1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 32 #include <trace/events/block.h> 33 34 #include <linux/blk-mq.h> 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-mq-tag.h" 40 #include "blk-pm.h" 41 #include "blk-stat.h" 42 #include "blk-mq-sched.h" 43 #include "blk-rq-qos.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 47 static void blk_mq_poll_stats_start(struct request_queue *q); 48 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 49 50 static int blk_mq_poll_stats_bkt(const struct request *rq) 51 { 52 int ddir, sectors, bucket; 53 54 ddir = rq_data_dir(rq); 55 sectors = blk_rq_stats_sectors(rq); 56 57 bucket = ddir + 2 * ilog2(sectors); 58 59 if (bucket < 0) 60 return -1; 61 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 62 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 63 64 return bucket; 65 } 66 67 #define BLK_QC_T_SHIFT 16 68 #define BLK_QC_T_INTERNAL (1U << 31) 69 70 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 71 blk_qc_t qc) 72 { 73 return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT]; 74 } 75 76 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 77 blk_qc_t qc) 78 { 79 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 80 81 if (qc & BLK_QC_T_INTERNAL) 82 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 83 return blk_mq_tag_to_rq(hctx->tags, tag); 84 } 85 86 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 87 { 88 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 89 (rq->tag != -1 ? 90 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 91 } 92 93 /* 94 * Check if any of the ctx, dispatch list or elevator 95 * have pending work in this hardware queue. 96 */ 97 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 98 { 99 return !list_empty_careful(&hctx->dispatch) || 100 sbitmap_any_bit_set(&hctx->ctx_map) || 101 blk_mq_sched_has_work(hctx); 102 } 103 104 /* 105 * Mark this ctx as having pending work in this hardware queue 106 */ 107 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 108 struct blk_mq_ctx *ctx) 109 { 110 const int bit = ctx->index_hw[hctx->type]; 111 112 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 113 sbitmap_set_bit(&hctx->ctx_map, bit); 114 } 115 116 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 117 struct blk_mq_ctx *ctx) 118 { 119 const int bit = ctx->index_hw[hctx->type]; 120 121 sbitmap_clear_bit(&hctx->ctx_map, bit); 122 } 123 124 struct mq_inflight { 125 struct block_device *part; 126 unsigned int inflight[2]; 127 }; 128 129 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 130 struct request *rq, void *priv, 131 bool reserved) 132 { 133 struct mq_inflight *mi = priv; 134 135 if ((!mi->part->bd_partno || rq->part == mi->part) && 136 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 137 mi->inflight[rq_data_dir(rq)]++; 138 139 return true; 140 } 141 142 unsigned int blk_mq_in_flight(struct request_queue *q, 143 struct block_device *part) 144 { 145 struct mq_inflight mi = { .part = part }; 146 147 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 148 149 return mi.inflight[0] + mi.inflight[1]; 150 } 151 152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 153 unsigned int inflight[2]) 154 { 155 struct mq_inflight mi = { .part = part }; 156 157 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 158 inflight[0] = mi.inflight[0]; 159 inflight[1] = mi.inflight[1]; 160 } 161 162 void blk_freeze_queue_start(struct request_queue *q) 163 { 164 mutex_lock(&q->mq_freeze_lock); 165 if (++q->mq_freeze_depth == 1) { 166 percpu_ref_kill(&q->q_usage_counter); 167 mutex_unlock(&q->mq_freeze_lock); 168 if (queue_is_mq(q)) 169 blk_mq_run_hw_queues(q, false); 170 } else { 171 mutex_unlock(&q->mq_freeze_lock); 172 } 173 } 174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 175 176 void blk_mq_freeze_queue_wait(struct request_queue *q) 177 { 178 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 179 } 180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 181 182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 183 unsigned long timeout) 184 { 185 return wait_event_timeout(q->mq_freeze_wq, 186 percpu_ref_is_zero(&q->q_usage_counter), 187 timeout); 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 190 191 /* 192 * Guarantee no request is in use, so we can change any data structure of 193 * the queue afterward. 194 */ 195 void blk_freeze_queue(struct request_queue *q) 196 { 197 /* 198 * In the !blk_mq case we are only calling this to kill the 199 * q_usage_counter, otherwise this increases the freeze depth 200 * and waits for it to return to zero. For this reason there is 201 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 202 * exported to drivers as the only user for unfreeze is blk_mq. 203 */ 204 blk_freeze_queue_start(q); 205 blk_mq_freeze_queue_wait(q); 206 } 207 208 void blk_mq_freeze_queue(struct request_queue *q) 209 { 210 /* 211 * ...just an alias to keep freeze and unfreeze actions balanced 212 * in the blk_mq_* namespace 213 */ 214 blk_freeze_queue(q); 215 } 216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 217 218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 219 { 220 mutex_lock(&q->mq_freeze_lock); 221 if (force_atomic) 222 q->q_usage_counter.data->force_atomic = true; 223 q->mq_freeze_depth--; 224 WARN_ON_ONCE(q->mq_freeze_depth < 0); 225 if (!q->mq_freeze_depth) { 226 percpu_ref_resurrect(&q->q_usage_counter); 227 wake_up_all(&q->mq_freeze_wq); 228 } 229 mutex_unlock(&q->mq_freeze_lock); 230 } 231 232 void blk_mq_unfreeze_queue(struct request_queue *q) 233 { 234 __blk_mq_unfreeze_queue(q, false); 235 } 236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 237 238 /* 239 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 240 * mpt3sas driver such that this function can be removed. 241 */ 242 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 243 { 244 unsigned long flags; 245 246 spin_lock_irqsave(&q->queue_lock, flags); 247 if (!q->quiesce_depth++) 248 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 249 spin_unlock_irqrestore(&q->queue_lock, flags); 250 } 251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 252 253 /** 254 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 255 * @q: request queue. 256 * 257 * Note: this function does not prevent that the struct request end_io() 258 * callback function is invoked. Once this function is returned, we make 259 * sure no dispatch can happen until the queue is unquiesced via 260 * blk_mq_unquiesce_queue(). 261 */ 262 void blk_mq_quiesce_queue(struct request_queue *q) 263 { 264 struct blk_mq_hw_ctx *hctx; 265 unsigned int i; 266 bool rcu = false; 267 268 blk_mq_quiesce_queue_nowait(q); 269 270 queue_for_each_hw_ctx(q, hctx, i) { 271 if (hctx->flags & BLK_MQ_F_BLOCKING) 272 synchronize_srcu(hctx->srcu); 273 else 274 rcu = true; 275 } 276 if (rcu) 277 synchronize_rcu(); 278 } 279 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 280 281 /* 282 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 283 * @q: request queue. 284 * 285 * This function recovers queue into the state before quiescing 286 * which is done by blk_mq_quiesce_queue. 287 */ 288 void blk_mq_unquiesce_queue(struct request_queue *q) 289 { 290 unsigned long flags; 291 bool run_queue = false; 292 293 spin_lock_irqsave(&q->queue_lock, flags); 294 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 295 ; 296 } else if (!--q->quiesce_depth) { 297 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 298 run_queue = true; 299 } 300 spin_unlock_irqrestore(&q->queue_lock, flags); 301 302 /* dispatch requests which are inserted during quiescing */ 303 if (run_queue) 304 blk_mq_run_hw_queues(q, true); 305 } 306 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 307 308 void blk_mq_wake_waiters(struct request_queue *q) 309 { 310 struct blk_mq_hw_ctx *hctx; 311 unsigned int i; 312 313 queue_for_each_hw_ctx(q, hctx, i) 314 if (blk_mq_hw_queue_mapped(hctx)) 315 blk_mq_tag_wakeup_all(hctx->tags, true); 316 } 317 318 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 319 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 320 { 321 struct blk_mq_ctx *ctx = data->ctx; 322 struct blk_mq_hw_ctx *hctx = data->hctx; 323 struct request_queue *q = data->q; 324 struct request *rq = tags->static_rqs[tag]; 325 326 rq->q = q; 327 rq->mq_ctx = ctx; 328 rq->mq_hctx = hctx; 329 rq->cmd_flags = data->cmd_flags; 330 331 if (data->flags & BLK_MQ_REQ_PM) 332 data->rq_flags |= RQF_PM; 333 if (blk_queue_io_stat(q)) 334 data->rq_flags |= RQF_IO_STAT; 335 rq->rq_flags = data->rq_flags; 336 337 if (!(data->rq_flags & RQF_ELV)) { 338 rq->tag = tag; 339 rq->internal_tag = BLK_MQ_NO_TAG; 340 } else { 341 rq->tag = BLK_MQ_NO_TAG; 342 rq->internal_tag = tag; 343 } 344 rq->timeout = 0; 345 346 if (blk_mq_need_time_stamp(rq)) 347 rq->start_time_ns = ktime_get_ns(); 348 else 349 rq->start_time_ns = 0; 350 rq->rq_disk = NULL; 351 rq->part = NULL; 352 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 353 rq->alloc_time_ns = alloc_time_ns; 354 #endif 355 rq->io_start_time_ns = 0; 356 rq->stats_sectors = 0; 357 rq->nr_phys_segments = 0; 358 #if defined(CONFIG_BLK_DEV_INTEGRITY) 359 rq->nr_integrity_segments = 0; 360 #endif 361 rq->end_io = NULL; 362 rq->end_io_data = NULL; 363 364 blk_crypto_rq_set_defaults(rq); 365 INIT_LIST_HEAD(&rq->queuelist); 366 /* tag was already set */ 367 WRITE_ONCE(rq->deadline, 0); 368 refcount_set(&rq->ref, 1); 369 370 if (rq->rq_flags & RQF_ELV) { 371 struct elevator_queue *e = data->q->elevator; 372 373 rq->elv.icq = NULL; 374 INIT_HLIST_NODE(&rq->hash); 375 RB_CLEAR_NODE(&rq->rb_node); 376 377 if (!op_is_flush(data->cmd_flags) && 378 e->type->ops.prepare_request) { 379 if (e->type->icq_cache) 380 blk_mq_sched_assign_ioc(rq); 381 382 e->type->ops.prepare_request(rq); 383 rq->rq_flags |= RQF_ELVPRIV; 384 } 385 } 386 387 return rq; 388 } 389 390 static inline struct request * 391 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 392 u64 alloc_time_ns) 393 { 394 unsigned int tag, tag_offset; 395 struct blk_mq_tags *tags; 396 struct request *rq; 397 unsigned long tag_mask; 398 int i, nr = 0; 399 400 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 401 if (unlikely(!tag_mask)) 402 return NULL; 403 404 tags = blk_mq_tags_from_data(data); 405 for (i = 0; tag_mask; i++) { 406 if (!(tag_mask & (1UL << i))) 407 continue; 408 prefetch(tags->static_rqs[tag]); 409 tag = tag_offset + i; 410 tag_mask &= ~(1UL << i); 411 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 412 rq_list_add(data->cached_rq, rq); 413 } 414 data->nr_tags -= nr; 415 416 return rq_list_pop(data->cached_rq); 417 } 418 419 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 420 { 421 struct request_queue *q = data->q; 422 struct elevator_queue *e = q->elevator; 423 u64 alloc_time_ns = 0; 424 struct request *rq; 425 unsigned int tag; 426 427 /* alloc_time includes depth and tag waits */ 428 if (blk_queue_rq_alloc_time(q)) 429 alloc_time_ns = ktime_get_ns(); 430 431 if (data->cmd_flags & REQ_NOWAIT) 432 data->flags |= BLK_MQ_REQ_NOWAIT; 433 434 if (e) { 435 /* 436 * Flush/passthrough requests are special and go directly to the 437 * dispatch list. Don't include reserved tags in the 438 * limiting, as it isn't useful. 439 */ 440 if (!op_is_flush(data->cmd_flags) && 441 !blk_op_is_passthrough(data->cmd_flags) && 442 e->type->ops.limit_depth && 443 !(data->flags & BLK_MQ_REQ_RESERVED)) 444 e->type->ops.limit_depth(data->cmd_flags, data); 445 } 446 447 retry: 448 data->ctx = blk_mq_get_ctx(q); 449 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 450 if (!e) 451 blk_mq_tag_busy(data->hctx); 452 453 /* 454 * Try batched alloc if we want more than 1 tag. 455 */ 456 if (data->nr_tags > 1) { 457 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 458 if (rq) 459 return rq; 460 data->nr_tags = 1; 461 } 462 463 /* 464 * Waiting allocations only fail because of an inactive hctx. In that 465 * case just retry the hctx assignment and tag allocation as CPU hotplug 466 * should have migrated us to an online CPU by now. 467 */ 468 tag = blk_mq_get_tag(data); 469 if (tag == BLK_MQ_NO_TAG) { 470 if (data->flags & BLK_MQ_REQ_NOWAIT) 471 return NULL; 472 /* 473 * Give up the CPU and sleep for a random short time to 474 * ensure that thread using a realtime scheduling class 475 * are migrated off the CPU, and thus off the hctx that 476 * is going away. 477 */ 478 msleep(3); 479 goto retry; 480 } 481 482 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 483 alloc_time_ns); 484 } 485 486 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 487 blk_mq_req_flags_t flags) 488 { 489 struct blk_mq_alloc_data data = { 490 .q = q, 491 .flags = flags, 492 .cmd_flags = op, 493 .rq_flags = q->elevator ? RQF_ELV : 0, 494 .nr_tags = 1, 495 }; 496 struct request *rq; 497 int ret; 498 499 ret = blk_queue_enter(q, flags); 500 if (ret) 501 return ERR_PTR(ret); 502 503 rq = __blk_mq_alloc_requests(&data); 504 if (!rq) 505 goto out_queue_exit; 506 rq->__data_len = 0; 507 rq->__sector = (sector_t) -1; 508 rq->bio = rq->biotail = NULL; 509 return rq; 510 out_queue_exit: 511 blk_queue_exit(q); 512 return ERR_PTR(-EWOULDBLOCK); 513 } 514 EXPORT_SYMBOL(blk_mq_alloc_request); 515 516 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 517 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 518 { 519 struct blk_mq_alloc_data data = { 520 .q = q, 521 .flags = flags, 522 .cmd_flags = op, 523 .rq_flags = q->elevator ? RQF_ELV : 0, 524 .nr_tags = 1, 525 }; 526 u64 alloc_time_ns = 0; 527 unsigned int cpu; 528 unsigned int tag; 529 int ret; 530 531 /* alloc_time includes depth and tag waits */ 532 if (blk_queue_rq_alloc_time(q)) 533 alloc_time_ns = ktime_get_ns(); 534 535 /* 536 * If the tag allocator sleeps we could get an allocation for a 537 * different hardware context. No need to complicate the low level 538 * allocator for this for the rare use case of a command tied to 539 * a specific queue. 540 */ 541 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 542 return ERR_PTR(-EINVAL); 543 544 if (hctx_idx >= q->nr_hw_queues) 545 return ERR_PTR(-EIO); 546 547 ret = blk_queue_enter(q, flags); 548 if (ret) 549 return ERR_PTR(ret); 550 551 /* 552 * Check if the hardware context is actually mapped to anything. 553 * If not tell the caller that it should skip this queue. 