xref: /linux/block/blk-mq.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24 
25 #include <trace/events/block.h>
26 
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31 
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34 
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 static void blk_mq_run_queues(struct request_queue *q);
37 
38 /*
39  * Check if any of the ctx's have pending work in this hardware queue
40  */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 	unsigned int i;
44 
45 	for (i = 0; i < hctx->ctx_map.map_size; i++)
46 		if (hctx->ctx_map.map[i].word)
47 			return true;
48 
49 	return false;
50 }
51 
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 					      struct blk_mq_ctx *ctx)
54 {
55 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57 
58 #define CTX_TO_BIT(hctx, ctx)	\
59 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 
61 /*
62  * Mark this ctx as having pending work in this hardware queue
63  */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 				     struct blk_mq_ctx *ctx)
66 {
67 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 
69 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72 
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 				      struct blk_mq_ctx *ctx)
75 {
76 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 
78 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80 
81 static int blk_mq_queue_enter(struct request_queue *q)
82 {
83 	while (true) {
84 		int ret;
85 
86 		if (percpu_ref_tryget_live(&q->mq_usage_counter))
87 			return 0;
88 
89 		ret = wait_event_interruptible(q->mq_freeze_wq,
90 				!q->mq_freeze_depth || blk_queue_dying(q));
91 		if (blk_queue_dying(q))
92 			return -ENODEV;
93 		if (ret)
94 			return ret;
95 	}
96 }
97 
98 static void blk_mq_queue_exit(struct request_queue *q)
99 {
100 	percpu_ref_put(&q->mq_usage_counter);
101 }
102 
103 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
104 {
105 	struct request_queue *q =
106 		container_of(ref, struct request_queue, mq_usage_counter);
107 
108 	wake_up_all(&q->mq_freeze_wq);
109 }
110 
111 void blk_mq_freeze_queue_start(struct request_queue *q)
112 {
113 	bool freeze;
114 
115 	spin_lock_irq(q->queue_lock);
116 	freeze = !q->mq_freeze_depth++;
117 	spin_unlock_irq(q->queue_lock);
118 
119 	if (freeze) {
120 		percpu_ref_kill(&q->mq_usage_counter);
121 		blk_mq_run_queues(q);
122 	}
123 }
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125 
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
127 {
128 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 }
130 
131 /*
132  * Guarantee no request is in use, so we can change any data structure of
133  * the queue afterward.
134  */
135 void blk_mq_freeze_queue(struct request_queue *q)
136 {
137 	blk_mq_freeze_queue_start(q);
138 	blk_mq_freeze_queue_wait(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141 
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144 	bool wake;
145 
146 	spin_lock_irq(q->queue_lock);
147 	wake = !--q->mq_freeze_depth;
148 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
149 	spin_unlock_irq(q->queue_lock);
150 	if (wake) {
151 		percpu_ref_reinit(&q->mq_usage_counter);
152 		wake_up_all(&q->mq_freeze_wq);
153 	}
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156 
157 void blk_mq_wake_waiters(struct request_queue *q)
158 {
159 	struct blk_mq_hw_ctx *hctx;
160 	unsigned int i;
161 
162 	queue_for_each_hw_ctx(q, hctx, i)
163 		if (blk_mq_hw_queue_mapped(hctx))
164 			blk_mq_tag_wakeup_all(hctx->tags, true);
165 
166 	/*
167 	 * If we are called because the queue has now been marked as
168 	 * dying, we need to ensure that processes currently waiting on
169 	 * the queue are notified as well.
