xref: /linux/block/blk-mq.c (revision e7602bb4f3a1234df8b75728ac3260bcb8242612)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->rq_flags & RQF_IO_STAT &&
97 	    (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 		struct block_device *part)
106 {
107 	struct mq_inflight mi = { .part = part };
108 
109 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 
111 	return mi.inflight[0] + mi.inflight[1];
112 }
113 
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 		unsigned int inflight[2])
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 	inflight[0] = mi.inflight[0];
121 	inflight[1] = mi.inflight[1];
122 }
123 
124 #ifdef CONFIG_LOCKDEP
125 static bool blk_freeze_set_owner(struct request_queue *q,
126 				 struct task_struct *owner)
127 {
128 	if (!owner)
129 		return false;
130 
131 	if (!q->mq_freeze_depth) {
132 		q->mq_freeze_owner = owner;
133 		q->mq_freeze_owner_depth = 1;
134 		q->mq_freeze_disk_dead = !q->disk ||
135 			test_bit(GD_DEAD, &q->disk->state) ||
136 			!blk_queue_registered(q);
137 		q->mq_freeze_queue_dying = blk_queue_dying(q);
138 		return true;
139 	}
140 
141 	if (owner == q->mq_freeze_owner)
142 		q->mq_freeze_owner_depth += 1;
143 	return false;
144 }
145 
146 /* verify the last unfreeze in owner context */
147 static bool blk_unfreeze_check_owner(struct request_queue *q)
148 {
149 	if (q->mq_freeze_owner != current)
150 		return false;
151 	if (--q->mq_freeze_owner_depth == 0) {
152 		q->mq_freeze_owner = NULL;
153 		return true;
154 	}
155 	return false;
156 }
157 
158 #else
159 
160 static bool blk_freeze_set_owner(struct request_queue *q,
161 				 struct task_struct *owner)
162 {
163 	return false;
164 }
165 
166 static bool blk_unfreeze_check_owner(struct request_queue *q)
167 {
168 	return false;
169 }
170 #endif
171 
172 bool __blk_freeze_queue_start(struct request_queue *q,
173 			      struct task_struct *owner)
174 {
175 	bool freeze;
176 
177 	mutex_lock(&q->mq_freeze_lock);
178 	freeze = blk_freeze_set_owner(q, owner);
179 	if (++q->mq_freeze_depth == 1) {
180 		percpu_ref_kill(&q->q_usage_counter);
181 		mutex_unlock(&q->mq_freeze_lock);
182 		if (queue_is_mq(q))
183 			blk_mq_run_hw_queues(q, false);
184 	} else {
185 		mutex_unlock(&q->mq_freeze_lock);
186 	}
187 
188 	return freeze;
189 }
190 
191 void blk_freeze_queue_start(struct request_queue *q)
192 {
193 	if (__blk_freeze_queue_start(q, current))
194 		blk_freeze_acquire_lock(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
197 
198 void blk_mq_freeze_queue_wait(struct request_queue *q)
199 {
200 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
203 
204 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
205 				     unsigned long timeout)
206 {
207 	return wait_event_timeout(q->mq_freeze_wq,
208 					percpu_ref_is_zero(&q->q_usage_counter),
209 					timeout);
210 }
211 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
212 
213 void blk_mq_freeze_queue(struct request_queue *q)
214 {
215 	blk_freeze_queue_start(q);
216 	blk_mq_freeze_queue_wait(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	bool unfreeze;
223 
224 	mutex_lock(&q->mq_freeze_lock);
225 	if (force_atomic)
226 		q->q_usage_counter.data->force_atomic = true;
227 	q->mq_freeze_depth--;
228 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
229 	if (!q->mq_freeze_depth) {
230 		percpu_ref_resurrect(&q->q_usage_counter);
231 		wake_up_all(&q->mq_freeze_wq);
232 	}
233 	unfreeze = blk_unfreeze_check_owner(q);
234 	mutex_unlock(&q->mq_freeze_lock);
235 
236 	return unfreeze;
237 }
238 
239 void blk_mq_unfreeze_queue(struct request_queue *q)
240 {
241 	if (__blk_mq_unfreeze_queue(q, false))
242 		blk_unfreeze_release_lock(q);
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
245 
246 /*
247  * non_owner variant of blk_freeze_queue_start
248  *
249  * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
250  * by the same task.  This is fragile and should not be used if at all
251  * possible.
252  */
253 void blk_freeze_queue_start_non_owner(struct request_queue *q)
254 {
255 	__blk_freeze_queue_start(q, NULL);
256 }
257 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
258 
259 /* non_owner variant of blk_mq_unfreeze_queue */
260 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
261 {
262 	__blk_mq_unfreeze_queue(q, false);
263 }
264 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
265 
266 /*
267  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
268  * mpt3sas driver such that this function can be removed.
269  */
270 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
271 {
272 	unsigned long flags;
273 
274 	spin_lock_irqsave(&q->queue_lock, flags);
275 	if (!q->quiesce_depth++)
276 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
277 	spin_unlock_irqrestore(&q->queue_lock, flags);
278 }
279 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
280 
281 /**
282  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
283  * @set: tag_set to wait on
284  *
285  * Note: it is driver's responsibility for making sure that quiesce has
286  * been started on or more of the request_queues of the tag_set.  This
287  * function only waits for the quiesce on those request_queues that had
288  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
289  */
290 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
291 {
292 	if (set->flags & BLK_MQ_F_BLOCKING)
293 		synchronize_srcu(set->srcu);
294 	else
295 		synchronize_rcu();
296 }
297 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
298 
299 /**
300  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
301  * @q: request queue.
302  *
303  * Note: this function does not prevent that the struct request end_io()
304  * callback function is invoked. Once this function is returned, we make
305  * sure no dispatch can happen until the queue is unquiesced via
306  * blk_mq_unquiesce_queue().
307  */
308 void blk_mq_quiesce_queue(struct request_queue *q)
309 {
310 	blk_mq_quiesce_queue_nowait(q);
311 	/* nothing to wait for non-mq queues */
312 	if (queue_is_mq(q))
313 		blk_mq_wait_quiesce_done(q->tag_set);
314 }
315 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
316 
317 /*
318  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
319  * @q: request queue.
320  *
321  * This function recovers queue into the state before quiescing
322  * which is done by blk_mq_quiesce_queue.
323  */
324 void blk_mq_unquiesce_queue(struct request_queue *q)
325 {
326 	unsigned long flags;
327 	bool run_queue = false;
328 
329 	spin_lock_irqsave(&q->queue_lock, flags);
330 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
331 		;
332 	} else if (!--q->quiesce_depth) {
333 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
334 		run_queue = true;
335 	}
336 	spin_unlock_irqrestore(&q->queue_lock, flags);
337 
338 	/* dispatch requests which are inserted during quiescing */
339 	if (run_queue)
340 		blk_mq_run_hw_queues(q, true);
341 }
342 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
343 
344 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
345 {
346 	struct request_queue *q;
347 
348 	mutex_lock(&set->tag_list_lock);
349 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
350 		if (!blk_queue_skip_tagset_quiesce(q))
351 			blk_mq_quiesce_queue_nowait(q);
352 	}
353 	mutex_unlock(&set->tag_list_lock);
354 
355 	blk_mq_wait_quiesce_done(set);
356 }
357 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
358 
359 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
360 {
361 	struct request_queue *q;
362 
363 	mutex_lock(&set->tag_list_lock);
364 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
365 		if (!blk_queue_skip_tagset_quiesce(q))
366 			blk_mq_unquiesce_queue(q);
367 	}
368 	mutex_unlock(&set->tag_list_lock);
369 }
370 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
371 
372 void blk_mq_wake_waiters(struct request_queue *q)
373 {
374 	struct blk_mq_hw_ctx *hctx;
375 	unsigned long i;
376 
377 	queue_for_each_hw_ctx(q, hctx, i)
378 		if (blk_mq_hw_queue_mapped(hctx))
379 			blk_mq_tag_wakeup_all(hctx->tags, true);
380 }
381 
382 void blk_rq_init(struct request_queue *q, struct request *rq)
383 {
384 	memset(rq, 0, sizeof(*rq));
385 
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	rq->q = q;
388 	rq->__sector = (sector_t) -1;
389 	INIT_HLIST_NODE(&rq->hash);
390 	RB_CLEAR_NODE(&rq->rb_node);
391 	rq->tag = BLK_MQ_NO_TAG;
392 	rq->internal_tag = BLK_MQ_NO_TAG;
393 	rq->start_time_ns = blk_time_get_ns();
394 	blk_crypto_rq_set_defaults(rq);
395 }
396 EXPORT_SYMBOL(blk_rq_init);
397 
398 /* Set start and alloc time when the allocated request is actually used */
399 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
400 {
401 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
402 	if (blk_queue_rq_alloc_time(rq->q))
403 		rq->alloc_time_ns = alloc_time_ns;
404 	else
405 		rq->alloc_time_ns = 0;
406 #endif
407 }
408 
409 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
410 		struct blk_mq_tags *tags, unsigned int tag)
411 {
412 	struct blk_mq_ctx *ctx = data->ctx;
413 	struct blk_mq_hw_ctx *hctx = data->hctx;
414 	struct request_queue *q = data->q;
415 	struct request *rq = tags->static_rqs[tag];
416 
417 	rq->q = q;
418 	rq->mq_ctx = ctx;
419 	rq->mq_hctx = hctx;
420 	rq->cmd_flags = data->cmd_flags;
421 
422 	if (data->flags & BLK_MQ_REQ_PM)
423 		data->rq_flags |= RQF_PM;
424 	rq->rq_flags = data->rq_flags;
425 
426 	if (data->rq_flags & RQF_SCHED_TAGS) {
427 		rq->tag = BLK_MQ_NO_TAG;
428 		rq->internal_tag = tag;
429 	} else {
430 		rq->tag = tag;
431 		rq->internal_tag = BLK_MQ_NO_TAG;
432 	}
433 	rq->timeout = 0;
434 
435 	rq->part = NULL;
436 	rq->io_start_time_ns = 0;
437 	rq->stats_sectors = 0;
438 	rq->nr_phys_segments = 0;
439 	rq->nr_integrity_segments = 0;
440 	rq->end_io = NULL;
441 	rq->end_io_data = NULL;
442 
443 	blk_crypto_rq_set_defaults(rq);
444 	INIT_LIST_HEAD(&rq->queuelist);
445 	/* tag was already set */
446 	WRITE_ONCE(rq->deadline, 0);
447 	req_ref_set(rq, 1);
448 
449 	if (rq->rq_flags & RQF_USE_SCHED) {
450 		struct elevator_queue *e = data->q->elevator;
451 
452 		INIT_HLIST_NODE(&rq->hash);
453 		RB_CLEAR_NODE(&rq->rb_node);
454 
455 		if (e->type->ops.prepare_request)
456 			e->type->ops.prepare_request(rq);
457 	}
458 
459 	return rq;
460 }
461 
462 static inline struct request *
463 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
464 {
465 	unsigned int tag, tag_offset;
466 	struct blk_mq_tags *tags;
467 	struct request *rq;
468 	unsigned long tag_mask;
469 	int i, nr = 0;
470 
471 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
472 	if (unlikely(!tag_mask))
473 		return NULL;
474 
475 	tags = blk_mq_tags_from_data(data);
476 	for (i = 0; tag_mask; i++) {
477 		if (!(tag_mask & (1UL << i)))
478 			continue;
479 		tag = tag_offset + i;
480 		prefetch(tags->static_rqs[tag]);
481 		tag_mask &= ~(1UL << i);
482 		rq = blk_mq_rq_ctx_init(data, tags, tag);
483 		rq_list_add_head(data->cached_rqs, rq);
484 		nr++;
485 	}
486 	if (!(data->rq_flags & RQF_SCHED_TAGS))
487 		blk_mq_add_active_requests(data->hctx, nr);
488 	/* caller already holds a reference, add for remainder */
489 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
490 	data->nr_tags -= nr;
491 
492 	return rq_list_pop(data->cached_rqs);
493 }
494 
495 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
496 {
497 	struct request_queue *q = data->q;
498 	u64 alloc_time_ns = 0;
499 	struct request *rq;
500 	unsigned int tag;
501 
502 	/* alloc_time includes depth and tag waits */
503 	if (blk_queue_rq_alloc_time(q))
504 		alloc_time_ns = blk_time_get_ns();
505 
506 	if (data->cmd_flags & REQ_NOWAIT)
507 		data->flags |= BLK_MQ_REQ_NOWAIT;
508 
509 retry:
510 	data->ctx = blk_mq_get_ctx(q);
511 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
512 
513 	if (q->elevator) {
514 		/*
515 		 * All requests use scheduler tags when an I/O scheduler is
516 		 * enabled for the queue.
517 		 */
518 		data->rq_flags |= RQF_SCHED_TAGS;
519 
520 		/*
521 		 * Flush/passthrough requests are special and go directly to the
522 		 * dispatch list.
523 		 */
524 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
525 		    !blk_op_is_passthrough(data->cmd_flags)) {
526 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
527 
528 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
529 
530 			data->rq_flags |= RQF_USE_SCHED;
531 			if (ops->limit_depth)
532 				ops->limit_depth(data->cmd_flags, data);
533 		}
534 	} else {
535 		blk_mq_tag_busy(data->hctx);
536 	}
537 
538 	if (data->flags & BLK_MQ_REQ_RESERVED)
539 		data->rq_flags |= RQF_RESV;
540 
541 	/*
542 	 * Try batched alloc if we want more than 1 tag.
543 	 */
544 	if (data->nr_tags > 1) {
545 		rq = __blk_mq_alloc_requests_batch(data);
546 		if (rq) {
547 			blk_mq_rq_time_init(rq, alloc_time_ns);
548 			return rq;
549 		}
550 		data->nr_tags = 1;
551 	}
552 
553 	/*
554 	 * Waiting allocations only fail because of an inactive hctx.  In that
555 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
556 	 * should have migrated us to an online CPU by now.
557 	 */
558 	tag = blk_mq_get_tag(data);
559 	if (tag == BLK_MQ_NO_TAG) {
560 		if (data->flags & BLK_MQ_REQ_NOWAIT)
561 			return NULL;
562 		/*
563 		 * Give up the CPU and sleep for a random short time to
564 		 * ensure that thread using a realtime scheduling class
565 		 * are migrated off the CPU, and thus off the hctx that
566 		 * is going away.
567 		 */
568 		msleep(3);
569 		goto retry;
570 	}
571 
572 	if (!(data->rq_flags & RQF_SCHED_TAGS))
573 		blk_mq_inc_active_requests(data->hctx);
574 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
575 	blk_mq_rq_time_init(rq, alloc_time_ns);
576 	return rq;
577 }
578 
579 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
580 					    struct blk_plug *plug,
581 					    blk_opf_t opf,
582 					    blk_mq_req_flags_t flags)
583 {
584 	struct blk_mq_alloc_data data = {
585 		.q		= q,
586 		.flags		= flags,
587 		.cmd_flags	= opf,
588 		.nr_tags	= plug->nr_ios,
589 		.cached_rqs	= &plug->cached_rqs,
590 	};
591 	struct request *rq;
592 
593 	if (blk_queue_enter(q, flags))
594 		return NULL;
595 
596 	plug->nr_ios = 1;
597 
598 	rq = __blk_mq_alloc_requests(&data);
599 	if (unlikely(!rq))
600 		blk_queue_exit(q);
601 	return rq;
602 }
603 
604 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
605 						   blk_opf_t opf,
606 						   blk_mq_req_flags_t flags)
607 {
608 	struct blk_plug *plug = current->plug;
609 	struct request *rq;
610 
611 	if (!plug)
612 		return NULL;
613 
614 	if (rq_list_empty(&plug->cached_rqs)) {
615 		if (plug->nr_ios == 1)
616 			return NULL;
617 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
618 		if (!rq)
619 			return NULL;
620 	} else {
621 		rq = rq_list_peek(&plug->cached_rqs);
622 		if (!rq || rq->q != q)
623 			return NULL;
624 
625 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
626 			return NULL;
627 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
628 			return NULL;
629 
630 		rq_list_pop(&plug->cached_rqs);
631 		blk_mq_rq_time_init(rq, blk_time_get_ns());
632 	}
633 
634 	rq->cmd_flags = opf;
635 	INIT_LIST_HEAD(&rq->queuelist);
636 	return rq;
637 }
638 
639 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
640 		blk_mq_req_flags_t flags)
641 {
642 	struct request *rq;
643 
644 	rq = blk_mq_alloc_cached_request(q, opf, flags);
645 	if (!rq) {
646 		struct blk_mq_alloc_data data = {
647 			.q		= q,
648 			.flags		= flags,
649 			.cmd_flags	= opf,
650 			.nr_tags	= 1,
651 		};
652 		int ret;
653 
654 		ret = blk_queue_enter(q, flags);
655 		if (ret)
656 			return ERR_PTR(ret);
657 
658 		rq = __blk_mq_alloc_requests(&data);
659 		if (!rq)
660 			goto out_queue_exit;
661 	}
662 	rq->__data_len = 0;
663 	rq->__sector = (sector_t) -1;
664 	rq->bio = rq->biotail = NULL;
665 	return rq;
666 out_queue_exit:
667 	blk_queue_exit(q);
668 	return ERR_PTR(-EWOULDBLOCK);
669 }
670 EXPORT_SYMBOL(blk_mq_alloc_request);
671 
672 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
673 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
674 {
675 	struct blk_mq_alloc_data data = {
676 		.q		= q,
677 		.flags		= flags,
678 		.cmd_flags	= opf,
679 		.nr_tags	= 1,
680 	};
681 	u64 alloc_time_ns = 0;
682 	struct request *rq;
683 	unsigned int cpu;
684 	unsigned int tag;
685 	int ret;
686 
687 	/* alloc_time includes depth and tag waits */
688 	if (blk_queue_rq_alloc_time(q))
689 		alloc_time_ns = blk_time_get_ns();
690 
691 	/*
692 	 * If the tag allocator sleeps we could get an allocation for a
693 	 * different hardware context.  No need to complicate the low level
694 	 * allocator for this for the rare use case of a command tied to
695 	 * a specific queue.
696 	 */
697 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
698 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
699 		return ERR_PTR(-EINVAL);
700 
701 	if (hctx_idx >= q->nr_hw_queues)
702 		return ERR_PTR(-EIO);
703 
704 	ret = blk_queue_enter(q, flags);
705 	if (ret)
706 		return ERR_PTR(ret);
707 
708 	/*
709 	 * Check if the hardware context is actually mapped to anything.
710 	 * If not tell the caller that it should skip this queue.