554 */ 555 ret = -EXDEV; 556 data.hctx = q->queue_hw_ctx[hctx_idx]; 557 if (!blk_mq_hw_queue_mapped(data.hctx)) 558 goto out_queue_exit; 559 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 560 data.ctx = __blk_mq_get_ctx(q, cpu); 561 562 if (!q->elevator) 563 blk_mq_tag_busy(data.hctx); 564 565 ret = -EWOULDBLOCK; 566 tag = blk_mq_get_tag(&data); 567 if (tag == BLK_MQ_NO_TAG) 568 goto out_queue_exit; 569 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 570 alloc_time_ns); 571 572 out_queue_exit: 573 blk_queue_exit(q); 574 return ERR_PTR(ret); 575 } 576 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 577 578 static void __blk_mq_free_request(struct request *rq) 579 { 580 struct request_queue *q = rq->q; 581 struct blk_mq_ctx *ctx = rq->mq_ctx; 582 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 583 const int sched_tag = rq->internal_tag; 584 585 blk_crypto_free_request(rq); 586 blk_pm_mark_last_busy(rq); 587 rq->mq_hctx = NULL; 588 if (rq->tag != BLK_MQ_NO_TAG) 589 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 590 if (sched_tag != BLK_MQ_NO_TAG) 591 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 592 blk_mq_sched_restart(hctx); 593 blk_queue_exit(q); 594 } 595 596 void blk_mq_free_request(struct request *rq) 597 { 598 struct request_queue *q = rq->q; 599 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 600 601 if (rq->rq_flags & RQF_ELVPRIV) { 602 struct elevator_queue *e = q->elevator; 603 604 if (e->type->ops.finish_request) 605 e->type->ops.finish_request(rq); 606 if (rq->elv.icq) { 607 put_io_context(rq->elv.icq->ioc); 608 rq->elv.icq = NULL; 609 } 610 } 611 612 if (rq->rq_flags & RQF_MQ_INFLIGHT) 613 __blk_mq_dec_active_requests(hctx); 614 615 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 616 laptop_io_completion(q->disk->bdi); 617 618 rq_qos_done(q, rq); 619 620 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 621 if (refcount_dec_and_test(&rq->ref)) 622 __blk_mq_free_request(rq); 623 } 624 EXPORT_SYMBOL_GPL(blk_mq_free_request); 625 626 void blk_mq_free_plug_rqs(struct blk_plug *plug) 627 { 628 struct request *rq; 629 630 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) { 631 percpu_ref_get(&rq->q->q_usage_counter); 632 blk_mq_free_request(rq); 633 } 634 } 635 636 static void req_bio_endio(struct request *rq, struct bio *bio, 637 unsigned int nbytes, blk_status_t error) 638 { 639 if (unlikely(error)) { 640 bio->bi_status = error; 641 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 642 /* 643 * Partial zone append completions cannot be supported as the 644 * BIO fragments may end up not being written sequentially. 645 */ 646 if (bio->bi_iter.bi_size != nbytes) 647 bio->bi_status = BLK_STS_IOERR; 648 else 649 bio->bi_iter.bi_sector = rq->__sector; 650 } 651 652 bio_advance(bio, nbytes); 653 654 if (unlikely(rq->rq_flags & RQF_QUIET)) 655 bio_set_flag(bio, BIO_QUIET); 656 /* don't actually finish bio if it's part of flush sequence */ 657 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 658 bio_endio(bio); 659 } 660 661 static void blk_account_io_completion(struct request *req, unsigned int bytes) 662 { 663 if (req->part && blk_do_io_stat(req)) { 664 const int sgrp = op_stat_group(req_op(req)); 665 666 part_stat_lock(); 667 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 668 part_stat_unlock(); 669 } 670 } 671 672 /** 673 * blk_update_request - Complete multiple bytes without completing the request 674 * @req: the request being processed 675 * @error: block status code 676 * @nr_bytes: number of bytes to complete for @req 677 * 678 * Description: 679 * Ends I/O on a number of bytes attached to @req, but doesn't complete 680 * the request structure even if @req doesn't have leftover. 681 * If @req has leftover, sets it up for the next range of segments. 682 * 683 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 684 * %false return from this function. 685 * 686 * Note: 687 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 688 * except in the consistency check at the end of this function. 689 * 690 * Return: 691 * %false - this request doesn't have any more data 692 * %true - this request has more data 693 **/ 694 bool blk_update_request(struct request *req, blk_status_t error, 695 unsigned int nr_bytes) 696 { 697 int total_bytes; 698 699 trace_block_rq_complete(req, error, nr_bytes); 700 701 if (!req->bio) 702 return false; 703 704 #ifdef CONFIG_BLK_DEV_INTEGRITY 705 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 706 error == BLK_STS_OK) 707 req->q->integrity.profile->complete_fn(req, nr_bytes); 708 #endif 709 710 if (unlikely(error && !blk_rq_is_passthrough(req) && 711 !(req->rq_flags & RQF_QUIET))) 712 blk_print_req_error(req, error); 713 714 blk_account_io_completion(req, nr_bytes); 715 716 total_bytes = 0; 717 while (req->bio) { 718 struct bio *bio = req->bio; 719 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 720 721 if (bio_bytes == bio->bi_iter.bi_size) 722 req->bio = bio->bi_next; 723 724 /* Completion has already been traced */ 725 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 726 req_bio_endio(req, bio, bio_bytes, error); 727 728 total_bytes += bio_bytes; 729 nr_bytes -= bio_bytes; 730 731 if (!nr_bytes) 732 break; 733 } 734 735 /* 736 * completely done 737 */ 738 if (!req->bio) { 739 /* 740 * Reset counters so that the request stacking driver 741 * can find how many bytes remain in the request 742 * later. 743 */ 744 req->__data_len = 0; 745 return false; 746 } 747 748 req->__data_len -= total_bytes; 749 750 /* update sector only for requests with clear definition of sector */ 751 if (!blk_rq_is_passthrough(req)) 752 req->__sector += total_bytes >> 9; 753 754 /* mixed attributes always follow the first bio */ 755 if (req->rq_flags & RQF_MIXED_MERGE) { 756 req->cmd_flags &= ~REQ_FAILFAST_MASK; 757 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 758 } 759 760 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 761 /* 762 * If total number of sectors is less than the first segment 763 * size, something has gone terribly wrong. 764 */ 765 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 766 blk_dump_rq_flags(req, "request botched"); 767 req->__data_len = blk_rq_cur_bytes(req); 768 } 769 770 /* recalculate the number of segments */ 771 req->nr_phys_segments = blk_recalc_rq_segments(req); 772 } 773 774 return true; 775 } 776 EXPORT_SYMBOL_GPL(blk_update_request); 777 778 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 779 { 780 if (rq->rq_flags & RQF_STATS) { 781 blk_mq_poll_stats_start(rq->q); 782 blk_stat_add(rq, now); 783 } 784 785 blk_mq_sched_completed_request(rq, now); 786 blk_account_io_done(rq, now); 787 } 788 789 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 790 { 791 if (blk_mq_need_time_stamp(rq)) 792 __blk_mq_end_request_acct(rq, ktime_get_ns()); 793 794 if (rq->end_io) { 795 rq_qos_done(rq->q, rq); 796 rq->end_io(rq, error); 797 } else { 798 blk_mq_free_request(rq); 799 } 800 } 801 EXPORT_SYMBOL(__blk_mq_end_request); 802 803 void blk_mq_end_request(struct request *rq, blk_status_t error) 804 { 805 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 806 BUG(); 807 __blk_mq_end_request(rq, error); 808 } 809 EXPORT_SYMBOL(blk_mq_end_request); 810 811 #define TAG_COMP_BATCH 32 812 813 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 814 int *tag_array, int nr_tags) 815 { 816 struct request_queue *q = hctx->queue; 817 818 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 819 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 820 } 821 822 void blk_mq_end_request_batch(struct io_comp_batch *iob) 823 { 824 int tags[TAG_COMP_BATCH], nr_tags = 0; 825 struct blk_mq_hw_ctx *cur_hctx = NULL; 826 struct request *rq; 827 u64 now = 0; 828 829 if (iob->need_ts) 830 now = ktime_get_ns(); 831 832 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 833 prefetch(rq->bio); 834 prefetch(rq->rq_next); 835 836 blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq)); 837 if (iob->need_ts) 838 __blk_mq_end_request_acct(rq, now); 839 840 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 841 if (!refcount_dec_and_test(&rq->ref)) 842 continue; 843 844 blk_crypto_free_request(rq); 845 blk_pm_mark_last_busy(rq); 846 rq_qos_done(rq->q, rq); 847 848 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 849 if (cur_hctx) 850 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 851 nr_tags = 0; 852 cur_hctx = rq->mq_hctx; 853 } 854 tags[nr_tags++] = rq->tag; 855 } 856 857 if (nr_tags) 858 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 859 } 860 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 861 862 static void blk_complete_reqs(struct llist_head *list) 863 { 864 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 865 struct request *rq, *next; 866 867 llist_for_each_entry_safe(rq, next, entry, ipi_list) 868 rq->q->mq_ops->complete(rq); 869 } 870 871 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 872 { 873 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 874 } 875 876 static int blk_softirq_cpu_dead(unsigned int cpu) 877 { 878 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 879 return 0; 880 } 881 882 static void __blk_mq_complete_request_remote(void *data) 883 { 884 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 885 } 886 887 static inline bool blk_mq_complete_need_ipi(struct request *rq) 888 { 889 int cpu = raw_smp_processor_id(); 890 891 if (!IS_ENABLED(CONFIG_SMP) || 892 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 893 return false; 894 /* 895 * With force threaded interrupts enabled, raising softirq from an SMP 896 * function call will always result in waking the ksoftirqd thread. 897 * This is probably worse than completing the request on a different 898 * cache domain. 899 */ 900 if (force_irqthreads()) 901 return false; 902 903 /* same CPU or cache domain? Complete locally */ 904 if (cpu == rq->mq_ctx->cpu || 905 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 906 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 907 return false; 908 909 /* don't try to IPI to an offline CPU */ 910 return cpu_online(rq->mq_ctx->cpu); 911 } 912 913 static void blk_mq_complete_send_ipi(struct request *rq) 914 { 915 struct llist_head *list; 916 unsigned int cpu; 917 918 cpu = rq->mq_ctx->cpu; 919 list = &per_cpu(blk_cpu_done, cpu); 920 if (llist_add(&rq->ipi_list, list)) { 921 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 922 smp_call_function_single_async(cpu, &rq->csd); 923 } 924 } 925 926 static void blk_mq_raise_softirq(struct request *rq) 927 { 928 struct llist_head *list; 929 930 preempt_disable(); 931 list = this_cpu_ptr(&blk_cpu_done); 932 if (llist_add(&rq->ipi_list, list)) 933 raise_softirq(BLOCK_SOFTIRQ); 934 preempt_enable(); 935 } 936 937 bool blk_mq_complete_request_remote(struct request *rq) 938 { 939 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 940 941 /* 942 * For a polled request, always complete locallly, it's pointless 943 * to redirect the completion. 944 */ 945 if (rq->cmd_flags & REQ_POLLED) 946 return false; 947 948 if (blk_mq_complete_need_ipi(rq)) { 949 blk_mq_complete_send_ipi(rq); 950 return true; 951 } 952 953 if (rq->q->nr_hw_queues == 1) { 954 blk_mq_raise_softirq(rq); 955 return true; 956 } 957 return false; 958 } 959 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 960 961 /** 962 * blk_mq_complete_request - end I/O on a request 963 * @rq: the request being processed 964 * 965 * Description: 966 * Complete a request by scheduling the ->complete_rq operation. 967 **/ 968 void blk_mq_complete_request(struct request *rq) 969 { 970 if (!blk_mq_complete_request_remote(rq)) 971 rq->q->mq_ops->complete(rq); 972 } 973 EXPORT_SYMBOL(blk_mq_complete_request); 974 975 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 976 __releases(hctx->srcu) 977 { 978 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 979 rcu_read_unlock(); 980 else 981 srcu_read_unlock(hctx->srcu, srcu_idx); 982 } 983 984 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 985 __acquires(hctx->srcu) 986 { 987 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 988 /* shut up gcc false positive */ 989 *srcu_idx = 0; 990 rcu_read_lock(); 991 } else 992 *srcu_idx = srcu_read_lock(hctx->srcu); 993 } 994 995 /** 996 * blk_mq_start_request - Start processing a request 997 * @rq: Pointer to request to be started 998 * 999 * Function used by device drivers to notify the block layer that a request 1000 * is going to be processed now, so blk layer can do proper initializations 1001 * such as starting the timeout timer. 1002 */ 1003 void blk_mq_start_request(struct request *rq) 1004 { 1005 struct request_queue *q = rq->q; 1006 1007 trace_block_rq_issue(rq); 1008 1009 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1010 u64 start_time; 1011 #ifdef CONFIG_BLK_CGROUP 1012 if (rq->bio) 1013 start_time = bio_issue_time(&rq->bio->bi_issue); 1014 else 1015 #endif 1016 start_time = ktime_get_ns(); 1017 rq->io_start_time_ns = start_time; 1018 rq->stats_sectors = blk_rq_sectors(rq); 1019 rq->rq_flags |= RQF_STATS; 1020 rq_qos_issue(q, rq); 1021 } 1022 1023 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1024 1025 blk_add_timer(rq); 1026 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1027 1028 #ifdef CONFIG_BLK_DEV_INTEGRITY 1029 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1030 q->integrity.profile->prepare_fn(rq); 1031 #endif 1032 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1033 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1034 } 1035 EXPORT_SYMBOL(blk_mq_start_request); 1036 1037 static void __blk_mq_requeue_request(struct request *rq) 1038 { 1039 struct request_queue *q = rq->q; 1040 1041 blk_mq_put_driver_tag(rq); 1042 1043 trace_block_rq_requeue(rq); 1044 rq_qos_requeue(q, rq); 1045 1046 if (blk_mq_request_started(rq)) { 1047 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1048 rq->rq_flags &= ~RQF_TIMED_OUT; 1049 } 1050 } 1051 1052 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1053 { 1054 __blk_mq_requeue_request(rq); 1055 1056 /* this request will be re-inserted to io scheduler queue */ 1057 blk_mq_sched_requeue_request(rq); 1058 1059 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1060 } 1061 EXPORT_SYMBOL(blk_mq_requeue_request); 1062 1063 static void blk_mq_requeue_work(struct work_struct *work) 1064 { 1065 struct request_queue *q = 1066 container_of(work, struct request_queue, requeue_work.work); 1067 LIST_HEAD(rq_list); 1068 struct request *rq, *next; 1069 1070 spin_lock_irq(&q->requeue_lock); 1071 list_splice_init(&q->requeue_list, &rq_list); 1072 spin_unlock_irq(&q->requeue_lock); 1073 1074 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1075 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1076 continue; 1077 1078 rq->rq_flags &= ~RQF_SOFTBARRIER; 1079 list_del_init(&rq->queuelist); 1080 /* 1081 * If RQF_DONTPREP, rq has contained some driver specific 1082 * data, so insert it to hctx dispatch list to avoid any 1083 * merge. 1084 */ 1085 if (rq->rq_flags & RQF_DONTPREP) 1086 blk_mq_request_bypass_insert(rq, false, false); 1087 else 1088 blk_mq_sched_insert_request(rq, true, false, false); 1089 } 1090 1091 while (!list_empty(&rq_list)) { 1092 rq = list_entry(rq_list.next, struct request, queuelist); 1093 list_del_init(&rq->queuelist); 1094 blk_mq_sched_insert_request(rq, false, false, false); 1095 } 1096 1097 blk_mq_run_hw_queues(q, false); 1098 } 1099 1100 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1101 bool kick_requeue_list) 1102 { 1103 struct request_queue *q = rq->q; 1104 unsigned long flags; 1105 1106 /* 1107 * We abuse this flag that is otherwise used by the I/O scheduler to 1108 * request head insertion from the workqueue. 