170 	 */
171 	wake_up_all(&q->mq_freeze_wq);
172 }
173 
174 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
175 {
176 	return blk_mq_has_free_tags(hctx->tags);
177 }
178 EXPORT_SYMBOL(blk_mq_can_queue);
179 
180 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
181 			       struct request *rq, unsigned int rw_flags)
182 {
183 	if (blk_queue_io_stat(q))
184 		rw_flags |= REQ_IO_STAT;
185 
186 	INIT_LIST_HEAD(&rq->queuelist);
187 	/* csd/requeue_work/fifo_time is initialized before use */
188 	rq->q = q;
189 	rq->mq_ctx = ctx;
190 	rq->cmd_flags |= rw_flags;
191 	/* do not touch atomic flags, it needs atomic ops against the timer */
192 	rq->cpu = -1;
193 	INIT_HLIST_NODE(&rq->hash);
194 	RB_CLEAR_NODE(&rq->rb_node);
195 	rq->rq_disk = NULL;
196 	rq->part = NULL;
197 	rq->start_time = jiffies;
198 #ifdef CONFIG_BLK_CGROUP
199 	rq->rl = NULL;
200 	set_start_time_ns(rq);
201 	rq->io_start_time_ns = 0;
202 #endif
203 	rq->nr_phys_segments = 0;
204 #if defined(CONFIG_BLK_DEV_INTEGRITY)
205 	rq->nr_integrity_segments = 0;
206 #endif
207 	rq->special = NULL;
208 	/* tag was already set */
209 	rq->errors = 0;
210 
211 	rq->cmd = rq->__cmd;
212 
213 	rq->extra_len = 0;
214 	rq->sense_len = 0;
215 	rq->resid_len = 0;
216 	rq->sense = NULL;
217 
218 	INIT_LIST_HEAD(&rq->timeout_list);
219 	rq->timeout = 0;
220 
221 	rq->end_io = NULL;
222 	rq->end_io_data = NULL;
223 	rq->next_rq = NULL;
224 
225 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
226 }
227 
228 static struct request *
229 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
230 {
231 	struct request *rq;
232 	unsigned int tag;
233 
234 	tag = blk_mq_get_tag(data);
235 	if (tag != BLK_MQ_TAG_FAIL) {
236 		rq = data->hctx->tags->rqs[tag];
237 
238 		if (blk_mq_tag_busy(data->hctx)) {
239 			rq->cmd_flags = REQ_MQ_INFLIGHT;
240 			atomic_inc(&data->hctx->nr_active);
241 		}
242 
243 		rq->tag = tag;
244 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
245 		return rq;
246 	}
247 
248 	return NULL;
249 }
250 
251 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
252 		bool reserved)
253 {
254 	struct blk_mq_ctx *ctx;
255 	struct blk_mq_hw_ctx *hctx;
256 	struct request *rq;
257 	struct blk_mq_alloc_data alloc_data;
258 	int ret;
259 
260 	ret = blk_mq_queue_enter(q);
261 	if (ret)
262 		return ERR_PTR(ret);
263 
264 	ctx = blk_mq_get_ctx(q);
265 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
266 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
267 			reserved, ctx, hctx);
268 
269 	rq = __blk_mq_alloc_request(&alloc_data, rw);
270 	if (!rq && (gfp & __GFP_WAIT)) {
271 		__blk_mq_run_hw_queue(hctx);
272 		blk_mq_put_ctx(ctx);
273 
274 		ctx = blk_mq_get_ctx(q);
275 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
276 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
277 				hctx);
278 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
279 		ctx = alloc_data.ctx;
280 	}
281 	blk_mq_put_ctx(ctx);
282 	if (!rq) {
283 		blk_mq_queue_exit(q);
284 		return ERR_PTR(-EWOULDBLOCK);
285 	}
286 	return rq;
287 }
288 EXPORT_SYMBOL(blk_mq_alloc_request);
289 
290 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
291 				  struct blk_mq_ctx *ctx, struct request *rq)
292 {
293 	const int tag = rq->tag;
294 	struct request_queue *q = rq->q;
295 
296 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
297 		atomic_dec(&hctx->nr_active);
298 	rq->cmd_flags = 0;
299 
300 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
301 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
302 	blk_mq_queue_exit(q);
303 }
304 
305 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
306 {
307 	struct blk_mq_ctx *ctx = rq->mq_ctx;
308 
309 	ctx->rq_completed[rq_is_sync(rq)]++;
310 	__blk_mq_free_request(hctx, ctx, rq);
311 
312 }
313 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
314 
315 void blk_mq_free_request(struct request *rq)
