ctx *this_hctx = NULL; 2737 struct blk_mq_ctx *this_ctx = NULL; 2738 struct request *requeue_list = NULL; 2739 unsigned int depth = 0; 2740 LIST_HEAD(list); 2741 2742 do { 2743 struct request *rq = rq_list_pop(&plug->mq_list); 2744 2745 if (!this_hctx) { 2746 this_hctx = rq->mq_hctx; 2747 this_ctx = rq->mq_ctx; 2748 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2749 rq_list_add(&requeue_list, rq); 2750 continue; 2751 } 2752 list_add_tail(&rq->queuelist, &list); 2753 depth++; 2754 } while (!rq_list_empty(plug->mq_list)); 2755 2756 plug->mq_list = requeue_list; 2757 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2758 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); 2759 } 2760 2761 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2762 { 2763 struct request *rq; 2764 2765 if (rq_list_empty(plug->mq_list)) 2766 return; 2767 plug->rq_count = 0; 2768 2769 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2770 struct request_queue *q; 2771 2772 rq = rq_list_peek(&plug->mq_list); 2773 q = rq->q; 2774 2775 /* 2776 * Peek first request and see if we have a ->queue_rqs() hook. 2777 * If we do, we can dispatch the whole plug list in one go. We 2778 * already know at this point that all requests belong to the 2779 * same queue, caller must ensure that's the case. 2780 * 2781 * Since we pass off the full list to the driver at this point, 2782 * we do not increment the active request count for the queue. 2783 * Bypass shared tags for now because of that. 2784 */ 2785 if (q->mq_ops->queue_rqs && 2786 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2787 blk_mq_run_dispatch_ops(q, 2788 __blk_mq_flush_plug_list(q, plug)); 2789 if (rq_list_empty(plug->mq_list)) 2790 return; 2791 } 2792 2793 blk_mq_run_dispatch_ops(q, 2794 blk_mq_plug_issue_direct(plug, false)); 2795 if (rq_list_empty(plug->mq_list)) 2796 return; 2797 } 2798 2799 do { 2800 blk_mq_dispatch_plug_list(plug, from_schedule); 2801 } while (!rq_list_empty(plug->mq_list)); 2802 } 2803 2804 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2805 struct list_head *list) 2806 { 2807 int queued = 0; 2808 int errors = 0; 2809 2810 while (!list_empty(list)) { 2811 blk_status_t ret; 2812 struct request *rq = list_first_entry(list, struct request, 2813 queuelist); 2814 2815 list_del_init(&rq->queuelist); 2816 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2817 if (ret != BLK_STS_OK) { 2818 errors++; 2819 if (ret == BLK_STS_RESOURCE || 2820 ret == BLK_STS_DEV_RESOURCE) { 2821 blk_mq_request_bypass_insert(rq, false, 2822 list_empty(list)); 2823 break; 2824 } 2825 blk_mq_end_request(rq, ret); 2826 } else 2827 queued++; 2828 } 2829 2830 /* 2831 * If we didn't flush the entire list, we could have told 2832 * the driver there was more coming, but that turned out to 2833 * be a lie. 2834 */ 2835 if ((!list_empty(list) || errors) && 2836 hctx->queue->mq_ops->commit_rqs && queued) 2837 hctx->queue->mq_ops->commit_rqs(hctx); 2838 } 2839 2840 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2841 struct bio *bio, unsigned int nr_segs) 2842 { 2843 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2844 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2845 return true; 2846 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2847 return true; 2848 } 2849 return false; 2850 } 2851 2852 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2853 struct blk_plug *plug, 2854 struct bio *bio, 2855 unsigned int nsegs) 2856 { 2857 struct blk_mq_alloc_data data = { 2858 .q = q, 2859 .nr_tags = 1, 2860 .cmd_flags = bio->bi_opf, 2861 }; 2862 struct request *rq; 2863 2864 if (unlikely(bio_queue_enter(bio))) 2865 return NULL; 2866 2867 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2868 goto queue_exit; 2869 2870 rq_qos_throttle(q, bio); 2871 2872 if (plug) { 2873 data.nr_tags = plug->nr_ios; 2874 plug->nr_ios = 1; 2875 data.cached_rq = &plug->cached_rq; 2876 } 2877 2878 rq = __blk_mq_alloc_requests(&data); 2879 if (rq) 2880 return rq; 2881 rq_qos_cleanup(q, bio); 2882 if (bio->bi_opf & REQ_NOWAIT) 2883 bio_wouldblock_error(bio); 2884 queue_exit: 2885 blk_queue_exit(q); 2886 return NULL; 2887 } 2888 2889 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2890 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2891 { 2892 struct request *rq; 2893 2894 if (!plug) 2895 return NULL; 2896 rq = rq_list_peek(&plug->cached_rq); 2897 if (!rq || rq->q != q) 2898 return NULL; 2899 2900 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2901 *bio = NULL; 2902 return NULL; 2903 } 2904 2905 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type) 2906 return NULL; 2907 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2908 return NULL; 2909 2910 /* 2911 * If any qos ->throttle() end up blocking, we will have flushed the 2912 * plug and hence killed the cached_rq list as well. Pop this entry 2913 * before we throttle. 2914 */ 2915 plug->cached_rq = rq_list_next(rq); 2916 rq_qos_throttle(q, *bio); 2917 2918 rq->cmd_flags = (*bio)->bi_opf; 2919 INIT_LIST_HEAD(&rq->queuelist); 2920 return rq; 2921 } 2922 2923 static void bio_set_ioprio(struct bio *bio) 2924 { 2925 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2926 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2927 bio->bi_ioprio = get_current_ioprio(); 2928 blkcg_set_ioprio(bio); 2929 } 2930 2931 /** 2932 * blk_mq_submit_bio - Create and send a request to block device. 2933 * @bio: Bio pointer. 2934 * 2935 * Builds up a request structure from @q and @bio and send to the device. The 2936 * request may not be queued directly to hardware if: 2937 * * This request can be merged with another one 2938 * * We want to place request at plug queue for possible future merging 2939 * * There is an IO scheduler active at this queue 2940 * 2941 * It will not queue the request if there is an error with the bio, or at the 2942 * request creation. 2943 */ 2944 void blk_mq_submit_bio(struct bio *bio) 2945 { 2946 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2947 struct blk_plug *plug = blk_mq_plug(bio); 2948 const int is_sync = op_is_sync(bio->bi_opf); 2949 struct request *rq; 2950 unsigned int nr_segs = 1; 2951 blk_status_t ret; 2952 2953 bio = blk_queue_bounce(bio, q); 2954 if (bio_may_exceed_limits(bio, &q->limits)) { 2955 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2956 if (!bio) 2957 return; 2958 } 2959 2960 if (!bio_integrity_prep(bio)) 2961 return; 2962 2963 bio_set_ioprio(bio); 2964 2965 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2966 if (!rq) { 2967 if (!bio) 2968 return; 2969 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2970 if (unlikely(!rq)) 2971 return; 2972 } 2973 2974 trace_block_getrq(bio); 2975 2976 rq_qos_track(q, rq, bio); 2977 2978 blk_mq_bio_to_request(rq, bio, nr_segs); 2979 2980 ret = blk_crypto_init_request(rq); 2981 if (ret != BLK_STS_OK) { 2982 bio->bi_status = ret; 2983 bio_endio(bio); 2984 blk_mq_free_request(rq); 2985 return; 2986 } 2987 2988 if (op_is_flush(bio->bi_opf)) { 2989 blk_insert_flush(rq); 2990 return; 2991 } 2992 2993 if (plug) 2994 blk_add_rq_to_plug(plug, rq); 2995 else if ((rq->rq_flags & RQF_ELV) || 2996 (rq->mq_hctx->dispatch_busy && 2997 (q->nr_hw_queues == 1 || !is_sync))) 2998 blk_mq_sched_insert_request(rq, false, true, true); 2999 else 3000 blk_mq_run_dispatch_ops(rq->q, 3001 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 3002 } 3003 3004 #ifdef CONFIG_BLK_MQ_STACKING 3005 /** 3006 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3007 * @rq: the request being queued 3008 */ 3009 blk_status_t blk_insert_cloned_request(struct request *rq) 3010 { 3011 struct request_queue *q = rq->q; 3012 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3013 blk_status_t ret; 3014 3015 if (blk_rq_sectors(rq) > max_sectors) { 3016 /* 3017 * SCSI device does not have a good way to return if 3018 * Write Same/Zero is actually supported. If a device rejects 3019 * a non-read/write command (discard, write same,etc.) the 3020 * low-level device driver will set the relevant queue limit to 3021 * 0 to prevent blk-lib from issuing more of the offending 3022 * operations. Commands queued prior to the queue limit being 3023 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3024 * errors being propagated to upper layers. 