1109 */ 1110 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1111 1112 spin_lock_irqsave(&q->requeue_lock, flags); 1113 if (at_head) { 1114 rq->rq_flags |= RQF_SOFTBARRIER; 1115 list_add(&rq->queuelist, &q->requeue_list); 1116 } else { 1117 list_add_tail(&rq->queuelist, &q->requeue_list); 1118 } 1119 spin_unlock_irqrestore(&q->requeue_lock, flags); 1120 1121 if (kick_requeue_list) 1122 blk_mq_kick_requeue_list(q); 1123 } 1124 1125 void blk_mq_kick_requeue_list(struct request_queue *q) 1126 { 1127 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1128 } 1129 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1130 1131 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1132 unsigned long msecs) 1133 { 1134 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1135 msecs_to_jiffies(msecs)); 1136 } 1137 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1138 1139 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 1140 void *priv, bool reserved) 1141 { 1142 /* 1143 * If we find a request that isn't idle and the queue matches, 1144 * we know the queue is busy. Return false to stop the iteration. 1145 */ 1146 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 1147 bool *busy = priv; 1148 1149 *busy = true; 1150 return false; 1151 } 1152 1153 return true; 1154 } 1155 1156 bool blk_mq_queue_inflight(struct request_queue *q) 1157 { 1158 bool busy = false; 1159 1160 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1161 return busy; 1162 } 1163 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1164 1165 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 1166 { 1167 req->rq_flags |= RQF_TIMED_OUT; 1168 if (req->q->mq_ops->timeout) { 1169 enum blk_eh_timer_return ret; 1170 1171 ret = req->q->mq_ops->timeout(req, reserved); 1172 if (ret == BLK_EH_DONE) 1173 return; 1174 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1175 } 1176 1177 blk_add_timer(req); 1178 } 1179 1180 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 1181 { 1182 unsigned long deadline; 1183 1184 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1185 return false; 1186 if (rq->rq_flags & RQF_TIMED_OUT) 1187 return false; 1188 1189 deadline = READ_ONCE(rq->deadline); 1190 if (time_after_eq(jiffies, deadline)) 1191 return true; 1192 1193 if (*next == 0) 1194 *next = deadline; 1195 else if (time_after(*next, deadline)) 1196 *next = deadline; 1197 return false; 1198 } 1199 1200 void blk_mq_put_rq_ref(struct request *rq) 1201 { 1202 if (is_flush_rq(rq)) 1203 rq->end_io(rq, 0); 1204 else if (refcount_dec_and_test(&rq->ref)) 1205 __blk_mq_free_request(rq); 1206 } 1207 1208 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 1209 struct request *rq, void *priv, bool reserved) 1210 { 1211 unsigned long *next = priv; 1212 1213 /* 1214 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1215 * be reallocated underneath the timeout handler's processing, then 1216 * the expire check is reliable. If the request is not expired, then 1217 * it was completed and reallocated as a new request after returning 1218 * from blk_mq_check_expired(). 1219 */ 1220 if (blk_mq_req_expired(rq, next)) 1221 blk_mq_rq_timed_out(rq, reserved); 1222 return true; 1223 } 1224 1225 static void blk_mq_timeout_work(struct work_struct *work) 1226 { 1227 struct request_queue *q = 1228 container_of(work, struct request_queue, timeout_work); 1229 unsigned long next = 0; 1230 struct blk_mq_hw_ctx *hctx; 1231 int i; 1232 1233 /* A deadlock might occur if a request is stuck requiring a 1234 * timeout at the same time a queue freeze is waiting 1235 * completion, since the timeout code would not be able to 1236 * acquire the queue reference here. 1237 * 1238 * That's why we don't use blk_queue_enter here; instead, we use 1239 * percpu_ref_tryget directly, because we need to be able to 1240 * obtain a reference even in the short window between the queue 1241 * starting to freeze, by dropping the first reference in 1242 * blk_freeze_queue_start, and the moment the last request is 1243 * consumed, marked by the instant q_usage_counter reaches 1244 * zero. 1245 */ 1246 if (!percpu_ref_tryget(&q->q_usage_counter)) 1247 return; 1248 1249 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 1250 1251 if (next != 0) { 1252 mod_timer(&q->timeout, next); 1253 } else { 1254 /* 1255 * Request timeouts are handled as a forward rolling timer. If 1256 * we end up here it means that no requests are pending and 1257 * also that no request has been pending for a while. Mark 1258 * each hctx as idle. 1259 */ 1260 queue_for_each_hw_ctx(q, hctx, i) { 1261 /* the hctx may be unmapped, so check it here */ 1262 if (blk_mq_hw_queue_mapped(hctx)) 1263 blk_mq_tag_idle(hctx); 1264 } 1265 } 1266 blk_queue_exit(q); 1267 } 1268 1269 struct flush_busy_ctx_data { 1270 struct blk_mq_hw_ctx *hctx; 1271 struct list_head *list; 1272 }; 1273 1274 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1275 { 1276 struct flush_busy_ctx_data *flush_data = data; 1277 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1278 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1279 enum hctx_type type = hctx->type; 1280 1281 spin_lock(&ctx->lock); 1282 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1283 sbitmap_clear_bit(sb, bitnr); 1284 spin_unlock(&ctx->lock); 1285 return true; 1286 } 1287 1288 /* 1289 * Process software queues that have been marked busy, splicing them 1290 * to the for-dispatch 1291 */ 1292 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1293 { 1294 struct flush_busy_ctx_data data = { 1295 .hctx = hctx, 1296 .list = list, 1297 }; 1298 1299 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1300 } 1301 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1302 1303 struct dispatch_rq_data { 1304 struct blk_mq_hw_ctx *hctx; 1305 struct request *rq; 1306 }; 1307 1308 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1309 void *data) 1310 { 1311 struct dispatch_rq_data *dispatch_data = data; 1312 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1313 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1314 enum hctx_type type = hctx->type; 1315 1316 spin_lock(&ctx->lock); 1317 if (!list_empty(&ctx->rq_lists[type])) { 1318 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1319 list_del_init(&dispatch_data->rq->queuelist); 1320 if (list_empty(&ctx->rq_lists[type])) 1321 sbitmap_clear_bit(sb, bitnr); 1322 } 1323 spin_unlock(&ctx->lock); 1324 1325 return !dispatch_data->rq; 1326 } 1327 1328 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1329 struct blk_mq_ctx *start) 1330 { 1331 unsigned off = start ? start->index_hw[hctx->type] : 0; 1332 struct dispatch_rq_data data = { 1333 .hctx = hctx, 1334 .rq = NULL, 1335 }; 1336 1337 __sbitmap_for_each_set(&hctx->ctx_map, off, 1338 dispatch_rq_from_ctx, &data); 1339 1340 return data.rq; 1341 } 1342 1343 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1344 { 1345 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1346 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1347 int tag; 1348 1349 blk_mq_tag_busy(rq->mq_hctx); 1350 1351 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1352 bt = &rq->mq_hctx->tags->breserved_tags; 1353 tag_offset = 0; 1354 } else { 1355 if (!hctx_may_queue(rq->mq_hctx, bt)) 1356 return false; 1357 } 1358 1359 tag = __sbitmap_queue_get(bt); 1360 if (tag == BLK_MQ_NO_TAG) 1361 return false; 1362 1363 rq->tag = tag + tag_offset; 1364 return true; 1365 } 1366 1367 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1368 { 1369 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1370 return false; 1371 1372 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1373 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1374 rq->rq_flags |= RQF_MQ_INFLIGHT; 1375 __blk_mq_inc_active_requests(hctx); 1376 } 1377 hctx->tags->rqs[rq->tag] = rq; 1378 return true; 1379 } 1380 1381 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1382 int flags, void *key) 1383 { 1384 struct blk_mq_hw_ctx *hctx; 1385 1386 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1387 1388 spin_lock(&hctx->dispatch_wait_lock); 1389 if (!list_empty(&wait->entry)) { 1390 struct sbitmap_queue *sbq; 1391 1392 list_del_init(&wait->entry); 1393 sbq = &hctx->tags->bitmap_tags; 1394 atomic_dec(&sbq->ws_active); 1395 } 1396 spin_unlock(&hctx->dispatch_wait_lock); 1397 1398 blk_mq_run_hw_queue(hctx, true); 1399 return 1; 1400 } 1401 1402 /* 1403 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1404 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1405 * restart. For both cases, take care to check the condition again after 1406 * marking us as waiting. 1407 */ 1408 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1409 struct request *rq) 1410 { 1411 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1412 struct wait_queue_head *wq; 1413 wait_queue_entry_t *wait; 1414 bool ret; 1415 1416 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1417 blk_mq_sched_mark_restart_hctx(hctx); 1418 1419 /* 1420 * It's possible that a tag was freed in the window between the 1421 * allocation failure and adding the hardware queue to the wait 1422 * queue. 1423 * 1424 * Don't clear RESTART here, someone else could have set it. 1425 * At most this will cost an extra queue run. 1426 */ 1427 return blk_mq_get_driver_tag(rq); 1428 } 1429 1430 wait = &hctx->dispatch_wait; 1431 if (!list_empty_careful(&wait->entry)) 1432 return false; 1433 1434 wq = &bt_wait_ptr(sbq, hctx)->wait; 1435 1436 spin_lock_irq(&wq->lock); 1437 spin_lock(&hctx->dispatch_wait_lock); 1438 if (!list_empty(&wait->entry)) { 1439 spin_unlock(&hctx->dispatch_wait_lock); 1440 spin_unlock_irq(&wq->lock); 1441 return false; 1442 } 1443 1444 atomic_inc(&sbq->ws_active); 1445 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1446 __add_wait_queue(wq, wait); 1447 1448 /* 1449 * It's possible that a tag was freed in the window between the 1450 * allocation failure and adding the hardware queue to the wait 1451 * queue. 1452 */ 1453 ret = blk_mq_get_driver_tag(rq); 1454 if (!ret) { 1455 spin_unlock(&hctx->dispatch_wait_lock); 1456 spin_unlock_irq(&wq->lock); 1457 return false; 1458 } 1459 1460 /* 1461 * We got a tag, remove ourselves from the wait queue to ensure 1462 * someone else gets the wakeup. 1463 */ 1464 list_del_init(&wait->entry); 1465 atomic_dec(&sbq->ws_active); 1466 spin_unlock(&hctx->dispatch_wait_lock); 1467 spin_unlock_irq(&wq->lock); 1468 1469 return true; 1470 } 1471 1472 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1473 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1474 /* 1475 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1476 * - EWMA is one simple way to compute running average value 1477 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1478 * - take 4 as factor for avoiding to get too small(0) result, and this 1479 * factor doesn't matter because EWMA decreases exponentially 1480 */ 1481 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1482 { 1483 unsigned int ewma; 1484 1485 ewma = hctx->dispatch_busy; 1486 1487 if (!ewma && !busy) 1488 return; 1489 1490 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1491 if (busy) 1492 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1493 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1494 1495 hctx->dispatch_busy = ewma; 1496 } 1497 1498 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1499 1500 static void blk_mq_handle_dev_resource(struct request *rq, 1501 struct list_head *list) 1502 { 1503 struct request *next = 1504 list_first_entry_or_null(list, struct request, queuelist); 1505 1506 /* 1507 * If an I/O scheduler has been configured and we got a driver tag for 1508 * the next request already, free it. 1509 */ 1510 if (next) 1511 blk_mq_put_driver_tag(next); 1512 1513 list_add(&rq->queuelist, list); 1514 __blk_mq_requeue_request(rq); 1515 } 1516 1517 static void blk_mq_handle_zone_resource(struct request *rq, 1518 struct list_head *zone_list) 1519 { 1520 /* 1521 * If we end up here it is because we cannot dispatch a request to a 1522 * specific zone due to LLD level zone-write locking or other zone 1523 * related resource not being available. In this case, set the request 1524 * aside in zone_list for retrying it later. 1525 */ 1526 list_add(&rq->queuelist, zone_list); 1527 __blk_mq_requeue_request(rq); 1528 } 1529 1530 enum prep_dispatch { 1531 PREP_DISPATCH_OK, 1532 PREP_DISPATCH_NO_TAG, 1533 PREP_DISPATCH_NO_BUDGET, 1534 }; 1535 1536 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1537 bool need_budget) 1538 { 1539 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1540 int budget_token = -1; 1541 1542 if (need_budget) { 1543 budget_token = blk_mq_get_dispatch_budget(rq->q); 1544 if (budget_token < 0) { 1545 blk_mq_put_driver_tag(rq); 1546 return PREP_DISPATCH_NO_BUDGET; 1547 } 1548 blk_mq_set_rq_budget_token(rq, budget_token); 1549 } 1550 1551 if (!blk_mq_get_driver_tag(rq)) { 1552 /* 1553 * The initial allocation attempt failed, so we need to 1554 * rerun the hardware queue when a tag is freed. The 1555 * waitqueue takes care of that. If the queue is run 1556 * before we add this entry back on the dispatch list, 1557 * we'll re-run it below. 1558 */ 1559 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1560 /* 1561 * All budgets not got from this function will be put 1562 * together during handling partial dispatch 1563 */ 1564 if (need_budget) 1565 blk_mq_put_dispatch_budget(rq->q, budget_token); 1566 return PREP_DISPATCH_NO_TAG; 1567 } 1568 } 1569 1570 return PREP_DISPATCH_OK; 1571 } 1572 1573 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1574 static void blk_mq_release_budgets(struct request_queue *q, 1575 struct list_head *list) 1576 { 1577 struct request *rq; 1578 1579 list_for_each_entry(rq, list, queuelist) { 1580 int budget_token = blk_mq_get_rq_budget_token(rq); 1581 1582 if (budget_token >= 0) 1583 blk_mq_put_dispatch_budget(q, budget_token); 1584 } 1585 } 1586 1587 /* 1588 * Returns true if we did some work AND can potentially do more. 1589 */ 1590 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1591 unsigned int nr_budgets) 1592 { 1593 enum prep_dispatch prep; 1594 struct request_queue *q = hctx->queue; 1595 struct request *rq, *nxt; 1596 int errors, queued; 1597 blk_status_t ret = BLK_STS_OK; 1598 LIST_HEAD(zone_list); 1599 bool needs_resource = false; 1600 1601 if (list_empty(list)) 1602 return false; 1603 1604 /* 1605 * Now process all the entries, sending them to the driver. 1606 */ 1607 errors = queued = 0; 1608 do { 1609 struct blk_mq_queue_data bd; 1610 1611 rq = list_first_entry(list, struct request, queuelist); 1612 1613 WARN_ON_ONCE(hctx != rq->mq_hctx); 1614 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1615 if (prep != PREP_DISPATCH_OK) 1616 break; 1617 1618 list_del_init(&rq->queuelist); 1619 1620 bd.rq = rq; 1621 1622 /* 1623 * Flag last if we have no more requests, or if we have more 1624 * but can't assign a driver tag to it. 1625 */ 1626 if (list_empty(list)) 1627 bd.last = true; 1628 else { 1629 nxt = list_first_entry(list, struct request, queuelist); 1630 bd.last = !blk_mq_get_driver_tag(nxt); 1631 } 1632 1633 /* 1634 * once the request is queued to lld, no need to cover the 1635 * budget any more 1636 */ 1637 if (nr_budgets) 1638 nr_budgets--; 1639 ret = q->mq_ops->queue_rq(hctx, &bd); 1640 switch (ret) { 1641 case BLK_STS_OK: 1642 queued++; 1643 break; 1644 case BLK_STS_RESOURCE: 1645 needs_resource = true; 1646 fallthrough; 1647 case BLK_STS_DEV_RESOURCE: 1648 blk_mq_handle_dev_resource(rq, list); 1649 goto out; 1650 case BLK_STS_ZONE_RESOURCE: 1651 /* 1652 * Move the request to zone_list and keep going through 1653 * the dispatch list to find more requests the drive can 1654 * accept. 