711 	 */
712 	ret = -EXDEV;
713 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
714 	if (!blk_mq_hw_queue_mapped(data.hctx))
715 		goto out_queue_exit;
716 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
717 	if (cpu >= nr_cpu_ids)
718 		goto out_queue_exit;
719 	data.ctx = __blk_mq_get_ctx(q, cpu);
720 
721 	if (q->elevator)
722 		data.rq_flags |= RQF_SCHED_TAGS;
723 	else
724 		blk_mq_tag_busy(data.hctx);
725 
726 	if (flags & BLK_MQ_REQ_RESERVED)
727 		data.rq_flags |= RQF_RESV;
728 
729 	ret = -EWOULDBLOCK;
730 	tag = blk_mq_get_tag(&data);
731 	if (tag == BLK_MQ_NO_TAG)
732 		goto out_queue_exit;
733 	if (!(data.rq_flags & RQF_SCHED_TAGS))
734 		blk_mq_inc_active_requests(data.hctx);
735 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
736 	blk_mq_rq_time_init(rq, alloc_time_ns);
737 	rq->__data_len = 0;
738 	rq->__sector = (sector_t) -1;
739 	rq->bio = rq->biotail = NULL;
740 	return rq;
741 
742 out_queue_exit:
743 	blk_queue_exit(q);
744 	return ERR_PTR(ret);
745 }
746 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
747 
748 static void blk_mq_finish_request(struct request *rq)
749 {
750 	struct request_queue *q = rq->q;
751 
752 	blk_zone_finish_request(rq);
753 
754 	if (rq->rq_flags & RQF_USE_SCHED) {
755 		q->elevator->type->ops.finish_request(rq);
756 		/*
757 		 * For postflush request that may need to be
758 		 * completed twice, we should clear this flag
759 		 * to avoid double finish_request() on the rq.
760 		 */
761 		rq->rq_flags &= ~RQF_USE_SCHED;
762 	}
763 }
764 
765 static void __blk_mq_free_request(struct request *rq)
766 {
767 	struct request_queue *q = rq->q;
768 	struct blk_mq_ctx *ctx = rq->mq_ctx;
769 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
770 	const int sched_tag = rq->internal_tag;
771 
772 	blk_crypto_free_request(rq);
773 	blk_pm_mark_last_busy(rq);
774 	rq->mq_hctx = NULL;
775 
776 	if (rq->tag != BLK_MQ_NO_TAG) {
777 		blk_mq_dec_active_requests(hctx);
778 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
779 	}
780 	if (sched_tag != BLK_MQ_NO_TAG)
781 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
782 	blk_mq_sched_restart(hctx);
783 	blk_queue_exit(q);
784 }
785 
786 void blk_mq_free_request(struct request *rq)
787 {
788 	struct request_queue *q = rq->q;
789 
790 	blk_mq_finish_request(rq);
791 
792 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
793 		laptop_io_completion(q->disk->bdi);
794 
795 	rq_qos_done(q, rq);
796 
797 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
798 	if (req_ref_put_and_test(rq))
799 		__blk_mq_free_request(rq);
800 }
801 EXPORT_SYMBOL_GPL(blk_mq_free_request);
802 
803 void blk_mq_free_plug_rqs(struct blk_plug *plug)
804 {
805 	struct request *rq;
806 
807 	while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
808 		blk_mq_free_request(rq);
809 }
810 
811 void blk_dump_rq_flags(struct request *rq, char *msg)
812 {
813 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
814 		rq->q->disk ? rq->q->disk->disk_name : "?",
815 		(__force unsigned long long) rq->cmd_flags);
816 
817 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
818 	       (unsigned long long)blk_rq_pos(rq),
819 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
820 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
821 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
822 }
823 EXPORT_SYMBOL(blk_dump_rq_flags);
824 
825 static void blk_account_io_completion(struct request *req, unsigned int bytes)
826 {
827 	if (req->rq_flags & RQF_IO_STAT) {
828 		const int sgrp = op_stat_group(req_op(req));
829 
830 		part_stat_lock();
831 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
832 		part_stat_unlock();
833 	}
834 }
835 
836 static void blk_print_req_error(struct request *req, blk_status_t status)
837 {
838 	printk_ratelimited(KERN_ERR
839 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
840 		"phys_seg %u prio class %u\n",
841 		blk_status_to_str(status),
842 		req->q->disk ? req->q->disk->disk_name : "?",
843 		blk_rq_pos(req), (__force u32)req_op(req),
844 		blk_op_str(req_op(req)),
845 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
846 		req->nr_phys_segments,
847 		IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
848 }
849 
850 /*
851  * Fully end IO on a request. Does not support partial completions, or
852  * errors.
853  */
854 static void blk_complete_request(struct request *req)
855 {
856 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
857 	int total_bytes = blk_rq_bytes(req);
858 	struct bio *bio = req->bio;
859 
860 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
861 
862 	if (!bio)
863 		return;
864 
865 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
866 		blk_integrity_complete(req, total_bytes);
867 
868 	/*
869 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
870 	 * bio_endio().  Therefore, the keyslot must be released before that.
871 	 */
872 	blk_crypto_rq_put_keyslot(req);
873 
874 	blk_account_io_completion(req, total_bytes);
875 
876 	do {
877 		struct bio *next = bio->bi_next;
878 
879 		/* Completion has already been traced */
880 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
881 
882 		blk_zone_update_request_bio(req, bio);
883 
884 		if (!is_flush)
885 			bio_endio(bio);
886 		bio = next;
887 	} while (bio);
888 
889 	/*
890 	 * Reset counters so that the request stacking driver
891 	 * can find how many bytes remain in the request
892 	 * later.
893 	 */
894 	if (!req->end_io) {
895 		req->bio = NULL;
896 		req->__data_len = 0;
897 	}
898 }
899 
900 /**
901  * blk_update_request - Complete multiple bytes without completing the request
902  * @req:      the request being processed
903  * @error:    block status code
904  * @nr_bytes: number of bytes to complete for @req
905  *
906  * Description:
907  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
908  *     the request structure even if @req doesn't have leftover.
909  *     If @req has leftover, sets it up for the next range of segments.
910  *
911  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
912  *     %false return from this function.
913  *
914  * Note:
915  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
916  *      except in the consistency check at the end of this function.
917  *
918  * Return:
919  *     %false - this request doesn't have any more data
920  *     %true  - this request has more data
921  **/
922 bool blk_update_request(struct request *req, blk_status_t error,
923 		unsigned int nr_bytes)
924 {
925 	bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
926 	bool quiet = req->rq_flags & RQF_QUIET;
927 	int total_bytes;
928 
929 	trace_block_rq_complete(req, error, nr_bytes);
930 
931 	if (!req->bio)
932 		return false;
933 
934 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
935 	    error == BLK_STS_OK)
936 		blk_integrity_complete(req, nr_bytes);
937 
938 	/*
939 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
940 	 * bio_endio().  Therefore, the keyslot must be released before that.
941 	 */
942 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
943 		__blk_crypto_rq_put_keyslot(req);
944 
945 	if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
946 	    !test_bit(GD_DEAD, &req->q->disk->state)) {
947 		blk_print_req_error(req, error);
948 		trace_block_rq_error(req, error, nr_bytes);
949 	}
950 
951 	blk_account_io_completion(req, nr_bytes);
952 
953 	total_bytes = 0;
954 	while (req->bio) {
955 		struct bio *bio = req->bio;
956 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
957 
958 		if (unlikely(error))
959 			bio->bi_status = error;
960 
961 		if (bio_bytes == bio->bi_iter.bi_size) {
962 			req->bio = bio->bi_next;
963 		} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
964 			/*
965 			 * Partial zone append completions cannot be supported
966 			 * as the BIO fragments may end up not being written
967 			 * sequentially.
968 			 */
969 			bio->bi_status = BLK_STS_IOERR;
970 		}
971 
972 		/* Completion has already been traced */
973 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
974 		if (unlikely(quiet))
975 			bio_set_flag(bio, BIO_QUIET);
976 
977 		bio_advance(bio, bio_bytes);
978 
979 		/* Don't actually finish bio if it's part of flush sequence */
980 		if (!bio->bi_iter.bi_size) {
981 			blk_zone_update_request_bio(req, bio);
982 			if (!is_flush)
983 				bio_endio(bio);
984 		}
985 
986 		total_bytes += bio_bytes;
987 		nr_bytes -= bio_bytes;
988 
989 		if (!nr_bytes)
990 			break;
991 	}
992 
993 	/*
994 	 * completely done
995 	 */
996 	if (!req->bio) {
997 		/*
998 		 * Reset counters so that the request stacking driver
999 		 * can find how many bytes remain in the request
1000 		 * later.
1001 		 */
1002 		req->__data_len = 0;
1003 		return false;
1004 	}
1005 
1006 	req->__data_len -= total_bytes;
1007 
1008 	/* update sector only for requests with clear definition of sector */
1009 	if (!blk_rq_is_passthrough(req))
1010 		req->__sector += total_bytes >> 9;
1011 
1012 	/* mixed attributes always follow the first bio */
1013 	if (req->rq_flags & RQF_MIXED_MERGE) {
1014 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1015 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1016 	}
1017 
1018 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1019 		/*
1020 		 * If total number of sectors is less than the first segment
1021 		 * size, something has gone terribly wrong.
1022 		 */
1023 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1024 			blk_dump_rq_flags(req, "request botched");
1025 			req->__data_len = blk_rq_cur_bytes(req);
1026 		}
1027 
1028 		/* recalculate the number of segments */
1029 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1030 	}
1031 
1032 	return true;
1033 }
1034 EXPORT_SYMBOL_GPL(blk_update_request);
1035 
1036 static inline void blk_account_io_done(struct request *req, u64 now)
1037 {
1038 	trace_block_io_done(req);
1039 
1040 	/*
1041 	 * Account IO completion.  flush_rq isn't accounted as a
1042 	 * normal IO on queueing nor completion.  Accounting the
1043 	 * containing request is enough.
1044 	 */
1045 	if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1046 		const int sgrp = op_stat_group(req_op(req));
1047 
1048 		part_stat_lock();
1049 		update_io_ticks(req->part, jiffies, true);
1050 		part_stat_inc(req->part, ios[sgrp]);
1051 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1052 		part_stat_local_dec(req->part,
1053 				    in_flight[op_is_write(req_op(req))]);
1054 		part_stat_unlock();
1055 	}
1056 }
1057 
1058 static inline bool blk_rq_passthrough_stats(struct request *req)
1059 {
1060 	struct bio *bio = req->bio;
1061 
1062 	if (!blk_queue_passthrough_stat(req->q))
1063 		return false;
1064 
1065 	/* Requests without a bio do not transfer data. */
1066 	if (!bio)
1067 		return false;
1068 
1069 	/*
1070 	 * Stats are accumulated in the bdev, so must have one attached to a
1071 	 * bio to track stats. Most drivers do not set the bdev for passthrough
1072 	 * requests, but nvme is one that will set it.
1073 	 */
1074 	if (!bio->bi_bdev)
1075 		return false;
1076 
1077 	/*
1078 	 * We don't know what a passthrough command does, but we know the
1079 	 * payload size and data direction. Ensuring the size is aligned to the
1080 	 * block size filters out most commands with payloads that don't
1081 	 * represent sector access.
1082 	 */
1083 	if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1084 		return false;
1085 	return true;
1086 }
1087 
1088 static inline void blk_account_io_start(struct request *req)
1089 {
1090 	trace_block_io_start(req);
1091 
1092 	if (!blk_queue_io_stat(req->q))
1093 		return;
1094 	if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1095 		return;
1096 
1097 	req->rq_flags |= RQF_IO_STAT;
1098 	req->start_time_ns = blk_time_get_ns();
1099 
1100 	/*
1101 	 * All non-passthrough requests are created from a bio with one
1102 	 * exception: when a flush command that is part of a flush sequence
1103 	 * generated by the state machine in blk-flush.c is cloned onto the
1104 	 * lower device by dm-multipath we can get here without a bio.
1105 	 */
1106 	if (req->bio)
1107 		req->part = req->bio->bi_bdev;
1108 	else
1109 		req->part = req->q->disk->part0;
1110 
1111 	part_stat_lock();
1112 	update_io_ticks(req->part, jiffies, false);
1113 	part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1114 	part_stat_unlock();
1115 }
1116 
1117 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1118 {
1119 	if (rq->rq_flags & RQF_STATS)
1120 		blk_stat_add(rq, now);
1121 
1122 	blk_mq_sched_completed_request(rq, now);
1123 	blk_account_io_done(rq, now);
1124 }
1125 
1126 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1127 {
1128 	if (blk_mq_need_time_stamp(rq))
1129 		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1130 
1131 	blk_mq_finish_request(rq);
1132 
1133 	if (rq->end_io) {
1134 		rq_qos_done(rq->q, rq);
1135 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1136 			blk_mq_free_request(rq);
1137 	} else {
1138 		blk_mq_free_request(rq);
1139 	}
1140 }
1141 EXPORT_SYMBOL(__blk_mq_end_request);
1142 
1143 void blk_mq_end_request(struct request *rq, blk_status_t error)
1144 {
1145 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1146 		BUG();
1147 	__blk_mq_end_request(rq, error);
1148 }
1149 EXPORT_SYMBOL(blk_mq_end_request);
1150 
1151 #define TAG_COMP_BATCH		32
1152 
1153 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1154 					  int *tag_array, int nr_tags)
1155 {
1156 	struct request_queue *q = hctx->queue;
1157 
1158 	blk_mq_sub_active_requests(hctx, nr_tags);
1159 
1160 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1161 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1162 }
1163 
1164 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1165 {
1166 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1167 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1168 	struct request *rq;
1169 	u64 now = 0;
1170 
1171 	if (iob->need_ts)
1172 		now = blk_time_get_ns();
1173 
1174 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1175 		prefetch(rq->bio);
1176 		prefetch(rq->rq_next);
1177 
1178 		blk_complete_request(rq);
1179 		if (iob->need_ts)
1180 			__blk_mq_end_request_acct(rq, now);
1181 
1182 		blk_mq_finish_request(rq);
1183 
1184 		rq_qos_done(rq->q, rq);
1185 
1186 		/*
1187 		 * If end_io handler returns NONE, then it still has
1188 		 * ownership of the request.
1189 		 */
1190 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1191 			continue;
1192 
1193 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1194 		if (!req_ref_put_and_test(rq))
1195 			continue;
1196 
1197 		blk_crypto_free_request(rq);
1198 		blk_pm_mark_last_busy(rq);
1199 
1200 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1201 			if (cur_hctx)
1202 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1203 			nr_tags = 0;
1204 			cur_hctx = rq->mq_hctx;
1205 		}
1206 		tags[nr_tags++] = rq->tag;
1207 	}
1208 
1209 	if (nr_tags)
1210 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1211 }
1212 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1213 
1214 static void blk_complete_reqs(struct llist_head *list)
1215 {
1216 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1217 	struct request *rq, *next;
1218 
1219 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1220 		rq->q->mq_ops->complete(rq);
1221 }
1222 
1223 static __latent_entropy void blk_done_softirq(void)
1224 {
1225 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1226 }
1227 
1228 static int blk_softirq_cpu_dead(unsigned int cpu)
1229 {
1230 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1231 	return 0;
1232 }
1233 
1234 static void __blk_mq_complete_request_remote(void *data)
1235 {
1236 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1237 }
1238 
1239 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1240 {
1241 	int cpu = raw_smp_processor_id();
1242 
1243 	if (!IS_ENABLED(CONFIG_SMP) ||
1244 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1245 		return false;
1246 	/*
1247 	 * With force threaded interrupts enabled, raising softirq from an SMP
1248 	 * function call will always result in waking the ksoftirqd thread.
1249 	 * This is probably worse than completing the request on a different
1250 	 * cache domain.
1251 	 */
1252 	if (force_irqthreads())
1253 		return false;
1254 
1255 	/* same CPU or cache domain and capacity?  Complete locally */
1256 	if (cpu == rq->mq_ctx->cpu ||
1257 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1258 	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1259 	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1260 		return false;
1261 
1262 	/* don't try to IPI to an offline CPU */
1263 	return cpu_online(rq->mq_ctx->cpu);
1264 }
1265 
1266 static void blk_mq_complete_send_ipi(struct request *rq)
1267 {
1268 	unsigned int cpu;
1269 
1270 	cpu = rq->mq_ctx->cpu;
1271 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1272 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1273 }
1274 
1275 static void blk_mq_raise_softirq(struct request *rq)
1276 {
1277 	struct llist_head *list;
1278 
1279 	preempt_disable();
1280 	list = this_cpu_ptr(&blk_cpu_done);
1281 	if (llist_add(&rq->ipi_list, list))
1282 		raise_softirq(BLOCK_SOFTIRQ);
1283 	preempt_enable();
1284 }
1285 
1286 bool blk_mq_complete_request_remote(struct request *rq)
1287 {
1288 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1289 
1290 	/*
1291 	 * For request which hctx has only one ctx mapping,
1292 	 * or a polled request, always complete locally,
1293 	 * it's pointless to redirect the completion.
1294 	 */
1295 	if ((rq->mq_hctx->nr_ctx == 1 &&
1296 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1297 	     rq->cmd_flags & REQ_POLLED)
1298 		return false;
1299 
1300 	if (blk_mq_complete_need_ipi(rq)) {
1301 		blk_mq_complete_send_ipi(rq);
1302 		return true;
1303 	}
1304 
1305 	if (rq->q->nr_hw_queues == 1) {
1306 		blk_mq_raise_softirq(rq);
1307 		return true;
1308 	}
1309 	return false;
1310 }
1311 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1312 
1313 /**
1314  * blk_mq_complete_request - end I/O on a request
1315  * @rq:		the request being processed
1316  *
1317  * Description:
1318  *	Complete a request by scheduling the ->complete_rq operation.
1319  **/
1320 void blk_mq_complete_request(struct request *rq)
1321 {
1322 	if (!blk_mq_complete_request_remote(rq))
1323 		rq->q->mq_ops->complete(rq);
1324 }
1325 EXPORT_SYMBOL(blk_mq_complete_request);
1326 
1327 /**
1328  * blk_mq_start_request - Start processing a request
1329  * @rq: Pointer to request to be started
1330  *
1331  * Function used by device drivers to notify the block layer that a request
1332  * is going to be processed now, so blk layer can do proper initializations
1333  * such as starting the timeout timer.
1334  */
1335 void blk_mq_start_request(struct request *rq)
1336 {
1337 	struct request_queue *q = rq->q;
1338 
1339 	trace_block_rq_issue(rq);
1340 
1341 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1342 	    !blk_rq_is_passthrough(rq)) {
1343 		rq->io_start_time_ns = blk_time_get_ns();
1344 		rq->stats_sectors = blk_rq_sectors(rq);
1345 		rq->rq_flags |= RQF_STATS;
1346 		rq_qos_issue(q, rq);
1347 	}
1348 
1349 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1350 
1351 	blk_add_timer(rq);
1352 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1353 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1354 
1355 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1356 		blk_integrity_prepare(rq);
1357 
1358 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1359 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1360 }
1361 EXPORT_SYMBOL(blk_mq_start_request);
1362 
1363 /*
1364  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1365  * queues. This is important for md arrays to benefit from merging
1366  * requests.
1367  */
1368 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1369 {
1370 	if (plug->multiple_queues)
1371 		return BLK_MAX_REQUEST_COUNT * 2;
1372 	return BLK_MAX_REQUEST_COUNT;
1373 }
1374 
1375 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1376 {
1377 	struct request *last = rq_list_peek(&plug->mq_list);
1378 
1379 	if (!plug->rq_count) {
1380 		trace_block_plug(rq->q);
1381 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1382 		   (!blk_queue_nomerges(rq->q) &&
1383 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1384 		blk_mq_flush_plug_list(plug, false);
1385 		last = NULL;
1386 		trace_block_plug(rq->q);
1387 	}
1388 
1389 	if (!plug->multiple_queues && last && last->q != rq->q)
1390 		plug->multiple_queues = true;
1391 	/*
1392 	 * Any request allocated from sched tags can't be issued to
1393 	 * ->queue_rqs() directly
1394 	 */
1395 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1396 		plug->has_elevator = true;
1397 	rq_list_add_tail(&plug->mq_list, rq);
1398 	plug->rq_count++;
1399 }
1400 
1401 /**
1402  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1403  * @rq:		request to insert
1404  * @at_head:    insert request at head or tail of queue
1405  *
1406  * Description:
1407  *    Insert a fully prepared request at the back of the I/O scheduler queue
1408  *    for execution.  Don't wait for completion.