316 {
317 	struct blk_mq_hw_ctx *hctx;
318 	struct request_queue *q = rq->q;
319 
320 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
321 	blk_mq_free_hctx_request(hctx, rq);
322 }
323 EXPORT_SYMBOL_GPL(blk_mq_free_request);
324 
325 inline void __blk_mq_end_request(struct request *rq, int error)
326 {
327 	blk_account_io_done(rq);
328 
329 	if (rq->end_io) {
330 		rq->end_io(rq, error);
331 	} else {
332 		if (unlikely(blk_bidi_rq(rq)))
333 			blk_mq_free_request(rq->next_rq);
334 		blk_mq_free_request(rq);
335 	}
336 }
337 EXPORT_SYMBOL(__blk_mq_end_request);
338 
339 void blk_mq_end_request(struct request *rq, int error)
340 {
341 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
342 		BUG();
343 	__blk_mq_end_request(rq, error);
344 }
345 EXPORT_SYMBOL(blk_mq_end_request);
346 
347 static void __blk_mq_complete_request_remote(void *data)
348 {
349 	struct request *rq = data;
350 
351 	rq->q->softirq_done_fn(rq);
352 }
353 
354 static void blk_mq_ipi_complete_request(struct request *rq)
355 {
356 	struct blk_mq_ctx *ctx = rq->mq_ctx;
357 	bool shared = false;
358 	int cpu;
359 
360 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
361 		rq->q->softirq_done_fn(rq);
362 		return;
363 	}
364 
365 	cpu = get_cpu();
366 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
367 		shared = cpus_share_cache(cpu, ctx->cpu);
368 
369 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
370 		rq->csd.func = __blk_mq_complete_request_remote;
371 		rq->csd.info = rq;
372 		rq->csd.flags = 0;
373 		smp_call_function_single_async(ctx->cpu, &rq->csd);
374 	} else {
375 		rq->q->softirq_done_fn(rq);
376 	}
377 	put_cpu();
378 }
379 
380 void __blk_mq_complete_request(struct request *rq)
381 {
382 	struct request_queue *q = rq->q;
383 
384 	if (!q->softirq_done_fn)
385 		blk_mq_end_request(rq, rq->errors);
386 	else
387 		blk_mq_ipi_complete_request(rq);
388 }
389 
390 /**
391  * blk_mq_complete_request - end I/O on a request
392  * @rq:		the request being processed
393  *
394  * Description:
395  *	Ends all I/O on a request. It does not handle partial completions.
396  *	The actual completion happens out-of-order, through a IPI handler.
397  **/
398 void blk_mq_complete_request(struct request *rq)
399 {
400 	struct request_queue *q = rq->q;
401 
402 	if (unlikely(blk_should_fake_timeout(q)))
403 		return;
404 	if (!blk_mark_rq_complete(rq))
405 		__blk_mq_complete_request(rq);
406 }
407 EXPORT_SYMBOL(blk_mq_complete_request);
408 
409 int blk_mq_request_started(struct request *rq)
410 {
411 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
412 }
413 EXPORT_SYMBOL_GPL(blk_mq_request_started);
414 
415 void blk_mq_start_request(struct request *rq)
416 {
417 	struct request_queue *q = rq->q;
418 
419 	trace_block_rq_issue(q, rq);
420 
421 	rq->resid_len = blk_rq_bytes(rq);
422 	if (unlikely(blk_bidi_rq(rq)))
423 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
424 
425 	blk_add_timer(rq);
426 
427 	/*
428 	 * Ensure that ->deadline is visible before set the started
429 	 * flag and clear the completed flag.
430 	 */
431 	smp_mb__before_atomic();
432 
433 	/*
434 	 * Mark us as started and clear complete. Complete might have been
435 	 * set if requeue raced with timeout, which then marked it as
436 	 * complete. So be sure to clear complete again when we start
437 	 * the request, otherwise we'll ignore the completion event.
438 	 */
439 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
440 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
441 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
442 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
443 
444 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
445 		/*
446 		 * Make sure space for the drain appears.  We know we can do
447 		 * this because max_hw_segments has been adjusted to be one
448 		 * fewer than the device can handle.