1655 */ 1656 blk_mq_handle_zone_resource(rq, &zone_list); 1657 needs_resource = true; 1658 break; 1659 default: 1660 errors++; 1661 blk_mq_end_request(rq, ret); 1662 } 1663 } while (!list_empty(list)); 1664 out: 1665 if (!list_empty(&zone_list)) 1666 list_splice_tail_init(&zone_list, list); 1667 1668 /* If we didn't flush the entire list, we could have told the driver 1669 * there was more coming, but that turned out to be a lie. 1670 */ 1671 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1672 q->mq_ops->commit_rqs(hctx); 1673 /* 1674 * Any items that need requeuing? Stuff them into hctx->dispatch, 1675 * that is where we will continue on next queue run. 1676 */ 1677 if (!list_empty(list)) { 1678 bool needs_restart; 1679 /* For non-shared tags, the RESTART check will suffice */ 1680 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1681 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1682 1683 if (nr_budgets) 1684 blk_mq_release_budgets(q, list); 1685 1686 spin_lock(&hctx->lock); 1687 list_splice_tail_init(list, &hctx->dispatch); 1688 spin_unlock(&hctx->lock); 1689 1690 /* 1691 * Order adding requests to hctx->dispatch and checking 1692 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1693 * in blk_mq_sched_restart(). Avoid restart code path to 1694 * miss the new added requests to hctx->dispatch, meantime 1695 * SCHED_RESTART is observed here. 1696 */ 1697 smp_mb(); 1698 1699 /* 1700 * If SCHED_RESTART was set by the caller of this function and 1701 * it is no longer set that means that it was cleared by another 1702 * thread and hence that a queue rerun is needed. 1703 * 1704 * If 'no_tag' is set, that means that we failed getting 1705 * a driver tag with an I/O scheduler attached. If our dispatch 1706 * waitqueue is no longer active, ensure that we run the queue 1707 * AFTER adding our entries back to the list. 1708 * 1709 * If no I/O scheduler has been configured it is possible that 1710 * the hardware queue got stopped and restarted before requests 1711 * were pushed back onto the dispatch list. Rerun the queue to 1712 * avoid starvation. Notes: 1713 * - blk_mq_run_hw_queue() checks whether or not a queue has 1714 * been stopped before rerunning a queue. 1715 * - Some but not all block drivers stop a queue before 1716 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1717 * and dm-rq. 1718 * 1719 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1720 * bit is set, run queue after a delay to avoid IO stalls 1721 * that could otherwise occur if the queue is idle. We'll do 1722 * similar if we couldn't get budget or couldn't lock a zone 1723 * and SCHED_RESTART is set. 1724 */ 1725 needs_restart = blk_mq_sched_needs_restart(hctx); 1726 if (prep == PREP_DISPATCH_NO_BUDGET) 1727 needs_resource = true; 1728 if (!needs_restart || 1729 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1730 blk_mq_run_hw_queue(hctx, true); 1731 else if (needs_restart && needs_resource) 1732 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1733 1734 blk_mq_update_dispatch_busy(hctx, true); 1735 return false; 1736 } else 1737 blk_mq_update_dispatch_busy(hctx, false); 1738 1739 return (queued + errors) != 0; 1740 } 1741 1742 /** 1743 * __blk_mq_run_hw_queue - Run a hardware queue. 1744 * @hctx: Pointer to the hardware queue to run. 1745 * 1746 * Send pending requests to the hardware. 1747 */ 1748 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1749 { 1750 int srcu_idx; 1751 1752 /* 1753 * We can't run the queue inline with ints disabled. Ensure that 1754 * we catch bad users of this early. 1755 */ 1756 WARN_ON_ONCE(in_interrupt()); 1757 1758 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1759 1760 hctx_lock(hctx, &srcu_idx); 1761 blk_mq_sched_dispatch_requests(hctx); 1762 hctx_unlock(hctx, srcu_idx); 1763 } 1764 1765 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1766 { 1767 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1768 1769 if (cpu >= nr_cpu_ids) 1770 cpu = cpumask_first(hctx->cpumask); 1771 return cpu; 1772 } 1773 1774 /* 1775 * It'd be great if the workqueue API had a way to pass 1776 * in a mask and had some smarts for more clever placement. 1777 * For now we just round-robin here, switching for every 1778 * BLK_MQ_CPU_WORK_BATCH queued items. 1779 */ 1780 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1781 { 1782 bool tried = false; 1783 int next_cpu = hctx->next_cpu; 1784 1785 if (hctx->queue->nr_hw_queues == 1) 1786 return WORK_CPU_UNBOUND; 1787 1788 if (--hctx->next_cpu_batch <= 0) { 1789 select_cpu: 1790 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1791 cpu_online_mask); 1792 if (next_cpu >= nr_cpu_ids) 1793 next_cpu = blk_mq_first_mapped_cpu(hctx); 1794 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1795 } 1796 1797 /* 1798 * Do unbound schedule if we can't find a online CPU for this hctx, 1799 * and it should only happen in the path of handling CPU DEAD. 1800 */ 1801 if (!cpu_online(next_cpu)) { 1802 if (!tried) { 1803 tried = true; 1804 goto select_cpu; 1805 } 1806 1807 /* 1808 * Make sure to re-select CPU next time once after CPUs 1809 * in hctx->cpumask become online again. 1810 */ 1811 hctx->next_cpu = next_cpu; 1812 hctx->next_cpu_batch = 1; 1813 return WORK_CPU_UNBOUND; 1814 } 1815 1816 hctx->next_cpu = next_cpu; 1817 return next_cpu; 1818 } 1819 1820 /** 1821 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1822 * @hctx: Pointer to the hardware queue to run. 1823 * @async: If we want to run the queue asynchronously. 1824 * @msecs: Milliseconds of delay to wait before running the queue. 1825 * 1826 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1827 * with a delay of @msecs. 1828 */ 1829 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1830 unsigned long msecs) 1831 { 1832 if (unlikely(blk_mq_hctx_stopped(hctx))) 1833 return; 1834 1835 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1836 int cpu = get_cpu(); 1837 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1838 __blk_mq_run_hw_queue(hctx); 1839 put_cpu(); 1840 return; 1841 } 1842 1843 put_cpu(); 1844 } 1845 1846 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1847 msecs_to_jiffies(msecs)); 1848 } 1849 1850 /** 1851 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1852 * @hctx: Pointer to the hardware queue to run. 1853 * @msecs: Milliseconds of delay to wait before running the queue. 1854 * 1855 * Run a hardware queue asynchronously with a delay of @msecs. 1856 */ 1857 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1858 { 1859 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1860 } 1861 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1862 1863 /** 1864 * blk_mq_run_hw_queue - Start to run a hardware queue. 1865 * @hctx: Pointer to the hardware queue to run. 1866 * @async: If we want to run the queue asynchronously. 1867 * 1868 * Check if the request queue is not in a quiesced state and if there are 1869 * pending requests to be sent. If this is true, run the queue to send requests 1870 * to hardware. 1871 */ 1872 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1873 { 1874 int srcu_idx; 1875 bool need_run; 1876 1877 /* 1878 * When queue is quiesced, we may be switching io scheduler, or 1879 * updating nr_hw_queues, or other things, and we can't run queue 1880 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1881 * 1882 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1883 * quiesced. 1884 */ 1885 hctx_lock(hctx, &srcu_idx); 1886 need_run = !blk_queue_quiesced(hctx->queue) && 1887 blk_mq_hctx_has_pending(hctx); 1888 hctx_unlock(hctx, srcu_idx); 1889 1890 if (need_run) 1891 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1892 } 1893 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1894 1895 /* 1896 * Is the request queue handled by an IO scheduler that does not respect 1897 * hardware queues when dispatching? 1898 */ 1899 static bool blk_mq_has_sqsched(struct request_queue *q) 1900 { 1901 struct elevator_queue *e = q->elevator; 1902 1903 if (e && e->type->ops.dispatch_request && 1904 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE)) 1905 return true; 1906 return false; 1907 } 1908 1909 /* 1910 * Return prefered queue to dispatch from (if any) for non-mq aware IO 1911 * scheduler. 1912 */ 1913 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 1914 { 1915 struct blk_mq_hw_ctx *hctx; 1916 1917 /* 1918 * If the IO scheduler does not respect hardware queues when 1919 * dispatching, we just don't bother with multiple HW queues and 1920 * dispatch from hctx for the current CPU since running multiple queues 1921 * just causes lock contention inside the scheduler and pointless cache 1922 * bouncing. 1923 */ 1924 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT, 1925 raw_smp_processor_id()); 1926 if (!blk_mq_hctx_stopped(hctx)) 1927 return hctx; 1928 return NULL; 1929 } 1930 1931 /** 1932 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 1933 * @q: Pointer to the request queue to run. 1934 * @async: If we want to run the queue asynchronously. 1935 */ 1936 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1937 { 1938 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1939 int i; 1940 1941 sq_hctx = NULL; 1942 if (blk_mq_has_sqsched(q)) 1943 sq_hctx = blk_mq_get_sq_hctx(q); 1944 queue_for_each_hw_ctx(q, hctx, i) { 1945 if (blk_mq_hctx_stopped(hctx)) 1946 continue; 1947 /* 1948 * Dispatch from this hctx either if there's no hctx preferred 1949 * by IO scheduler or if it has requests that bypass the 1950 * scheduler. 1951 */ 1952 if (!sq_hctx || sq_hctx == hctx || 1953 !list_empty_careful(&hctx->dispatch)) 1954 blk_mq_run_hw_queue(hctx, async); 1955 } 1956 } 1957 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1958 1959 /** 1960 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1961 * @q: Pointer to the request queue to run. 1962 * @msecs: Milliseconds of delay to wait before running the queues. 1963 */ 1964 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1965 { 1966 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1967 int i; 1968 1969 sq_hctx = NULL; 1970 if (blk_mq_has_sqsched(q)) 1971 sq_hctx = blk_mq_get_sq_hctx(q); 1972 queue_for_each_hw_ctx(q, hctx, i) { 1973 if (blk_mq_hctx_stopped(hctx)) 1974 continue; 1975 /* 1976 * Dispatch from this hctx either if there's no hctx preferred 1977 * by IO scheduler or if it has requests that bypass the 1978 * scheduler. 1979 */ 1980 if (!sq_hctx || sq_hctx == hctx || 1981 !list_empty_careful(&hctx->dispatch)) 1982 blk_mq_delay_run_hw_queue(hctx, msecs); 1983 } 1984 } 1985 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1986 1987 /** 1988 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1989 * @q: request queue. 1990 * 1991 * The caller is responsible for serializing this function against 1992 * blk_mq_{start,stop}_hw_queue(). 1993 */ 1994 bool blk_mq_queue_stopped(struct request_queue *q) 1995 { 1996 struct blk_mq_hw_ctx *hctx; 1997 int i; 1998 1999 queue_for_each_hw_ctx(q, hctx, i) 2000 if (blk_mq_hctx_stopped(hctx)) 2001 return true; 2002 2003 return false; 2004 } 2005 EXPORT_SYMBOL(blk_mq_queue_stopped); 2006 2007 /* 2008 * This function is often used for pausing .queue_rq() by driver when 2009 * there isn't enough resource or some conditions aren't satisfied, and 2010 * BLK_STS_RESOURCE is usually returned. 2011 * 2012 * We do not guarantee that dispatch can be drained or blocked 2013 * after blk_mq_stop_hw_queue() returns. Please use 2014 * blk_mq_quiesce_queue() for that requirement. 2015 */ 2016 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2017 { 2018 cancel_delayed_work(&hctx->run_work); 2019 2020 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2021 } 2022 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2023 2024 /* 2025 * This function is often used for pausing .queue_rq() by driver when 2026 * there isn't enough resource or some conditions aren't satisfied, and 2027 * BLK_STS_RESOURCE is usually returned. 2028 * 2029 * We do not guarantee that dispatch can be drained or blocked 2030 * after blk_mq_stop_hw_queues() returns. Please use 2031 * blk_mq_quiesce_queue() for that requirement. 2032 */ 2033 void blk_mq_stop_hw_queues(struct request_queue *q) 2034 { 2035 struct blk_mq_hw_ctx *hctx; 2036 int i; 2037 2038 queue_for_each_hw_ctx(q, hctx, i) 2039 blk_mq_stop_hw_queue(hctx); 2040 } 2041 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2042 2043 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2044 { 2045 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2046 2047 blk_mq_run_hw_queue(hctx, false); 2048 } 2049 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2050 2051 void blk_mq_start_hw_queues(struct request_queue *q) 2052 { 2053 struct blk_mq_hw_ctx *hctx; 2054 int i; 2055 2056 queue_for_each_hw_ctx(q, hctx, i) 2057 blk_mq_start_hw_queue(hctx); 2058 } 2059 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2060 2061 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2062 { 2063 if (!blk_mq_hctx_stopped(hctx)) 2064 return; 2065 2066 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2067 blk_mq_run_hw_queue(hctx, async); 2068 } 2069 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2070 2071 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2072 { 2073 struct blk_mq_hw_ctx *hctx; 2074 int i; 2075 2076 queue_for_each_hw_ctx(q, hctx, i) 2077 blk_mq_start_stopped_hw_queue(hctx, async); 2078 } 2079 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2080 2081 static void blk_mq_run_work_fn(struct work_struct *work) 2082 { 2083 struct blk_mq_hw_ctx *hctx; 2084 2085 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2086 2087 /* 2088 * If we are stopped, don't run the queue. 2089 */ 2090 if (blk_mq_hctx_stopped(hctx)) 2091 return; 2092 2093 __blk_mq_run_hw_queue(hctx); 2094 } 2095 2096 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2097 struct request *rq, 2098 bool at_head) 2099 { 2100 struct blk_mq_ctx *ctx = rq->mq_ctx; 2101 enum hctx_type type = hctx->type; 2102 2103 lockdep_assert_held(&ctx->lock); 2104 2105 trace_block_rq_insert(rq); 2106 2107 if (at_head) 2108 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2109 else 2110 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2111 } 2112 2113 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2114 bool at_head) 2115 { 2116 struct blk_mq_ctx *ctx = rq->mq_ctx; 2117 2118 lockdep_assert_held(&ctx->lock); 2119 2120 __blk_mq_insert_req_list(hctx, rq, at_head); 2121 blk_mq_hctx_mark_pending(hctx, ctx); 2122 } 2123 2124 /** 2125 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2126 * @rq: Pointer to request to be inserted. 2127 * @at_head: true if the request should be inserted at the head of the list. 2128 * @run_queue: If we should run the hardware queue after inserting the request. 2129 * 2130 * Should only be used carefully, when the caller knows we want to 2131 * bypass a potential IO scheduler on the target device. 