1409  *
1410  * Note:
1411  *    This function will invoke @done directly if the queue is dead.
1412  */
1413 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1414 {
1415 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1416 
1417 	WARN_ON(irqs_disabled());
1418 	WARN_ON(!blk_rq_is_passthrough(rq));
1419 
1420 	blk_account_io_start(rq);
1421 
1422 	if (current->plug && !at_head) {
1423 		blk_add_rq_to_plug(current->plug, rq);
1424 		return;
1425 	}
1426 
1427 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1428 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1429 }
1430 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1431 
1432 struct blk_rq_wait {
1433 	struct completion done;
1434 	blk_status_t ret;
1435 };
1436 
1437 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1438 {
1439 	struct blk_rq_wait *wait = rq->end_io_data;
1440 
1441 	wait->ret = ret;
1442 	complete(&wait->done);
1443 	return RQ_END_IO_NONE;
1444 }
1445 
1446 bool blk_rq_is_poll(struct request *rq)
1447 {
1448 	if (!rq->mq_hctx)
1449 		return false;
1450 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1451 		return false;
1452 	return true;
1453 }
1454 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1455 
1456 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1457 {
1458 	do {
1459 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1460 		cond_resched();
1461 	} while (!completion_done(wait));
1462 }
1463 
1464 /**
1465  * blk_execute_rq - insert a request into queue for execution
1466  * @rq:		request to insert
1467  * @at_head:    insert request at head or tail of queue
1468  *
1469  * Description:
1470  *    Insert a fully prepared request at the back of the I/O scheduler queue
1471  *    for execution and wait for completion.
1472  * Return: The blk_status_t result provided to blk_mq_end_request().
1473  */
1474 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1475 {
1476 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1477 	struct blk_rq_wait wait = {
1478 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1479 	};
1480 
1481 	WARN_ON(irqs_disabled());
1482 	WARN_ON(!blk_rq_is_passthrough(rq));
1483 
1484 	rq->end_io_data = &wait;
1485 	rq->end_io = blk_end_sync_rq;
1486 
1487 	blk_account_io_start(rq);
1488 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1489 	blk_mq_run_hw_queue(hctx, false);
1490 
1491 	if (blk_rq_is_poll(rq))
1492 		blk_rq_poll_completion(rq, &wait.done);
1493 	else
1494 		blk_wait_io(&wait.done);
1495 
1496 	return wait.ret;
1497 }
1498 EXPORT_SYMBOL(blk_execute_rq);
1499 
1500 static void __blk_mq_requeue_request(struct request *rq)
1501 {
1502 	struct request_queue *q = rq->q;
1503 
1504 	blk_mq_put_driver_tag(rq);
1505 
1506 	trace_block_rq_requeue(rq);
1507 	rq_qos_requeue(q, rq);
1508 
1509 	if (blk_mq_request_started(rq)) {
1510 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1511 		rq->rq_flags &= ~RQF_TIMED_OUT;
1512 	}
1513 }
1514 
1515 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1516 {
1517 	struct request_queue *q = rq->q;
1518 	unsigned long flags;
1519 
1520 	__blk_mq_requeue_request(rq);
1521 
1522 	/* this request will be re-inserted to io scheduler queue */
1523 	blk_mq_sched_requeue_request(rq);
1524 
1525 	spin_lock_irqsave(&q->requeue_lock, flags);
1526 	list_add_tail(&rq->queuelist, &q->requeue_list);
1527 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1528 
1529 	if (kick_requeue_list)
1530 		blk_mq_kick_requeue_list(q);
1531 }
1532 EXPORT_SYMBOL(blk_mq_requeue_request);
1533 
1534 static void blk_mq_requeue_work(struct work_struct *work)
1535 {
1536 	struct request_queue *q =
1537 		container_of(work, struct request_queue, requeue_work.work);
1538 	LIST_HEAD(rq_list);
1539 	LIST_HEAD(flush_list);
1540 	struct request *rq;
1541 
1542 	spin_lock_irq(&q->requeue_lock);
1543 	list_splice_init(&q->requeue_list, &rq_list);
1544 	list_splice_init(&q->flush_list, &flush_list);
1545 	spin_unlock_irq(&q->requeue_lock);
1546 
1547 	while (!list_empty(&rq_list)) {
1548 		rq = list_entry(rq_list.next, struct request, queuelist);
1549 		list_del_init(&rq->queuelist);
1550 		/*
1551 		 * If RQF_DONTPREP is set, the request has been started by the
1552 		 * driver already and might have driver-specific data allocated
1553 		 * already.  Insert it into the hctx dispatch list to avoid
1554 		 * block layer merges for the request.
1555 		 */
1556 		if (rq->rq_flags & RQF_DONTPREP)
1557 			blk_mq_request_bypass_insert(rq, 0);
1558 		else
1559 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1560 	}
1561 
1562 	while (!list_empty(&flush_list)) {
1563 		rq = list_entry(flush_list.next, struct request, queuelist);
1564 		list_del_init(&rq->queuelist);
1565 		blk_mq_insert_request(rq, 0);
1566 	}
1567 
1568 	blk_mq_run_hw_queues(q, false);
1569 }
1570 
1571 void blk_mq_kick_requeue_list(struct request_queue *q)
1572 {
1573 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1574 }
1575 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1576 
1577 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1578 				    unsigned long msecs)
1579 {
1580 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1581 				    msecs_to_jiffies(msecs));
1582 }
1583 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1584 
1585 static bool blk_is_flush_data_rq(struct request *rq)
1586 {
1587 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1588 }
1589 
1590 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1591 {
1592 	/*
1593 	 * If we find a request that isn't idle we know the queue is busy
1594 	 * as it's checked in the iter.
1595 	 * Return false to stop the iteration.
1596 	 *
1597 	 * In case of queue quiesce, if one flush data request is completed,
1598 	 * don't count it as inflight given the flush sequence is suspended,
1599 	 * and the original flush data request is invisible to driver, just
1600 	 * like other pending requests because of quiesce
1601 	 */
1602 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1603 				blk_is_flush_data_rq(rq) &&
1604 				blk_mq_request_completed(rq))) {
1605 		bool *busy = priv;
1606 
1607 		*busy = true;
1608 		return false;
1609 	}
1610 
1611 	return true;
1612 }
1613 
1614 bool blk_mq_queue_inflight(struct request_queue *q)
1615 {
1616 	bool busy = false;
1617 
1618 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1619 	return busy;
1620 }
1621 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1622 
1623 static void blk_mq_rq_timed_out(struct request *req)
1624 {
1625 	req->rq_flags |= RQF_TIMED_OUT;
1626 	if (req->q->mq_ops->timeout) {
1627 		enum blk_eh_timer_return ret;
1628 
1629 		ret = req->q->mq_ops->timeout(req);
1630 		if (ret == BLK_EH_DONE)
1631 			return;
1632 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1633 	}
1634 
1635 	blk_add_timer(req);
1636 }
1637 
1638 struct blk_expired_data {
1639 	bool has_timedout_rq;
1640 	unsigned long next;
1641 	unsigned long timeout_start;
1642 };
1643 
1644 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1645 {
1646 	unsigned long deadline;
1647 
1648 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1649 		return false;
1650 	if (rq->rq_flags & RQF_TIMED_OUT)
1651 		return false;
1652 
1653 	deadline = READ_ONCE(rq->deadline);
1654 	if (time_after_eq(expired->timeout_start, deadline))
1655 		return true;
1656 
1657 	if (expired->next == 0)
1658 		expired->next = deadline;
1659 	else if (time_after(expired->next, deadline))
1660 		expired->next = deadline;
1661 	return false;
1662 }
1663 
1664 void blk_mq_put_rq_ref(struct request *rq)
1665 {
1666 	if (is_flush_rq(rq)) {
1667 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1668 			blk_mq_free_request(rq);
1669 	} else if (req_ref_put_and_test(rq)) {
1670 		__blk_mq_free_request(rq);
1671 	}
1672 }
1673 
1674 static bool blk_mq_check_expired(struct request *rq, void *priv)
1675 {
1676 	struct blk_expired_data *expired = priv;
1677 
1678 	/*
1679 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1680 	 * be reallocated underneath the timeout handler's processing, then
1681 	 * the expire check is reliable. If the request is not expired, then
1682 	 * it was completed and reallocated as a new request after returning
1683 	 * from blk_mq_check_expired().
1684 	 */
1685 	if (blk_mq_req_expired(rq, expired)) {
1686 		expired->has_timedout_rq = true;
1687 		return false;
1688 	}
1689 	return true;
1690 }
1691 
1692 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1693 {
1694 	struct blk_expired_data *expired = priv;
1695 
1696 	if (blk_mq_req_expired(rq, expired))
1697 		blk_mq_rq_timed_out(rq);
1698 	return true;
1699 }
1700 
1701 static void blk_mq_timeout_work(struct work_struct *work)
1702 {
1703 	struct request_queue *q =
1704 		container_of(work, struct request_queue, timeout_work);
1705 	struct blk_expired_data expired = {
1706 		.timeout_start = jiffies,
1707 	};
1708 	struct blk_mq_hw_ctx *hctx;
1709 	unsigned long i;
1710 
1711 	/* A deadlock might occur if a request is stuck requiring a
1712 	 * timeout at the same time a queue freeze is waiting
1713 	 * completion, since the timeout code would not be able to
1714 	 * acquire the queue reference here.
1715 	 *
1716 	 * That's why we don't use blk_queue_enter here; instead, we use
1717 	 * percpu_ref_tryget directly, because we need to be able to
1718 	 * obtain a reference even in the short window between the queue
1719 	 * starting to freeze, by dropping the first reference in
1720 	 * blk_freeze_queue_start, and the moment the last request is
1721 	 * consumed, marked by the instant q_usage_counter reaches
1722 	 * zero.
1723 	 */
1724 	if (!percpu_ref_tryget(&q->q_usage_counter))
1725 		return;
1726 
1727 	/* check if there is any timed-out request */
1728 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1729 	if (expired.has_timedout_rq) {
1730 		/*
1731 		 * Before walking tags, we must ensure any submit started
1732 		 * before the current time has finished. Since the submit
1733 		 * uses srcu or rcu, wait for a synchronization point to
1734 		 * ensure all running submits have finished
1735 		 */
1736 		blk_mq_wait_quiesce_done(q->tag_set);
1737 
1738 		expired.next = 0;
1739 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1740 	}
1741 
1742 	if (expired.next != 0) {
1743 		mod_timer(&q->timeout, expired.next);
1744 	} else {
1745 		/*
1746 		 * Request timeouts are handled as a forward rolling timer. If
1747 		 * we end up here it means that no requests are pending and
1748 		 * also that no request has been pending for a while. Mark
1749 		 * each hctx as idle.
1750 		 */
1751 		queue_for_each_hw_ctx(q, hctx, i) {
1752 			/* the hctx may be unmapped, so check it here */
1753 			if (blk_mq_hw_queue_mapped(hctx))
1754 				blk_mq_tag_idle(hctx);
1755 		}
1756 	}
1757 	blk_queue_exit(q);
1758 }
1759 
1760 struct flush_busy_ctx_data {
1761 	struct blk_mq_hw_ctx *hctx;
1762 	struct list_head *list;
1763 };
1764 
1765 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1766 {
1767 	struct flush_busy_ctx_data *flush_data = data;
1768 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1769 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1770 	enum hctx_type type = hctx->type;
1771 
1772 	spin_lock(&ctx->lock);
1773 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1774 	sbitmap_clear_bit(sb, bitnr);
1775 	spin_unlock(&ctx->lock);
1776 	return true;
1777 }
1778 
1779 /*
1780  * Process software queues that have been marked busy, splicing them
1781  * to the for-dispatch
1782  */
1783 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1784 {
1785 	struct flush_busy_ctx_data data = {
1786 		.hctx = hctx,
1787 		.list = list,
1788 	};
1789 
1790 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1791 }
1792 
1793 struct dispatch_rq_data {
1794 	struct blk_mq_hw_ctx *hctx;
1795 	struct request *rq;
1796 };
1797 
1798 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1799 		void *data)
1800 {
1801 	struct dispatch_rq_data *dispatch_data = data;
1802 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1803 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1804 	enum hctx_type type = hctx->type;
1805 
1806 	spin_lock(&ctx->lock);
1807 	if (!list_empty(&ctx->rq_lists[type])) {
1808 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1809 		list_del_init(&dispatch_data->rq->queuelist);
1810 		if (list_empty(&ctx->rq_lists[type]))
1811 			sbitmap_clear_bit(sb, bitnr);
1812 	}
1813 	spin_unlock(&ctx->lock);
1814 
1815 	return !dispatch_data->rq;
1816 }
1817 
1818 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1819 					struct blk_mq_ctx *start)
1820 {
1821 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1822 	struct dispatch_rq_data data = {
1823 		.hctx = hctx,
1824 		.rq   = NULL,
1825 	};
1826 
1827 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1828 			       dispatch_rq_from_ctx, &data);
1829 
1830 	return data.rq;
1831 }
1832 
1833 bool __blk_mq_alloc_driver_tag(struct request *rq)
1834 {
1835 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1836 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1837 	int tag;
1838 
1839 	blk_mq_tag_busy(rq->mq_hctx);
1840 
1841 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1842 		bt = &rq->mq_hctx->tags->breserved_tags;
1843 		tag_offset = 0;
1844 	} else {
1845 		if (!hctx_may_queue(rq->mq_hctx, bt))
1846 			return false;
1847 	}
1848 
1849 	tag = __sbitmap_queue_get(bt);
1850 	if (tag == BLK_MQ_NO_TAG)
1851 		return false;
1852 
1853 	rq->tag = tag + tag_offset;
1854 	blk_mq_inc_active_requests(rq->mq_hctx);
1855 	return true;
1856 }
1857 
1858 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1859 				int flags, void *key)
1860 {
1861 	struct blk_mq_hw_ctx *hctx;
1862 
1863 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1864 
1865 	spin_lock(&hctx->dispatch_wait_lock);
1866 	if (!list_empty(&wait->entry)) {
1867 		struct sbitmap_queue *sbq;
1868 
1869 		list_del_init(&wait->entry);
1870 		sbq = &hctx->tags->bitmap_tags;
1871 		atomic_dec(&sbq->ws_active);
1872 	}
1873 	spin_unlock(&hctx->dispatch_wait_lock);
1874 
1875 	blk_mq_run_hw_queue(hctx, true);
1876 	return 1;
1877 }
1878 
1879 /*
1880  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1881  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1882  * restart. For both cases, take care to check the condition again after
1883  * marking us as waiting.
1884  */
1885 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1886 				 struct request *rq)
1887 {
1888 	struct sbitmap_queue *sbq;
1889 	struct wait_queue_head *wq;
1890 	wait_queue_entry_t *wait;
1891 	bool ret;
1892 
1893 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1894 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1895 		blk_mq_sched_mark_restart_hctx(hctx);
1896 
1897 		/*
1898 		 * It's possible that a tag was freed in the window between the
1899 		 * allocation failure and adding the hardware queue to the wait
1900 		 * queue.
1901 		 *
1902 		 * Don't clear RESTART here, someone else could have set it.
1903 		 * At most this will cost an extra queue run.
1904 		 */
1905 		return blk_mq_get_driver_tag(rq);
1906 	}
1907 
1908 	wait = &hctx->dispatch_wait;
1909 	if (!list_empty_careful(&wait->entry))
1910 		return false;
1911 
1912 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1913 		sbq = &hctx->tags->breserved_tags;
1914 	else
1915 		sbq = &hctx->tags->bitmap_tags;
1916 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1917 
1918 	spin_lock_irq(&wq->lock);
1919 	spin_lock(&hctx->dispatch_wait_lock);
1920 	if (!list_empty(&wait->entry)) {
1921 		spin_unlock(&hctx->dispatch_wait_lock);
1922 		spin_unlock_irq(&wq->lock);
1923 		return false;
1924 	}
1925 
1926 	atomic_inc(&sbq->ws_active);
1927 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1928 	__add_wait_queue(wq, wait);
1929 
1930 	/*
1931 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1932 	 * not imply barrier in case of failure.
1933 	 *
1934 	 * Order adding us to wait queue and allocating driver tag.
1935 	 *
1936 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1937 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1938 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1939 	 *
1940 	 * Otherwise, re-order of adding wait queue and getting driver tag
1941 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1942 	 * the waitqueue_active() may not observe us in wait queue.
1943 	 */
1944 	smp_mb();
1945 
1946 	/*
1947 	 * It's possible that a tag was freed in the window between the
1948 	 * allocation failure and adding the hardware queue to the wait
1949 	 * queue.
1950 	 */
1951 	ret = blk_mq_get_driver_tag(rq);
1952 	if (!ret) {
1953 		spin_unlock(&hctx->dispatch_wait_lock);
1954 		spin_unlock_irq(&wq->lock);
1955 		return false;
1956 	}
1957 
1958 	/*
1959 	 * We got a tag, remove ourselves from the wait queue to ensure
1960 	 * someone else gets the wakeup.
1961 	 */
1962 	list_del_init(&wait->entry);
1963 	atomic_dec(&sbq->ws_active);
1964 	spin_unlock(&hctx->dispatch_wait_lock);
1965 	spin_unlock_irq(&wq->lock);
1966 
1967 	return true;
1968 }
1969 
1970 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1971 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1972 /*
1973  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1974  * - EWMA is one simple way to compute running average value
1975  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1976  * - take 4 as factor for avoiding to get too small(0) result, and this
1977  *   factor doesn't matter because EWMA decreases exponentially
1978  */
1979 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1980 {
1981 	unsigned int ewma;
1982 
1983 	ewma = hctx->dispatch_busy;
1984 
1985 	if (!ewma && !busy)
1986 		return;
1987 
1988 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1989 	if (busy)
1990 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1991 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1992 
1993 	hctx->dispatch_busy = ewma;
1994 }
1995 
1996 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1997 
1998 static void blk_mq_handle_dev_resource(struct request *rq,
1999 				       struct list_head *list)
2000 {
2001 	list_add(&rq->queuelist, list);
2002 	__blk_mq_requeue_request(rq);
2003 }
2004 
2005 enum prep_dispatch {
2006 	PREP_DISPATCH_OK,
2007 	PREP_DISPATCH_NO_TAG,
2008 	PREP_DISPATCH_NO_BUDGET,
2009 };
2010 
2011 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2012 						  bool need_budget)
2013 {
2014 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2015 	int budget_token = -1;
2016 
2017 	if (need_budget) {
2018 		budget_token = blk_mq_get_dispatch_budget(rq->q);
2019 		if (budget_token < 0) {
2020 			blk_mq_put_driver_tag(rq);
2021 			return PREP_DISPATCH_NO_BUDGET;
2022 		}
2023 		blk_mq_set_rq_budget_token(rq, budget_token);
2024 	}
2025 
2026 	if (!blk_mq_get_driver_tag(rq)) {
2027 		/*
2028 		 * The initial allocation attempt failed, so we need to
2029 		 * rerun the hardware queue when a tag is freed. The
2030 		 * waitqueue takes care of that. If the queue is run
2031 		 * before we add this entry back on the dispatch list,
2032 		 * we'll re-run it below.