3025 */ 3026 if (max_sectors == 0) 3027 return BLK_STS_NOTSUPP; 3028 3029 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3030 __func__, blk_rq_sectors(rq), max_sectors); 3031 return BLK_STS_IOERR; 3032 } 3033 3034 /* 3035 * The queue settings related to segment counting may differ from the 3036 * original queue. 3037 */ 3038 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3039 if (rq->nr_phys_segments > queue_max_segments(q)) { 3040 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 3041 __func__, rq->nr_phys_segments, queue_max_segments(q)); 3042 return BLK_STS_IOERR; 3043 } 3044 3045 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3046 return BLK_STS_IOERR; 3047 3048 if (blk_crypto_insert_cloned_request(rq)) 3049 return BLK_STS_IOERR; 3050 3051 blk_account_io_start(rq); 3052 3053 /* 3054 * Since we have a scheduler attached on the top device, 3055 * bypass a potential scheduler on the bottom device for 3056 * insert. 3057 */ 3058 blk_mq_run_dispatch_ops(q, 3059 ret = blk_mq_request_issue_directly(rq, true)); 3060 if (ret) 3061 blk_account_io_done(rq, ktime_get_ns()); 3062 return ret; 3063 } 3064 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3065 3066 /** 3067 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3068 * @rq: the clone request to be cleaned up 3069 * 3070 * Description: 3071 * Free all bios in @rq for a cloned request. 3072 */ 3073 void blk_rq_unprep_clone(struct request *rq) 3074 { 3075 struct bio *bio; 3076 3077 while ((bio = rq->bio) != NULL) { 3078 rq->bio = bio->bi_next; 3079 3080 bio_put(bio); 3081 } 3082 } 3083 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3084 3085 /** 3086 * blk_rq_prep_clone - Helper function to setup clone request 3087 * @rq: the request to be setup 3088 * @rq_src: original request to be cloned 3089 * @bs: bio_set that bios for clone are allocated from 3090 * @gfp_mask: memory allocation mask for bio 3091 * @bio_ctr: setup function to be called for each clone bio. 3092 * Returns %0 for success, non %0 for failure. 3093 * @data: private data to be passed to @bio_ctr 3094 * 3095 * Description: 3096 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3097 * Also, pages which the original bios are pointing to are not copied 3098 * and the cloned bios just point same pages. 3099 * So cloned bios must be completed before original bios, which means 3100 * the caller must complete @rq before @rq_src. 3101 */ 3102 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3103 struct bio_set *bs, gfp_t gfp_mask, 3104 int (*bio_ctr)(struct bio *, struct bio *, void *), 3105 void *data) 3106 { 3107 struct bio *bio, *bio_src; 3108 3109 if (!bs) 3110 bs = &fs_bio_set; 3111 3112 __rq_for_each_bio(bio_src, rq_src) { 3113 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3114 bs); 3115 if (!bio) 3116 goto free_and_out; 3117 3118 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3119 goto free_and_out; 3120 3121 if (rq->bio) { 3122 rq->biotail->bi_next = bio; 3123 rq->biotail = bio; 3124 } else { 3125 rq->bio = rq->biotail = bio; 3126 } 3127 bio = NULL; 3128 } 3129 3130 /* Copy attributes of the original request to the clone request. */ 3131 rq->__sector = blk_rq_pos(rq_src); 3132 rq->__data_len = blk_rq_bytes(rq_src); 3133 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3134 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3135 rq->special_vec = rq_src->special_vec; 3136 } 3137 rq->nr_phys_segments = rq_src->nr_phys_segments; 3138 rq->ioprio = rq_src->ioprio; 3139 3140 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3141 goto free_and_out; 3142 3143 return 0; 3144 3145 free_and_out: 3146 if (bio) 3147 bio_put(bio); 3148 blk_rq_unprep_clone(rq); 3149 3150 return -ENOMEM; 3151 } 3152 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3153 #endif /* CONFIG_BLK_MQ_STACKING */ 3154 3155 /* 3156 * Steal bios from a request and add them to a bio list. 3157 * The request must not have been partially completed before. 3158 */ 3159 void blk_steal_bios(struct bio_list *list, struct request *rq) 3160 { 3161 if (rq->bio) { 3162 if (list->tail) 3163 list->tail->bi_next = rq->bio; 3164 else 3165 list->head = rq->bio; 3166 list->tail = rq->biotail; 3167 3168 rq->bio = NULL; 3169 rq->biotail = NULL; 3170 } 3171 3172 rq->__data_len = 0; 3173 } 3174 EXPORT_SYMBOL_GPL(blk_steal_bios); 3175 3176 static size_t order_to_size(unsigned int order) 3177 { 3178 return (size_t)PAGE_SIZE << order; 3179 } 3180 3181 /* called before freeing request pool in @tags */ 3182 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3183 struct blk_mq_tags *tags) 3184 { 3185 struct page *page; 3186 unsigned long flags; 3187 3188 /* 3189 * There is no need to clear mapping if driver tags is not initialized 3190 * or the mapping belongs to the driver tags. 3191 */ 3192 if (!drv_tags || drv_tags == tags) 3193 return; 3194 3195 list_for_each_entry(page, &tags->page_list, lru) { 3196 unsigned long start = (unsigned long)page_address(page); 3197 unsigned long end = start + order_to_size(page->private); 3198 int i; 3199 3200 for (i = 0; i < drv_tags->nr_tags; i++) { 3201 struct request *rq = drv_tags->rqs[i]; 3202 unsigned long rq_addr = (unsigned long)rq; 3203 3204 if (rq_addr >= start && rq_addr < end) { 3205 WARN_ON_ONCE(req_ref_read(rq) != 0); 3206 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3207 } 3208 } 3209 } 3210 3211 /* 3212 * Wait until all pending iteration is done. 3213 * 3214 * Request reference is cleared and it is guaranteed to be observed 3215 * after the ->lock is released. 3216 */ 3217 spin_lock_irqsave(&drv_tags->lock, flags); 3218 spin_unlock_irqrestore(&drv_tags->lock, flags); 3219 } 3220 3221 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3222 unsigned int hctx_idx) 3223 { 3224 struct blk_mq_tags *drv_tags; 3225 struct page *page; 3226 3227 if (list_empty(&tags->page_list)) 3228 return; 3229 3230 if (blk_mq_is_shared_tags(set->flags)) 3231 drv_tags = set->shared_tags; 3232 else 3233 drv_tags = set->tags[hctx_idx]; 3234 3235 if (tags->static_rqs && set->ops->exit_request) { 3236 int i; 3237 3238 for (i = 0; i < tags->nr_tags; i++) { 3239 struct request *rq = tags->static_rqs[i]; 3240 3241 if (!rq) 3242 continue; 3243 set->ops->exit_request(set, rq, hctx_idx); 3244 tags->static_rqs[i] = NULL; 3245 } 3246 } 3247 3248 blk_mq_clear_rq_mapping(drv_tags, tags); 3249 3250 while (!list_empty(&tags->page_list)) { 3251 page = list_first_entry(&tags->page_list, struct page, lru); 3252 list_del_init(&page->lru); 3253 /* 3254 * Remove kmemleak object previously allocated in 3255 * blk_mq_alloc_rqs(). 