2132 */ 2133 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2134 bool run_queue) 2135 { 2136 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2137 2138 spin_lock(&hctx->lock); 2139 if (at_head) 2140 list_add(&rq->queuelist, &hctx->dispatch); 2141 else 2142 list_add_tail(&rq->queuelist, &hctx->dispatch); 2143 spin_unlock(&hctx->lock); 2144 2145 if (run_queue) 2146 blk_mq_run_hw_queue(hctx, false); 2147 } 2148 2149 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2150 struct list_head *list) 2151 2152 { 2153 struct request *rq; 2154 enum hctx_type type = hctx->type; 2155 2156 /* 2157 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2158 * offline now 2159 */ 2160 list_for_each_entry(rq, list, queuelist) { 2161 BUG_ON(rq->mq_ctx != ctx); 2162 trace_block_rq_insert(rq); 2163 } 2164 2165 spin_lock(&ctx->lock); 2166 list_splice_tail_init(list, &ctx->rq_lists[type]); 2167 blk_mq_hctx_mark_pending(hctx, ctx); 2168 spin_unlock(&ctx->lock); 2169 } 2170 2171 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2172 bool from_schedule) 2173 { 2174 if (hctx->queue->mq_ops->commit_rqs) { 2175 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2176 hctx->queue->mq_ops->commit_rqs(hctx); 2177 } 2178 *queued = 0; 2179 } 2180 2181 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2182 { 2183 struct blk_mq_hw_ctx *hctx = NULL; 2184 struct request *rq; 2185 int queued = 0; 2186 int errors = 0; 2187 2188 while ((rq = rq_list_pop(&plug->mq_list))) { 2189 bool last = rq_list_empty(plug->mq_list); 2190 blk_status_t ret; 2191 2192 if (hctx != rq->mq_hctx) { 2193 if (hctx) 2194 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2195 hctx = rq->mq_hctx; 2196 } 2197 2198 ret = blk_mq_request_issue_directly(rq, last); 2199 switch (ret) { 2200 case BLK_STS_OK: 2201 queued++; 2202 break; 2203 case BLK_STS_RESOURCE: 2204 case BLK_STS_DEV_RESOURCE: 2205 blk_mq_request_bypass_insert(rq, false, last); 2206 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2207 return; 2208 default: 2209 blk_mq_end_request(rq, ret); 2210 errors++; 2211 break; 2212 } 2213 } 2214 2215 /* 2216 * If we didn't flush the entire list, we could have told the driver 2217 * there was more coming, but that turned out to be a lie. 2218 */ 2219 if (errors) 2220 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2221 } 2222 2223 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2224 { 2225 struct blk_mq_hw_ctx *this_hctx; 2226 struct blk_mq_ctx *this_ctx; 2227 unsigned int depth; 2228 LIST_HEAD(list); 2229 2230 if (rq_list_empty(plug->mq_list)) 2231 return; 2232 plug->rq_count = 0; 2233 2234 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2235 blk_mq_plug_issue_direct(plug, from_schedule); 2236 if (rq_list_empty(plug->mq_list)) 2237 return; 2238 } 2239 2240 this_hctx = NULL; 2241 this_ctx = NULL; 2242 depth = 0; 2243 do { 2244 struct request *rq; 2245 2246 rq = rq_list_pop(&plug->mq_list); 2247 2248 if (!this_hctx) { 2249 this_hctx = rq->mq_hctx; 2250 this_ctx = rq->mq_ctx; 2251 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2252 trace_block_unplug(this_hctx->queue, depth, 2253 !from_schedule); 2254 blk_mq_sched_insert_requests(this_hctx, this_ctx, 2255 &list, from_schedule); 2256 depth = 0; 2257 this_hctx = rq->mq_hctx; 2258 this_ctx = rq->mq_ctx; 2259 2260 } 2261 2262 list_add(&rq->queuelist, &list); 2263 depth++; 2264 } while (!rq_list_empty(plug->mq_list)); 2265 2266 if (!list_empty(&list)) { 2267 trace_block_unplug(this_hctx->queue, depth, !from_schedule); 2268 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, 2269 from_schedule); 2270 } 2271 } 2272 2273 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2274 unsigned int nr_segs) 2275 { 2276 int err; 2277 2278 if (bio->bi_opf & REQ_RAHEAD) 2279 rq->cmd_flags |= REQ_FAILFAST_MASK; 2280 2281 rq->__sector = bio->bi_iter.bi_sector; 2282 rq->write_hint = bio->bi_write_hint; 2283 blk_rq_bio_prep(rq, bio, nr_segs); 2284 2285 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2286 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2287 WARN_ON_ONCE(err); 2288 2289 blk_account_io_start(rq); 2290 } 2291 2292 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2293 struct request *rq, bool last) 2294 { 2295 struct request_queue *q = rq->q; 2296 struct blk_mq_queue_data bd = { 2297 .rq = rq, 2298 .last = last, 2299 }; 2300 blk_status_t ret; 2301 2302 /* 2303 * For OK queue, we are done. For error, caller may kill it. 2304 * Any other error (busy), just add it to our list as we 2305 * previously would have done. 2306 */ 2307 ret = q->mq_ops->queue_rq(hctx, &bd); 2308 switch (ret) { 2309 case BLK_STS_OK: 2310 blk_mq_update_dispatch_busy(hctx, false); 2311 break; 2312 case BLK_STS_RESOURCE: 2313 case BLK_STS_DEV_RESOURCE: 2314 blk_mq_update_dispatch_busy(hctx, true); 2315 __blk_mq_requeue_request(rq); 2316 break; 2317 default: 2318 blk_mq_update_dispatch_busy(hctx, false); 2319 break; 2320 } 2321 2322 return ret; 2323 } 2324 2325 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2326 struct request *rq, 2327 bool bypass_insert, bool last) 2328 { 2329 struct request_queue *q = rq->q; 2330 bool run_queue = true; 2331 int budget_token; 2332 2333 /* 2334 * RCU or SRCU read lock is needed before checking quiesced flag. 2335 * 2336 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2337 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2338 * and avoid driver to try to dispatch again. 2339 */ 2340 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2341 run_queue = false; 2342 bypass_insert = false; 2343 goto insert; 2344 } 2345 2346 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2347 goto insert; 2348 2349 budget_token = blk_mq_get_dispatch_budget(q); 2350 if (budget_token < 0) 2351 goto insert; 2352 2353 blk_mq_set_rq_budget_token(rq, budget_token); 2354 2355 if (!blk_mq_get_driver_tag(rq)) { 2356 blk_mq_put_dispatch_budget(q, budget_token); 2357 goto insert; 2358 } 2359 2360 return __blk_mq_issue_directly(hctx, rq, last); 2361 insert: 2362 if (bypass_insert) 2363 return BLK_STS_RESOURCE; 2364 2365 blk_mq_sched_insert_request(rq, false, run_queue, false); 2366 2367 return BLK_STS_OK; 2368 } 2369 2370 /** 2371 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2372 * @hctx: Pointer of the associated hardware queue. 2373 * @rq: Pointer to request to be sent. 2374 * 2375 * If the device has enough resources to accept a new request now, send the 2376 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2377 * we can try send it another time in the future. Requests inserted at this 2378 * queue have higher priority. 2379 */ 2380 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2381 struct request *rq) 2382 { 2383 blk_status_t ret; 2384 int srcu_idx; 2385 2386 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2387 2388 hctx_lock(hctx, &srcu_idx); 2389 2390 ret = __blk_mq_try_issue_directly(hctx, rq, false, true); 2391 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2392 blk_mq_request_bypass_insert(rq, false, true); 2393 else if (ret != BLK_STS_OK) 2394 blk_mq_end_request(rq, ret); 2395 2396 hctx_unlock(hctx, srcu_idx); 2397 } 2398 2399 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2400 { 2401 blk_status_t ret; 2402 int srcu_idx; 2403 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2404 2405 hctx_lock(hctx, &srcu_idx); 2406 ret = __blk_mq_try_issue_directly(hctx, rq, true, last); 2407 hctx_unlock(hctx, srcu_idx); 2408 2409 return ret; 2410 } 2411 2412 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2413 struct list_head *list) 2414 { 2415 int queued = 0; 2416 int errors = 0; 2417 2418 while (!list_empty(list)) { 2419 blk_status_t ret; 2420 struct request *rq = list_first_entry(list, struct request, 2421 queuelist); 2422 2423 list_del_init(&rq->queuelist); 2424 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2425 if (ret != BLK_STS_OK) { 2426 if (ret == BLK_STS_RESOURCE || 2427 ret == BLK_STS_DEV_RESOURCE) { 2428 blk_mq_request_bypass_insert(rq, false, 2429 list_empty(list)); 2430 break; 2431 } 2432 blk_mq_end_request(rq, ret); 2433 errors++; 2434 } else 2435 queued++; 2436 } 2437 2438 /* 2439 * If we didn't flush the entire list, we could have told 2440 * the driver there was more coming, but that turned out to 2441 * be a lie. 2442 */ 2443 if ((!list_empty(list) || errors) && 2444 hctx->queue->mq_ops->commit_rqs && queued) 2445 hctx->queue->mq_ops->commit_rqs(hctx); 2446 } 2447 2448 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2449 { 2450 if (!plug->multiple_queues) { 2451 struct request *nxt = rq_list_peek(&plug->mq_list); 2452 2453 if (nxt && nxt->q != rq->q) 2454 plug->multiple_queues = true; 2455 } 2456 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 2457 plug->has_elevator = true; 2458 rq->rq_next = NULL; 2459 rq_list_add(&plug->mq_list, rq); 2460 plug->rq_count++; 2461 } 2462 2463 /* 2464 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 2465 * queues. This is important for md arrays to benefit from merging 2466 * requests. 2467 */ 2468 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 2469 { 2470 if (plug->multiple_queues) 2471 return BLK_MAX_REQUEST_COUNT * 2; 2472 return BLK_MAX_REQUEST_COUNT; 2473 } 2474 2475 /** 2476 * blk_mq_submit_bio - Create and send a request to block device. 2477 * @bio: Bio pointer. 2478 * 2479 * Builds up a request structure from @q and @bio and send to the device. The 2480 * request may not be queued directly to hardware if: 2481 * * This request can be merged with another one 2482 * * We want to place request at plug queue for possible future merging 2483 * * There is an IO scheduler active at this queue 2484 * 2485 * It will not queue the request if there is an error with the bio, or at the 2486 * request creation. 2487 */ 2488 void blk_mq_submit_bio(struct bio *bio) 2489 { 2490 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2491 const int is_sync = op_is_sync(bio->bi_opf); 2492 struct request *rq; 2493 struct blk_plug *plug; 2494 bool same_queue_rq = false; 2495 unsigned int nr_segs = 1; 2496 blk_status_t ret; 2497 2498 blk_queue_bounce(q, &bio); 2499 if (blk_may_split(q, bio)) 2500 __blk_queue_split(q, &bio, &nr_segs); 2501 2502 if (!bio_integrity_prep(bio)) 2503 goto queue_exit; 2504 2505 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2506 if (blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2507 goto queue_exit; 2508 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2509 goto queue_exit; 2510 } 2511 2512 rq_qos_throttle(q, bio); 2513 2514 plug = blk_mq_plug(q, bio); 2515 if (plug && plug->cached_rq) { 2516 rq = rq_list_pop(&plug->cached_rq); 2517 INIT_LIST_HEAD(&rq->queuelist); 2518 } else { 2519 struct blk_mq_alloc_data data = { 2520 .q = q, 2521 .nr_tags = 1, 2522 .cmd_flags = bio->bi_opf, 2523 .rq_flags = q->elevator ? RQF_ELV : 0, 2524 }; 2525 2526 if (plug) { 2527 data.nr_tags = plug->nr_ios; 2528 plug->nr_ios = 1; 2529 data.cached_rq = &plug->cached_rq; 2530 } 2531 rq = __blk_mq_alloc_requests(&data); 2532 if (unlikely(!rq)) { 2533 rq_qos_cleanup(q, bio); 2534 if (bio->bi_opf & REQ_NOWAIT) 2535 bio_wouldblock_error(bio); 2536 goto queue_exit; 2537 } 2538 } 2539 2540 trace_block_getrq(bio); 2541 2542 rq_qos_track(q, rq, bio); 2543 2544 blk_mq_bio_to_request(rq, bio, nr_segs); 2545 2546 ret = blk_crypto_init_request(rq); 2547 if (ret != BLK_STS_OK) { 2548 bio->bi_status = ret; 2549 bio_endio(bio); 2550 blk_mq_free_request(rq); 2551 return; 2552 } 2553 2554 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 2555 return; 2556 2557 if (plug && (q->nr_hw_queues == 1 || 2558 blk_mq_is_shared_tags(rq->mq_hctx->flags) || 2559 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) { 2560 /* 2561 * Use plugging if we have a ->commit_rqs() hook as well, as 2562 * we know the driver uses bd->last in a smart fashion. 2563 * 2564 * Use normal plugging if this disk is slow HDD, as sequential 2565 * IO may benefit a lot from plug merging. 2566 */ 2567 unsigned int request_count = plug->rq_count; 2568 struct request *last = NULL; 2569 2570 if (!request_count) { 2571 trace_block_plug(q); 2572 } else if (!blk_queue_nomerges(q)) { 2573 last = rq_list_peek(&plug->mq_list); 2574 if (blk_rq_bytes(last) < BLK_PLUG_FLUSH_SIZE) 2575 last = NULL; 2576 } 2577 2578 if (request_count >= blk_plug_max_rq_count(plug) || last) { 2579 blk_mq_flush_plug_list(plug, false); 2580 trace_block_plug(q); 2581 } 2582 2583 blk_add_rq_to_plug(plug, rq); 2584 } else if (rq->rq_flags & RQF_ELV) { 2585 /* Insert the request at the IO scheduler queue */ 2586 blk_mq_sched_insert_request(rq, false, true, true); 2587 } else if (plug && !blk_queue_nomerges(q)) { 2588 struct request *next_rq = NULL; 2589 2590 /* 2591 * We do limited plugging. If the bio can be merged, do that. 2592 * Otherwise the existing request in the plug list will be 2593 * issued. So the plug list will have one request at most 2594 * The plug list might get flushed before this. If that happens, 2595 * the plug list is empty, and same_queue_rq is invalid. 2596 */ 2597 if (same_queue_rq) { 2598 next_rq = rq_list_pop(&plug->mq_list); 2599 plug->rq_count--; 2600 } 2601 blk_add_rq_to_plug(plug, rq); 2602 trace_block_plug(q); 2603 2604 if (next_rq) { 2605 trace_block_unplug(q, 1, true); 2606 blk_mq_try_issue_directly(next_rq->mq_hctx, next_rq); 2607 } 2608 } else if ((q->nr_hw_queues > 1 && is_sync) || 2609 !rq->mq_hctx->dispatch_busy) { 2610 /* 2611 * There is no scheduler and we can try to send directly 2612 * to the hardware. 2613 */ 2614 blk_mq_try_issue_directly(rq->mq_hctx, rq); 2615 } else { 2616 /* Default case. */ 2617 blk_mq_sched_insert_request(rq, false, true, true); 2618 } 2619 2620 return; 2621 queue_exit: 2622 blk_queue_exit(q); 2623 } 2624 2625 static size_t order_to_size(unsigned int order) 2626 { 2627 return (size_t)PAGE_SIZE << order; 2628 } 2629 2630 /* called before freeing request pool in @tags */ 2631 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 2632 struct blk_mq_tags *tags) 2633 { 2634 struct page *page; 2635 unsigned long flags; 2636 2637 /* There is no need to clear a driver tags own mapping */ 2638 if (drv_tags == tags) 2639 return; 2640 2641 list_for_each_entry(page, &tags->page_list, lru) { 2642 unsigned long start = (unsigned long)page_address(page); 2643 unsigned long end = start + order_to_size(page->private); 2644 int i; 2645 2646 for (i = 0; i < drv_tags->nr_tags; i++) { 2647 struct request *rq = drv_tags->rqs[i]; 2648 unsigned long rq_addr = (unsigned long)rq; 2649 2650 if (rq_addr >= start && rq_addr < end) { 2651 WARN_ON_ONCE(refcount_read(&rq->ref) != 0); 2652 cmpxchg(&drv_tags->rqs[i], rq, NULL); 2653 } 2654 } 2655 } 2656 2657 /* 2658 * Wait until all pending iteration is done. 2659 * 2660 * Request reference is cleared and it is guaranteed to be observed 2661 * after the ->lock is released. 