449 		 */
450 		rq->nr_phys_segments++;
451 	}
452 }
453 EXPORT_SYMBOL(blk_mq_start_request);
454 
455 static void __blk_mq_requeue_request(struct request *rq)
456 {
457 	struct request_queue *q = rq->q;
458 
459 	trace_block_rq_requeue(q, rq);
460 
461 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
462 		if (q->dma_drain_size && blk_rq_bytes(rq))
463 			rq->nr_phys_segments--;
464 	}
465 }
466 
467 void blk_mq_requeue_request(struct request *rq)
468 {
469 	__blk_mq_requeue_request(rq);
470 
471 	BUG_ON(blk_queued_rq(rq));
472 	blk_mq_add_to_requeue_list(rq, true);
473 }
474 EXPORT_SYMBOL(blk_mq_requeue_request);
475 
476 static void blk_mq_requeue_work(struct work_struct *work)
477 {
478 	struct request_queue *q =
479 		container_of(work, struct request_queue, requeue_work);
480 	LIST_HEAD(rq_list);
481 	struct request *rq, *next;
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(&q->requeue_lock, flags);
485 	list_splice_init(&q->requeue_list, &rq_list);
486 	spin_unlock_irqrestore(&q->requeue_lock, flags);
487 
488 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
489 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
490 			continue;
491 
492 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
493 		list_del_init(&rq->queuelist);
494 		blk_mq_insert_request(rq, true, false, false);
495 	}
496 
497 	while (!list_empty(&rq_list)) {
498 		rq = list_entry(rq_list.next, struct request, queuelist);
499 		list_del_init(&rq->queuelist);
500 		blk_mq_insert_request(rq, false, false, false);
501 	}
502 
503 	/*
504 	 * Use the start variant of queue running here, so that running
505 	 * the requeue work will kick stopped queues.
506 	 */
507 	blk_mq_start_hw_queues(q);
508 }
509 
510 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
511 {
512 	struct request_queue *q = rq->q;
513 	unsigned long flags;
514 
515 	/*
516 	 * We abuse this flag that is otherwise used by the I/O scheduler to
517 	 * request head insertation from the workqueue.
518 	 */
519 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
520 
521 	spin_lock_irqsave(&q->requeue_lock, flags);
522 	if (at_head) {
523 		rq->cmd_flags |= REQ_SOFTBARRIER;
524 		list_add(&rq->queuelist, &q->requeue_list);
525 	} else {
526 		list_add_tail(&rq->queuelist, &q->requeue_list);
527 	}
528 	spin_unlock_irqrestore(&q->requeue_lock, flags);
529 }
530 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
531 
532 void blk_mq_cancel_requeue_work(struct request_queue *q)
533 {
534 	cancel_work_sync(&q->requeue_work);
535 }
536 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
537 
538 void blk_mq_kick_requeue_list(struct request_queue *q)
539 {
540 	kblockd_schedule_work(&q->requeue_work);
541 }
542 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
543 
544 void blk_mq_abort_requeue_list(struct request_queue *q)
545 {
546 	unsigned long flags;
547 	LIST_HEAD(rq_list);
548 
549 	spin_lock_irqsave(&q->requeue_lock, flags);
550 	list_splice_init(&q->requeue_list, &rq_list);
551 	spin_unlock_irqrestore(&q->requeue_lock, flags);
552 
553 	while (!list_empty(&rq_list)) {
554 		struct request *rq;
555 
556 		rq = list_first_entry(&rq_list, struct request, queuelist);
557 		list_del_init(&rq->queuelist);
558 		rq->errors = -EIO;
559 		blk_mq_end_request(rq, rq->errors);
560 	}
561 }
562 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
563 
564 static inline bool is_flush_request(struct request *rq,
565 		struct blk_flush_queue *fq, unsigned int tag)
566 {
567 	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
568 			fq->flush_rq->tag == tag);
569 }
570 
571 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
572 {
573 	struct request *rq = tags->rqs[tag];
574 	/* mq_ctx of flush rq is always cloned from the corresponding req */
575 	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
576 
577 	if (!is_flush_request(rq, fq, tag))
578 		return rq;
579 
580 	return fq->flush_rq;
581 }
582 EXPORT_SYMBOL(blk_mq_tag_to_rq);
583 
584 struct blk_mq_timeout_data {
585 	unsigned long next;
586 	unsigned int next_set;
587 };
588 
589 void blk_mq_rq_timed_out(struct request *req, bool reserved)
590 {
591 	struct blk_mq_ops *ops = req->q->mq_ops;
592 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
593 
594 	/*
595 	 * We know that complete is set at this point. If STARTED isn't set
596 	 * anymore, then the request isn't active and the "timeout" should
597 	 * just be ignored. This can happen due to the bitflag ordering.