2033 		 */
2034 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
2035 			/*
2036 			 * All budgets not got from this function will be put
2037 			 * together during handling partial dispatch
2038 			 */
2039 			if (need_budget)
2040 				blk_mq_put_dispatch_budget(rq->q, budget_token);
2041 			return PREP_DISPATCH_NO_TAG;
2042 		}
2043 	}
2044 
2045 	return PREP_DISPATCH_OK;
2046 }
2047 
2048 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2049 static void blk_mq_release_budgets(struct request_queue *q,
2050 		struct list_head *list)
2051 {
2052 	struct request *rq;
2053 
2054 	list_for_each_entry(rq, list, queuelist) {
2055 		int budget_token = blk_mq_get_rq_budget_token(rq);
2056 
2057 		if (budget_token >= 0)
2058 			blk_mq_put_dispatch_budget(q, budget_token);
2059 	}
2060 }
2061 
2062 /*
2063  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2064  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2065  * details)
2066  * Attention, we should explicitly call this in unusual cases:
2067  *  1) did not queue everything initially scheduled to queue
2068  *  2) the last attempt to queue a request failed
2069  */
2070 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2071 			      bool from_schedule)
2072 {
2073 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2074 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2075 		hctx->queue->mq_ops->commit_rqs(hctx);
2076 	}
2077 }
2078 
2079 /*
2080  * Returns true if we did some work AND can potentially do more.
2081  */
2082 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2083 			     unsigned int nr_budgets)
2084 {
2085 	enum prep_dispatch prep;
2086 	struct request_queue *q = hctx->queue;
2087 	struct request *rq;
2088 	int queued;
2089 	blk_status_t ret = BLK_STS_OK;
2090 	bool needs_resource = false;
2091 
2092 	if (list_empty(list))
2093 		return false;
2094 
2095 	/*
2096 	 * Now process all the entries, sending them to the driver.
2097 	 */
2098 	queued = 0;
2099 	do {
2100 		struct blk_mq_queue_data bd;
2101 
2102 		rq = list_first_entry(list, struct request, queuelist);
2103 
2104 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2105 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2106 		if (prep != PREP_DISPATCH_OK)
2107 			break;
2108 
2109 		list_del_init(&rq->queuelist);
2110 
2111 		bd.rq = rq;
2112 		bd.last = list_empty(list);
2113 
2114 		/*
2115 		 * once the request is queued to lld, no need to cover the
2116 		 * budget any more
2117 		 */
2118 		if (nr_budgets)
2119 			nr_budgets--;
2120 		ret = q->mq_ops->queue_rq(hctx, &bd);
2121 		switch (ret) {
2122 		case BLK_STS_OK:
2123 			queued++;
2124 			break;
2125 		case BLK_STS_RESOURCE:
2126 			needs_resource = true;
2127 			fallthrough;
2128 		case BLK_STS_DEV_RESOURCE:
2129 			blk_mq_handle_dev_resource(rq, list);
2130 			goto out;
2131 		default:
2132 			blk_mq_end_request(rq, ret);
2133 		}
2134 	} while (!list_empty(list));
2135 out:
2136 	/* If we didn't flush the entire list, we could have told the driver
2137 	 * there was more coming, but that turned out to be a lie.
2138 	 */
2139 	if (!list_empty(list) || ret != BLK_STS_OK)
2140 		blk_mq_commit_rqs(hctx, queued, false);
2141 
2142 	/*
2143 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2144 	 * that is where we will continue on next queue run.
2145 	 */
2146 	if (!list_empty(list)) {
2147 		bool needs_restart;
2148 		/* For non-shared tags, the RESTART check will suffice */
2149 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2150 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2151 			blk_mq_is_shared_tags(hctx->flags));
2152 
2153 		if (nr_budgets)
2154 			blk_mq_release_budgets(q, list);
2155 
2156 		spin_lock(&hctx->lock);
2157 		list_splice_tail_init(list, &hctx->dispatch);
2158 		spin_unlock(&hctx->lock);
2159 
2160 		/*
2161 		 * Order adding requests to hctx->dispatch and checking
2162 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2163 		 * in blk_mq_sched_restart(). Avoid restart code path to
2164 		 * miss the new added requests to hctx->dispatch, meantime
2165 		 * SCHED_RESTART is observed here.
2166 		 */
2167 		smp_mb();
2168 
2169 		/*
2170 		 * If SCHED_RESTART was set by the caller of this function and
2171 		 * it is no longer set that means that it was cleared by another
2172 		 * thread and hence that a queue rerun is needed.
2173 		 *
2174 		 * If 'no_tag' is set, that means that we failed getting
2175 		 * a driver tag with an I/O scheduler attached. If our dispatch
2176 		 * waitqueue is no longer active, ensure that we run the queue
2177 		 * AFTER adding our entries back to the list.
2178 		 *
2179 		 * If no I/O scheduler has been configured it is possible that
2180 		 * the hardware queue got stopped and restarted before requests
2181 		 * were pushed back onto the dispatch list. Rerun the queue to
2182 		 * avoid starvation. Notes:
2183 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2184 		 *   been stopped before rerunning a queue.
2185 		 * - Some but not all block drivers stop a queue before
2186 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2187 		 *   and dm-rq.
2188 		 *
2189 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2190 		 * bit is set, run queue after a delay to avoid IO stalls
2191 		 * that could otherwise occur if the queue is idle.  We'll do
2192 		 * similar if we couldn't get budget or couldn't lock a zone
2193 		 * and SCHED_RESTART is set.
2194 		 */
2195 		needs_restart = blk_mq_sched_needs_restart(hctx);
2196 		if (prep == PREP_DISPATCH_NO_BUDGET)
2197 			needs_resource = true;
2198 		if (!needs_restart ||
2199 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2200 			blk_mq_run_hw_queue(hctx, true);
2201 		else if (needs_resource)
2202 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2203 
2204 		blk_mq_update_dispatch_busy(hctx, true);
2205 		return false;
2206 	}
2207 
2208 	blk_mq_update_dispatch_busy(hctx, false);
2209 	return true;
2210 }
2211 
2212 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2213 {
2214 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2215 
2216 	if (cpu >= nr_cpu_ids)
2217 		cpu = cpumask_first(hctx->cpumask);
2218 	return cpu;
2219 }
2220 
2221 /*
2222  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2223  * it for speeding up the check
2224  */
2225 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2226 {
2227         return hctx->next_cpu >= nr_cpu_ids;
2228 }
2229 
2230 /*
2231  * It'd be great if the workqueue API had a way to pass
2232  * in a mask and had some smarts for more clever placement.
2233  * For now we just round-robin here, switching for every
2234  * BLK_MQ_CPU_WORK_BATCH queued items.
2235  */
2236 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2237 {
2238 	bool tried = false;
2239 	int next_cpu = hctx->next_cpu;
2240 
2241 	/* Switch to unbound if no allowable CPUs in this hctx */
2242 	if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2243 		return WORK_CPU_UNBOUND;
2244 
2245 	if (--hctx->next_cpu_batch <= 0) {
2246 select_cpu:
2247 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2248 				cpu_online_mask);
2249 		if (next_cpu >= nr_cpu_ids)
2250 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2251 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2252 	}
2253 
2254 	/*
2255 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2256 	 * and it should only happen in the path of handling CPU DEAD.
2257 	 */
2258 	if (!cpu_online(next_cpu)) {
2259 		if (!tried) {
2260 			tried = true;
2261 			goto select_cpu;
2262 		}
2263 
2264 		/*
2265 		 * Make sure to re-select CPU next time once after CPUs
2266 		 * in hctx->cpumask become online again.
2267 		 */
2268 		hctx->next_cpu = next_cpu;
2269 		hctx->next_cpu_batch = 1;
2270 		return WORK_CPU_UNBOUND;
2271 	}
2272 
2273 	hctx->next_cpu = next_cpu;
2274 	return next_cpu;
2275 }
2276 
2277 /**
2278  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2279  * @hctx: Pointer to the hardware queue to run.
2280  * @msecs: Milliseconds of delay to wait before running the queue.
2281  *
2282  * Run a hardware queue asynchronously with a delay of @msecs.
2283  */
2284 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2285 {
2286 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2287 		return;
2288 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2289 				    msecs_to_jiffies(msecs));
2290 }
2291 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2292 
2293 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2294 {
2295 	bool need_run;
2296 
2297 	/*
2298 	 * When queue is quiesced, we may be switching io scheduler, or
2299 	 * updating nr_hw_queues, or other things, and we can't run queue
2300 	 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2301 	 *
2302 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2303 	 * quiesced.
2304 	 */
2305 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2306 		need_run = !blk_queue_quiesced(hctx->queue) &&
2307 		blk_mq_hctx_has_pending(hctx));
2308 	return need_run;
2309 }
2310 
2311 /**
2312  * blk_mq_run_hw_queue - Start to run a hardware queue.
2313  * @hctx: Pointer to the hardware queue to run.
2314  * @async: If we want to run the queue asynchronously.
2315  *
2316  * Check if the request queue is not in a quiesced state and if there are
2317  * pending requests to be sent. If this is true, run the queue to send requests
2318  * to hardware.
2319  */
2320 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2321 {
2322 	bool need_run;
2323 
2324 	/*
2325 	 * We can't run the queue inline with interrupts disabled.
2326 	 */
2327 	WARN_ON_ONCE(!async && in_interrupt());
2328 
2329 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2330 
2331 	need_run = blk_mq_hw_queue_need_run(hctx);
2332 	if (!need_run) {
2333 		unsigned long flags;
2334 
2335 		/*
2336 		 * Synchronize with blk_mq_unquiesce_queue(), because we check
2337 		 * if hw queue is quiesced locklessly above, we need the use
2338 		 * ->queue_lock to make sure we see the up-to-date status to
2339 		 * not miss rerunning the hw queue.
2340 		 */
2341 		spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2342 		need_run = blk_mq_hw_queue_need_run(hctx);
2343 		spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2344 
2345 		if (!need_run)
2346 			return;
2347 	}
2348 
2349 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2350 		blk_mq_delay_run_hw_queue(hctx, 0);
2351 		return;
2352 	}
2353 
2354 	blk_mq_run_dispatch_ops(hctx->queue,
2355 				blk_mq_sched_dispatch_requests(hctx));
2356 }
2357 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2358 
2359 /*
2360  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2361  * scheduler.
2362  */
2363 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2364 {
2365 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2366 	/*
2367 	 * If the IO scheduler does not respect hardware queues when
2368 	 * dispatching, we just don't bother with multiple HW queues and
2369 	 * dispatch from hctx for the current CPU since running multiple queues
2370 	 * just causes lock contention inside the scheduler and pointless cache
2371 	 * bouncing.
2372 	 */
2373 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2374 
2375 	if (!blk_mq_hctx_stopped(hctx))
2376 		return hctx;
2377 	return NULL;
2378 }
2379 
2380 /**
2381  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2382  * @q: Pointer to the request queue to run.
2383  * @async: If we want to run the queue asynchronously.
2384  */
2385 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2386 {
2387 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2388 	unsigned long i;
2389 
2390 	sq_hctx = NULL;
2391 	if (blk_queue_sq_sched(q))
2392 		sq_hctx = blk_mq_get_sq_hctx(q);
2393 	queue_for_each_hw_ctx(q, hctx, i) {
2394 		if (blk_mq_hctx_stopped(hctx))
2395 			continue;
2396 		/*
2397 		 * Dispatch from this hctx either if there's no hctx preferred
2398 		 * by IO scheduler or if it has requests that bypass the
2399 		 * scheduler.
2400 		 */
2401 		if (!sq_hctx || sq_hctx == hctx ||
2402 		    !list_empty_careful(&hctx->dispatch))
2403 			blk_mq_run_hw_queue(hctx, async);
2404 	}
2405 }
2406 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2407 
2408 /**
2409  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2410  * @q: Pointer to the request queue to run.
2411  * @msecs: Milliseconds of delay to wait before running the queues.
2412  */
2413 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2414 {
2415 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2416 	unsigned long i;
2417 
2418 	sq_hctx = NULL;
2419 	if (blk_queue_sq_sched(q))
2420 		sq_hctx = blk_mq_get_sq_hctx(q);
2421 	queue_for_each_hw_ctx(q, hctx, i) {
2422 		if (blk_mq_hctx_stopped(hctx))
2423 			continue;
2424 		/*
2425 		 * If there is already a run_work pending, leave the
2426 		 * pending delay untouched. Otherwise, a hctx can stall
2427 		 * if another hctx is re-delaying the other's work
2428 		 * before the work executes.
2429 		 */
2430 		if (delayed_work_pending(&hctx->run_work))
2431 			continue;
2432 		/*
2433 		 * Dispatch from this hctx either if there's no hctx preferred
2434 		 * by IO scheduler or if it has requests that bypass the
2435 		 * scheduler.
2436 		 */
2437 		if (!sq_hctx || sq_hctx == hctx ||
2438 		    !list_empty_careful(&hctx->dispatch))
2439 			blk_mq_delay_run_hw_queue(hctx, msecs);
2440 	}
2441 }
2442 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2443 
2444 /*
2445  * This function is often used for pausing .queue_rq() by driver when
2446  * there isn't enough resource or some conditions aren't satisfied, and
2447  * BLK_STS_RESOURCE is usually returned.
2448  *
2449  * We do not guarantee that dispatch can be drained or blocked
2450  * after blk_mq_stop_hw_queue() returns. Please use
2451  * blk_mq_quiesce_queue() for that requirement.
2452  */
2453 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2454 {
2455 	cancel_delayed_work(&hctx->run_work);
2456 
2457 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2458 }
2459 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2460 
2461 /*
2462  * This function is often used for pausing .queue_rq() by driver when
2463  * there isn't enough resource or some conditions aren't satisfied, and
2464  * BLK_STS_RESOURCE is usually returned.
2465  *
2466  * We do not guarantee that dispatch can be drained or blocked
2467  * after blk_mq_stop_hw_queues() returns. Please use
2468  * blk_mq_quiesce_queue() for that requirement.
2469  */
2470 void blk_mq_stop_hw_queues(struct request_queue *q)
2471 {
2472 	struct blk_mq_hw_ctx *hctx;
2473 	unsigned long i;
2474 
2475 	queue_for_each_hw_ctx(q, hctx, i)
2476 		blk_mq_stop_hw_queue(hctx);
2477 }
2478 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2479 
2480 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2481 {
2482 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2483 
2484 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2485 }
2486 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2487 
2488 void blk_mq_start_hw_queues(struct request_queue *q)
2489 {
2490 	struct blk_mq_hw_ctx *hctx;
2491 	unsigned long i;
2492 
2493 	queue_for_each_hw_ctx(q, hctx, i)
2494 		blk_mq_start_hw_queue(hctx);
2495 }
2496 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2497 
2498 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2499 {
2500 	if (!blk_mq_hctx_stopped(hctx))
2501 		return;
2502 
2503 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2504 	/*
2505 	 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2506 	 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2507 	 * list in the subsequent routine.
2508 	 */
2509 	smp_mb__after_atomic();
2510 	blk_mq_run_hw_queue(hctx, async);
2511 }
2512 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2513 
2514 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2515 {
2516 	struct blk_mq_hw_ctx *hctx;
2517 	unsigned long i;
2518 
2519 	queue_for_each_hw_ctx(q, hctx, i)
2520 		blk_mq_start_stopped_hw_queue(hctx, async ||
2521 					(hctx->flags & BLK_MQ_F_BLOCKING));
2522 }
2523 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2524 
2525 static void blk_mq_run_work_fn(struct work_struct *work)
2526 {
2527 	struct blk_mq_hw_ctx *hctx =
2528 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2529 
2530 	blk_mq_run_dispatch_ops(hctx->queue,
2531 				blk_mq_sched_dispatch_requests(hctx));
2532 }
2533 
2534 /**
2535  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2536  * @rq: Pointer to request to be inserted.
2537  * @flags: BLK_MQ_INSERT_*
2538  *
2539  * Should only be used carefully, when the caller knows we want to
2540  * bypass a potential IO scheduler on the target device.
2541  */
2542 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2543 {
2544 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2545 
2546 	spin_lock(&hctx->lock);
2547 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2548 		list_add(&rq->queuelist, &hctx->dispatch);
2549 	else
2550 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2551 	spin_unlock(&hctx->lock);
2552 }
2553 
2554 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2555 		struct blk_mq_ctx *ctx, struct list_head *list,
2556 		bool run_queue_async)
2557 {
2558 	struct request *rq;
2559 	enum hctx_type type = hctx->type;
2560 
2561 	/*
2562 	 * Try to issue requests directly if the hw queue isn't busy to save an
2563 	 * extra enqueue & dequeue to the sw queue.
2564 	 */
2565 	if (!hctx->dispatch_busy && !run_queue_async) {
2566 		blk_mq_run_dispatch_ops(hctx->queue,
2567 			blk_mq_try_issue_list_directly(hctx, list));
2568 		if (list_empty(list))
2569 			goto out;
2570 	}
2571 
2572 	/*
2573 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2574 	 * offline now
2575 	 */
2576 	list_for_each_entry(rq, list, queuelist) {
2577 		BUG_ON(rq->mq_ctx != ctx);
2578 		trace_block_rq_insert(rq);
2579 		if (rq->cmd_flags & REQ_NOWAIT)
2580 			run_queue_async = true;
2581 	}
2582 
2583 	spin_lock(&ctx->lock);
2584 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2585 	blk_mq_hctx_mark_pending(hctx, ctx);
2586 	spin_unlock(&ctx->lock);
2587 out:
2588 	blk_mq_run_hw_queue(hctx, run_queue_async);
2589 }
2590 
2591 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2592 {
2593 	struct request_queue *q = rq->q;
2594 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2595 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2596 
2597 	if (blk_rq_is_passthrough(rq)) {
2598 		/*
2599 		 * Passthrough request have to be added to hctx->dispatch
2600 		 * directly.  The device may be in a situation where it can't
2601 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2602 		 * them, which gets them added to hctx->dispatch.
2603 		 *
2604 		 * If a passthrough request is required to unblock the queues,
2605 		 * and it is added to the scheduler queue, there is no chance to
2606 		 * dispatch it given we prioritize requests in hctx->dispatch.
2607 		 */
2608 		blk_mq_request_bypass_insert(rq, flags);
2609 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2610 		/*
2611 		 * Firstly normal IO request is inserted to scheduler queue or
2612 		 * sw queue, meantime we add flush request to dispatch queue(
2613 		 * hctx->dispatch) directly and there is at most one in-flight
2614 		 * flush request for each hw queue, so it doesn't matter to add
2615 		 * flush request to tail or front of the dispatch queue.
2616 		 *
2617 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2618 		 * command, and queueing it will fail when there is any
2619 		 * in-flight normal IO request(NCQ command). When adding flush
2620 		 * rq to the front of hctx->dispatch, it is easier to introduce
2621 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2622 		 * compared with adding to the tail of dispatch queue, then
2623 		 * chance of flush merge is increased, and less flush requests
2624 		 * will be issued to controller. It is observed that ~10% time
2625 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2626 		 * drive when adding flush rq to the front of hctx->dispatch.
2627 		 *
2628 		 * Simply queue flush rq to the front of hctx->dispatch so that
2629 		 * intensive flush workloads can benefit in case of NCQ HW.