2662 */ 2663 spin_lock_irqsave(&drv_tags->lock, flags); 2664 spin_unlock_irqrestore(&drv_tags->lock, flags); 2665 } 2666 2667 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2668 unsigned int hctx_idx) 2669 { 2670 struct blk_mq_tags *drv_tags; 2671 struct page *page; 2672 2673 if (blk_mq_is_shared_tags(set->flags)) 2674 drv_tags = set->shared_tags; 2675 else 2676 drv_tags = set->tags[hctx_idx]; 2677 2678 if (tags->static_rqs && set->ops->exit_request) { 2679 int i; 2680 2681 for (i = 0; i < tags->nr_tags; i++) { 2682 struct request *rq = tags->static_rqs[i]; 2683 2684 if (!rq) 2685 continue; 2686 set->ops->exit_request(set, rq, hctx_idx); 2687 tags->static_rqs[i] = NULL; 2688 } 2689 } 2690 2691 blk_mq_clear_rq_mapping(drv_tags, tags); 2692 2693 while (!list_empty(&tags->page_list)) { 2694 page = list_first_entry(&tags->page_list, struct page, lru); 2695 list_del_init(&page->lru); 2696 /* 2697 * Remove kmemleak object previously allocated in 2698 * blk_mq_alloc_rqs(). 2699 */ 2700 kmemleak_free(page_address(page)); 2701 __free_pages(page, page->private); 2702 } 2703 } 2704 2705 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2706 { 2707 kfree(tags->rqs); 2708 tags->rqs = NULL; 2709 kfree(tags->static_rqs); 2710 tags->static_rqs = NULL; 2711 2712 blk_mq_free_tags(tags); 2713 } 2714 2715 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2716 unsigned int hctx_idx, 2717 unsigned int nr_tags, 2718 unsigned int reserved_tags) 2719 { 2720 struct blk_mq_tags *tags; 2721 int node; 2722 2723 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2724 if (node == NUMA_NO_NODE) 2725 node = set->numa_node; 2726 2727 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2728 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2729 if (!tags) 2730 return NULL; 2731 2732 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2733 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2734 node); 2735 if (!tags->rqs) { 2736 blk_mq_free_tags(tags); 2737 return NULL; 2738 } 2739 2740 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2741 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2742 node); 2743 if (!tags->static_rqs) { 2744 kfree(tags->rqs); 2745 blk_mq_free_tags(tags); 2746 return NULL; 2747 } 2748 2749 return tags; 2750 } 2751 2752 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2753 unsigned int hctx_idx, int node) 2754 { 2755 int ret; 2756 2757 if (set->ops->init_request) { 2758 ret = set->ops->init_request(set, rq, hctx_idx, node); 2759 if (ret) 2760 return ret; 2761 } 2762 2763 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2764 return 0; 2765 } 2766 2767 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 2768 struct blk_mq_tags *tags, 2769 unsigned int hctx_idx, unsigned int depth) 2770 { 2771 unsigned int i, j, entries_per_page, max_order = 4; 2772 size_t rq_size, left; 2773 int node; 2774 2775 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2776 if (node == NUMA_NO_NODE) 2777 node = set->numa_node; 2778 2779 INIT_LIST_HEAD(&tags->page_list); 2780 2781 /* 2782 * rq_size is the size of the request plus driver payload, rounded 2783 * to the cacheline size 2784 */ 2785 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2786 cache_line_size()); 2787 left = rq_size * depth; 2788 2789 for (i = 0; i < depth; ) { 2790 int this_order = max_order; 2791 struct page *page; 2792 int to_do; 2793 void *p; 2794 2795 while (this_order && left < order_to_size(this_order - 1)) 2796 this_order--; 2797 2798 do { 2799 page = alloc_pages_node(node, 2800 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2801 this_order); 2802 if (page) 2803 break; 2804 if (!this_order--) 2805 break; 2806 if (order_to_size(this_order) < rq_size) 2807 break; 2808 } while (1); 2809 2810 if (!page) 2811 goto fail; 2812 2813 page->private = this_order; 2814 list_add_tail(&page->lru, &tags->page_list); 2815 2816 p = page_address(page); 2817 /* 2818 * Allow kmemleak to scan these pages as they contain pointers 2819 * to additional allocations like via ops->init_request(). 2820 */ 2821 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2822 entries_per_page = order_to_size(this_order) / rq_size; 2823 to_do = min(entries_per_page, depth - i); 2824 left -= to_do * rq_size; 2825 for (j = 0; j < to_do; j++) { 2826 struct request *rq = p; 2827 2828 tags->static_rqs[i] = rq; 2829 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2830 tags->static_rqs[i] = NULL; 2831 goto fail; 2832 } 2833 2834 p += rq_size; 2835 i++; 2836 } 2837 } 2838 return 0; 2839 2840 fail: 2841 blk_mq_free_rqs(set, tags, hctx_idx); 2842 return -ENOMEM; 2843 } 2844 2845 struct rq_iter_data { 2846 struct blk_mq_hw_ctx *hctx; 2847 bool has_rq; 2848 }; 2849 2850 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2851 { 2852 struct rq_iter_data *iter_data = data; 2853 2854 if (rq->mq_hctx != iter_data->hctx) 2855 return true; 2856 iter_data->has_rq = true; 2857 return false; 2858 } 2859 2860 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2861 { 2862 struct blk_mq_tags *tags = hctx->sched_tags ? 2863 hctx->sched_tags : hctx->tags; 2864 struct rq_iter_data data = { 2865 .hctx = hctx, 2866 }; 2867 2868 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2869 return data.has_rq; 2870 } 2871 2872 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2873 struct blk_mq_hw_ctx *hctx) 2874 { 2875 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2876 return false; 2877 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2878 return false; 2879 return true; 2880 } 2881 2882 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2883 { 2884 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2885 struct blk_mq_hw_ctx, cpuhp_online); 2886 2887 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2888 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2889 return 0; 2890 2891 /* 2892 * Prevent new request from being allocated on the current hctx. 2893 * 2894 * The smp_mb__after_atomic() Pairs with the implied barrier in 2895 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2896 * seen once we return from the tag allocator. 2897 */ 2898 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2899 smp_mb__after_atomic(); 2900 2901 /* 2902 * Try to grab a reference to the queue and wait for any outstanding 2903 * requests. If we could not grab a reference the queue has been 2904 * frozen and there are no requests. 2905 */ 2906 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2907 while (blk_mq_hctx_has_requests(hctx)) 2908 msleep(5); 2909 percpu_ref_put(&hctx->queue->q_usage_counter); 2910 } 2911 2912 return 0; 2913 } 2914 2915 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2916 { 2917 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2918 struct blk_mq_hw_ctx, cpuhp_online); 2919 2920 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2921 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2922 return 0; 2923 } 2924 2925 /* 2926 * 'cpu' is going away. splice any existing rq_list entries from this 2927 * software queue to the hw queue dispatch list, and ensure that it 2928 * gets run. 2929 */ 2930 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2931 { 2932 struct blk_mq_hw_ctx *hctx; 2933 struct blk_mq_ctx *ctx; 2934 LIST_HEAD(tmp); 2935 enum hctx_type type; 2936 2937 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2938 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2939 return 0; 2940 2941 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2942 type = hctx->type; 2943 2944 spin_lock(&ctx->lock); 2945 if (!list_empty(&ctx->rq_lists[type])) { 2946 list_splice_init(&ctx->rq_lists[type], &tmp); 2947 blk_mq_hctx_clear_pending(hctx, ctx); 2948 } 2949 spin_unlock(&ctx->lock); 2950 2951 if (list_empty(&tmp)) 2952 return 0; 2953 2954 spin_lock(&hctx->lock); 2955 list_splice_tail_init(&tmp, &hctx->dispatch); 2956 spin_unlock(&hctx->lock); 2957 2958 blk_mq_run_hw_queue(hctx, true); 2959 return 0; 2960 } 2961 2962 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2963 { 2964 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2965 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2966 &hctx->cpuhp_online); 2967 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2968 &hctx->cpuhp_dead); 2969 } 2970 2971 /* 2972 * Before freeing hw queue, clearing the flush request reference in 2973 * tags->rqs[] for avoiding potential UAF. 2974 */ 2975 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 2976 unsigned int queue_depth, struct request *flush_rq) 2977 { 2978 int i; 2979 unsigned long flags; 2980 2981 /* The hw queue may not be mapped yet */ 2982 if (!tags) 2983 return; 2984 2985 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0); 2986 2987 for (i = 0; i < queue_depth; i++) 2988 cmpxchg(&tags->rqs[i], flush_rq, NULL); 2989 2990 /* 2991 * Wait until all pending iteration is done. 2992 * 2993 * Request reference is cleared and it is guaranteed to be observed 2994 * after the ->lock is released. 2995 */ 2996 spin_lock_irqsave(&tags->lock, flags); 2997 spin_unlock_irqrestore(&tags->lock, flags); 2998 } 2999 3000 /* hctx->ctxs will be freed in queue's release handler */ 3001 static void blk_mq_exit_hctx(struct request_queue *q, 3002 struct blk_mq_tag_set *set, 3003 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3004 { 3005 struct request *flush_rq = hctx->fq->flush_rq; 3006 3007 if (blk_mq_hw_queue_mapped(hctx)) 3008 blk_mq_tag_idle(hctx); 3009 3010 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3011 set->queue_depth, flush_rq); 3012 if (set->ops->exit_request) 3013 set->ops->exit_request(set, flush_rq, hctx_idx); 3014 3015 if (set->ops->exit_hctx) 3016 set->ops->exit_hctx(hctx, hctx_idx); 3017 3018 blk_mq_remove_cpuhp(hctx); 3019 3020 spin_lock(&q->unused_hctx_lock); 3021 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3022 spin_unlock(&q->unused_hctx_lock); 3023 } 3024 3025 static void blk_mq_exit_hw_queues(struct request_queue *q, 3026 struct blk_mq_tag_set *set, int nr_queue) 3027 { 3028 struct blk_mq_hw_ctx *hctx; 3029 unsigned int i; 3030 3031 queue_for_each_hw_ctx(q, hctx, i) { 3032 if (i == nr_queue) 3033 break; 3034 blk_mq_debugfs_unregister_hctx(hctx); 3035 blk_mq_exit_hctx(q, set, hctx, i); 3036 } 3037 } 3038 3039 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 3040 { 3041 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 3042 3043 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 3044 __alignof__(struct blk_mq_hw_ctx)) != 3045 sizeof(struct blk_mq_hw_ctx)); 3046 3047 if (tag_set->flags & BLK_MQ_F_BLOCKING) 3048 hw_ctx_size += sizeof(struct srcu_struct); 3049 3050 return hw_ctx_size; 3051 } 3052 3053 static int blk_mq_init_hctx(struct request_queue *q, 3054 struct blk_mq_tag_set *set, 3055 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3056 { 3057 hctx->queue_num = hctx_idx; 3058 3059 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3060 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3061 &hctx->cpuhp_online); 3062 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3063 3064 hctx->tags = set->tags[hctx_idx]; 3065 3066 if (set->ops->init_hctx && 3067 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3068 goto unregister_cpu_notifier; 3069 3070 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3071 hctx->numa_node)) 3072 goto exit_hctx; 3073 return 0; 3074 3075 exit_hctx: 3076 if (set->ops->exit_hctx) 3077 set->ops->exit_hctx(hctx, hctx_idx); 3078 unregister_cpu_notifier: 3079 blk_mq_remove_cpuhp(hctx); 3080 return -1; 3081 } 3082 3083 static struct blk_mq_hw_ctx * 3084 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3085 int node) 3086 { 3087 struct blk_mq_hw_ctx *hctx; 3088 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3089 3090 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 3091 if (!hctx) 3092 goto fail_alloc_hctx; 3093 3094 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3095 goto free_hctx; 3096 3097 atomic_set(&hctx->nr_active, 0); 3098 if (node == NUMA_NO_NODE) 3099 node = set->numa_node; 3100 hctx->numa_node = node; 3101 3102 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3103 spin_lock_init(&hctx->lock); 3104 INIT_LIST_HEAD(&hctx->dispatch); 3105 hctx->queue = q; 3106 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3107 3108 INIT_LIST_HEAD(&hctx->hctx_list); 3109 3110 /* 3111 * Allocate space for all possible cpus to avoid allocation at 3112 * runtime 3113 */ 3114 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3115 gfp, node); 3116 if (!hctx->ctxs) 3117 goto free_cpumask; 3118 3119 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3120 gfp, node, false, false)) 3121 goto free_ctxs; 3122 hctx->nr_ctx = 0; 3123 3124 spin_lock_init(&hctx->dispatch_wait_lock); 3125 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3126 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3127 3128 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3129 if (!hctx->fq) 3130 goto free_bitmap; 3131 3132 if (hctx->flags & BLK_MQ_F_BLOCKING) 3133 init_srcu_struct(hctx->srcu); 3134 blk_mq_hctx_kobj_init(hctx); 3135 3136 return hctx; 3137 3138 free_bitmap: 3139 sbitmap_free(&hctx->ctx_map); 3140 free_ctxs: 3141 kfree(hctx->ctxs); 3142 free_cpumask: 3143 free_cpumask_var(hctx->cpumask); 3144 free_hctx: 3145 kfree(hctx); 3146 fail_alloc_hctx: 3147 return NULL; 3148 } 3149 3150 static void blk_mq_init_cpu_queues(struct request_queue *q, 3151 unsigned int nr_hw_queues) 3152 { 3153 struct blk_mq_tag_set *set = q->tag_set; 3154 unsigned int i, j; 3155 3156 for_each_possible_cpu(i) { 3157 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3158 struct blk_mq_hw_ctx *hctx; 3159 int k; 3160 3161 __ctx->cpu = i; 3162 spin_lock_init(&__ctx->lock); 3163 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3164 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3165 3166 __ctx->queue = q; 3167 3168 /* 3169 * Set local node, IFF we have more than one hw queue. If 3170 * not, we remain on the home node of the device 3171 */ 3172 for (j = 0; j < set->nr_maps; j++) { 3173 hctx = blk_mq_map_queue_type(q, j, i); 3174 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3175 hctx->numa_node = cpu_to_node(i); 3176 } 3177 } 3178 } 3179 3180 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3181 unsigned int hctx_idx, 3182 unsigned int depth) 3183 { 3184 struct blk_mq_tags *tags; 3185 int ret; 3186 3187 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3188 if (!tags) 3189 return NULL; 3190 3191 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3192 if (ret) { 3193 blk_mq_free_rq_map(tags); 3194 return NULL; 3195 } 3196 3197 return tags; 3198 } 3199 3200 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3201 int hctx_idx) 3202 { 3203 if (blk_mq_is_shared_tags(set->flags)) { 3204 set->tags[hctx_idx] = set->shared_tags; 3205 3206 return true; 3207 } 3208 3209 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3210 set->queue_depth); 3211 3212 return set->tags[hctx_idx]; 3213 } 3214 3215 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3216 struct blk_mq_tags *tags, 3217 unsigned int hctx_idx) 3218 { 3219 if (tags) { 3220 blk_mq_free_rqs(set, tags, hctx_idx); 3221 blk_mq_free_rq_map(tags); 3222 } 3223 } 3224 3225 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3226 unsigned int hctx_idx) 3227 { 3228 if (!blk_mq_is_shared_tags(set->flags)) 3229 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3230 3231 set->tags[hctx_idx] = NULL; 3232 } 3233 3234 static void blk_mq_map_swqueue(struct request_queue *q) 3235 { 3236 unsigned int i, j, hctx_idx; 3237 struct blk_mq_hw_ctx *hctx; 3238 struct blk_mq_ctx *ctx; 3239 struct blk_mq_tag_set *set = q->tag_set; 3240 3241 queue_for_each_hw_ctx(q, hctx, i) { 3242 cpumask_clear(hctx->cpumask); 3243 hctx->nr_ctx = 0; 3244 hctx->dispatch_from = NULL; 3245 } 3246 3247 /* 3248 * Map software to hardware queues. 