598 	 * Timeout first checks if STARTED is set, and if it is, assumes
599 	 * the request is active. But if we race with completion, then
600 	 * we both flags will get cleared. So check here again, and ignore
601 	 * a timeout event with a request that isn't active.
602 	 */
603 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
604 		return;
605 
606 	if (ops->timeout)
607 		ret = ops->timeout(req, reserved);
608 
609 	switch (ret) {
610 	case BLK_EH_HANDLED:
611 		__blk_mq_complete_request(req);
612 		break;
613 	case BLK_EH_RESET_TIMER:
614 		blk_add_timer(req);
615 		blk_clear_rq_complete(req);
616 		break;
617 	case BLK_EH_NOT_HANDLED:
618 		break;
619 	default:
620 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
621 		break;
622 	}
623 }
624 
625 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
626 		struct request *rq, void *priv, bool reserved)
627 {
628 	struct blk_mq_timeout_data *data = priv;
629 
630 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
631 		/*
632 		 * If a request wasn't started before the queue was
633 		 * marked dying, kill it here or it'll go unnoticed.
634 		 */
635 		if (unlikely(blk_queue_dying(rq->q))) {
636 			rq->errors = -EIO;
637 			blk_mq_complete_request(rq);
638 		}
639 		return;
640 	}
641 	if (rq->cmd_flags & REQ_NO_TIMEOUT)
642 		return;
643 
644 	if (time_after_eq(jiffies, rq->deadline)) {
645 		if (!blk_mark_rq_complete(rq))
646 			blk_mq_rq_timed_out(rq, reserved);
647 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
648 		data->next = rq->deadline;
649 		data->next_set = 1;
650 	}
651 }
652 
653 static void blk_mq_rq_timer(unsigned long priv)
654 {
655 	struct request_queue *q = (struct request_queue *)priv;
656 	struct blk_mq_timeout_data data = {
657 		.next		= 0,
658 		.next_set	= 0,
659 	};
660 	struct blk_mq_hw_ctx *hctx;
661 	int i;
662 
663 	queue_for_each_hw_ctx(q, hctx, i) {
664 		/*
665 		 * If not software queues are currently mapped to this
666 		 * hardware queue, there's nothing to check
667 		 */
668 		if (!blk_mq_hw_queue_mapped(hctx))
669 			continue;
670 
671 		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
672 	}
673 
674 	if (data.next_set) {
675 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
676 		mod_timer(&q->timeout, data.next);
677 	} else {
678 		queue_for_each_hw_ctx(q, hctx, i)
679 			blk_mq_tag_idle(hctx);
680 	}
681 }
682 
683 /*
684  * Reverse check our software queue for entries that we could potentially
685  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
686  * too much time checking for merges.