3256 */ 3257 kmemleak_free(page_address(page)); 3258 __free_pages(page, page->private); 3259 } 3260 } 3261 3262 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3263 { 3264 kfree(tags->rqs); 3265 tags->rqs = NULL; 3266 kfree(tags->static_rqs); 3267 tags->static_rqs = NULL; 3268 3269 blk_mq_free_tags(tags); 3270 } 3271 3272 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3273 unsigned int hctx_idx) 3274 { 3275 int i; 3276 3277 for (i = 0; i < set->nr_maps; i++) { 3278 unsigned int start = set->map[i].queue_offset; 3279 unsigned int end = start + set->map[i].nr_queues; 3280 3281 if (hctx_idx >= start && hctx_idx < end) 3282 break; 3283 } 3284 3285 if (i >= set->nr_maps) 3286 i = HCTX_TYPE_DEFAULT; 3287 3288 return i; 3289 } 3290 3291 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3292 unsigned int hctx_idx) 3293 { 3294 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3295 3296 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3297 } 3298 3299 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3300 unsigned int hctx_idx, 3301 unsigned int nr_tags, 3302 unsigned int reserved_tags) 3303 { 3304 int node = blk_mq_get_hctx_node(set, hctx_idx); 3305 struct blk_mq_tags *tags; 3306 3307 if (node == NUMA_NO_NODE) 3308 node = set->numa_node; 3309 3310 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3311 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3312 if (!tags) 3313 return NULL; 3314 3315 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3316 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3317 node); 3318 if (!tags->rqs) 3319 goto err_free_tags; 3320 3321 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3322 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3323 node); 3324 if (!tags->static_rqs) 3325 goto err_free_rqs; 3326 3327 return tags; 3328 3329 err_free_rqs: 3330 kfree(tags->rqs); 3331 err_free_tags: 3332 blk_mq_free_tags(tags); 3333 return NULL; 3334 } 3335 3336 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3337 unsigned int hctx_idx, int node) 3338 { 3339 int ret; 3340 3341 if (set->ops->init_request) { 3342 ret = set->ops->init_request(set, rq, hctx_idx, node); 3343 if (ret) 3344 return ret; 3345 } 3346 3347 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3348 return 0; 3349 } 3350 3351 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3352 struct blk_mq_tags *tags, 3353 unsigned int hctx_idx, unsigned int depth) 3354 { 3355 unsigned int i, j, entries_per_page, max_order = 4; 3356 int node = blk_mq_get_hctx_node(set, hctx_idx); 3357 size_t rq_size, left; 3358 3359 if (node == NUMA_NO_NODE) 3360 node = set->numa_node; 3361 3362 INIT_LIST_HEAD(&tags->page_list); 3363 3364 /* 3365 * rq_size is the size of the request plus driver payload, rounded 3366 * to the cacheline size 3367 */ 3368 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3369 cache_line_size()); 3370 left = rq_size * depth; 3371 3372 for (i = 0; i < depth; ) { 3373 int this_order = max_order; 3374 struct page *page; 3375 int to_do; 3376 void *p; 3377 3378 while (this_order && left < order_to_size(this_order - 1)) 3379 this_order--; 3380 3381 do { 3382 page = alloc_pages_node(node, 3383 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3384 this_order); 3385 if (page) 3386 break; 3387 if (!this_order--) 3388 break; 3389 if (order_to_size(this_order) < rq_size) 3390 break; 3391 } while (1); 3392 3393 if (!page) 3394 goto fail; 3395 3396 page->private = this_order; 3397 list_add_tail(&page->lru, &tags->page_list); 3398 3399 p = page_address(page); 3400 /* 3401 * Allow kmemleak to scan these pages as they contain pointers 3402 * to additional allocations like via ops->init_request(). 3403 */ 3404 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3405 entries_per_page = order_to_size(this_order) / rq_size; 3406 to_do = min(entries_per_page, depth - i); 3407 left -= to_do * rq_size; 3408 for (j = 0; j < to_do; j++) { 3409 struct request *rq = p; 3410 3411 tags->static_rqs[i] = rq; 3412 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3413 tags->static_rqs[i] = NULL; 3414 goto fail; 3415 } 3416 3417 p += rq_size; 3418 i++; 3419 } 3420 } 3421 return 0; 3422 3423 fail: 3424 blk_mq_free_rqs(set, tags, hctx_idx); 3425 return -ENOMEM; 3426 } 3427 3428 struct rq_iter_data { 3429 struct blk_mq_hw_ctx *hctx; 3430 bool has_rq; 3431 }; 3432 3433 static bool blk_mq_has_request(struct request *rq, void *data) 3434 { 3435 struct rq_iter_data *iter_data = data; 3436 3437 if (rq->mq_hctx != iter_data->hctx) 3438 return true; 3439 iter_data->has_rq = true; 3440 return false; 3441 } 3442 3443 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3444 { 3445 struct blk_mq_tags *tags = hctx->sched_tags ? 3446 hctx->sched_tags : hctx->tags; 3447 struct rq_iter_data data = { 3448 .hctx = hctx, 3449 }; 3450 3451 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3452 return data.has_rq; 3453 } 3454 3455 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3456 struct blk_mq_hw_ctx *hctx) 3457 { 3458 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3459 return false; 3460 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3461 return false; 3462 return true; 3463 } 3464 3465 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3466 { 3467 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3468 struct blk_mq_hw_ctx, cpuhp_online); 3469 3470 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3471 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3472 return 0; 3473 3474 /* 3475 * Prevent new request from being allocated on the current hctx. 3476 * 3477 * The smp_mb__after_atomic() Pairs with the implied barrier in 3478 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3479 * seen once we return from the tag allocator. 3480 */ 3481 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3482 smp_mb__after_atomic(); 3483 3484 /* 3485 * Try to grab a reference to the queue and wait for any outstanding 3486 * requests. If we could not grab a reference the queue has been 3487 * frozen and there are no requests. 3488 */ 3489 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3490 while (blk_mq_hctx_has_requests(hctx)) 3491 msleep(5); 3492 percpu_ref_put(&hctx->queue->q_usage_counter); 3493 } 3494 3495 return 0; 3496 } 3497 3498 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3499 { 3500 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3501 struct blk_mq_hw_ctx, cpuhp_online); 3502 3503 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3504 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3505 return 0; 3506 } 3507 3508 /* 3509 * 'cpu' is going away. splice any existing rq_list entries from this 3510 * software queue to the hw queue dispatch list, and ensure that it 3511 * gets run. 3512 */ 3513 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3514 { 3515 struct blk_mq_hw_ctx *hctx; 3516 struct blk_mq_ctx *ctx; 3517 LIST_HEAD(tmp); 3518 enum hctx_type type; 3519 3520 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3521 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3522 return 0; 3523 3524 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3525 type = hctx->type; 3526 3527 spin_lock(&ctx->lock); 3528 if (!list_empty(&ctx->rq_lists[type])) { 3529 list_splice_init(&ctx->rq_lists[type], &tmp); 3530 blk_mq_hctx_clear_pending(hctx, ctx); 3531 } 3532 spin_unlock(&ctx->lock); 3533 3534 if (list_empty(&tmp)) 3535 return 0; 3536 3537 spin_lock(&hctx->lock); 3538 list_splice_tail_init(&tmp, &hctx->dispatch); 3539 spin_unlock(&hctx->lock); 3540 3541 blk_mq_run_hw_queue(hctx, true); 3542 return 0; 3543 } 3544 3545 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3546 { 3547 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3548 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3549 &hctx->cpuhp_online); 3550 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3551 &hctx->cpuhp_dead); 3552 } 3553 3554 /* 3555 * Before freeing hw queue, clearing the flush request reference in 3556 * tags->rqs[] for avoiding potential UAF. 3557 */ 3558 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3559 unsigned int queue_depth, struct request *flush_rq) 3560 { 3561 int i; 3562 unsigned long flags; 3563 3564 /* The hw queue may not be mapped yet */ 3565 if (!tags) 3566 return; 3567 3568 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3569 3570 for (i = 0; i < queue_depth; i++) 3571 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3572 3573 /* 3574 * Wait until all pending iteration is done. 3575 * 3576 * Request reference is cleared and it is guaranteed to be observed 3577 * after the ->lock is released. 