3249 * 3250 * If the cpu isn't present, the cpu is mapped to first hctx. 3251 */ 3252 for_each_possible_cpu(i) { 3253 3254 ctx = per_cpu_ptr(q->queue_ctx, i); 3255 for (j = 0; j < set->nr_maps; j++) { 3256 if (!set->map[j].nr_queues) { 3257 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3258 HCTX_TYPE_DEFAULT, i); 3259 continue; 3260 } 3261 hctx_idx = set->map[j].mq_map[i]; 3262 /* unmapped hw queue can be remapped after CPU topo changed */ 3263 if (!set->tags[hctx_idx] && 3264 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3265 /* 3266 * If tags initialization fail for some hctx, 3267 * that hctx won't be brought online. In this 3268 * case, remap the current ctx to hctx[0] which 3269 * is guaranteed to always have tags allocated 3270 */ 3271 set->map[j].mq_map[i] = 0; 3272 } 3273 3274 hctx = blk_mq_map_queue_type(q, j, i); 3275 ctx->hctxs[j] = hctx; 3276 /* 3277 * If the CPU is already set in the mask, then we've 3278 * mapped this one already. This can happen if 3279 * devices share queues across queue maps. 3280 */ 3281 if (cpumask_test_cpu(i, hctx->cpumask)) 3282 continue; 3283 3284 cpumask_set_cpu(i, hctx->cpumask); 3285 hctx->type = j; 3286 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3287 hctx->ctxs[hctx->nr_ctx++] = ctx; 3288 3289 /* 3290 * If the nr_ctx type overflows, we have exceeded the 3291 * amount of sw queues we can support. 3292 */ 3293 BUG_ON(!hctx->nr_ctx); 3294 } 3295 3296 for (; j < HCTX_MAX_TYPES; j++) 3297 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3298 HCTX_TYPE_DEFAULT, i); 3299 } 3300 3301 queue_for_each_hw_ctx(q, hctx, i) { 3302 /* 3303 * If no software queues are mapped to this hardware queue, 3304 * disable it and free the request entries. 3305 */ 3306 if (!hctx->nr_ctx) { 3307 /* Never unmap queue 0. We need it as a 3308 * fallback in case of a new remap fails 3309 * allocation 3310 */ 3311 if (i) 3312 __blk_mq_free_map_and_rqs(set, i); 3313 3314 hctx->tags = NULL; 3315 continue; 3316 } 3317 3318 hctx->tags = set->tags[i]; 3319 WARN_ON(!hctx->tags); 3320 3321 /* 3322 * Set the map size to the number of mapped software queues. 3323 * This is more accurate and more efficient than looping 3324 * over all possibly mapped software queues. 3325 */ 3326 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3327 3328 /* 3329 * Initialize batch roundrobin counts 3330 */ 3331 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3332 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3333 } 3334 } 3335 3336 /* 3337 * Caller needs to ensure that we're either frozen/quiesced, or that 3338 * the queue isn't live yet. 3339 */ 3340 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3341 { 3342 struct blk_mq_hw_ctx *hctx; 3343 int i; 3344 3345 queue_for_each_hw_ctx(q, hctx, i) { 3346 if (shared) { 3347 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3348 } else { 3349 blk_mq_tag_idle(hctx); 3350 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3351 } 3352 } 3353 } 3354 3355 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3356 bool shared) 3357 { 3358 struct request_queue *q; 3359 3360 lockdep_assert_held(&set->tag_list_lock); 3361 3362 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3363 blk_mq_freeze_queue(q); 3364 queue_set_hctx_shared(q, shared); 3365 blk_mq_unfreeze_queue(q); 3366 } 3367 } 3368 3369 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3370 { 3371 struct blk_mq_tag_set *set = q->tag_set; 3372 3373 mutex_lock(&set->tag_list_lock); 3374 list_del(&q->tag_set_list); 3375 if (list_is_singular(&set->tag_list)) { 3376 /* just transitioned to unshared */ 3377 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3378 /* update existing queue */ 3379 blk_mq_update_tag_set_shared(set, false); 3380 } 3381 mutex_unlock(&set->tag_list_lock); 3382 INIT_LIST_HEAD(&q->tag_set_list); 3383 } 3384 3385 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3386 struct request_queue *q) 3387 { 3388 mutex_lock(&set->tag_list_lock); 3389 3390 /* 3391 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3392 */ 3393 if (!list_empty(&set->tag_list) && 3394 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3395 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3396 /* update existing queue */ 3397 blk_mq_update_tag_set_shared(set, true); 3398 } 3399 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3400 queue_set_hctx_shared(q, true); 3401 list_add_tail(&q->tag_set_list, &set->tag_list); 3402 3403 mutex_unlock(&set->tag_list_lock); 3404 } 3405 3406 /* All allocations will be freed in release handler of q->mq_kobj */ 3407 static int blk_mq_alloc_ctxs(struct request_queue *q) 3408 { 3409 struct blk_mq_ctxs *ctxs; 3410 int cpu; 3411 3412 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3413 if (!ctxs) 3414 return -ENOMEM; 3415 3416 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3417 if (!ctxs->queue_ctx) 3418 goto fail; 3419 3420 for_each_possible_cpu(cpu) { 3421 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3422 ctx->ctxs = ctxs; 3423 } 3424 3425 q->mq_kobj = &ctxs->kobj; 3426 q->queue_ctx = ctxs->queue_ctx; 3427 3428 return 0; 3429 fail: 3430 kfree(ctxs); 3431 return -ENOMEM; 3432 } 3433 3434 /* 3435 * It is the actual release handler for mq, but we do it from 3436 * request queue's release handler for avoiding use-after-free 3437 * and headache because q->mq_kobj shouldn't have been introduced, 3438 * but we can't group ctx/kctx kobj without it. 3439 */ 3440 void blk_mq_release(struct request_queue *q) 3441 { 3442 struct blk_mq_hw_ctx *hctx, *next; 3443 int i; 3444 3445 queue_for_each_hw_ctx(q, hctx, i) 3446 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3447 3448 /* all hctx are in .unused_hctx_list now */ 3449 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3450 list_del_init(&hctx->hctx_list); 3451 kobject_put(&hctx->kobj); 3452 } 3453 3454 kfree(q->queue_hw_ctx); 3455 3456 /* 3457 * release .mq_kobj and sw queue's kobject now because 3458 * both share lifetime with request queue. 3459 */ 3460 blk_mq_sysfs_deinit(q); 3461 } 3462 3463 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3464 void *queuedata) 3465 { 3466 struct request_queue *q; 3467 int ret; 3468 3469 q = blk_alloc_queue(set->numa_node); 3470 if (!q) 3471 return ERR_PTR(-ENOMEM); 3472 q->queuedata = queuedata; 3473 ret = blk_mq_init_allocated_queue(set, q); 3474 if (ret) { 3475 blk_cleanup_queue(q); 3476 return ERR_PTR(ret); 3477 } 3478 return q; 3479 } 3480 3481 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3482 { 3483 return blk_mq_init_queue_data(set, NULL); 3484 } 3485 EXPORT_SYMBOL(blk_mq_init_queue); 3486 3487 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 3488 struct lock_class_key *lkclass) 3489 { 3490 struct request_queue *q; 3491 struct gendisk *disk; 3492 3493 q = blk_mq_init_queue_data(set, queuedata); 3494 if (IS_ERR(q)) 3495 return ERR_CAST(q); 3496 3497 disk = __alloc_disk_node(q, set->numa_node, lkclass); 3498 if (!disk) { 3499 blk_cleanup_queue(q); 3500 return ERR_PTR(-ENOMEM); 3501 } 3502 return disk; 3503 } 3504 EXPORT_SYMBOL(__blk_mq_alloc_disk); 3505 3506 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3507 struct blk_mq_tag_set *set, struct request_queue *q, 3508 int hctx_idx, int node) 3509 { 3510 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3511 3512 /* reuse dead hctx first */ 3513 spin_lock(&q->unused_hctx_lock); 3514 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3515 if (tmp->numa_node == node) { 3516 hctx = tmp; 3517 break; 3518 } 3519 } 3520 if (hctx) 3521 list_del_init(&hctx->hctx_list); 3522 spin_unlock(&q->unused_hctx_lock); 3523 3524 if (!hctx) 3525 hctx = blk_mq_alloc_hctx(q, set, node); 3526 if (!hctx) 3527 goto fail; 3528 3529 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3530 goto free_hctx; 3531 3532 return hctx; 3533 3534 free_hctx: 3535 kobject_put(&hctx->kobj); 3536 fail: 3537 return NULL; 3538 } 3539 3540 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3541 struct request_queue *q) 3542 { 3543 int i, j, end; 3544 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3545 3546 if (q->nr_hw_queues < set->nr_hw_queues) { 3547 struct blk_mq_hw_ctx **new_hctxs; 3548 3549 new_hctxs = kcalloc_node(set->nr_hw_queues, 3550 sizeof(*new_hctxs), GFP_KERNEL, 3551 set->numa_node); 3552 if (!new_hctxs) 3553 return; 3554 if (hctxs) 3555 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3556 sizeof(*hctxs)); 3557 q->queue_hw_ctx = new_hctxs; 3558 kfree(hctxs); 3559 hctxs = new_hctxs; 3560 } 3561 3562 /* protect against switching io scheduler */ 3563 mutex_lock(&q->sysfs_lock); 3564 for (i = 0; i < set->nr_hw_queues; i++) { 3565 int node; 3566 struct blk_mq_hw_ctx *hctx; 3567 3568 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3569 /* 3570 * If the hw queue has been mapped to another numa node, 3571 * we need to realloc the hctx. If allocation fails, fallback 3572 * to use the previous one. 3573 */ 3574 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3575 continue; 3576 3577 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3578 if (hctx) { 3579 if (hctxs[i]) 3580 blk_mq_exit_hctx(q, set, hctxs[i], i); 3581 hctxs[i] = hctx; 3582 } else { 3583 if (hctxs[i]) 3584 pr_warn("Allocate new hctx on node %d fails,\ 3585 fallback to previous one on node %d\n", 3586 node, hctxs[i]->numa_node); 3587 else 3588 break; 3589 } 3590 } 3591 /* 3592 * Increasing nr_hw_queues fails. Free the newly allocated 3593 * hctxs and keep the previous q->nr_hw_queues. 3594 */ 3595 if (i != set->nr_hw_queues) { 3596 j = q->nr_hw_queues; 3597 end = i; 3598 } else { 3599 j = i; 3600 end = q->nr_hw_queues; 3601 q->nr_hw_queues = set->nr_hw_queues; 3602 } 3603 3604 for (; j < end; j++) { 3605 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3606 3607 if (hctx) { 3608 __blk_mq_free_map_and_rqs(set, j); 3609 blk_mq_exit_hctx(q, set, hctx, j); 3610 hctxs[j] = NULL; 3611 } 3612 } 3613 mutex_unlock(&q->sysfs_lock); 3614 } 3615 3616 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3617 struct request_queue *q) 3618 { 3619 /* mark the queue as mq asap */ 3620 q->mq_ops = set->ops; 3621 3622 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3623 blk_mq_poll_stats_bkt, 3624 BLK_MQ_POLL_STATS_BKTS, q); 3625 if (!q->poll_cb) 3626 goto err_exit; 3627 3628 if (blk_mq_alloc_ctxs(q)) 3629 goto err_poll; 3630 3631 /* init q->mq_kobj and sw queues' kobjects */ 3632 blk_mq_sysfs_init(q); 3633 3634 INIT_LIST_HEAD(&q->unused_hctx_list); 3635 spin_lock_init(&q->unused_hctx_lock); 3636 3637 blk_mq_realloc_hw_ctxs(set, q); 3638 if (!q->nr_hw_queues) 3639 goto err_hctxs; 3640 3641 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3642 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3643 3644 q->tag_set = set; 3645 3646 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3647 if (set->nr_maps > HCTX_TYPE_POLL && 3648 set->map[HCTX_TYPE_POLL].nr_queues) 3649 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3650 3651 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3652 INIT_LIST_HEAD(&q->requeue_list); 3653 spin_lock_init(&q->requeue_lock); 3654 3655 q->nr_requests = set->queue_depth; 3656 3657 /* 3658 * Default to classic polling 3659 */ 3660 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3661 3662 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3663 blk_mq_add_queue_tag_set(set, q); 3664 blk_mq_map_swqueue(q); 3665 return 0; 3666 3667 err_hctxs: 3668 kfree(q->queue_hw_ctx); 3669 q->nr_hw_queues = 0; 3670 blk_mq_sysfs_deinit(q); 3671 err_poll: 3672 blk_stat_free_callback(q->poll_cb); 3673 q->poll_cb = NULL; 3674 err_exit: 3675 q->mq_ops = NULL; 3676 return -ENOMEM; 3677 } 3678 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3679 3680 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3681 void blk_mq_exit_queue(struct request_queue *q) 3682 { 3683 struct blk_mq_tag_set *set = q->tag_set; 3684 3685 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 3686 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3687 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 3688 blk_mq_del_queue_tag_set(q); 3689 } 3690 3691 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3692 { 3693 int i; 3694 3695 if (blk_mq_is_shared_tags(set->flags)) { 3696 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 3697 BLK_MQ_NO_HCTX_IDX, 3698 set->queue_depth); 3699 if (!set->shared_tags) 3700 return -ENOMEM; 3701 } 3702 3703 for (i = 0; i < set->nr_hw_queues; i++) { 3704 if (!__blk_mq_alloc_map_and_rqs(set, i)) 3705 goto out_unwind; 3706 cond_resched(); 3707 } 3708 3709 return 0; 3710 3711 out_unwind: 3712 while (--i >= 0) 3713 __blk_mq_free_map_and_rqs(set, i); 3714 3715 if (blk_mq_is_shared_tags(set->flags)) { 3716 blk_mq_free_map_and_rqs(set, set->shared_tags, 3717 BLK_MQ_NO_HCTX_IDX); 3718 } 3719 3720 return -ENOMEM; 3721 } 3722 3723 /* 3724 * Allocate the request maps associated with this tag_set. Note that this 3725 * may reduce the depth asked for, if memory is tight. set->queue_depth 3726 * will be updated to reflect the allocated depth. 3727 */ 3728 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 3729 { 3730 unsigned int depth; 3731 int err; 3732 3733 depth = set->queue_depth; 3734 do { 3735 err = __blk_mq_alloc_rq_maps(set); 3736 if (!err) 3737 break; 3738 3739 set->queue_depth >>= 1; 3740 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3741 err = -ENOMEM; 3742 break; 3743 } 3744 } while (set->queue_depth); 3745 3746 if (!set->queue_depth || err) { 3747 pr_err("blk-mq: failed to allocate request map\n"); 3748 return -ENOMEM; 3749 } 3750 3751 if (depth != set->queue_depth) 3752 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3753 depth, set->queue_depth); 3754 3755 return 0; 3756 } 3757 3758 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3759 { 3760 /* 3761 * blk_mq_map_queues() and multiple .map_queues() implementations 3762 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3763 * number of hardware queues. 3764 */ 3765 if (set->nr_maps == 1) 3766 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3767 3768 if (set->ops->map_queues && !is_kdump_kernel()) { 3769 int i; 3770 3771 /* 3772 * transport .map_queues is usually done in the following 3773 * way: 3774 * 3775 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3776 * mask = get_cpu_mask(queue) 3777 * for_each_cpu(cpu, mask) 3778 * set->map[x].mq_map[cpu] = queue; 3779 * } 3780 * 3781 * When we need to remap, the table has to be cleared for 3782 * killing stale mapping since one CPU may not be mapped 3783 * to any hw queue. 