687  */
688 static bool blk_mq_attempt_merge(struct request_queue *q,
689 				 struct blk_mq_ctx *ctx, struct bio *bio)
690 {
691 	struct request *rq;
692 	int checked = 8;
693 
694 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
695 		int el_ret;
696 
697 		if (!checked--)
698 			break;
699 
700 		if (!blk_rq_merge_ok(rq, bio))
701 			continue;
702 
703 		el_ret = blk_try_merge(rq, bio);
704 		if (el_ret == ELEVATOR_BACK_MERGE) {
705 			if (bio_attempt_back_merge(q, rq, bio)) {
706 				ctx->rq_merged++;
707 				return true;
708 			}
709 			break;
710 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
711 			if (bio_attempt_front_merge(q, rq, bio)) {
712 				ctx->rq_merged++;
713 				return true;
714 			}
715 			break;
716 		}
717 	}
718 
719 	return false;
720 }
721 
722 /*
723  * Process software queues that have been marked busy, splicing them
724  * to the for-dispatch
725  */
726 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
727 {
728 	struct blk_mq_ctx *ctx;
729 	int i;
730 
731 	for (i = 0; i < hctx->ctx_map.map_size; i++) {
732 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
733 		unsigned int off, bit;
734 
735 		if (!bm->word)
736 			continue;
737 
738 		bit = 0;
739 		off = i * hctx->ctx_map.bits_per_word;
740 		do {
741 			bit = find_next_bit(&bm->word, bm->depth, bit);
742 			if (bit >= bm->depth)
743 				break;
744 
745 			ctx = hctx->ctxs[bit + off];
746 			clear_bit(bit, &bm->word);
747 			spin_lock(&ctx->lock);
748 			list_splice_tail_init(&ctx->rq_list, list);
749 			spin_unlock(&ctx->lock);
750 
751 			bit++;
752 		} while (1);
753 	}
754 }
755 
756 /*
757  * Run this hardware queue, pulling any software queues mapped to it in.
758  * Note that this function currently has various problems around ordering
759  * of IO. In particular, we'd like FIFO behaviour on handling existing
760  * items on the hctx->dispatch list. Ignore that for now.
761  */
762 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
763 {
764 	struct request_queue *q = hctx->queue;
765 	struct request *rq;
766 	LIST_HEAD(rq_list);
767 	LIST_HEAD(driver_list);
768 	struct list_head *dptr;
769 	int queued;
770 
771 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
772 
773 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
774 		return;
775 
776 	hctx->run++;
777 
778 	/*
779 	 * Touch any software queue that has pending entries.
780 	 */
781 	flush_busy_ctxs(hctx, &rq_list);
782 
783 	/*
784 	 * If we have previous entries on our dispatch list, grab them
785 	 * and stuff them at the front for more fair dispatch.
786 	 */
787 	if (!list_empty_careful(&hctx->dispatch)) {
788 		spin_lock(&hctx->lock);
789 		if (!list_empty(&hctx->dispatch))
790 			list_splice_init(&hctx->dispatch, &rq_list);
791 		spin_unlock(&hctx->lock);
792 	}
793 
794 	/*
795 	 * Start off with dptr being NULL, so we start the first request
796 	 * immediately, even if we have more pending.
797 	 */
798 	dptr = NULL;
799 
800 	/*
801 	 * Now process all the entries, sending them to the driver.
802 	 */
803 	queued = 0;
804 	while (!list_empty(&rq_list)) {
805 		struct blk_mq_queue_data bd;
806 		int ret;
807 
808 		rq = list_first_entry(&rq_list, struct request, queuelist);
809 		list_del_init(&rq->queuelist);
810 
811 		bd.rq = rq;
812 		bd.list = dptr;
813 		bd.last = list_empty(&rq_list);
814 
815 		ret = q->mq_ops->queue_rq(hctx, &bd);
816 		switch (ret) {
817 		case BLK_MQ_RQ_QUEUE_OK:
818 			queued++;
819 			continue;
820 		case BLK_MQ_RQ_QUEUE_BUSY:
821 			list_add(&rq->queuelist, &rq_list);
822 			__blk_mq_requeue_request(rq);
823 			break;
824 		default:
825 			pr_err("blk-mq: bad return on queue: %d\n", ret);
826 		case BLK_MQ_RQ_QUEUE_ERROR:
827 			rq->errors = -EIO;
828 			blk_mq_end_request(rq, rq->errors);
829 			break;
830 		}
831 
832 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
833 			break;
834 
835 		/*
836 		 * We've done the first request. If we have more than 1
837 		 * left in the list, set dptr to defer issue.