3578 */ 3579 spin_lock_irqsave(&tags->lock, flags); 3580 spin_unlock_irqrestore(&tags->lock, flags); 3581 } 3582 3583 /* hctx->ctxs will be freed in queue's release handler */ 3584 static void blk_mq_exit_hctx(struct request_queue *q, 3585 struct blk_mq_tag_set *set, 3586 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3587 { 3588 struct request *flush_rq = hctx->fq->flush_rq; 3589 3590 if (blk_mq_hw_queue_mapped(hctx)) 3591 blk_mq_tag_idle(hctx); 3592 3593 if (blk_queue_init_done(q)) 3594 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3595 set->queue_depth, flush_rq); 3596 if (set->ops->exit_request) 3597 set->ops->exit_request(set, flush_rq, hctx_idx); 3598 3599 if (set->ops->exit_hctx) 3600 set->ops->exit_hctx(hctx, hctx_idx); 3601 3602 blk_mq_remove_cpuhp(hctx); 3603 3604 xa_erase(&q->hctx_table, hctx_idx); 3605 3606 spin_lock(&q->unused_hctx_lock); 3607 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3608 spin_unlock(&q->unused_hctx_lock); 3609 } 3610 3611 static void blk_mq_exit_hw_queues(struct request_queue *q, 3612 struct blk_mq_tag_set *set, int nr_queue) 3613 { 3614 struct blk_mq_hw_ctx *hctx; 3615 unsigned long i; 3616 3617 queue_for_each_hw_ctx(q, hctx, i) { 3618 if (i == nr_queue) 3619 break; 3620 blk_mq_exit_hctx(q, set, hctx, i); 3621 } 3622 } 3623 3624 static int blk_mq_init_hctx(struct request_queue *q, 3625 struct blk_mq_tag_set *set, 3626 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3627 { 3628 hctx->queue_num = hctx_idx; 3629 3630 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3631 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3632 &hctx->cpuhp_online); 3633 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3634 3635 hctx->tags = set->tags[hctx_idx]; 3636 3637 if (set->ops->init_hctx && 3638 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3639 goto unregister_cpu_notifier; 3640 3641 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3642 hctx->numa_node)) 3643 goto exit_hctx; 3644 3645 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3646 goto exit_flush_rq; 3647 3648 return 0; 3649 3650 exit_flush_rq: 3651 if (set->ops->exit_request) 3652 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3653 exit_hctx: 3654 if (set->ops->exit_hctx) 3655 set->ops->exit_hctx(hctx, hctx_idx); 3656 unregister_cpu_notifier: 3657 blk_mq_remove_cpuhp(hctx); 3658 return -1; 3659 } 3660 3661 static struct blk_mq_hw_ctx * 3662 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3663 int node) 3664 { 3665 struct blk_mq_hw_ctx *hctx; 3666 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3667 3668 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3669 if (!hctx) 3670 goto fail_alloc_hctx; 3671 3672 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3673 goto free_hctx; 3674 3675 atomic_set(&hctx->nr_active, 0); 3676 if (node == NUMA_NO_NODE) 3677 node = set->numa_node; 3678 hctx->numa_node = node; 3679 3680 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3681 spin_lock_init(&hctx->lock); 3682 INIT_LIST_HEAD(&hctx->dispatch); 3683 hctx->queue = q; 3684 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3685 3686 INIT_LIST_HEAD(&hctx->hctx_list); 3687 3688 /* 3689 * Allocate space for all possible cpus to avoid allocation at 3690 * runtime 3691 */ 3692 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3693 gfp, node); 3694 if (!hctx->ctxs) 3695 goto free_cpumask; 3696 3697 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3698 gfp, node, false, false)) 3699 goto free_ctxs; 3700 hctx->nr_ctx = 0; 3701 3702 spin_lock_init(&hctx->dispatch_wait_lock); 3703 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3704 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3705 3706 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3707 if (!hctx->fq) 3708 goto free_bitmap; 3709 3710 blk_mq_hctx_kobj_init(hctx); 3711 3712 return hctx; 3713 3714 free_bitmap: 3715 sbitmap_free(&hctx->ctx_map); 3716 free_ctxs: 3717 kfree(hctx->ctxs); 3718 free_cpumask: 3719 free_cpumask_var(hctx->cpumask); 3720 free_hctx: 3721 kfree(hctx); 3722 fail_alloc_hctx: 3723 return NULL; 3724 } 3725 3726 static void blk_mq_init_cpu_queues(struct request_queue *q, 3727 unsigned int nr_hw_queues) 3728 { 3729 struct blk_mq_tag_set *set = q->tag_set; 3730 unsigned int i, j; 3731 3732 for_each_possible_cpu(i) { 3733 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3734 struct blk_mq_hw_ctx *hctx; 3735 int k; 3736 3737 __ctx->cpu = i; 3738 spin_lock_init(&__ctx->lock); 3739 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3740 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3741 3742 __ctx->queue = q; 3743 3744 /* 3745 * Set local node, IFF we have more than one hw queue. If 3746 * not, we remain on the home node of the device 3747 */ 3748 for (j = 0; j < set->nr_maps; j++) { 3749 hctx = blk_mq_map_queue_type(q, j, i); 3750 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3751 hctx->numa_node = cpu_to_node(i); 3752 } 3753 } 3754 } 3755 3756 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3757 unsigned int hctx_idx, 3758 unsigned int depth) 3759 { 3760 struct blk_mq_tags *tags; 3761 int ret; 3762 3763 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3764 if (!tags) 3765 return NULL; 3766 3767 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3768 if (ret) { 3769 blk_mq_free_rq_map(tags); 3770 return NULL; 3771 } 3772 3773 return tags; 3774 } 3775 3776 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3777 int hctx_idx) 3778 { 3779 if (blk_mq_is_shared_tags(set->flags)) { 3780 set->tags[hctx_idx] = set->shared_tags; 3781 3782 return true; 3783 } 3784 3785 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3786 set->queue_depth); 3787 3788 return set->tags[hctx_idx]; 3789 } 3790 3791 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3792 struct blk_mq_tags *tags, 3793 unsigned int hctx_idx) 3794 { 3795 if (tags) { 3796 blk_mq_free_rqs(set, tags, hctx_idx); 3797 blk_mq_free_rq_map(tags); 3798 } 3799 } 3800 3801 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3802 unsigned int hctx_idx) 3803 { 3804 if (!blk_mq_is_shared_tags(set->flags)) 3805 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3806 3807 set->tags[hctx_idx] = NULL; 3808 } 3809 3810 static void blk_mq_map_swqueue(struct request_queue *q) 3811 { 3812 unsigned int j, hctx_idx; 3813 unsigned long i; 3814 struct blk_mq_hw_ctx *hctx; 3815 struct blk_mq_ctx *ctx; 3816 struct blk_mq_tag_set *set = q->tag_set; 3817 3818 queue_for_each_hw_ctx(q, hctx, i) { 3819 cpumask_clear(hctx->cpumask); 3820 hctx->nr_ctx = 0; 3821 hctx->dispatch_from = NULL; 3822 } 3823 3824 /* 3825 * Map software to hardware queues. 