2630 		 */
2631 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2632 	} else if (q->elevator) {
2633 		LIST_HEAD(list);
2634 
2635 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2636 
2637 		list_add(&rq->queuelist, &list);
2638 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2639 	} else {
2640 		trace_block_rq_insert(rq);
2641 
2642 		spin_lock(&ctx->lock);
2643 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2644 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2645 		else
2646 			list_add_tail(&rq->queuelist,
2647 				      &ctx->rq_lists[hctx->type]);
2648 		blk_mq_hctx_mark_pending(hctx, ctx);
2649 		spin_unlock(&ctx->lock);
2650 	}
2651 }
2652 
2653 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2654 		unsigned int nr_segs)
2655 {
2656 	int err;
2657 
2658 	if (bio->bi_opf & REQ_RAHEAD)
2659 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2660 
2661 	rq->bio = rq->biotail = bio;
2662 	rq->__sector = bio->bi_iter.bi_sector;
2663 	rq->__data_len = bio->bi_iter.bi_size;
2664 	rq->nr_phys_segments = nr_segs;
2665 	if (bio_integrity(bio))
2666 		rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2667 								      bio);
2668 
2669 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2670 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2671 	WARN_ON_ONCE(err);
2672 
2673 	blk_account_io_start(rq);
2674 }
2675 
2676 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2677 					    struct request *rq, bool last)
2678 {
2679 	struct request_queue *q = rq->q;
2680 	struct blk_mq_queue_data bd = {
2681 		.rq = rq,
2682 		.last = last,
2683 	};
2684 	blk_status_t ret;
2685 
2686 	/*
2687 	 * For OK queue, we are done. For error, caller may kill it.
2688 	 * Any other error (busy), just add it to our list as we
2689 	 * previously would have done.
2690 	 */
2691 	ret = q->mq_ops->queue_rq(hctx, &bd);
2692 	switch (ret) {
2693 	case BLK_STS_OK:
2694 		blk_mq_update_dispatch_busy(hctx, false);
2695 		break;
2696 	case BLK_STS_RESOURCE:
2697 	case BLK_STS_DEV_RESOURCE:
2698 		blk_mq_update_dispatch_busy(hctx, true);
2699 		__blk_mq_requeue_request(rq);
2700 		break;
2701 	default:
2702 		blk_mq_update_dispatch_busy(hctx, false);
2703 		break;
2704 	}
2705 
2706 	return ret;
2707 }
2708 
2709 static bool blk_mq_get_budget_and_tag(struct request *rq)
2710 {
2711 	int budget_token;
2712 
2713 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2714 	if (budget_token < 0)
2715 		return false;
2716 	blk_mq_set_rq_budget_token(rq, budget_token);
2717 	if (!blk_mq_get_driver_tag(rq)) {
2718 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2719 		return false;
2720 	}
2721 	return true;
2722 }
2723 
2724 /**
2725  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2726  * @hctx: Pointer of the associated hardware queue.
2727  * @rq: Pointer to request to be sent.
2728  *
2729  * If the device has enough resources to accept a new request now, send the
2730  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2731  * we can try send it another time in the future. Requests inserted at this
2732  * queue have higher priority.
2733  */
2734 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2735 		struct request *rq)
2736 {
2737 	blk_status_t ret;
2738 
2739 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2740 		blk_mq_insert_request(rq, 0);
2741 		blk_mq_run_hw_queue(hctx, false);
2742 		return;
2743 	}
2744 
2745 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2746 		blk_mq_insert_request(rq, 0);
2747 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2748 		return;
2749 	}
2750 
2751 	ret = __blk_mq_issue_directly(hctx, rq, true);
2752 	switch (ret) {
2753 	case BLK_STS_OK:
2754 		break;
2755 	case BLK_STS_RESOURCE:
2756 	case BLK_STS_DEV_RESOURCE:
2757 		blk_mq_request_bypass_insert(rq, 0);
2758 		blk_mq_run_hw_queue(hctx, false);
2759 		break;
2760 	default:
2761 		blk_mq_end_request(rq, ret);
2762 		break;
2763 	}
2764 }
2765 
2766 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2767 {
2768 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2769 
2770 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2771 		blk_mq_insert_request(rq, 0);
2772 		blk_mq_run_hw_queue(hctx, false);
2773 		return BLK_STS_OK;
2774 	}
2775 
2776 	if (!blk_mq_get_budget_and_tag(rq))
2777 		return BLK_STS_RESOURCE;
2778 	return __blk_mq_issue_directly(hctx, rq, last);
2779 }
2780 
2781 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2782 {
2783 	struct blk_mq_hw_ctx *hctx = NULL;
2784 	struct request *rq;
2785 	int queued = 0;
2786 	blk_status_t ret = BLK_STS_OK;
2787 
2788 	while ((rq = rq_list_pop(&plug->mq_list))) {
2789 		bool last = rq_list_empty(&plug->mq_list);
2790 
2791 		if (hctx != rq->mq_hctx) {
2792 			if (hctx) {
2793 				blk_mq_commit_rqs(hctx, queued, false);
2794 				queued = 0;
2795 			}
2796 			hctx = rq->mq_hctx;
2797 		}
2798 
2799 		ret = blk_mq_request_issue_directly(rq, last);
2800 		switch (ret) {
2801 		case BLK_STS_OK:
2802 			queued++;
2803 			break;
2804 		case BLK_STS_RESOURCE:
2805 		case BLK_STS_DEV_RESOURCE:
2806 			blk_mq_request_bypass_insert(rq, 0);
2807 			blk_mq_run_hw_queue(hctx, false);
2808 			goto out;
2809 		default:
2810 			blk_mq_end_request(rq, ret);
2811 			break;
2812 		}
2813 	}
2814 
2815 out:
2816 	if (ret != BLK_STS_OK)
2817 		blk_mq_commit_rqs(hctx, queued, false);
2818 }
2819 
2820 static void __blk_mq_flush_plug_list(struct request_queue *q,
2821 				     struct blk_plug *plug)
2822 {
2823 	if (blk_queue_quiesced(q))
2824 		return;
2825 	q->mq_ops->queue_rqs(&plug->mq_list);
2826 }
2827 
2828 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2829 {
2830 	struct blk_mq_hw_ctx *this_hctx = NULL;
2831 	struct blk_mq_ctx *this_ctx = NULL;
2832 	struct rq_list requeue_list = {};
2833 	unsigned int depth = 0;
2834 	bool is_passthrough = false;
2835 	LIST_HEAD(list);
2836 
2837 	do {
2838 		struct request *rq = rq_list_pop(&plug->mq_list);
2839 
2840 		if (!this_hctx) {
2841 			this_hctx = rq->mq_hctx;
2842 			this_ctx = rq->mq_ctx;
2843 			is_passthrough = blk_rq_is_passthrough(rq);
2844 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2845 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2846 			rq_list_add_tail(&requeue_list, rq);
2847 			continue;
2848 		}
2849 		list_add_tail(&rq->queuelist, &list);
2850 		depth++;
2851 	} while (!rq_list_empty(&plug->mq_list));
2852 
2853 	plug->mq_list = requeue_list;
2854 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2855 
2856 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2857 	/* passthrough requests should never be issued to the I/O scheduler */
2858 	if (is_passthrough) {
2859 		spin_lock(&this_hctx->lock);
2860 		list_splice_tail_init(&list, &this_hctx->dispatch);
2861 		spin_unlock(&this_hctx->lock);
2862 		blk_mq_run_hw_queue(this_hctx, from_sched);
2863 	} else if (this_hctx->queue->elevator) {
2864 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2865 				&list, 0);
2866 		blk_mq_run_hw_queue(this_hctx, from_sched);
2867 	} else {
2868 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2869 	}
2870 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2871 }
2872 
2873 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2874 {
2875 	struct request *rq;
2876 	unsigned int depth;
2877 
2878 	/*
2879 	 * We may have been called recursively midway through handling
2880 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2881 	 * To avoid mq_list changing under our feet, clear rq_count early and
2882 	 * bail out specifically if rq_count is 0 rather than checking
2883 	 * whether the mq_list is empty.
2884 	 */
2885 	if (plug->rq_count == 0)
2886 		return;
2887 	depth = plug->rq_count;
2888 	plug->rq_count = 0;
2889 
2890 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2891 		struct request_queue *q;
2892 
2893 		rq = rq_list_peek(&plug->mq_list);
2894 		q = rq->q;
2895 		trace_block_unplug(q, depth, true);
2896 
2897 		/*
2898 		 * Peek first request and see if we have a ->queue_rqs() hook.
2899 		 * If we do, we can dispatch the whole plug list in one go. We
2900 		 * already know at this point that all requests belong to the
2901 		 * same queue, caller must ensure that's the case.
2902 		 */
2903 		if (q->mq_ops->queue_rqs) {
2904 			blk_mq_run_dispatch_ops(q,
2905 				__blk_mq_flush_plug_list(q, plug));
2906 			if (rq_list_empty(&plug->mq_list))
2907 				return;
2908 		}
2909 
2910 		blk_mq_run_dispatch_ops(q,
2911 				blk_mq_plug_issue_direct(plug));
2912 		if (rq_list_empty(&plug->mq_list))
2913 			return;
2914 	}
2915 
2916 	do {
2917 		blk_mq_dispatch_plug_list(plug, from_schedule);
2918 	} while (!rq_list_empty(&plug->mq_list));
2919 }
2920 
2921 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2922 		struct list_head *list)
2923 {
2924 	int queued = 0;
2925 	blk_status_t ret = BLK_STS_OK;
2926 
2927 	while (!list_empty(list)) {
2928 		struct request *rq = list_first_entry(list, struct request,
2929 				queuelist);
2930 
2931 		list_del_init(&rq->queuelist);
2932 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2933 		switch (ret) {
2934 		case BLK_STS_OK:
2935 			queued++;
2936 			break;
2937 		case BLK_STS_RESOURCE:
2938 		case BLK_STS_DEV_RESOURCE:
2939 			blk_mq_request_bypass_insert(rq, 0);
2940 			if (list_empty(list))
2941 				blk_mq_run_hw_queue(hctx, false);
2942 			goto out;
2943 		default:
2944 			blk_mq_end_request(rq, ret);
2945 			break;
2946 		}
2947 	}
2948 
2949 out:
2950 	if (ret != BLK_STS_OK)
2951 		blk_mq_commit_rqs(hctx, queued, false);
2952 }
2953 
2954 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2955 				     struct bio *bio, unsigned int nr_segs)
2956 {
2957 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2958 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2959 			return true;
2960 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2961 			return true;
2962 	}
2963 	return false;
2964 }
2965 
2966 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2967 					       struct blk_plug *plug,
2968 					       struct bio *bio,
2969 					       unsigned int nsegs)
2970 {
2971 	struct blk_mq_alloc_data data = {
2972 		.q		= q,
2973 		.nr_tags	= 1,
2974 		.cmd_flags	= bio->bi_opf,
2975 	};
2976 	struct request *rq;
2977 
2978 	rq_qos_throttle(q, bio);
2979 
2980 	if (plug) {
2981 		data.nr_tags = plug->nr_ios;
2982 		plug->nr_ios = 1;
2983 		data.cached_rqs = &plug->cached_rqs;
2984 	}
2985 
2986 	rq = __blk_mq_alloc_requests(&data);
2987 	if (rq)
2988 		return rq;
2989 	rq_qos_cleanup(q, bio);
2990 	if (bio->bi_opf & REQ_NOWAIT)
2991 		bio_wouldblock_error(bio);
2992 	return NULL;
2993 }
2994 
2995 /*
2996  * Check if there is a suitable cached request and return it.
2997  */
2998 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2999 		struct request_queue *q, blk_opf_t opf)
3000 {
3001 	enum hctx_type type = blk_mq_get_hctx_type(opf);
3002 	struct request *rq;
3003 
3004 	if (!plug)
3005 		return NULL;
3006 	rq = rq_list_peek(&plug->cached_rqs);
3007 	if (!rq || rq->q != q)
3008 		return NULL;
3009 	if (type != rq->mq_hctx->type &&
3010 	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3011 		return NULL;
3012 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3013 		return NULL;
3014 	return rq;
3015 }
3016 
3017 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3018 		struct bio *bio)
3019 {
3020 	if (rq_list_pop(&plug->cached_rqs) != rq)
3021 		WARN_ON_ONCE(1);
3022 
3023 	/*
3024 	 * If any qos ->throttle() end up blocking, we will have flushed the
3025 	 * plug and hence killed the cached_rq list as well. Pop this entry
3026 	 * before we throttle.
3027 	 */
3028 	rq_qos_throttle(rq->q, bio);
3029 
3030 	blk_mq_rq_time_init(rq, blk_time_get_ns());
3031 	rq->cmd_flags = bio->bi_opf;
3032 	INIT_LIST_HEAD(&rq->queuelist);
3033 }
3034 
3035 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3036 {
3037 	unsigned int bs_mask = queue_logical_block_size(q) - 1;
3038 
3039 	/* .bi_sector of any zero sized bio need to be initialized */
3040 	if ((bio->bi_iter.bi_size & bs_mask) ||
3041 	    ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3042 		return true;
3043 	return false;
3044 }
3045 
3046 /**
3047  * blk_mq_submit_bio - Create and send a request to block device.
3048  * @bio: Bio pointer.
3049  *
3050  * Builds up a request structure from @q and @bio and send to the device. The
3051  * request may not be queued directly to hardware if:
3052  * * This request can be merged with another one
3053  * * We want to place request at plug queue for possible future merging
3054  * * There is an IO scheduler active at this queue
3055  *
3056  * It will not queue the request if there is an error with the bio, or at the
3057  * request creation.
3058  */
3059 void blk_mq_submit_bio(struct bio *bio)
3060 {
3061 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3062 	struct blk_plug *plug = current->plug;
3063 	const int is_sync = op_is_sync(bio->bi_opf);
3064 	struct blk_mq_hw_ctx *hctx;
3065 	unsigned int nr_segs;
3066 	struct request *rq;
3067 	blk_status_t ret;
3068 
3069 	/*
3070 	 * If the plug has a cached request for this queue, try to use it.
3071 	 */
3072 	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3073 
3074 	/*
3075 	 * A BIO that was released from a zone write plug has already been
3076 	 * through the preparation in this function, already holds a reference
3077 	 * on the queue usage counter, and is the only write BIO in-flight for
3078 	 * the target zone. Go straight to preparing a request for it.
3079 	 */
3080 	if (bio_zone_write_plugging(bio)) {
3081 		nr_segs = bio->__bi_nr_segments;
3082 		if (rq)
3083 			blk_queue_exit(q);
3084 		goto new_request;
3085 	}
3086 
3087 	bio = blk_queue_bounce(bio, q);
3088 
3089 	/*
3090 	 * The cached request already holds a q_usage_counter reference and we
3091 	 * don't have to acquire a new one if we use it.
3092 	 */
3093 	if (!rq) {
3094 		if (unlikely(bio_queue_enter(bio)))
3095 			return;
3096 	}
3097 
3098 	/*
3099 	 * Device reconfiguration may change logical block size, so alignment
3100 	 * check has to be done with queue usage counter held
3101 	 */
3102 	if (unlikely(bio_unaligned(bio, q))) {
3103 		bio_io_error(bio);
3104 		goto queue_exit;
3105 	}
3106 
3107 	bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3108 	if (!bio)
3109 		goto queue_exit;
3110 
3111 	if (!bio_integrity_prep(bio))
3112 		goto queue_exit;
3113 
3114 	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3115 		goto queue_exit;
3116 
3117 	if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
3118 		goto queue_exit;
3119 
3120 new_request:
3121 	if (!rq) {
3122 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3123 		if (unlikely(!rq))
3124 			goto queue_exit;
3125 	} else {
3126 		blk_mq_use_cached_rq(rq, plug, bio);
3127 	}
3128 
3129 	trace_block_getrq(bio);
3130 
3131 	rq_qos_track(q, rq, bio);
3132 
3133 	blk_mq_bio_to_request(rq, bio, nr_segs);
3134 
3135 	ret = blk_crypto_rq_get_keyslot(rq);
3136 	if (ret != BLK_STS_OK) {
3137 		bio->bi_status = ret;
3138 		bio_endio(bio);
3139 		blk_mq_free_request(rq);
3140 		return;
3141 	}
3142 
3143 	if (bio_zone_write_plugging(bio))
3144 		blk_zone_write_plug_init_request(rq);
3145 
3146 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3147 		return;
3148 
3149 	if (plug) {
3150 		blk_add_rq_to_plug(plug, rq);
3151 		return;
3152 	}
3153 
3154 	hctx = rq->mq_hctx;
3155 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3156 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3157 		blk_mq_insert_request(rq, 0);
3158 		blk_mq_run_hw_queue(hctx, true);
3159 	} else {
3160 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3161 	}
3162 	return;
3163 
3164 queue_exit:
3165 	/*
3166 	 * Don't drop the queue reference if we were trying to use a cached
3167 	 * request and thus didn't acquire one.
3168 	 */
3169 	if (!rq)
3170 		blk_queue_exit(q);
3171 }
3172 
3173 #ifdef CONFIG_BLK_MQ_STACKING
3174 /**
3175  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3176  * @rq: the request being queued
3177  */
3178 blk_status_t blk_insert_cloned_request(struct request *rq)
3179 {
3180 	struct request_queue *q = rq->q;
3181 	unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3182 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3183 	blk_status_t ret;
3184 
3185 	if (blk_rq_sectors(rq) > max_sectors) {
3186 		/*
3187 		 * SCSI device does not have a good way to return if
3188 		 * Write Same/Zero is actually supported. If a device rejects
3189 		 * a non-read/write command (discard, write same,etc.) the
3190 		 * low-level device driver will set the relevant queue limit to
3191 		 * 0 to prevent blk-lib from issuing more of the offending
3192 		 * operations. Commands queued prior to the queue limit being
3193 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3194 		 * errors being propagated to upper layers.
3195 		 */
3196 		if (max_sectors == 0)
3197 			return BLK_STS_NOTSUPP;
3198 
3199 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3200 			__func__, blk_rq_sectors(rq), max_sectors);
3201 		return BLK_STS_IOERR;
3202 	}
3203 
3204 	/*
3205 	 * The queue settings related to segment counting may differ from the
3206 	 * original queue.
3207 	 */
3208 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3209 	if (rq->nr_phys_segments > max_segments) {
3210 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3211 			__func__, rq->nr_phys_segments, max_segments);
3212 		return BLK_STS_IOERR;
3213 	}
3214 
3215 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3216 		return BLK_STS_IOERR;
3217 
3218 	ret = blk_crypto_rq_get_keyslot(rq);
3219 	if (ret != BLK_STS_OK)
3220 		return ret;
3221 
3222 	blk_account_io_start(rq);
3223 
3224 	/*
3225 	 * Since we have a scheduler attached on the top device,
3226 	 * bypass a potential scheduler on the bottom device for
3227 	 * insert.
3228 	 */
3229 	blk_mq_run_dispatch_ops(q,
3230 			ret = blk_mq_request_issue_directly(rq, true));
3231 	if (ret)
3232 		blk_account_io_done(rq, blk_time_get_ns());
3233 	return ret;
3234 }
3235 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3236 
3237 /**
3238  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3239  * @rq: the clone request to be cleaned up
3240  *
3241  * Description:
3242  *     Free all bios in @rq for a cloned request.