838 		 */
839 		if (!dptr && rq_list.next != rq_list.prev)
840 			dptr = &driver_list;
841 	}
842 
843 	if (!queued)
844 		hctx->dispatched[0]++;
845 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
846 		hctx->dispatched[ilog2(queued) + 1]++;
847 
848 	/*
849 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
850 	 * that is where we will continue on next queue run.
851 	 */
852 	if (!list_empty(&rq_list)) {
853 		spin_lock(&hctx->lock);
854 		list_splice(&rq_list, &hctx->dispatch);
855 		spin_unlock(&hctx->lock);
856 	}
857 }
858 
859 /*
860  * It'd be great if the workqueue API had a way to pass
861  * in a mask and had some smarts for more clever placement.
862  * For now we just round-robin here, switching for every
863  * BLK_MQ_CPU_WORK_BATCH queued items.
864  */
865 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
866 {
867 	if (hctx->queue->nr_hw_queues == 1)
868 		return WORK_CPU_UNBOUND;
869 
870 	if (--hctx->next_cpu_batch <= 0) {
871 		int cpu = hctx->next_cpu, next_cpu;
872 
873 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
874 		if (next_cpu >= nr_cpu_ids)
875 			next_cpu = cpumask_first(hctx->cpumask);
876 
877 		hctx->next_cpu = next_cpu;
878 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
879 
880 		return cpu;
881 	}
882 
883 	return hctx->next_cpu;
884 }
885 
886 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
887 {
888 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
889 	    !blk_mq_hw_queue_mapped(hctx)))
890 		return;
891 
892 	if (!async) {
893 		int cpu = get_cpu();
894 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
895 			__blk_mq_run_hw_queue(hctx);
896 			put_cpu();
897 			return;
898 		}
899 
900 		put_cpu();
901 	}
902 
903 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
904 			&hctx->run_work, 0);
905 }
906 
907 static void blk_mq_run_queues(struct request_queue *q)
908 {
909 	struct blk_mq_hw_ctx *hctx;
910 	int i;
911 
912 	queue_for_each_hw_ctx(q, hctx, i) {
913 		if ((!blk_mq_hctx_has_pending(hctx) &&
914 		    list_empty_careful(&hctx->dispatch)) ||
915 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
916 			continue;
917 
918 		blk_mq_run_hw_queue(hctx, false);
919 	}
920 }
921 
922 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
923 {
924 	cancel_delayed_work(&hctx->run_work);
925 	cancel_delayed_work(&hctx->delay_work);
926 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
927 }
928 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
929 
930 void blk_mq_stop_hw_queues(struct request_queue *q)
931 {
932 	struct blk_mq_hw_ctx *hctx;
933 	int i;
934 
935 	queue_for_each_hw_ctx(q, hctx, i)
936 		blk_mq_stop_hw_queue(hctx);
937 }
938 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
939 
940 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
941 {
942 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
943 
944 	blk_mq_run_hw_queue(hctx, false);
945 }
946 EXPORT_SYMBOL(blk_mq_start_hw_queue);
947 
948 void blk_mq_start_hw_queues(struct request_queue *q)
949 {
950 	struct blk_mq_hw_ctx *hctx;
951 	int i;
952 
953 	queue_for_each_hw_ctx(q, hctx, i)
954 		blk_mq_start_hw_queue(hctx);
955 }
956 EXPORT_SYMBOL(blk_mq_start_hw_queues);
957 
958 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
959 {
960 	struct blk_mq_hw_ctx *hctx;
961 	int i;
962 
963 	queue_for_each_hw_ctx(q, hctx, i) {
964 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
965 			continue;
966 
967 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
968 		blk_mq_run_hw_queue(hctx, async);
969 	}
970 }
971 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
972 
973 static void blk_mq_run_work_fn(struct work_struct *work)
974 {
975 	struct blk_mq_hw_ctx *hctx;
976 
977 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
978 
979 	__blk_mq_run_hw_queue(hctx);
980 }
981 