3826 * 3827 * If the cpu isn't present, the cpu is mapped to first hctx. 3828 */ 3829 for_each_possible_cpu(i) { 3830 3831 ctx = per_cpu_ptr(q->queue_ctx, i); 3832 for (j = 0; j < set->nr_maps; j++) { 3833 if (!set->map[j].nr_queues) { 3834 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3835 HCTX_TYPE_DEFAULT, i); 3836 continue; 3837 } 3838 hctx_idx = set->map[j].mq_map[i]; 3839 /* unmapped hw queue can be remapped after CPU topo changed */ 3840 if (!set->tags[hctx_idx] && 3841 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3842 /* 3843 * If tags initialization fail for some hctx, 3844 * that hctx won't be brought online. In this 3845 * case, remap the current ctx to hctx[0] which 3846 * is guaranteed to always have tags allocated 3847 */ 3848 set->map[j].mq_map[i] = 0; 3849 } 3850 3851 hctx = blk_mq_map_queue_type(q, j, i); 3852 ctx->hctxs[j] = hctx; 3853 /* 3854 * If the CPU is already set in the mask, then we've 3855 * mapped this one already. This can happen if 3856 * devices share queues across queue maps. 3857 */ 3858 if (cpumask_test_cpu(i, hctx->cpumask)) 3859 continue; 3860 3861 cpumask_set_cpu(i, hctx->cpumask); 3862 hctx->type = j; 3863 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3864 hctx->ctxs[hctx->nr_ctx++] = ctx; 3865 3866 /* 3867 * If the nr_ctx type overflows, we have exceeded the 3868 * amount of sw queues we can support. 3869 */ 3870 BUG_ON(!hctx->nr_ctx); 3871 } 3872 3873 for (; j < HCTX_MAX_TYPES; j++) 3874 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3875 HCTX_TYPE_DEFAULT, i); 3876 } 3877 3878 queue_for_each_hw_ctx(q, hctx, i) { 3879 /* 3880 * If no software queues are mapped to this hardware queue, 3881 * disable it and free the request entries. 3882 */ 3883 if (!hctx->nr_ctx) { 3884 /* Never unmap queue 0. We need it as a 3885 * fallback in case of a new remap fails 3886 * allocation 3887 */ 3888 if (i) 3889 __blk_mq_free_map_and_rqs(set, i); 3890 3891 hctx->tags = NULL; 3892 continue; 3893 } 3894 3895 hctx->tags = set->tags[i]; 3896 WARN_ON(!hctx->tags); 3897 3898 /* 3899 * Set the map size to the number of mapped software queues. 3900 * This is more accurate and more efficient than looping 3901 * over all possibly mapped software queues. 3902 */ 3903 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3904 3905 /* 3906 * Initialize batch roundrobin counts 3907 */ 3908 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3909 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3910 } 3911 } 3912 3913 /* 3914 * Caller needs to ensure that we're either frozen/quiesced, or that 3915 * the queue isn't live yet. 3916 */ 3917 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3918 { 3919 struct blk_mq_hw_ctx *hctx; 3920 unsigned long i; 3921 3922 queue_for_each_hw_ctx(q, hctx, i) { 3923 if (shared) { 3924 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3925 } else { 3926 blk_mq_tag_idle(hctx); 3927 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3928 } 3929 } 3930 } 3931 3932 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3933 bool shared) 3934 { 3935 struct request_queue *q; 3936 3937 lockdep_assert_held(&set->tag_list_lock); 3938 3939 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3940 blk_mq_freeze_queue(q); 3941 queue_set_hctx_shared(q, shared); 3942 blk_mq_unfreeze_queue(q); 3943 } 3944 } 3945 3946 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3947 { 3948 struct blk_mq_tag_set *set = q->tag_set; 3949 3950 mutex_lock(&set->tag_list_lock); 3951 list_del(&q->tag_set_list); 3952 if (list_is_singular(&set->tag_list)) { 3953 /* just transitioned to unshared */ 3954 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3955 /* update existing queue */ 3956 blk_mq_update_tag_set_shared(set, false); 3957 } 3958 mutex_unlock(&set->tag_list_lock); 3959 INIT_LIST_HEAD(&q->tag_set_list); 3960 } 3961 3962 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3963 struct request_queue *q) 3964 { 3965 mutex_lock(&set->tag_list_lock); 3966 3967 /* 3968 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3969 */ 3970 if (!list_empty(&set->tag_list) && 3971 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3972 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3973 /* update existing queue */ 3974 blk_mq_update_tag_set_shared(set, true); 3975 } 3976 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3977 queue_set_hctx_shared(q, true); 3978 list_add_tail(&q->tag_set_list, &set->tag_list); 3979 3980 mutex_unlock(&set->tag_list_lock); 3981 } 3982 3983 /* All allocations will be freed in release handler of q->mq_kobj */ 3984 static int blk_mq_alloc_ctxs(struct request_queue *q) 3985 { 3986 struct blk_mq_ctxs *ctxs; 3987 int cpu; 3988 3989 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3990 if (!ctxs) 3991 return -ENOMEM; 3992 3993 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3994 if (!ctxs->queue_ctx) 3995 goto fail; 3996 3997 for_each_possible_cpu(cpu) { 3998 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3999 ctx->ctxs = ctxs; 4000 } 4001 4002 q->mq_kobj = &ctxs->kobj; 4003 q->queue_ctx = ctxs->queue_ctx; 4004 4005 return 0; 4006 fail: 4007 kfree(ctxs); 4008 return -ENOMEM; 4009 } 4010 4011 /* 4012 * It is the actual release handler for mq, but we do it from 4013 * request queue's release handler for avoiding use-after-free 4014 * and headache because q->mq_kobj shouldn't have been introduced, 4015 * but we can't group ctx/kctx kobj without it. 4016 */ 4017 void blk_mq_release(struct request_queue *q) 4018 { 4019 struct blk_mq_hw_ctx *hctx, *next; 4020 unsigned long i; 4021 4022 queue_for_each_hw_ctx(q, hctx, i) 4023 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4024 4025 /* all hctx are in .unused_hctx_list now */ 4026 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4027 list_del_init(&hctx->hctx_list); 4028 kobject_put(&hctx->kobj); 4029 } 4030 4031 xa_destroy(&q->hctx_table); 4032 4033 /* 4034 * release .mq_kobj and sw queue's kobject now because 4035 * both share lifetime with request queue. 4036 */ 4037 blk_mq_sysfs_deinit(q); 4038 } 4039 4040 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4041 void *queuedata) 4042 { 4043 struct request_queue *q; 4044 int ret; 4045 4046 q = blk_alloc_queue(set->numa_node); 4047 if (!q) 4048 return ERR_PTR(-ENOMEM); 4049 q->queuedata = queuedata; 4050 ret = blk_mq_init_allocated_queue(set, q); 4051 if (ret) { 4052 blk_put_queue(q); 4053 return ERR_PTR(ret); 4054 } 4055 return q; 4056 } 4057 4058 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4059 { 4060 return blk_mq_init_queue_data(set, NULL); 4061 } 4062 EXPORT_SYMBOL(blk_mq_init_queue); 4063 4064 /** 4065 * blk_mq_destroy_queue - shutdown a request queue 4066 * @q: request queue to shutdown 4067 * 4068 * This shuts down a request queue allocated by blk_mq_init_queue() and drops 4069 * the initial reference. All future requests will failed with -ENODEV. 4070 * 4071 * Context: can sleep 4072 */ 4073 void blk_mq_destroy_queue(struct request_queue *q) 4074 { 4075 WARN_ON_ONCE(!queue_is_mq(q)); 4076 WARN_ON_ONCE(blk_queue_registered(q)); 4077 4078 might_sleep(); 4079 4080 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4081 blk_queue_start_drain(q); 4082 blk_mq_freeze_queue_wait(q); 4083 4084 blk_sync_queue(q); 4085 blk_mq_cancel_work_sync(q); 4086 blk_mq_exit_queue(q); 4087 } 4088 EXPORT_SYMBOL(blk_mq_destroy_queue); 4089 4090 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4091 struct lock_class_key *lkclass) 4092 { 4093 struct request_queue *q; 4094 struct gendisk *disk; 4095 4096 q = blk_mq_init_queue_data(set, queuedata); 4097 if (IS_ERR(q)) 4098 return ERR_CAST(q); 4099 4100 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4101 if (!disk) { 4102 blk_mq_destroy_queue(q); 4103 blk_put_queue(q); 4104 return ERR_PTR(-ENOMEM); 4105 } 4106 set_bit(GD_OWNS_QUEUE, &disk->state); 4107 return disk; 4108 } 4109 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4110 4111 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4112 struct lock_class_key *lkclass) 4113 { 4114 struct gendisk *disk; 4115 4116 if (!blk_get_queue(q)) 4117 return NULL; 4118 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4119 if (!disk) 4120 blk_put_queue(q); 4121 return disk; 4122 } 4123 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4124 4125 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4126 struct blk_mq_tag_set *set, struct request_queue *q, 4127 int hctx_idx, int node) 4128 { 4129 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4130 4131 /* reuse dead hctx first */ 4132 spin_lock(&q->unused_hctx_lock); 4133 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4134 if (tmp->numa_node == node) { 4135 hctx = tmp; 4136 break; 4137 } 4138 } 4139 if (hctx) 4140 list_del_init(&hctx->hctx_list); 4141 spin_unlock(&q->unused_hctx_lock); 4142 4143 if (!hctx) 4144 hctx = blk_mq_alloc_hctx(q, set, node); 4145 if (!hctx) 4146 goto fail; 4147 4148 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4149 goto free_hctx; 4150 4151 return hctx; 4152 4153 free_hctx: 4154 kobject_put(&hctx->kobj); 4155 fail: 4156 return NULL; 4157 } 4158 4159 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4160 struct request_queue *q) 4161 { 4162 struct blk_mq_hw_ctx *hctx; 4163 unsigned long i, j; 4164 4165 /* protect against switching io scheduler */ 4166 mutex_lock(&q->sysfs_lock); 4167 for (i = 0; i < set->nr_hw_queues; i++) { 4168 int old_node; 4169 int node = blk_mq_get_hctx_node(set, i); 4170 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4171 4172 if (old_hctx) { 4173 old_node = old_hctx->numa_node; 4174 blk_mq_exit_hctx(q, set, old_hctx, i); 4175 } 4176 4177 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4178 if (!old_hctx) 4179 break; 4180 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4181 node, old_node); 4182 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4183 WARN_ON_ONCE(!hctx); 4184 } 4185 } 4186 /* 4187 * Increasing nr_hw_queues fails. Free the newly allocated 4188 * hctxs and keep the previous q->nr_hw_queues. 4189 */ 4190 if (i != set->nr_hw_queues) { 4191 j = q->nr_hw_queues; 4192 } else { 4193 j = i; 4194 q->nr_hw_queues = set->nr_hw_queues; 4195 } 4196 4197 xa_for_each_start(&q->hctx_table, j, hctx, j) 4198 blk_mq_exit_hctx(q, set, hctx, j); 4199 mutex_unlock(&q->sysfs_lock); 4200 } 4201 4202 static void blk_mq_update_poll_flag(struct request_queue *q) 4203 { 4204 struct blk_mq_tag_set *set = q->tag_set; 4205 4206 if (set->nr_maps > HCTX_TYPE_POLL && 4207 set->map[HCTX_TYPE_POLL].nr_queues) 4208 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4209 else 4210 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4211 } 4212 4213 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4214 struct request_queue *q) 4215 { 4216 /* mark the queue as mq asap */ 4217 q->mq_ops = set->ops; 4218 4219 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4220 blk_mq_poll_stats_bkt, 4221 BLK_MQ_POLL_STATS_BKTS, q); 4222 if (!q->poll_cb) 4223 goto err_exit; 4224 4225 if (blk_mq_alloc_ctxs(q)) 4226 goto err_poll; 4227 4228 /* init q->mq_kobj and sw queues' kobjects */ 4229 blk_mq_sysfs_init(q); 4230 4231 INIT_LIST_HEAD(&q->unused_hctx_list); 4232 spin_lock_init(&q->unused_hctx_lock); 4233 4234 xa_init(&q->hctx_table); 4235 4236 blk_mq_realloc_hw_ctxs(set, q); 4237 if (!q->nr_hw_queues) 4238 goto err_hctxs; 4239 4240 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4241 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4242 4243 q->tag_set = set; 4244 4245 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4246 blk_mq_update_poll_flag(q); 4247 4248 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4249 INIT_LIST_HEAD(&q->requeue_list); 4250 spin_lock_init(&q->requeue_lock); 4251 4252 q->nr_requests = set->queue_depth; 4253 4254 /* 4255 * Default to classic polling 4256 */ 4257 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4258 4259 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4260 blk_mq_add_queue_tag_set(set, q); 4261 blk_mq_map_swqueue(q); 4262 return 0; 4263 4264 err_hctxs: 4265 blk_mq_release(q); 4266 err_poll: 4267 blk_stat_free_callback(q->poll_cb); 4268 q->poll_cb = NULL; 4269 err_exit: 4270 q->mq_ops = NULL; 4271 return -ENOMEM; 4272 } 4273 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4274 4275 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4276 void blk_mq_exit_queue(struct request_queue *q) 4277 { 4278 struct blk_mq_tag_set *set = q->tag_set; 4279 4280 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4281 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4282 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4283 blk_mq_del_queue_tag_set(q); 4284 } 4285 4286 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4287 { 4288 int i; 4289 4290 if (blk_mq_is_shared_tags(set->flags)) { 4291 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4292 BLK_MQ_NO_HCTX_IDX, 4293 set->queue_depth); 4294 if (!set->shared_tags) 4295 return -ENOMEM; 4296 } 4297 4298 for (i = 0; i < set->nr_hw_queues; i++) { 4299 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4300 goto out_unwind; 4301 cond_resched(); 4302 } 4303 4304 return 0; 4305 4306 out_unwind: 4307 while (--i >= 0) 4308 __blk_mq_free_map_and_rqs(set, i); 4309 4310 if (blk_mq_is_shared_tags(set->flags)) { 4311 blk_mq_free_map_and_rqs(set, set->shared_tags, 4312 BLK_MQ_NO_HCTX_IDX); 4313 } 4314 4315 return -ENOMEM; 4316 } 4317 4318 /* 4319 * Allocate the request maps associated with this tag_set. Note that this 4320 * may reduce the depth asked for, if memory is tight. set->queue_depth 4321 * will be updated to reflect the allocated depth. 4322 */ 4323 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4324 { 4325 unsigned int depth; 4326 int err; 4327 4328 depth = set->queue_depth; 4329 do { 4330 err = __blk_mq_alloc_rq_maps(set); 4331 if (!err) 4332 break; 4333 4334 set->queue_depth >>= 1; 4335 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4336 err = -ENOMEM; 4337 break; 4338 } 4339 } while (set->queue_depth); 4340 4341 if (!set->queue_depth || err) { 4342 pr_err("blk-mq: failed to allocate request map\n"); 4343 return -ENOMEM; 4344 } 4345 4346 if (depth != set->queue_depth) 4347 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4348 depth, set->queue_depth); 4349 4350 return 0; 4351 } 4352 4353 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4354 { 4355 /* 4356 * blk_mq_map_queues() and multiple .map_queues() implementations 4357 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4358 * number of hardware queues. 4359 */ 4360 if (set->nr_maps == 1) 4361 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4362 4363 if (set->ops->map_queues && !is_kdump_kernel()) { 4364 int i; 4365 4366 /* 4367 * transport .map_queues is usually done in the following 4368 * way: 4369 * 4370 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4371 * mask = get_cpu_mask(queue) 4372 * for_each_cpu(cpu, mask) 4373 * set->map[x].mq_map[cpu] = queue; 4374 * } 4375 * 4376 * When we need to remap, the table has to be cleared for 4377 * killing stale mapping since one CPU may not be mapped 4378 * to any hw queue. 4379 */ 4380 for (i = 0; i < set->nr_maps; i++) 4381 blk_mq_clear_mq_map(&set->map[i]); 4382 4383 set->ops->map_queues(set); 4384 } else { 4385 BUG_ON(set->nr_maps > 1); 4386 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4387 } 4388 } 4389 4390 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4391 int new_nr_hw_queues) 4392 { 4393 struct blk_mq_tags **new_tags; 4394 4395 if (set->nr_hw_queues >= new_nr_hw_queues) 4396 goto done; 4397 4398 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4399 GFP_KERNEL, set->numa_node); 4400 if (!new_tags) 4401 return -ENOMEM; 4402 4403 if (set->tags) 4404 memcpy(new_tags, set->tags, set->nr_hw_queues * 4405 sizeof(*set->tags)); 4406 kfree(set->tags); 4407 set->tags = new_tags; 4408 done: 4409 set->nr_hw_queues = new_nr_hw_queues; 4410 return 0; 4411 } 4412 4413 /* 4414 * Alloc a tag set to be associated with one or more request queues. 