3784 */ 3785 for (i = 0; i < set->nr_maps; i++) 3786 blk_mq_clear_mq_map(&set->map[i]); 3787 3788 return set->ops->map_queues(set); 3789 } else { 3790 BUG_ON(set->nr_maps > 1); 3791 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3792 } 3793 } 3794 3795 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3796 int cur_nr_hw_queues, int new_nr_hw_queues) 3797 { 3798 struct blk_mq_tags **new_tags; 3799 3800 if (cur_nr_hw_queues >= new_nr_hw_queues) 3801 return 0; 3802 3803 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3804 GFP_KERNEL, set->numa_node); 3805 if (!new_tags) 3806 return -ENOMEM; 3807 3808 if (set->tags) 3809 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3810 sizeof(*set->tags)); 3811 kfree(set->tags); 3812 set->tags = new_tags; 3813 set->nr_hw_queues = new_nr_hw_queues; 3814 3815 return 0; 3816 } 3817 3818 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 3819 int new_nr_hw_queues) 3820 { 3821 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 3822 } 3823 3824 /* 3825 * Alloc a tag set to be associated with one or more request queues. 3826 * May fail with EINVAL for various error conditions. May adjust the 3827 * requested depth down, if it's too large. In that case, the set 3828 * value will be stored in set->queue_depth. 3829 */ 3830 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3831 { 3832 int i, ret; 3833 3834 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3835 3836 if (!set->nr_hw_queues) 3837 return -EINVAL; 3838 if (!set->queue_depth) 3839 return -EINVAL; 3840 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3841 return -EINVAL; 3842 3843 if (!set->ops->queue_rq) 3844 return -EINVAL; 3845 3846 if (!set->ops->get_budget ^ !set->ops->put_budget) 3847 return -EINVAL; 3848 3849 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3850 pr_info("blk-mq: reduced tag depth to %u\n", 3851 BLK_MQ_MAX_DEPTH); 3852 set->queue_depth = BLK_MQ_MAX_DEPTH; 3853 } 3854 3855 if (!set->nr_maps) 3856 set->nr_maps = 1; 3857 else if (set->nr_maps > HCTX_MAX_TYPES) 3858 return -EINVAL; 3859 3860 /* 3861 * If a crashdump is active, then we are potentially in a very 3862 * memory constrained environment. Limit us to 1 queue and 3863 * 64 tags to prevent using too much memory. 3864 */ 3865 if (is_kdump_kernel()) { 3866 set->nr_hw_queues = 1; 3867 set->nr_maps = 1; 3868 set->queue_depth = min(64U, set->queue_depth); 3869 } 3870 /* 3871 * There is no use for more h/w queues than cpus if we just have 3872 * a single map 3873 */ 3874 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3875 set->nr_hw_queues = nr_cpu_ids; 3876 3877 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 3878 return -ENOMEM; 3879 3880 ret = -ENOMEM; 3881 for (i = 0; i < set->nr_maps; i++) { 3882 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3883 sizeof(set->map[i].mq_map[0]), 3884 GFP_KERNEL, set->numa_node); 3885 if (!set->map[i].mq_map) 3886 goto out_free_mq_map; 3887 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3888 } 3889 3890 ret = blk_mq_update_queue_map(set); 3891 if (ret) 3892 goto out_free_mq_map; 3893 3894 ret = blk_mq_alloc_set_map_and_rqs(set); 3895 if (ret) 3896 goto out_free_mq_map; 3897 3898 mutex_init(&set->tag_list_lock); 3899 INIT_LIST_HEAD(&set->tag_list); 3900 3901 return 0; 3902 3903 out_free_mq_map: 3904 for (i = 0; i < set->nr_maps; i++) { 3905 kfree(set->map[i].mq_map); 3906 set->map[i].mq_map = NULL; 3907 } 3908 kfree(set->tags); 3909 set->tags = NULL; 3910 return ret; 3911 } 3912 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3913 3914 /* allocate and initialize a tagset for a simple single-queue device */ 3915 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 3916 const struct blk_mq_ops *ops, unsigned int queue_depth, 3917 unsigned int set_flags) 3918 { 3919 memset(set, 0, sizeof(*set)); 3920 set->ops = ops; 3921 set->nr_hw_queues = 1; 3922 set->nr_maps = 1; 3923 set->queue_depth = queue_depth; 3924 set->numa_node = NUMA_NO_NODE; 3925 set->flags = set_flags; 3926 return blk_mq_alloc_tag_set(set); 3927 } 3928 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 3929 3930 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3931 { 3932 int i, j; 3933 3934 for (i = 0; i < set->nr_hw_queues; i++) 3935 __blk_mq_free_map_and_rqs(set, i); 3936 3937 if (blk_mq_is_shared_tags(set->flags)) { 3938 blk_mq_free_map_and_rqs(set, set->shared_tags, 3939 BLK_MQ_NO_HCTX_IDX); 3940 } 3941 3942 for (j = 0; j < set->nr_maps; j++) { 3943 kfree(set->map[j].mq_map); 3944 set->map[j].mq_map = NULL; 3945 } 3946 3947 kfree(set->tags); 3948 set->tags = NULL; 3949 } 3950 EXPORT_SYMBOL(blk_mq_free_tag_set); 3951 3952 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3953 { 3954 struct blk_mq_tag_set *set = q->tag_set; 3955 struct blk_mq_hw_ctx *hctx; 3956 int i, ret; 3957 3958 if (!set) 3959 return -EINVAL; 3960 3961 if (q->nr_requests == nr) 3962 return 0; 3963 3964 blk_mq_freeze_queue(q); 3965 blk_mq_quiesce_queue(q); 3966 3967 ret = 0; 3968 queue_for_each_hw_ctx(q, hctx, i) { 3969 if (!hctx->tags) 3970 continue; 3971 /* 3972 * If we're using an MQ scheduler, just update the scheduler 3973 * queue depth. This is similar to what the old code would do. 3974 */ 3975 if (hctx->sched_tags) { 3976 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3977 nr, true); 3978 } else { 3979 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3980 false); 3981 } 3982 if (ret) 3983 break; 3984 if (q->elevator && q->elevator->type->ops.depth_updated) 3985 q->elevator->type->ops.depth_updated(hctx); 3986 } 3987 if (!ret) { 3988 q->nr_requests = nr; 3989 if (blk_mq_is_shared_tags(set->flags)) { 3990 if (q->elevator) 3991 blk_mq_tag_update_sched_shared_tags(q); 3992 else 3993 blk_mq_tag_resize_shared_tags(set, nr); 3994 } 3995 } 3996 3997 blk_mq_unquiesce_queue(q); 3998 blk_mq_unfreeze_queue(q); 3999 4000 return ret; 4001 } 4002 4003 /* 4004 * request_queue and elevator_type pair. 4005 * It is just used by __blk_mq_update_nr_hw_queues to cache 4006 * the elevator_type associated with a request_queue. 4007 */ 4008 struct blk_mq_qe_pair { 4009 struct list_head node; 4010 struct request_queue *q; 4011 struct elevator_type *type; 4012 }; 4013 4014 /* 4015 * Cache the elevator_type in qe pair list and switch the 4016 * io scheduler to 'none' 4017 */ 4018 static bool blk_mq_elv_switch_none(struct list_head *head, 4019 struct request_queue *q) 4020 { 4021 struct blk_mq_qe_pair *qe; 4022 4023 if (!q->elevator) 4024 return true; 4025 4026 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4027 if (!qe) 4028 return false; 4029 4030 INIT_LIST_HEAD(&qe->node); 4031 qe->q = q; 4032 qe->type = q->elevator->type; 4033 list_add(&qe->node, head); 4034 4035 mutex_lock(&q->sysfs_lock); 4036 /* 4037 * After elevator_switch_mq, the previous elevator_queue will be 4038 * released by elevator_release. The reference of the io scheduler 4039 * module get by elevator_get will also be put. So we need to get 4040 * a reference of the io scheduler module here to prevent it to be 4041 * removed. 4042 */ 4043 __module_get(qe->type->elevator_owner); 4044 elevator_switch_mq(q, NULL); 4045 mutex_unlock(&q->sysfs_lock); 4046 4047 return true; 4048 } 4049 4050 static void blk_mq_elv_switch_back(struct list_head *head, 4051 struct request_queue *q) 4052 { 4053 struct blk_mq_qe_pair *qe; 4054 struct elevator_type *t = NULL; 4055 4056 list_for_each_entry(qe, head, node) 4057 if (qe->q == q) { 4058 t = qe->type; 4059 break; 4060 } 4061 4062 if (!t) 4063 return; 4064 4065 list_del(&qe->node); 4066 kfree(qe); 4067 4068 mutex_lock(&q->sysfs_lock); 4069 elevator_switch_mq(q, t); 4070 mutex_unlock(&q->sysfs_lock); 4071 } 4072 4073 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4074 int nr_hw_queues) 4075 { 4076 struct request_queue *q; 4077 LIST_HEAD(head); 4078 int prev_nr_hw_queues; 4079 4080 lockdep_assert_held(&set->tag_list_lock); 4081 4082 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4083 nr_hw_queues = nr_cpu_ids; 4084 if (nr_hw_queues < 1) 4085 return; 4086 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4087 return; 4088 4089 list_for_each_entry(q, &set->tag_list, tag_set_list) 4090 blk_mq_freeze_queue(q); 4091 /* 4092 * Switch IO scheduler to 'none', cleaning up the data associated 4093 * with the previous scheduler. We will switch back once we are done 4094 * updating the new sw to hw queue mappings. 4095 */ 4096 list_for_each_entry(q, &set->tag_list, tag_set_list) 4097 if (!blk_mq_elv_switch_none(&head, q)) 4098 goto switch_back; 4099 4100 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4101 blk_mq_debugfs_unregister_hctxs(q); 4102 blk_mq_sysfs_unregister(q); 4103 } 4104 4105 prev_nr_hw_queues = set->nr_hw_queues; 4106 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 4107 0) 4108 goto reregister; 4109 4110 set->nr_hw_queues = nr_hw_queues; 4111 fallback: 4112 blk_mq_update_queue_map(set); 4113 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4114 blk_mq_realloc_hw_ctxs(set, q); 4115 if (q->nr_hw_queues != set->nr_hw_queues) { 4116 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4117 nr_hw_queues, prev_nr_hw_queues); 4118 set->nr_hw_queues = prev_nr_hw_queues; 4119 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4120 goto fallback; 4121 } 4122 blk_mq_map_swqueue(q); 4123 } 4124 4125 reregister: 4126 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4127 blk_mq_sysfs_register(q); 4128 blk_mq_debugfs_register_hctxs(q); 4129 } 4130 4131 switch_back: 4132 list_for_each_entry(q, &set->tag_list, tag_set_list) 4133 blk_mq_elv_switch_back(&head, q); 4134 4135 list_for_each_entry(q, &set->tag_list, tag_set_list) 4136 blk_mq_unfreeze_queue(q); 4137 } 4138 4139 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4140 { 4141 mutex_lock(&set->tag_list_lock); 4142 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4143 mutex_unlock(&set->tag_list_lock); 4144 } 4145 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4146 4147 /* Enable polling stats and return whether they were already enabled. */ 4148 static bool blk_poll_stats_enable(struct request_queue *q) 4149 { 4150 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 4151 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 4152 return true; 4153 blk_stat_add_callback(q, q->poll_cb); 4154 return false; 4155 } 4156 4157 static void blk_mq_poll_stats_start(struct request_queue *q) 4158 { 4159 /* 4160 * We don't arm the callback if polling stats are not enabled or the 4161 * callback is already active. 4162 */ 4163 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 4164 blk_stat_is_active(q->poll_cb)) 4165 return; 4166 4167 blk_stat_activate_msecs(q->poll_cb, 100); 4168 } 4169 4170 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4171 { 4172 struct request_queue *q = cb->data; 4173 int bucket; 4174 4175 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4176 if (cb->stat[bucket].nr_samples) 4177 q->poll_stat[bucket] = cb->stat[bucket]; 4178 } 4179 } 4180 4181 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4182 struct request *rq) 4183 { 4184 unsigned long ret = 0; 4185 int bucket; 4186 4187 /* 4188 * If stats collection isn't on, don't sleep but turn it on for 4189 * future users 4190 */ 4191 if (!blk_poll_stats_enable(q)) 4192 return 0; 4193 4194 /* 4195 * As an optimistic guess, use half of the mean service time 4196 * for this type of request. We can (and should) make this smarter. 4197 * For instance, if the completion latencies are tight, we can 4198 * get closer than just half the mean. This is especially 4199 * important on devices where the completion latencies are longer 4200 * than ~10 usec. We do use the stats for the relevant IO size 4201 * if available which does lead to better estimates. 4202 */ 4203 bucket = blk_mq_poll_stats_bkt(rq); 4204 if (bucket < 0) 4205 return ret; 4206 4207 if (q->poll_stat[bucket].nr_samples) 4208 ret = (q->poll_stat[bucket].mean + 1) / 2; 4209 4210 return ret; 4211 } 4212 4213 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4214 { 4215 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4216 struct request *rq = blk_qc_to_rq(hctx, qc); 4217 struct hrtimer_sleeper hs; 4218 enum hrtimer_mode mode; 4219 unsigned int nsecs; 4220 ktime_t kt; 4221 4222 /* 4223 * If a request has completed on queue that uses an I/O scheduler, we 4224 * won't get back a request from blk_qc_to_rq. 4225 */ 4226 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4227 return false; 4228 4229 /* 4230 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4231 * 4232 * 0: use half of prev avg 4233 * >0: use this specific value 4234 */ 4235 if (q->poll_nsec > 0) 4236 nsecs = q->poll_nsec; 4237 else 4238 nsecs = blk_mq_poll_nsecs(q, rq); 4239 4240 if (!nsecs) 4241 return false; 4242 4243 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4244 4245 /* 4246 * This will be replaced with the stats tracking code, using 4247 * 'avg_completion_time / 2' as the pre-sleep target. 4248 */ 4249 kt = nsecs; 4250 4251 mode = HRTIMER_MODE_REL; 4252 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4253 hrtimer_set_expires(&hs.timer, kt); 4254 4255 do { 4256 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4257 break; 4258 set_current_state(TASK_UNINTERRUPTIBLE); 4259 hrtimer_sleeper_start_expires(&hs, mode); 4260 if (hs.task) 4261 io_schedule(); 4262 hrtimer_cancel(&hs.timer); 4263 mode = HRTIMER_MODE_ABS; 4264 } while (hs.task && !signal_pending(current)); 4265 4266 __set_current_state(TASK_RUNNING); 4267 destroy_hrtimer_on_stack(&hs.timer); 4268 4269 /* 4270 * If we sleep, have the caller restart the poll loop to reset the 4271 * state. Like for the other success return cases, the caller is 4272 * responsible for checking if the IO completed. If the IO isn't 4273 * complete, we'll get called again and will go straight to the busy 4274 * poll loop. 4275 */ 4276 return true; 4277 } 4278 4279 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4280 struct io_comp_batch *iob, unsigned int flags) 4281 { 4282 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4283 long state = get_current_state(); 4284 int ret; 4285 4286 do { 4287 ret = q->mq_ops->poll(hctx, iob); 4288 if (ret > 0) { 4289 __set_current_state(TASK_RUNNING); 4290 return ret; 4291 } 4292 4293 if (signal_pending_state(state, current)) 4294 __set_current_state(TASK_RUNNING); 4295 if (task_is_running(current)) 4296 return 1; 4297 4298 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4299 break; 4300 cpu_relax(); 4301 } while (!need_resched()); 4302 4303 __set_current_state(TASK_RUNNING); 4304 return 0; 4305 } 4306 4307 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4308 unsigned int flags) 4309 { 4310 if (!(flags & BLK_POLL_NOSLEEP) && 4311 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4312 if (blk_mq_poll_hybrid(q, cookie)) 4313 return 1; 4314 } 4315 return blk_mq_poll_classic(q, cookie, iob, flags); 4316 } 4317 4318 unsigned int blk_mq_rq_cpu(struct request *rq) 4319 { 4320 return rq->mq_ctx->cpu; 4321 } 4322 EXPORT_SYMBOL(blk_mq_rq_cpu); 4323 4324 static int __init blk_mq_init(void) 4325 { 4326 int i; 4327 4328 for_each_possible_cpu(i) 4329 init_llist_head(&per_cpu(blk_cpu_done, i)); 4330 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4331 4332 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4333 "block/softirq:dead", NULL, 4334 blk_softirq_cpu_dead); 4335 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4336 blk_mq_hctx_notify_dead); 4337 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4338 blk_mq_hctx_notify_online, 4339 blk_mq_hctx_notify_offline); 4340 return 0; 4341 } 4342 subsys_initcall(blk_mq_init); 4343