3243  */
3244 void blk_rq_unprep_clone(struct request *rq)
3245 {
3246 	struct bio *bio;
3247 
3248 	while ((bio = rq->bio) != NULL) {
3249 		rq->bio = bio->bi_next;
3250 
3251 		bio_put(bio);
3252 	}
3253 }
3254 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3255 
3256 /**
3257  * blk_rq_prep_clone - Helper function to setup clone request
3258  * @rq: the request to be setup
3259  * @rq_src: original request to be cloned
3260  * @bs: bio_set that bios for clone are allocated from
3261  * @gfp_mask: memory allocation mask for bio
3262  * @bio_ctr: setup function to be called for each clone bio.
3263  *           Returns %0 for success, non %0 for failure.
3264  * @data: private data to be passed to @bio_ctr
3265  *
3266  * Description:
3267  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3268  *     Also, pages which the original bios are pointing to are not copied
3269  *     and the cloned bios just point same pages.
3270  *     So cloned bios must be completed before original bios, which means
3271  *     the caller must complete @rq before @rq_src.
3272  */
3273 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3274 		      struct bio_set *bs, gfp_t gfp_mask,
3275 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3276 		      void *data)
3277 {
3278 	struct bio *bio_src;
3279 
3280 	if (!bs)
3281 		bs = &fs_bio_set;
3282 
3283 	__rq_for_each_bio(bio_src, rq_src) {
3284 		struct bio *bio	 = bio_alloc_clone(rq->q->disk->part0, bio_src,
3285 					gfp_mask, bs);
3286 		if (!bio)
3287 			goto free_and_out;
3288 
3289 		if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3290 			bio_put(bio);
3291 			goto free_and_out;
3292 		}
3293 
3294 		if (rq->bio) {
3295 			rq->biotail->bi_next = bio;
3296 			rq->biotail = bio;
3297 		} else {
3298 			rq->bio = rq->biotail = bio;
3299 		}
3300 	}
3301 
3302 	/* Copy attributes of the original request to the clone request. */
3303 	rq->__sector = blk_rq_pos(rq_src);
3304 	rq->__data_len = blk_rq_bytes(rq_src);
3305 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3306 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3307 		rq->special_vec = rq_src->special_vec;
3308 	}
3309 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3310 
3311 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3312 		goto free_and_out;
3313 
3314 	return 0;
3315 
3316 free_and_out:
3317 	blk_rq_unprep_clone(rq);
3318 
3319 	return -ENOMEM;
3320 }
3321 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3322 #endif /* CONFIG_BLK_MQ_STACKING */
3323 
3324 /*
3325  * Steal bios from a request and add them to a bio list.
3326  * The request must not have been partially completed before.
3327  */
3328 void blk_steal_bios(struct bio_list *list, struct request *rq)
3329 {
3330 	if (rq->bio) {
3331 		if (list->tail)
3332 			list->tail->bi_next = rq->bio;
3333 		else
3334 			list->head = rq->bio;
3335 		list->tail = rq->biotail;
3336 
3337 		rq->bio = NULL;
3338 		rq->biotail = NULL;
3339 	}
3340 
3341 	rq->__data_len = 0;
3342 }
3343 EXPORT_SYMBOL_GPL(blk_steal_bios);
3344 
3345 static size_t order_to_size(unsigned int order)
3346 {
3347 	return (size_t)PAGE_SIZE << order;
3348 }
3349 
3350 /* called before freeing request pool in @tags */
3351 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3352 				    struct blk_mq_tags *tags)
3353 {
3354 	struct page *page;
3355 	unsigned long flags;
3356 
3357 	/*
3358 	 * There is no need to clear mapping if driver tags is not initialized
3359 	 * or the mapping belongs to the driver tags.
3360 	 */
3361 	if (!drv_tags || drv_tags == tags)
3362 		return;
3363 
3364 	list_for_each_entry(page, &tags->page_list, lru) {
3365 		unsigned long start = (unsigned long)page_address(page);
3366 		unsigned long end = start + order_to_size(page->private);
3367 		int i;
3368 
3369 		for (i = 0; i < drv_tags->nr_tags; i++) {
3370 			struct request *rq = drv_tags->rqs[i];
3371 			unsigned long rq_addr = (unsigned long)rq;
3372 
3373 			if (rq_addr >= start && rq_addr < end) {
3374 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3375 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3376 			}
3377 		}
3378 	}
3379 
3380 	/*
3381 	 * Wait until all pending iteration is done.
3382 	 *
3383 	 * Request reference is cleared and it is guaranteed to be observed
3384 	 * after the ->lock is released.
3385 	 */
3386 	spin_lock_irqsave(&drv_tags->lock, flags);
3387 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3388 }
3389 
3390 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3391 		     unsigned int hctx_idx)
3392 {
3393 	struct blk_mq_tags *drv_tags;
3394 	struct page *page;
3395 
3396 	if (list_empty(&tags->page_list))
3397 		return;
3398 
3399 	if (blk_mq_is_shared_tags(set->flags))
3400 		drv_tags = set->shared_tags;
3401 	else
3402 		drv_tags = set->tags[hctx_idx];
3403 
3404 	if (tags->static_rqs && set->ops->exit_request) {
3405 		int i;
3406 
3407 		for (i = 0; i < tags->nr_tags; i++) {
3408 			struct request *rq = tags->static_rqs[i];
3409 
3410 			if (!rq)
3411 				continue;
3412 			set->ops->exit_request(set, rq, hctx_idx);
3413 			tags->static_rqs[i] = NULL;
3414 		}
3415 	}
3416 
3417 	blk_mq_clear_rq_mapping(drv_tags, tags);
3418 
3419 	while (!list_empty(&tags->page_list)) {
3420 		page = list_first_entry(&tags->page_list, struct page, lru);
3421 		list_del_init(&page->lru);
3422 		/*
3423 		 * Remove kmemleak object previously allocated in
3424 		 * blk_mq_alloc_rqs().
3425 		 */
3426 		kmemleak_free(page_address(page));
3427 		__free_pages(page, page->private);
3428 	}
3429 }
3430 
3431 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3432 {
3433 	kfree(tags->rqs);
3434 	tags->rqs = NULL;
3435 	kfree(tags->static_rqs);
3436 	tags->static_rqs = NULL;
3437 
3438 	blk_mq_free_tags(tags);
3439 }
3440 
3441 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3442 		unsigned int hctx_idx)
3443 {
3444 	int i;
3445 
3446 	for (i = 0; i < set->nr_maps; i++) {
3447 		unsigned int start = set->map[i].queue_offset;
3448 		unsigned int end = start + set->map[i].nr_queues;
3449 
3450 		if (hctx_idx >= start && hctx_idx < end)
3451 			break;
3452 	}
3453 
3454 	if (i >= set->nr_maps)
3455 		i = HCTX_TYPE_DEFAULT;
3456 
3457 	return i;
3458 }
3459 
3460 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3461 		unsigned int hctx_idx)
3462 {
3463 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3464 
3465 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3466 }
3467 
3468 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3469 					       unsigned int hctx_idx,
3470 					       unsigned int nr_tags,
3471 					       unsigned int reserved_tags)
3472 {
3473 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3474 	struct blk_mq_tags *tags;
3475 
3476 	if (node == NUMA_NO_NODE)
3477 		node = set->numa_node;
3478 
3479 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3480 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3481 	if (!tags)
3482 		return NULL;
3483 
3484 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3485 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3486 				 node);
3487 	if (!tags->rqs)
3488 		goto err_free_tags;
3489 
3490 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3491 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3492 					node);
3493 	if (!tags->static_rqs)
3494 		goto err_free_rqs;
3495 
3496 	return tags;
3497 
3498 err_free_rqs:
3499 	kfree(tags->rqs);
3500 err_free_tags:
3501 	blk_mq_free_tags(tags);
3502 	return NULL;
3503 }
3504 
3505 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3506 			       unsigned int hctx_idx, int node)
3507 {
3508 	int ret;
3509 
3510 	if (set->ops->init_request) {
3511 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3512 		if (ret)
3513 			return ret;
3514 	}
3515 
3516 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3517 	return 0;
3518 }
3519 
3520 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3521 			    struct blk_mq_tags *tags,
3522 			    unsigned int hctx_idx, unsigned int depth)
3523 {
3524 	unsigned int i, j, entries_per_page, max_order = 4;
3525 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3526 	size_t rq_size, left;
3527 
3528 	if (node == NUMA_NO_NODE)
3529 		node = set->numa_node;
3530 
3531 	INIT_LIST_HEAD(&tags->page_list);
3532 
3533 	/*
3534 	 * rq_size is the size of the request plus driver payload, rounded
3535 	 * to the cacheline size
3536 	 */
3537 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3538 				cache_line_size());
3539 	left = rq_size * depth;
3540 
3541 	for (i = 0; i < depth; ) {
3542 		int this_order = max_order;
3543 		struct page *page;
3544 		int to_do;
3545 		void *p;
3546 
3547 		while (this_order && left < order_to_size(this_order - 1))
3548 			this_order--;
3549 
3550 		do {
3551 			page = alloc_pages_node(node,
3552 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3553 				this_order);
3554 			if (page)
3555 				break;
3556 			if (!this_order--)
3557 				break;
3558 			if (order_to_size(this_order) < rq_size)
3559 				break;
3560 		} while (1);
3561 
3562 		if (!page)
3563 			goto fail;
3564 
3565 		page->private = this_order;
3566 		list_add_tail(&page->lru, &tags->page_list);
3567 
3568 		p = page_address(page);
3569 		/*
3570 		 * Allow kmemleak to scan these pages as they contain pointers
3571 		 * to additional allocations like via ops->init_request().
3572 		 */
3573 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3574 		entries_per_page = order_to_size(this_order) / rq_size;
3575 		to_do = min(entries_per_page, depth - i);
3576 		left -= to_do * rq_size;
3577 		for (j = 0; j < to_do; j++) {
3578 			struct request *rq = p;
3579 
3580 			tags->static_rqs[i] = rq;
3581 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3582 				tags->static_rqs[i] = NULL;
3583 				goto fail;
3584 			}
3585 
3586 			p += rq_size;
3587 			i++;
3588 		}
3589 	}
3590 	return 0;
3591 
3592 fail:
3593 	blk_mq_free_rqs(set, tags, hctx_idx);
3594 	return -ENOMEM;
3595 }
3596 
3597 struct rq_iter_data {
3598 	struct blk_mq_hw_ctx *hctx;
3599 	bool has_rq;
3600 };
3601 
3602 static bool blk_mq_has_request(struct request *rq, void *data)
3603 {
3604 	struct rq_iter_data *iter_data = data;
3605 
3606 	if (rq->mq_hctx != iter_data->hctx)
3607 		return true;
3608 	iter_data->has_rq = true;
3609 	return false;
3610 }
3611 
3612 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3613 {
3614 	struct blk_mq_tags *tags = hctx->sched_tags ?
3615 			hctx->sched_tags : hctx->tags;
3616 	struct rq_iter_data data = {
3617 		.hctx	= hctx,
3618 	};
3619 
3620 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3621 	return data.has_rq;
3622 }
3623 
3624 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3625 		unsigned int this_cpu)
3626 {
3627 	enum hctx_type type = hctx->type;
3628 	int cpu;
3629 
3630 	/*
3631 	 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3632 	 * might submit IOs on these isolated CPUs, so use the queue map to
3633 	 * check if all CPUs mapped to this hctx are offline
3634 	 */
3635 	for_each_online_cpu(cpu) {
3636 		struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3637 				type, cpu);
3638 
3639 		if (h != hctx)
3640 			continue;
3641 
3642 		/* this hctx has at least one online CPU */
3643 		if (this_cpu != cpu)
3644 			return true;
3645 	}
3646 
3647 	return false;
3648 }
3649 
3650 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3651 {
3652 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3653 			struct blk_mq_hw_ctx, cpuhp_online);
3654 
3655 	if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3656 		return 0;
3657 
3658 	/*
3659 	 * Prevent new request from being allocated on the current hctx.
3660 	 *
3661 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3662 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3663 	 * seen once we return from the tag allocator.
3664 	 */
3665 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3666 	smp_mb__after_atomic();
3667 
3668 	/*
3669 	 * Try to grab a reference to the queue and wait for any outstanding
3670 	 * requests.  If we could not grab a reference the queue has been
3671 	 * frozen and there are no requests.
3672 	 */
3673 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3674 		while (blk_mq_hctx_has_requests(hctx))
3675 			msleep(5);
3676 		percpu_ref_put(&hctx->queue->q_usage_counter);
3677 	}
3678 
3679 	return 0;
3680 }
3681 
3682 /*
3683  * Check if one CPU is mapped to the specified hctx
3684  *
3685  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3686  * to be used for scheduling kworker only. For other usage, please call this
3687  * helper for checking if one CPU belongs to the specified hctx
3688  */
3689 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3690 		const struct blk_mq_hw_ctx *hctx)
3691 {
3692 	struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3693 			hctx->type, cpu);
3694 
3695 	return mapped_hctx == hctx;
3696 }
3697 
3698 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3699 {
3700 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3701 			struct blk_mq_hw_ctx, cpuhp_online);
3702 
3703 	if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3704 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3705 	return 0;
3706 }
3707 
3708 /*
3709  * 'cpu' is going away. splice any existing rq_list entries from this
3710  * software queue to the hw queue dispatch list, and ensure that it
3711  * gets run.
3712  */
3713 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3714 {
3715 	struct blk_mq_hw_ctx *hctx;
3716 	struct blk_mq_ctx *ctx;
3717 	LIST_HEAD(tmp);
3718 	enum hctx_type type;
3719 
3720 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3721 	if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3722 		return 0;
3723 
3724 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3725 	type = hctx->type;
3726 
3727 	spin_lock(&ctx->lock);
3728 	if (!list_empty(&ctx->rq_lists[type])) {
3729 		list_splice_init(&ctx->rq_lists[type], &tmp);
3730 		blk_mq_hctx_clear_pending(hctx, ctx);
3731 	}
3732 	spin_unlock(&ctx->lock);
3733 
3734 	if (list_empty(&tmp))
3735 		return 0;
3736 
3737 	spin_lock(&hctx->lock);
3738 	list_splice_tail_init(&tmp, &hctx->dispatch);
3739 	spin_unlock(&hctx->lock);
3740 
3741 	blk_mq_run_hw_queue(hctx, true);
3742 	return 0;
3743 }
3744 
3745 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3746 {
3747 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3748 
3749 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3750 	    !hlist_unhashed(&hctx->cpuhp_online)) {
3751 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3752 						    &hctx->cpuhp_online);
3753 		INIT_HLIST_NODE(&hctx->cpuhp_online);
3754 	}
3755 
3756 	if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3757 		cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3758 						    &hctx->cpuhp_dead);
3759 		INIT_HLIST_NODE(&hctx->cpuhp_dead);
3760 	}
3761 }
3762 
3763 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3764 {
3765 	mutex_lock(&blk_mq_cpuhp_lock);
3766 	__blk_mq_remove_cpuhp(hctx);
3767 	mutex_unlock(&blk_mq_cpuhp_lock);
3768 }
3769 
3770 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3771 {
3772 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3773 
3774 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3775 	    hlist_unhashed(&hctx->cpuhp_online))
3776 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3777 				&hctx->cpuhp_online);
3778 
3779 	if (hlist_unhashed(&hctx->cpuhp_dead))
3780 		cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3781 				&hctx->cpuhp_dead);
3782 }
3783 
3784 static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3785 {
3786 	struct blk_mq_hw_ctx *hctx;
3787 
3788 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3789 
3790 	list_for_each_entry(hctx, head, hctx_list)
3791 		__blk_mq_remove_cpuhp(hctx);
3792 }
3793 
3794 /*
3795  * Unregister cpuhp callbacks from exited hw queues
3796  *
3797  * Safe to call if this `request_queue` is live
3798  */
3799 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3800 {
3801 	LIST_HEAD(hctx_list);
3802 
3803 	spin_lock(&q->unused_hctx_lock);
3804 	list_splice_init(&q->unused_hctx_list, &hctx_list);
3805 	spin_unlock(&q->unused_hctx_lock);
3806 
3807 	mutex_lock(&blk_mq_cpuhp_lock);
3808 	__blk_mq_remove_cpuhp_list(&hctx_list);
3809 	mutex_unlock(&blk_mq_cpuhp_lock);
3810 
3811 	spin_lock(&q->unused_hctx_lock);
3812 	list_splice(&hctx_list, &q->unused_hctx_list);
3813 	spin_unlock(&q->unused_hctx_lock);
3814 }
3815 
3816 /*
3817  * Register cpuhp callbacks from all hw queues
3818  *
3819  * Safe to call if this `request_queue` is live
3820  */
3821 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3822 {
3823 	struct blk_mq_hw_ctx *hctx;
3824 	unsigned long i;
3825 
3826 	mutex_lock(&blk_mq_cpuhp_lock);
3827 	queue_for_each_hw_ctx(q, hctx, i)
3828 		__blk_mq_add_cpuhp(hctx);
3829 	mutex_unlock(&blk_mq_cpuhp_lock);
3830 }
3831 
3832 /*
3833  * Before freeing hw queue, clearing the flush request reference in
3834  * tags->rqs[] for avoiding potential UAF.
3835  */
3836 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3837 		unsigned int queue_depth, struct request *flush_rq)
3838 {
3839 	int i;
3840 	unsigned long flags;
3841 
3842 	/* The hw queue may not be mapped yet */
3843 	if (!tags)
3844 		return;
3845 
3846 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3847 
3848 	for (i = 0; i < queue_depth; i++)
3849 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3850 
3851 	/*
3852 	 * Wait until all pending iteration is done.
3853 	 *
3854 	 * Request reference is cleared and it is guaranteed to be observed
3855 	 * after the ->lock is released.