4415 * May fail with EINVAL for various error conditions. May adjust the 4416 * requested depth down, if it's too large. In that case, the set 4417 * value will be stored in set->queue_depth. 4418 */ 4419 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4420 { 4421 int i, ret; 4422 4423 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4424 4425 if (!set->nr_hw_queues) 4426 return -EINVAL; 4427 if (!set->queue_depth) 4428 return -EINVAL; 4429 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4430 return -EINVAL; 4431 4432 if (!set->ops->queue_rq) 4433 return -EINVAL; 4434 4435 if (!set->ops->get_budget ^ !set->ops->put_budget) 4436 return -EINVAL; 4437 4438 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4439 pr_info("blk-mq: reduced tag depth to %u\n", 4440 BLK_MQ_MAX_DEPTH); 4441 set->queue_depth = BLK_MQ_MAX_DEPTH; 4442 } 4443 4444 if (!set->nr_maps) 4445 set->nr_maps = 1; 4446 else if (set->nr_maps > HCTX_MAX_TYPES) 4447 return -EINVAL; 4448 4449 /* 4450 * If a crashdump is active, then we are potentially in a very 4451 * memory constrained environment. Limit us to 1 queue and 4452 * 64 tags to prevent using too much memory. 4453 */ 4454 if (is_kdump_kernel()) { 4455 set->nr_hw_queues = 1; 4456 set->nr_maps = 1; 4457 set->queue_depth = min(64U, set->queue_depth); 4458 } 4459 /* 4460 * There is no use for more h/w queues than cpus if we just have 4461 * a single map 4462 */ 4463 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4464 set->nr_hw_queues = nr_cpu_ids; 4465 4466 if (set->flags & BLK_MQ_F_BLOCKING) { 4467 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4468 if (!set->srcu) 4469 return -ENOMEM; 4470 ret = init_srcu_struct(set->srcu); 4471 if (ret) 4472 goto out_free_srcu; 4473 } 4474 4475 ret = -ENOMEM; 4476 set->tags = kcalloc_node(set->nr_hw_queues, 4477 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4478 set->numa_node); 4479 if (!set->tags) 4480 goto out_cleanup_srcu; 4481 4482 for (i = 0; i < set->nr_maps; i++) { 4483 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4484 sizeof(set->map[i].mq_map[0]), 4485 GFP_KERNEL, set->numa_node); 4486 if (!set->map[i].mq_map) 4487 goto out_free_mq_map; 4488 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4489 } 4490 4491 blk_mq_update_queue_map(set); 4492 4493 ret = blk_mq_alloc_set_map_and_rqs(set); 4494 if (ret) 4495 goto out_free_mq_map; 4496 4497 mutex_init(&set->tag_list_lock); 4498 INIT_LIST_HEAD(&set->tag_list); 4499 4500 return 0; 4501 4502 out_free_mq_map: 4503 for (i = 0; i < set->nr_maps; i++) { 4504 kfree(set->map[i].mq_map); 4505 set->map[i].mq_map = NULL; 4506 } 4507 kfree(set->tags); 4508 set->tags = NULL; 4509 out_cleanup_srcu: 4510 if (set->flags & BLK_MQ_F_BLOCKING) 4511 cleanup_srcu_struct(set->srcu); 4512 out_free_srcu: 4513 if (set->flags & BLK_MQ_F_BLOCKING) 4514 kfree(set->srcu); 4515 return ret; 4516 } 4517 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4518 4519 /* allocate and initialize a tagset for a simple single-queue device */ 4520 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4521 const struct blk_mq_ops *ops, unsigned int queue_depth, 4522 unsigned int set_flags) 4523 { 4524 memset(set, 0, sizeof(*set)); 4525 set->ops = ops; 4526 set->nr_hw_queues = 1; 4527 set->nr_maps = 1; 4528 set->queue_depth = queue_depth; 4529 set->numa_node = NUMA_NO_NODE; 4530 set->flags = set_flags; 4531 return blk_mq_alloc_tag_set(set); 4532 } 4533 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4534 4535 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4536 { 4537 int i, j; 4538 4539 for (i = 0; i < set->nr_hw_queues; i++) 4540 __blk_mq_free_map_and_rqs(set, i); 4541 4542 if (blk_mq_is_shared_tags(set->flags)) { 4543 blk_mq_free_map_and_rqs(set, set->shared_tags, 4544 BLK_MQ_NO_HCTX_IDX); 4545 } 4546 4547 for (j = 0; j < set->nr_maps; j++) { 4548 kfree(set->map[j].mq_map); 4549 set->map[j].mq_map = NULL; 4550 } 4551 4552 kfree(set->tags); 4553 set->tags = NULL; 4554 if (set->flags & BLK_MQ_F_BLOCKING) { 4555 cleanup_srcu_struct(set->srcu); 4556 kfree(set->srcu); 4557 } 4558 } 4559 EXPORT_SYMBOL(blk_mq_free_tag_set); 4560 4561 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4562 { 4563 struct blk_mq_tag_set *set = q->tag_set; 4564 struct blk_mq_hw_ctx *hctx; 4565 int ret; 4566 unsigned long i; 4567 4568 if (!set) 4569 return -EINVAL; 4570 4571 if (q->nr_requests == nr) 4572 return 0; 4573 4574 blk_mq_freeze_queue(q); 4575 blk_mq_quiesce_queue(q); 4576 4577 ret = 0; 4578 queue_for_each_hw_ctx(q, hctx, i) { 4579 if (!hctx->tags) 4580 continue; 4581 /* 4582 * If we're using an MQ scheduler, just update the scheduler 4583 * queue depth. This is similar to what the old code would do. 4584 */ 4585 if (hctx->sched_tags) { 4586 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4587 nr, true); 4588 } else { 4589 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4590 false); 4591 } 4592 if (ret) 4593 break; 4594 if (q->elevator && q->elevator->type->ops.depth_updated) 4595 q->elevator->type->ops.depth_updated(hctx); 4596 } 4597 if (!ret) { 4598 q->nr_requests = nr; 4599 if (blk_mq_is_shared_tags(set->flags)) { 4600 if (q->elevator) 4601 blk_mq_tag_update_sched_shared_tags(q); 4602 else 4603 blk_mq_tag_resize_shared_tags(set, nr); 4604 } 4605 } 4606 4607 blk_mq_unquiesce_queue(q); 4608 blk_mq_unfreeze_queue(q); 4609 4610 return ret; 4611 } 4612 4613 /* 4614 * request_queue and elevator_type pair. 4615 * It is just used by __blk_mq_update_nr_hw_queues to cache 4616 * the elevator_type associated with a request_queue. 4617 */ 4618 struct blk_mq_qe_pair { 4619 struct list_head node; 4620 struct request_queue *q; 4621 struct elevator_type *type; 4622 }; 4623 4624 /* 4625 * Cache the elevator_type in qe pair list and switch the 4626 * io scheduler to 'none' 4627 */ 4628 static bool blk_mq_elv_switch_none(struct list_head *head, 4629 struct request_queue *q) 4630 { 4631 struct blk_mq_qe_pair *qe; 4632 4633 if (!q->elevator) 4634 return true; 4635 4636 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4637 if (!qe) 4638 return false; 4639 4640 /* q->elevator needs protection from ->sysfs_lock */ 4641 mutex_lock(&q->sysfs_lock); 4642 4643 INIT_LIST_HEAD(&qe->node); 4644 qe->q = q; 4645 qe->type = q->elevator->type; 4646 /* keep a reference to the elevator module as we'll switch back */ 4647 __elevator_get(qe->type); 4648 list_add(&qe->node, head); 4649 elevator_disable(q); 4650 mutex_unlock(&q->sysfs_lock); 4651 4652 return true; 4653 } 4654 4655 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4656 struct request_queue *q) 4657 { 4658 struct blk_mq_qe_pair *qe; 4659 4660 list_for_each_entry(qe, head, node) 4661 if (qe->q == q) 4662 return qe; 4663 4664 return NULL; 4665 } 4666 4667 static void blk_mq_elv_switch_back(struct list_head *head, 4668 struct request_queue *q) 4669 { 4670 struct blk_mq_qe_pair *qe; 4671 struct elevator_type *t; 4672 4673 qe = blk_lookup_qe_pair(head, q); 4674 if (!qe) 4675 return; 4676 t = qe->type; 4677 list_del(&qe->node); 4678 kfree(qe); 4679 4680 mutex_lock(&q->sysfs_lock); 4681 elevator_switch(q, t); 4682 /* drop the reference acquired in blk_mq_elv_switch_none */ 4683 elevator_put(t); 4684 mutex_unlock(&q->sysfs_lock); 4685 } 4686 4687 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4688 int nr_hw_queues) 4689 { 4690 struct request_queue *q; 4691 LIST_HEAD(head); 4692 int prev_nr_hw_queues; 4693 4694 lockdep_assert_held(&set->tag_list_lock); 4695 4696 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4697 nr_hw_queues = nr_cpu_ids; 4698 if (nr_hw_queues < 1) 4699 return; 4700 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4701 return; 4702 4703 list_for_each_entry(q, &set->tag_list, tag_set_list) 4704 blk_mq_freeze_queue(q); 4705 /* 4706 * Switch IO scheduler to 'none', cleaning up the data associated 4707 * with the previous scheduler. We will switch back once we are done 4708 * updating the new sw to hw queue mappings. 4709 */ 4710 list_for_each_entry(q, &set->tag_list, tag_set_list) 4711 if (!blk_mq_elv_switch_none(&head, q)) 4712 goto switch_back; 4713 4714 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4715 blk_mq_debugfs_unregister_hctxs(q); 4716 blk_mq_sysfs_unregister_hctxs(q); 4717 } 4718 4719 prev_nr_hw_queues = set->nr_hw_queues; 4720 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4721 goto reregister; 4722 4723 fallback: 4724 blk_mq_update_queue_map(set); 4725 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4726 blk_mq_realloc_hw_ctxs(set, q); 4727 blk_mq_update_poll_flag(q); 4728 if (q->nr_hw_queues != set->nr_hw_queues) { 4729 int i = prev_nr_hw_queues; 4730 4731 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4732 nr_hw_queues, prev_nr_hw_queues); 4733 for (; i < set->nr_hw_queues; i++) 4734 __blk_mq_free_map_and_rqs(set, i); 4735 4736 set->nr_hw_queues = prev_nr_hw_queues; 4737 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4738 goto fallback; 4739 } 4740 blk_mq_map_swqueue(q); 4741 } 4742 4743 reregister: 4744 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4745 blk_mq_sysfs_register_hctxs(q); 4746 blk_mq_debugfs_register_hctxs(q); 4747 } 4748 4749 switch_back: 4750 list_for_each_entry(q, &set->tag_list, tag_set_list) 4751 blk_mq_elv_switch_back(&head, q); 4752 4753 list_for_each_entry(q, &set->tag_list, tag_set_list) 4754 blk_mq_unfreeze_queue(q); 4755 } 4756 4757 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4758 { 4759 mutex_lock(&set->tag_list_lock); 4760 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4761 mutex_unlock(&set->tag_list_lock); 4762 } 4763 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4764 4765 /* Enable polling stats and return whether they were already enabled. */ 4766 static bool blk_poll_stats_enable(struct request_queue *q) 4767 { 4768 if (q->poll_stat) 4769 return true; 4770 4771 return blk_stats_alloc_enable(q); 4772 } 4773 4774 static void blk_mq_poll_stats_start(struct request_queue *q) 4775 { 4776 /* 4777 * We don't arm the callback if polling stats are not enabled or the 4778 * callback is already active. 4779 */ 4780 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4781 return; 4782 4783 blk_stat_activate_msecs(q->poll_cb, 100); 4784 } 4785 4786 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4787 { 4788 struct request_queue *q = cb->data; 4789 int bucket; 4790 4791 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4792 if (cb->stat[bucket].nr_samples) 4793 q->poll_stat[bucket] = cb->stat[bucket]; 4794 } 4795 } 4796 4797 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4798 struct request *rq) 4799 { 4800 unsigned long ret = 0; 4801 int bucket; 4802 4803 /* 4804 * If stats collection isn't on, don't sleep but turn it on for 4805 * future users 4806 */ 4807 if (!blk_poll_stats_enable(q)) 4808 return 0; 4809 4810 /* 4811 * As an optimistic guess, use half of the mean service time 4812 * for this type of request. We can (and should) make this smarter. 4813 * For instance, if the completion latencies are tight, we can 4814 * get closer than just half the mean. This is especially 4815 * important on devices where the completion latencies are longer 4816 * than ~10 usec. We do use the stats for the relevant IO size 4817 * if available which does lead to better estimates. 4818 */ 4819 bucket = blk_mq_poll_stats_bkt(rq); 4820 if (bucket < 0) 4821 return ret; 4822 4823 if (q->poll_stat[bucket].nr_samples) 4824 ret = (q->poll_stat[bucket].mean + 1) / 2; 4825 4826 return ret; 4827 } 4828 4829 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4830 { 4831 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4832 struct request *rq = blk_qc_to_rq(hctx, qc); 4833 struct hrtimer_sleeper hs; 4834 enum hrtimer_mode mode; 4835 unsigned int nsecs; 4836 ktime_t kt; 4837 4838 /* 4839 * If a request has completed on queue that uses an I/O scheduler, we 4840 * won't get back a request from blk_qc_to_rq. 4841 */ 4842 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4843 return false; 4844 4845 /* 4846 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4847 * 4848 * 0: use half of prev avg 4849 * >0: use this specific value 4850 */ 4851 if (q->poll_nsec > 0) 4852 nsecs = q->poll_nsec; 4853 else 4854 nsecs = blk_mq_poll_nsecs(q, rq); 4855 4856 if (!nsecs) 4857 return false; 4858 4859 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4860 4861 /* 4862 * This will be replaced with the stats tracking code, using 4863 * 'avg_completion_time / 2' as the pre-sleep target. 4864 */ 4865 kt = nsecs; 4866 4867 mode = HRTIMER_MODE_REL; 4868 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4869 hrtimer_set_expires(&hs.timer, kt); 4870 4871 do { 4872 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4873 break; 4874 set_current_state(TASK_UNINTERRUPTIBLE); 4875 hrtimer_sleeper_start_expires(&hs, mode); 4876 if (hs.task) 4877 io_schedule(); 4878 hrtimer_cancel(&hs.timer); 4879 mode = HRTIMER_MODE_ABS; 4880 } while (hs.task && !signal_pending(current)); 4881 4882 __set_current_state(TASK_RUNNING); 4883 destroy_hrtimer_on_stack(&hs.timer); 4884 4885 /* 4886 * If we sleep, have the caller restart the poll loop to reset the 4887 * state. Like for the other success return cases, the caller is 4888 * responsible for checking if the IO completed. If the IO isn't 4889 * complete, we'll get called again and will go straight to the busy 4890 * poll loop. 4891 */ 4892 return true; 4893 } 4894 4895 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4896 struct io_comp_batch *iob, unsigned int flags) 4897 { 4898 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4899 long state = get_current_state(); 4900 int ret; 4901 4902 do { 4903 ret = q->mq_ops->poll(hctx, iob); 4904 if (ret > 0) { 4905 __set_current_state(TASK_RUNNING); 4906 return ret; 4907 } 4908 4909 if (signal_pending_state(state, current)) 4910 __set_current_state(TASK_RUNNING); 4911 if (task_is_running(current)) 4912 return 1; 4913 4914 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4915 break; 4916 cpu_relax(); 4917 } while (!need_resched()); 4918 4919 __set_current_state(TASK_RUNNING); 4920 return 0; 4921 } 4922 4923 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4924 unsigned int flags) 4925 { 4926 if (!(flags & BLK_POLL_NOSLEEP) && 4927 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4928 if (blk_mq_poll_hybrid(q, cookie)) 4929 return 1; 4930 } 4931 return blk_mq_poll_classic(q, cookie, iob, flags); 4932 } 4933 4934 unsigned int blk_mq_rq_cpu(struct request *rq) 4935 { 4936 return rq->mq_ctx->cpu; 4937 } 4938 EXPORT_SYMBOL(blk_mq_rq_cpu); 4939 4940 void blk_mq_cancel_work_sync(struct request_queue *q) 4941 { 4942 struct blk_mq_hw_ctx *hctx; 4943 unsigned long i; 4944 4945 cancel_delayed_work_sync(&q->requeue_work); 4946 4947 queue_for_each_hw_ctx(q, hctx, i) 4948 cancel_delayed_work_sync(&hctx->run_work); 4949 } 4950 4951 static int __init blk_mq_init(void) 4952 { 4953 int i; 4954 4955 for_each_possible_cpu(i) 4956 init_llist_head(&per_cpu(blk_cpu_done, i)); 4957 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4958 4959 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4960 "block/softirq:dead", NULL, 4961 blk_softirq_cpu_dead); 4962 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4963 blk_mq_hctx_notify_dead); 4964 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4965 blk_mq_hctx_notify_online, 4966 blk_mq_hctx_notify_offline); 4967 return 0; 4968 } 4969 subsys_initcall(blk_mq_init); 4970