3856 	 */
3857 	spin_lock_irqsave(&tags->lock, flags);
3858 	spin_unlock_irqrestore(&tags->lock, flags);
3859 }
3860 
3861 /* hctx->ctxs will be freed in queue's release handler */
3862 static void blk_mq_exit_hctx(struct request_queue *q,
3863 		struct blk_mq_tag_set *set,
3864 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3865 {
3866 	struct request *flush_rq = hctx->fq->flush_rq;
3867 
3868 	if (blk_mq_hw_queue_mapped(hctx))
3869 		blk_mq_tag_idle(hctx);
3870 
3871 	if (blk_queue_init_done(q))
3872 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3873 				set->queue_depth, flush_rq);
3874 	if (set->ops->exit_request)
3875 		set->ops->exit_request(set, flush_rq, hctx_idx);
3876 
3877 	if (set->ops->exit_hctx)
3878 		set->ops->exit_hctx(hctx, hctx_idx);
3879 
3880 	xa_erase(&q->hctx_table, hctx_idx);
3881 
3882 	spin_lock(&q->unused_hctx_lock);
3883 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3884 	spin_unlock(&q->unused_hctx_lock);
3885 }
3886 
3887 static void blk_mq_exit_hw_queues(struct request_queue *q,
3888 		struct blk_mq_tag_set *set, int nr_queue)
3889 {
3890 	struct blk_mq_hw_ctx *hctx;
3891 	unsigned long i;
3892 
3893 	queue_for_each_hw_ctx(q, hctx, i) {
3894 		if (i == nr_queue)
3895 			break;
3896 		blk_mq_remove_cpuhp(hctx);
3897 		blk_mq_exit_hctx(q, set, hctx, i);
3898 	}
3899 }
3900 
3901 static int blk_mq_init_hctx(struct request_queue *q,
3902 		struct blk_mq_tag_set *set,
3903 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3904 {
3905 	hctx->queue_num = hctx_idx;
3906 
3907 	hctx->tags = set->tags[hctx_idx];
3908 
3909 	if (set->ops->init_hctx &&
3910 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3911 		goto fail;
3912 
3913 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3914 				hctx->numa_node))
3915 		goto exit_hctx;
3916 
3917 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3918 		goto exit_flush_rq;
3919 
3920 	return 0;
3921 
3922  exit_flush_rq:
3923 	if (set->ops->exit_request)
3924 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3925  exit_hctx:
3926 	if (set->ops->exit_hctx)
3927 		set->ops->exit_hctx(hctx, hctx_idx);
3928  fail:
3929 	return -1;
3930 }
3931 
3932 static struct blk_mq_hw_ctx *
3933 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3934 		int node)
3935 {
3936 	struct blk_mq_hw_ctx *hctx;
3937 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3938 
3939 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3940 	if (!hctx)
3941 		goto fail_alloc_hctx;
3942 
3943 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3944 		goto free_hctx;
3945 
3946 	atomic_set(&hctx->nr_active, 0);
3947 	if (node == NUMA_NO_NODE)
3948 		node = set->numa_node;
3949 	hctx->numa_node = node;
3950 
3951 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3952 	spin_lock_init(&hctx->lock);
3953 	INIT_LIST_HEAD(&hctx->dispatch);
3954 	INIT_HLIST_NODE(&hctx->cpuhp_dead);
3955 	INIT_HLIST_NODE(&hctx->cpuhp_online);
3956 	hctx->queue = q;
3957 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3958 
3959 	INIT_LIST_HEAD(&hctx->hctx_list);
3960 
3961 	/*
3962 	 * Allocate space for all possible cpus to avoid allocation at
3963 	 * runtime
3964 	 */
3965 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3966 			gfp, node);
3967 	if (!hctx->ctxs)
3968 		goto free_cpumask;
3969 
3970 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3971 				gfp, node, false, false))
3972 		goto free_ctxs;
3973 	hctx->nr_ctx = 0;
3974 
3975 	spin_lock_init(&hctx->dispatch_wait_lock);
3976 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3977 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3978 
3979 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3980 	if (!hctx->fq)
3981 		goto free_bitmap;
3982 
3983 	blk_mq_hctx_kobj_init(hctx);
3984 
3985 	return hctx;
3986 
3987  free_bitmap:
3988 	sbitmap_free(&hctx->ctx_map);
3989  free_ctxs:
3990 	kfree(hctx->ctxs);
3991  free_cpumask:
3992 	free_cpumask_var(hctx->cpumask);
3993  free_hctx:
3994 	kfree(hctx);
3995  fail_alloc_hctx:
3996 	return NULL;
3997 }
3998 
3999 static void blk_mq_init_cpu_queues(struct request_queue *q,
4000 				   unsigned int nr_hw_queues)
4001 {
4002 	struct blk_mq_tag_set *set = q->tag_set;
4003 	unsigned int i, j;
4004 
4005 	for_each_possible_cpu(i) {
4006 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4007 		struct blk_mq_hw_ctx *hctx;
4008 		int k;
4009 
4010 		__ctx->cpu = i;
4011 		spin_lock_init(&__ctx->lock);
4012 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4013 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4014 
4015 		__ctx->queue = q;
4016 
4017 		/*
4018 		 * Set local node, IFF we have more than one hw queue. If
4019 		 * not, we remain on the home node of the device
4020 		 */
4021 		for (j = 0; j < set->nr_maps; j++) {
4022 			hctx = blk_mq_map_queue_type(q, j, i);
4023 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4024 				hctx->numa_node = cpu_to_node(i);
4025 		}
4026 	}
4027 }
4028 
4029 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4030 					     unsigned int hctx_idx,
4031 					     unsigned int depth)
4032 {
4033 	struct blk_mq_tags *tags;
4034 	int ret;
4035 
4036 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4037 	if (!tags)
4038 		return NULL;
4039 
4040 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4041 	if (ret) {
4042 		blk_mq_free_rq_map(tags);
4043 		return NULL;
4044 	}
4045 
4046 	return tags;
4047 }
4048 
4049 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4050 				       int hctx_idx)
4051 {
4052 	if (blk_mq_is_shared_tags(set->flags)) {
4053 		set->tags[hctx_idx] = set->shared_tags;
4054 
4055 		return true;
4056 	}
4057 
4058 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4059 						       set->queue_depth);
4060 
4061 	return set->tags[hctx_idx];
4062 }
4063 
4064 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4065 			     struct blk_mq_tags *tags,
4066 			     unsigned int hctx_idx)
4067 {
4068 	if (tags) {
4069 		blk_mq_free_rqs(set, tags, hctx_idx);
4070 		blk_mq_free_rq_map(tags);
4071 	}
4072 }
4073 
4074 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4075 				      unsigned int hctx_idx)
4076 {
4077 	if (!blk_mq_is_shared_tags(set->flags))
4078 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4079 
4080 	set->tags[hctx_idx] = NULL;
4081 }
4082 
4083 static void blk_mq_map_swqueue(struct request_queue *q)
4084 {
4085 	unsigned int j, hctx_idx;
4086 	unsigned long i;
4087 	struct blk_mq_hw_ctx *hctx;
4088 	struct blk_mq_ctx *ctx;
4089 	struct blk_mq_tag_set *set = q->tag_set;
4090 
4091 	queue_for_each_hw_ctx(q, hctx, i) {
4092 		cpumask_clear(hctx->cpumask);
4093 		hctx->nr_ctx = 0;
4094 		hctx->dispatch_from = NULL;
4095 	}
4096 
4097 	/*
4098 	 * Map software to hardware queues.
4099 	 *
4100 	 * If the cpu isn't present, the cpu is mapped to first hctx.
4101 	 */
4102 	for_each_possible_cpu(i) {
4103 
4104 		ctx = per_cpu_ptr(q->queue_ctx, i);
4105 		for (j = 0; j < set->nr_maps; j++) {
4106 			if (!set->map[j].nr_queues) {
4107 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
4108 						HCTX_TYPE_DEFAULT, i);
4109 				continue;
4110 			}
4111 			hctx_idx = set->map[j].mq_map[i];
4112 			/* unmapped hw queue can be remapped after CPU topo changed */
4113 			if (!set->tags[hctx_idx] &&
4114 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4115 				/*
4116 				 * If tags initialization fail for some hctx,
4117 				 * that hctx won't be brought online.  In this
4118 				 * case, remap the current ctx to hctx[0] which
4119 				 * is guaranteed to always have tags allocated
4120 				 */
4121 				set->map[j].mq_map[i] = 0;
4122 			}
4123 
4124 			hctx = blk_mq_map_queue_type(q, j, i);
4125 			ctx->hctxs[j] = hctx;
4126 			/*
4127 			 * If the CPU is already set in the mask, then we've
4128 			 * mapped this one already. This can happen if
4129 			 * devices share queues across queue maps.
4130 			 */
4131 			if (cpumask_test_cpu(i, hctx->cpumask))
4132 				continue;
4133 
4134 			cpumask_set_cpu(i, hctx->cpumask);
4135 			hctx->type = j;
4136 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
4137 			hctx->ctxs[hctx->nr_ctx++] = ctx;
4138 
4139 			/*
4140 			 * If the nr_ctx type overflows, we have exceeded the
4141 			 * amount of sw queues we can support.
4142 			 */
4143 			BUG_ON(!hctx->nr_ctx);
4144 		}
4145 
4146 		for (; j < HCTX_MAX_TYPES; j++)
4147 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
4148 					HCTX_TYPE_DEFAULT, i);
4149 	}
4150 
4151 	queue_for_each_hw_ctx(q, hctx, i) {
4152 		int cpu;
4153 
4154 		/*
4155 		 * If no software queues are mapped to this hardware queue,
4156 		 * disable it and free the request entries.
4157 		 */
4158 		if (!hctx->nr_ctx) {
4159 			/* Never unmap queue 0.  We need it as a
4160 			 * fallback in case of a new remap fails
4161 			 * allocation
4162 			 */
4163 			if (i)
4164 				__blk_mq_free_map_and_rqs(set, i);
4165 
4166 			hctx->tags = NULL;
4167 			continue;
4168 		}
4169 
4170 		hctx->tags = set->tags[i];
4171 		WARN_ON(!hctx->tags);
4172 
4173 		/*
4174 		 * Set the map size to the number of mapped software queues.
4175 		 * This is more accurate and more efficient than looping
4176 		 * over all possibly mapped software queues.
4177 		 */
4178 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4179 
4180 		/*
4181 		 * Rule out isolated CPUs from hctx->cpumask to avoid
4182 		 * running block kworker on isolated CPUs
4183 		 */
4184 		for_each_cpu(cpu, hctx->cpumask) {
4185 			if (cpu_is_isolated(cpu))
4186 				cpumask_clear_cpu(cpu, hctx->cpumask);
4187 		}
4188 
4189 		/*
4190 		 * Initialize batch roundrobin counts
4191 		 */
4192 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4193 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4194 	}
4195 }
4196 
4197 /*
4198  * Caller needs to ensure that we're either frozen/quiesced, or that
4199  * the queue isn't live yet.
4200  */
4201 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4202 {
4203 	struct blk_mq_hw_ctx *hctx;
4204 	unsigned long i;
4205 
4206 	queue_for_each_hw_ctx(q, hctx, i) {
4207 		if (shared) {
4208 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4209 		} else {
4210 			blk_mq_tag_idle(hctx);
4211 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4212 		}
4213 	}
4214 }
4215 
4216 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4217 					 bool shared)
4218 {
4219 	struct request_queue *q;
4220 
4221 	lockdep_assert_held(&set->tag_list_lock);
4222 
4223 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4224 		blk_mq_freeze_queue(q);
4225 		queue_set_hctx_shared(q, shared);
4226 		blk_mq_unfreeze_queue(q);
4227 	}
4228 }
4229 
4230 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4231 {
4232 	struct blk_mq_tag_set *set = q->tag_set;
4233 
4234 	mutex_lock(&set->tag_list_lock);
4235 	list_del(&q->tag_set_list);
4236 	if (list_is_singular(&set->tag_list)) {
4237 		/* just transitioned to unshared */
4238 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4239 		/* update existing queue */
4240 		blk_mq_update_tag_set_shared(set, false);
4241 	}
4242 	mutex_unlock(&set->tag_list_lock);
4243 	INIT_LIST_HEAD(&q->tag_set_list);
4244 }
4245 
4246 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4247 				     struct request_queue *q)
4248 {
4249 	mutex_lock(&set->tag_list_lock);
4250 
4251 	/*
4252 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4253 	 */
4254 	if (!list_empty(&set->tag_list) &&
4255 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4256 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4257 		/* update existing queue */
4258 		blk_mq_update_tag_set_shared(set, true);
4259 	}
4260 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4261 		queue_set_hctx_shared(q, true);
4262 	list_add_tail(&q->tag_set_list, &set->tag_list);
4263 
4264 	mutex_unlock(&set->tag_list_lock);
4265 }
4266 
4267 /* All allocations will be freed in release handler of q->mq_kobj */
4268 static int blk_mq_alloc_ctxs(struct request_queue *q)
4269 {
4270 	struct blk_mq_ctxs *ctxs;
4271 	int cpu;
4272 
4273 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4274 	if (!ctxs)
4275 		return -ENOMEM;
4276 
4277 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4278 	if (!ctxs->queue_ctx)
4279 		goto fail;
4280 
4281 	for_each_possible_cpu(cpu) {
4282 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4283 		ctx->ctxs = ctxs;
4284 	}
4285 
4286 	q->mq_kobj = &ctxs->kobj;
4287 	q->queue_ctx = ctxs->queue_ctx;
4288 
4289 	return 0;
4290  fail:
4291 	kfree(ctxs);
4292 	return -ENOMEM;
4293 }
4294 
4295 /*
4296  * It is the actual release handler for mq, but we do it from
4297  * request queue's release handler for avoiding use-after-free
4298  * and headache because q->mq_kobj shouldn't have been introduced,
4299  * but we can't group ctx/kctx kobj without it.
4300  */
4301 void blk_mq_release(struct request_queue *q)
4302 {
4303 	struct blk_mq_hw_ctx *hctx, *next;
4304 	unsigned long i;
4305 
4306 	queue_for_each_hw_ctx(q, hctx, i)
4307 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4308 
4309 	/* all hctx are in .unused_hctx_list now */
4310 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4311 		list_del_init(&hctx->hctx_list);
4312 		kobject_put(&hctx->kobj);
4313 	}
4314 
4315 	xa_destroy(&q->hctx_table);
4316 
4317 	/*
4318 	 * release .mq_kobj and sw queue's kobject now because
4319 	 * both share lifetime with request queue.
4320 	 */
4321 	blk_mq_sysfs_deinit(q);
4322 }
4323 
4324 static bool blk_mq_can_poll(struct blk_mq_tag_set *set)
4325 {
4326 	return set->nr_maps > HCTX_TYPE_POLL &&
4327 		set->map[HCTX_TYPE_POLL].nr_queues;
4328 }
4329 
4330 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4331 		struct queue_limits *lim, void *queuedata)
4332 {
4333 	struct queue_limits default_lim = { };
4334 	struct request_queue *q;
4335 	int ret;
4336 
4337 	if (!lim)
4338 		lim = &default_lim;
4339 	lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4340 	if (blk_mq_can_poll(set))
4341 		lim->features |= BLK_FEAT_POLL;
4342 
4343 	q = blk_alloc_queue(lim, set->numa_node);
4344 	if (IS_ERR(q))
4345 		return q;
4346 	q->queuedata = queuedata;
4347 	ret = blk_mq_init_allocated_queue(set, q);
4348 	if (ret) {
4349 		blk_put_queue(q);
4350 		return ERR_PTR(ret);
4351 	}
4352 	return q;
4353 }
4354 EXPORT_SYMBOL(blk_mq_alloc_queue);
4355 
4356 /**
4357  * blk_mq_destroy_queue - shutdown a request queue
4358  * @q: request queue to shutdown
4359  *
4360  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4361  * requests will be failed with -ENODEV. The caller is responsible for dropping
4362  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4363  *
4364  * Context: can sleep
4365  */
4366 void blk_mq_destroy_queue(struct request_queue *q)
4367 {
4368 	WARN_ON_ONCE(!queue_is_mq(q));
4369 	WARN_ON_ONCE(blk_queue_registered(q));
4370 
4371 	might_sleep();
4372 
4373 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4374 	blk_queue_start_drain(q);
4375 	blk_mq_freeze_queue_wait(q);
4376 
4377 	blk_sync_queue(q);
4378 	blk_mq_cancel_work_sync(q);
4379 	blk_mq_exit_queue(q);
4380 }
4381 EXPORT_SYMBOL(blk_mq_destroy_queue);
4382 
4383 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4384 		struct queue_limits *lim, void *queuedata,
4385 		struct lock_class_key *lkclass)
4386 {
4387 	struct request_queue *q;
4388 	struct gendisk *disk;
4389 
4390 	q = blk_mq_alloc_queue(set, lim, queuedata);
4391 	if (IS_ERR(q))
4392 		return ERR_CAST(q);
4393 
4394 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4395 	if (!disk) {
4396 		blk_mq_destroy_queue(q);
4397 		blk_put_queue(q);
4398 		return ERR_PTR(-ENOMEM);
4399 	}
4400 	set_bit(GD_OWNS_QUEUE, &disk->state);
4401 	return disk;
4402 }
4403 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4404 
4405 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4406 		struct lock_class_key *lkclass)
4407 {
4408 	struct gendisk *disk;
4409 
4410 	if (!blk_get_queue(q))
4411 		return NULL;
4412 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4413 	if (!disk)
4414 		blk_put_queue(q);
4415 	return disk;
4416 }
4417 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4418 
4419 /*
4420  * Only hctx removed from cpuhp list can be reused
4421  */
4422 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4423 {
4424 	return hlist_unhashed(&hctx->cpuhp_online) &&
4425 		hlist_unhashed(&hctx->cpuhp_dead);
4426 }
4427 
4428 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4429 		struct blk_mq_tag_set *set, struct request_queue *q,
4430 		int hctx_idx, int node)
4431 {
4432 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4433 
4434 	/* reuse dead hctx first */
4435 	spin_lock(&q->unused_hctx_lock);
4436 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4437 		if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4438 			hctx = tmp;
4439 			break;
4440 		}
4441 	}
4442 	if (hctx)
4443 		list_del_init(&hctx->hctx_list);
4444 	spin_unlock(&q->unused_hctx_lock);
4445 
4446 	if (!hctx)
4447 		hctx = blk_mq_alloc_hctx(q, set, node);
4448 	if (!hctx)
4449 		goto fail;
4450 
4451 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4452 		goto free_hctx;
4453 
4454 	return hctx;
4455 
4456  free_hctx:
4457 	kobject_put(&hctx->kobj);
4458  fail:
4459 	return NULL;
4460 }
4461 
4462 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4463 						struct request_queue *q)
4464 {
4465 	struct blk_mq_hw_ctx *hctx;
4466 	unsigned long i, j;
4467 
4468 	/* protect against switching io scheduler  */
4469 	mutex_lock(&q->sysfs_lock);
4470 	for (i = 0; i < set->nr_hw_queues; i++) {
4471 		int old_node;
4472 		int node = blk_mq_get_hctx_node(set, i);
4473 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4474 
4475 		if (old_hctx) {
4476 			old_node = old_hctx->numa_node;
4477 			blk_mq_exit_hctx(q, set, old_hctx, i);
4478 		}
4479 
4480 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4481 			if (!old_hctx)
4482 				break;
4483 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4484 					node, old_node);
4485 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4486 			WARN_ON_ONCE(!hctx);
4487 		}
4488 	}
4489 	/*
4490 	 * Increasing nr_hw_queues fails. Free the newly allocated
4491 	 * hctxs and keep the previous q->nr_hw_queues.
4492 	 */
4493 	if (i != set->nr_hw_queues) {
4494 		j = q->nr_hw_queues;
4495 	} else {
4496 		j = i;
4497 		q->nr_hw_queues = set->nr_hw_queues;
4498 	}
4499 
4500 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4501 		blk_mq_exit_hctx(q, set, hctx, j);
4502 	mutex_unlock(&q->sysfs_lock);
4503 
4504 	/* unregister cpuhp callbacks for exited hctxs */
4505 	blk_mq_remove_hw_queues_cpuhp(q);
4506 
4507 	/* register cpuhp for new initialized hctxs */
4508 	blk_mq_add_hw_queues_cpuhp(q);
4509 }
4510 
4511 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4512 		struct request_queue *q)
4513 {
4514 	/* mark the queue as mq asap */
4515 	q->mq_ops = set->ops;
4516 
4517 	/*
4518 	 * ->tag_set has to be setup before initialize hctx, which cpuphp
4519 	 * handler needs it for checking queue mapping
4520 	 */
4521 	q->tag_set = set;
4522 
4523 	if (blk_mq_alloc_ctxs(q))
4524 		goto err_exit;
4525 
4526 	/* init q->mq_kobj and sw queues' kobjects */
4527 	blk_mq_sysfs_init(q);
4528 
4529 	INIT_LIST_HEAD(&q->unused_hctx_list);
4530 	spin_lock_init(&q->unused_hctx_lock);
4531 
4532 	xa_init(&q->hctx_table);
4533 
4534 	blk_mq_realloc_hw_ctxs(set, q);
4535 	if (!q->nr_hw_queues)
4536 		goto err_hctxs;
4537 
4538 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4539 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4540 
4541 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4542 
4543 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4544 	INIT_LIST_HEAD(&q->flush_list);
4545 	INIT_LIST_HEAD(&q->requeue_list);
4546 	spin_lock_init(&q->requeue_lock);
4547 
4548 	q->nr_requests = set->queue_depth;
4549 
4550 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4551 	blk_mq_add_queue_tag_set(set, q);
4552 	blk_mq_map_swqueue(q);
4553 	return 0;
4554 
4555 err_hctxs:
4556 	blk_mq_release(q);
4557 err_exit:
4558 	q->mq_ops = NULL;
4559 	return -ENOMEM;
4560 }
4561 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4562 
4563 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4564 void blk_mq_exit_queue(struct request_queue *q)
4565 {
4566 	struct blk_mq_tag_set *set = q->tag_set;
4567 
4568 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4569 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4570 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4571 	blk_mq_del_queue_tag_set(q);
4572 }
4573 
4574 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4575 {
4576 	int i;
4577 
4578 	if (blk_mq_is_shared_tags(set->flags)) {
4579 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4580 						BLK_MQ_NO_HCTX_IDX,
4581 						set->queue_depth);
4582 		if (!set->shared_tags)
4583 			return -ENOMEM;
4584 	}
4585 
4586 	for (i = 0; i < set->nr_hw_queues; i++) {
4587 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4588 			goto out_unwind;
4589 		cond_resched();
4590 	}
4591 
4592 	return 0;
4593 
4594 out_unwind:
4595 	while (--i >= 0)
4596 		__blk_mq_free_map_and_rqs(set, i);
4597 
4598 	if (blk_mq_is_shared_tags(set->flags)) {
4599 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4600 					BLK_MQ_NO_HCTX_IDX);
4601 	}
4602 
4603 	return -ENOMEM;
4604 }
4605 
4606 /*
4607  * Allocate the request maps associated with this tag_set. Note that this
4608  * may reduce the depth asked for, if memory is tight. set->queue_depth
4609  * will be updated to reflect the allocated depth.
4610  */
4611 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4612 {
4613 	unsigned int depth;
4614 	int err;
4615 
4616 	depth = set->queue_depth;
4617 	do {
4618 		err = __blk_mq_alloc_rq_maps(set);
4619 		if (!err)
4620 			break;
4621 
4622 		set->queue_depth >>= 1;
4623 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4624 			err = -ENOMEM;
4625 			break;
4626 		}
4627 	} while (set->queue_depth);
4628 
4629 	if (!set->queue_depth || err) {
4630 		pr_err("blk-mq: failed to allocate request map\n");
4631 		return -ENOMEM;
4632 	}
4633 
4634 	if (depth != set->queue_depth)
4635 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4636 						depth, set->queue_depth);
4637 
4638 	return 0;
4639 }
4640 
4641 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4642 {
4643 	/*
4644 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4645 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4646 	 * number of hardware queues.
4647 	 */
4648 	if (set->nr_maps == 1)
4649 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4650 
4651 	if (set->ops->map_queues) {
4652 		int i;
4653 
4654 		/*
4655 		 * transport .map_queues is usually done in the following
4656 		 * way:
4657 		 *
4658 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4659 		 * 	mask = get_cpu_mask(queue)
4660 		 * 	for_each_cpu(cpu, mask)
4661 		 * 		set->map[x].mq_map[cpu] = queue;
4662 		 * }
4663 		 *
4664 		 * When we need to remap, the table has to be cleared for
4665 		 * killing stale mapping since one CPU may not be mapped
4666 		 * to any hw queue.
4667 		 */
4668 		for (i = 0; i < set->nr_maps; i++)
4669 			blk_mq_clear_mq_map(&set->map[i]);
4670 
4671 		set->ops->map_queues(set);
4672 	} else {
4673 		BUG_ON(set->nr_maps > 1);
4674 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4675 	}
4676 }
4677 
4678 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4679 				       int new_nr_hw_queues)
4680 {
4681 	struct blk_mq_tags **new_tags;
4682 	int i;
4683 
4684 	if (set->nr_hw_queues >= new_nr_hw_queues)
4685 		goto done;
4686 
4687 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4688 				GFP_KERNEL, set->numa_node);
4689 	if (!new_tags)
4690 		return -ENOMEM;
4691 
4692 	if (set->tags)
4693 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4694 		       sizeof(*set->tags));
4695 	kfree(set->tags);
4696 	set->tags = new_tags;
4697 
4698 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4699 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4700 			while (--i >= set->nr_hw_queues)
4701 				__blk_mq_free_map_and_rqs(set, i);
4702 			return -ENOMEM;
4703 		}
4704 		cond_resched();
4705 	}
4706 
4707 done:
4708 	set->nr_hw_queues = new_nr_hw_queues;
4709 	return 0;
4710 }
4711 
4712 /*
4713  * Alloc a tag set to be associated with one or more request queues.
4714  * May fail with EINVAL for various error conditions. May adjust the
4715  * requested depth down, if it's too large. In that case, the set
4716  * value will be stored in set->queue_depth.
4717  */
4718 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4719 {
4720 	int i, ret;
4721 
4722 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4723 
4724 	if (!set->nr_hw_queues)
4725 		return -EINVAL;
4726 	if (!set->queue_depth)
4727 		return -EINVAL;
4728 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4729 		return -EINVAL;
4730 
4731 	if (!set->ops->queue_rq)
4732 		return -EINVAL;
4733 
4734 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4735 		return -EINVAL;
4736 
4737 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4738 		pr_info("blk-mq: reduced tag depth to %u\n",
4739 			BLK_MQ_MAX_DEPTH);
4740 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4741 	}
4742 
4743 	if (!set->nr_maps)
4744 		set->nr_maps = 1;
4745 	else if (set->nr_maps > HCTX_MAX_TYPES)
4746 		return -EINVAL;
4747 
4748 	/*
4749 	 * If a crashdump is active, then we are potentially in a very
4750 	 * memory constrained environment. Limit us to  64 tags to prevent
4751 	 * using too much memory.
4752 	 */
4753 	if (is_kdump_kernel())
4754 		set->queue_depth = min(64U, set->queue_depth);
4755 
4756 	/*
4757 	 * There is no use for more h/w queues than cpus if we just have
4758 	 * a single map
4759 	 */
4760 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4761 		set->nr_hw_queues = nr_cpu_ids;
4762 
4763 	if (set->flags & BLK_MQ_F_BLOCKING) {
4764 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4765 		if (!set->srcu)
4766 			return -ENOMEM;
4767 		ret = init_srcu_struct(set->srcu);
4768 		if (ret)
4769 			goto out_free_srcu;
4770 	}
4771 
4772 	ret = -ENOMEM;
4773 	set->tags = kcalloc_node(set->nr_hw_queues,
4774 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4775 				 set->numa_node);
4776 	if (!set->tags)
4777 		goto out_cleanup_srcu;
4778 
4779 	for (i = 0; i < set->nr_maps; i++) {
4780 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4781 						  sizeof(set->map[i].mq_map[0]),
4782 						  GFP_KERNEL, set->numa_node);
4783 		if (!set->map[i].mq_map)
4784 			goto out_free_mq_map;
4785 		set->map[i].nr_queues = set->nr_hw_queues;
4786 	}
4787 
4788 	blk_mq_update_queue_map(set);
4789 
4790 	ret = blk_mq_alloc_set_map_and_rqs(set);
4791 	if (ret)
4792 		goto out_free_mq_map;
4793 
4794 	mutex_init(&set->tag_list_lock);
4795 	INIT_LIST_HEAD(&set->tag_list);
4796 
4797 	return 0;
4798 
4799 out_free_mq_map:
4800 	for (i = 0; i < set->nr_maps; i++) {
4801 		kfree(set->map[i].mq_map);
4802 		set->map[i].mq_map = NULL;
4803 	}
4804 	kfree(set->tags);
4805 	set->tags = NULL;
4806 out_cleanup_srcu:
4807 	if (set->flags & BLK_MQ_F_BLOCKING)
4808 		cleanup_srcu_struct(set->srcu);
4809 out_free_srcu:
4810 	if (set->flags & BLK_MQ_F_BLOCKING)
4811 		kfree(set->srcu);
4812 	return ret;
4813 }
4814 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4815 
4816 /* allocate and initialize a tagset for a simple single-queue device */
4817 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4818 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4819 		unsigned int set_flags)
4820 {
4821 	memset(set, 0, sizeof(*set));
4822 	set->ops = ops;
4823 	set->nr_hw_queues = 1;
4824 	set->nr_maps = 1;
4825 	set->queue_depth = queue_depth;
4826 	set->numa_node = NUMA_NO_NODE;
4827 	set->flags = set_flags;
4828 	return blk_mq_alloc_tag_set(set);
4829 }
4830 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4831 
4832 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4833 {
4834 	int i, j;
4835 
4836 	for (i = 0; i < set->nr_hw_queues; i++)
4837 		__blk_mq_free_map_and_rqs(set, i);
4838 
4839 	if (blk_mq_is_shared_tags(set->flags)) {
4840 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4841 					BLK_MQ_NO_HCTX_IDX);
4842 	}
4843 
4844 	for (j = 0; j < set->nr_maps; j++) {
4845 		kfree(set->map[j].mq_map);
4846 		set->map[j].mq_map = NULL;
4847 	}
4848 
4849 	kfree(set->tags);
4850 	set->tags = NULL;
4851 	if (set->flags & BLK_MQ_F_BLOCKING) {
4852 		cleanup_srcu_struct(set->srcu);
4853 		kfree(set->srcu);
4854 	}
4855 }
4856 EXPORT_SYMBOL(blk_mq_free_tag_set);
4857 
4858 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4859 {
4860 	struct blk_mq_tag_set *set = q->tag_set;
4861 	struct blk_mq_hw_ctx *hctx;
4862 	int ret;
4863 	unsigned long i;
4864 
4865 	if (WARN_ON_ONCE(!q->mq_freeze_depth))
4866 		return -EINVAL;
4867 
4868 	if (!set)
4869 		return -EINVAL;
4870 
4871 	if (q->nr_requests == nr)
4872 		return 0;
4873 
4874 	blk_mq_quiesce_queue(q);
4875 
4876 	ret = 0;
4877 	queue_for_each_hw_ctx(q, hctx, i) {
4878 		if (!hctx->tags)
4879 			continue;
4880 		/*
4881 		 * If we're using an MQ scheduler, just update the scheduler
4882 		 * queue depth. This is similar to what the old code would do.
4883 		 */
4884 		if (hctx->sched_tags) {
4885 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4886 						      nr, true);
4887 		} else {
4888 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4889 						      false);
4890 		}
4891 		if (ret)
4892 			break;
4893 		if (q->elevator && q->elevator->type->ops.depth_updated)
4894 			q->elevator->type->ops.depth_updated(hctx);
4895 	}
4896 	if (!ret) {
4897 		q->nr_requests = nr;
4898 		if (blk_mq_is_shared_tags(set->flags)) {
4899 			if (q->elevator)
4900 				blk_mq_tag_update_sched_shared_tags(q);
4901 			else
4902 				blk_mq_tag_resize_shared_tags(set, nr);
4903 		}
4904 	}
4905 
4906 	blk_mq_unquiesce_queue(q);
4907 
4908 	return ret;
4909 }
4910 
4911 /*
4912  * request_queue and elevator_type pair.
4913  * It is just used by __blk_mq_update_nr_hw_queues to cache
4914  * the elevator_type associated with a request_queue.
4915  */
4916 struct blk_mq_qe_pair {
4917 	struct list_head node;
4918 	struct request_queue *q;
4919 	struct elevator_type *type;
4920 };
4921 
4922 /*
4923  * Cache the elevator_type in qe pair list and switch the
4924  * io scheduler to 'none'
4925  */
4926 static bool blk_mq_elv_switch_none(struct list_head *head,
4927 		struct request_queue *q)
4928 {
4929 	struct blk_mq_qe_pair *qe;
4930 
4931 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4932 	if (!qe)
4933 		return false;
4934 
4935 	/* q->elevator needs protection from ->sysfs_lock */
4936 	mutex_lock(&q->sysfs_lock);
4937 
4938 	/* the check has to be done with holding sysfs_lock */
4939 	if (!q->elevator) {
4940 		kfree(qe);
4941 		goto unlock;
4942 	}
4943 
4944 	INIT_LIST_HEAD(&qe->node);
4945 	qe->q = q;
4946 	qe->type = q->elevator->type;
4947 	/* keep a reference to the elevator module as we'll switch back */
4948 	__elevator_get(qe->type);
4949 	list_add(&qe->node, head);
4950 	elevator_disable(q);
4951 unlock:
4952 	mutex_unlock(&q->sysfs_lock);
4953 
4954 	return true;
4955 }
4956 
4957 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4958 						struct request_queue *q)
4959 {
4960 	struct blk_mq_qe_pair *qe;
4961 
4962 	list_for_each_entry(qe, head, node)
4963 		if (qe->q == q)
4964 			return qe;
4965 
4966 	return NULL;
4967 }
4968 
4969 static void blk_mq_elv_switch_back(struct list_head *head,
4970 				  struct request_queue *q)
4971 {
4972 	struct blk_mq_qe_pair *qe;
4973 	struct elevator_type *t;
4974 
4975 	qe = blk_lookup_qe_pair(head, q);
4976 	if (!qe)
4977 		return;
4978 	t = qe->type;
4979 	list_del(&qe->node);
4980 	kfree(qe);
4981 
4982 	mutex_lock(&q->sysfs_lock);
4983 	elevator_switch(q, t);
4984 	/* drop the reference acquired in blk_mq_elv_switch_none */
4985 	elevator_put(t);
4986 	mutex_unlock(&q->sysfs_lock);
4987 }
4988 
4989 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4990 							int nr_hw_queues)
4991 {
4992 	struct request_queue *q;
4993 	LIST_HEAD(head);
4994 	int prev_nr_hw_queues = set->nr_hw_queues;
4995 	int i;
4996 
4997 	lockdep_assert_held(&set->tag_list_lock);
4998 
4999 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
5000 		nr_hw_queues = nr_cpu_ids;
5001 	if (nr_hw_queues < 1)
5002 		return;
5003 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
5004 		return;
5005 
5006 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5007 		blk_mq_freeze_queue(q);
5008 	/*
5009 	 * Switch IO scheduler to 'none', cleaning up the data associated
5010 	 * with the previous scheduler. We will switch back once we are done
5011 	 * updating the new sw to hw queue mappings.
5012 	 */
5013 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5014 		if (!blk_mq_elv_switch_none(&head, q))
5015 			goto switch_back;
5016 
5017 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5018 		blk_mq_debugfs_unregister_hctxs(q);
5019 		blk_mq_sysfs_unregister_hctxs(q);
5020 	}
5021 
5022 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5023 		goto reregister;
5024 
5025 fallback:
5026 	blk_mq_update_queue_map(set);
5027 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5028 		struct queue_limits lim;
5029 
5030 		blk_mq_realloc_hw_ctxs(set, q);
5031 
5032 		if (q->nr_hw_queues != set->nr_hw_queues) {
5033 			int i = prev_nr_hw_queues;
5034 
5035 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5036 					nr_hw_queues, prev_nr_hw_queues);
5037 			for (; i < set->nr_hw_queues; i++)
5038 				__blk_mq_free_map_and_rqs(set, i);
5039 
5040 			set->nr_hw_queues = prev_nr_hw_queues;
5041 			goto fallback;
5042 		}
5043 		lim = queue_limits_start_update(q);
5044 		if (blk_mq_can_poll(set))
5045 			lim.features |= BLK_FEAT_POLL;
5046 		else
5047 			lim.features &= ~BLK_FEAT_POLL;
5048 		if (queue_limits_commit_update(q, &lim) < 0)
5049 			pr_warn("updating the poll flag failed\n");
5050 		blk_mq_map_swqueue(q);
5051 	}
5052 
5053 reregister:
5054 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5055 		blk_mq_sysfs_register_hctxs(q);
5056 		blk_mq_debugfs_register_hctxs(q);
5057 	}
5058 
5059 switch_back:
5060 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5061 		blk_mq_elv_switch_back(&head, q);
5062 
5063 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5064 		blk_mq_unfreeze_queue(q);
5065 
5066 	/* Free the excess tags when nr_hw_queues shrink. */
5067 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5068 		__blk_mq_free_map_and_rqs(set, i);
5069 }
5070 
5071 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5072 {
5073 	mutex_lock(&set->tag_list_lock);
5074 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5075 	mutex_unlock(&set->tag_list_lock);
5076 }
5077 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5078 
5079 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5080 			 struct io_comp_batch *iob, unsigned int flags)
5081 {
5082 	long state = get_current_state();
5083 	int ret;
5084 
5085 	do {
5086 		ret = q->mq_ops->poll(hctx, iob);
5087 		if (ret > 0) {
5088 			__set_current_state(TASK_RUNNING);
5089 			return ret;
5090 		}
5091 
5092 		if (signal_pending_state(state, current))
5093 			__set_current_state(TASK_RUNNING);
5094 		if (task_is_running(current))
5095 			return 1;
5096 
5097 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5098 			break;
5099 		cpu_relax();
5100 	} while (!need_resched());
5101 
5102 	__set_current_state(TASK_RUNNING);
5103 	return 0;
5104 }
5105 
5106 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5107 		struct io_comp_batch *iob, unsigned int flags)
5108 {
5109 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
5110 
5111 	return blk_hctx_poll(q, hctx, iob, flags);
5112 }
5113 
5114 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5115 		unsigned int poll_flags)
5116 {
5117 	struct request_queue *q = rq->q;
5118 	int ret;
5119 
5120 	if (!blk_rq_is_poll(rq))
5121 		return 0;
5122 	if (!percpu_ref_tryget(&q->q_usage_counter))
5123 		return 0;
5124 
5125 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5126 	blk_queue_exit(q);
5127 
5128 	return ret;
5129 }
5130 EXPORT_SYMBOL_GPL(blk_rq_poll);
5131 
5132 unsigned int blk_mq_rq_cpu(struct request *rq)
5133 {
5134 	return rq->mq_ctx->cpu;
5135 }
5136 EXPORT_SYMBOL(blk_mq_rq_cpu);
5137 
5138 void blk_mq_cancel_work_sync(struct request_queue *q)
5139 {
5140 	struct blk_mq_hw_ctx *hctx;
5141 	unsigned long i;
5142 
5143 	cancel_delayed_work_sync(&q->requeue_work);
5144 
5145 	queue_for_each_hw_ctx(q, hctx, i)
5146 		cancel_delayed_work_sync(&hctx->run_work);
5147 }
5148 
5149 static int __init blk_mq_init(void)
5150 {
5151 	int i;
5152 
5153 	for_each_possible_cpu(i)
5154 		init_llist_head(&per_cpu(blk_cpu_done, i));
5155 	for_each_possible_cpu(i)
5156 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
5157 			 __blk_mq_complete_request_remote, NULL);
5158 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5159 
5160 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5161 				  "block/softirq:dead", NULL,
5162 				  blk_softirq_cpu_dead);
5163 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5164 				blk_mq_hctx_notify_dead);
5165 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5166 				blk_mq_hctx_notify_online,
5167 				blk_mq_hctx_notify_offline);
5168 	return 0;
5169 }
5170 subsys_initcall(blk_mq_init);
5171