982 static void blk_mq_delay_work_fn(struct work_struct *work)
983 {
984 	struct blk_mq_hw_ctx *hctx;
985 
986 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
987 
988 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
989 		__blk_mq_run_hw_queue(hctx);
990 }
991 
992 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
993 {
994 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
995 		return;
996 
997 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
998 			&hctx->delay_work, msecs_to_jiffies(msecs));
999 }
1000 EXPORT_SYMBOL(blk_mq_delay_queue);
1001 
1002 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1003 				    struct request *rq, bool at_head)
1004 {
1005 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1006 
1007 	trace_block_rq_insert(hctx->queue, rq);
1008 
1009 	if (at_head)
1010 		list_add(&rq->queuelist, &ctx->rq_list);
1011 	else
1012 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1013 
1014 	blk_mq_hctx_mark_pending(hctx, ctx);
1015 }
1016 
1017 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1018 		bool async)
1019 {
1020 	struct request_queue *q = rq->q;
1021 	struct blk_mq_hw_ctx *hctx;
1022 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1023 
1024 	current_ctx = blk_mq_get_ctx(q);
1025 	if (!cpu_online(ctx->cpu))
1026 		rq->mq_ctx = ctx = current_ctx;
1027 
1028 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1029 
1030 	spin_lock(&ctx->lock);
1031 	__blk_mq_insert_request(hctx, rq, at_head);
1032 	spin_unlock(&ctx->lock);
1033 
1034 	if (run_queue)
1035 		blk_mq_run_hw_queue(hctx, async);
1036 
1037 	blk_mq_put_ctx(current_ctx);
1038 }
1039 
1040 static void blk_mq_insert_requests(struct request_queue *q,
1041 				     struct blk_mq_ctx *ctx,
1042 				     struct list_head *list,
1043 				     int depth,
1044 				     bool from_schedule)
1045 
1046 {
1047 	struct blk_mq_hw_ctx *hctx;
1048 	struct blk_mq_ctx *current_ctx;
1049 
1050 	trace_block_unplug(q, depth, !from_schedule);
1051 
1052 	current_ctx = blk_mq_get_ctx(q);
1053 
1054 	if (!cpu_online(ctx->cpu))
1055 		ctx = current_ctx;
1056 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1057 
1058 	/*
1059 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1060 	 * offline now
1061 	 */
1062 	spin_lock(&ctx->lock);
1063 	while (!list_empty(list)) {
1064 		struct request *rq;
1065 
1066 		rq = list_first_entry(list, struct request, queuelist);
1067 		list_del_init(&rq->queuelist);
1068 		rq->mq_ctx = ctx;
1069 		__blk_mq_insert_request(hctx, rq, false);
1070 	}
1071 	spin_unlock(&ctx->lock);
1072 
1073 	blk_mq_run_hw_queue(hctx, from_schedule);
1074 	blk_mq_put_ctx(current_ctx);
1075 }
1076 
1077 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1078 {
1079 	struct request *rqa = container_of(a, struct request, queuelist);
1080 	struct request *rqb = container_of(b, struct request, queuelist);
1081 
1082 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1083 		 (rqa->mq_ctx == rqb->mq_ctx &&
1084 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1085 }
1086 
1087 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1088 {
1089 	struct blk_mq_ctx *this_ctx;
1090 	struct request_queue *this_q;
1091 	struct request *rq;
1092 	LIST_HEAD(list);
1093 	LIST_HEAD(ctx_list);
1094 	unsigned int depth;
1095 
1096 	list_splice_init(&plug->mq_list, &list);
1097 
1098 	list_sort(NULL, &list, plug_ctx_cmp);
1099 
1100 	this_q = NULL;
1101 	this_ctx = NULL;
1102 	depth = 0;
1103 
1104 	while (!list_empty(&list)) {
1105 		rq = list_entry_rq(list.next);
1106 		list_del_init(&rq->queuelist);
1107 		BUG_ON(!rq->q);
1108 		if (rq->mq_ctx != this_ctx) {
1109 			if (this_ctx) {
1110 				blk_mq_insert_requests(this_q, this_ctx,
1111 							&ctx_list, depth,
1112 							from_schedule);
1113 			}
1114 
1115 			this_ctx = rq->mq_ctx;
1116 			this_q = rq->q;
1117 			depth = 0;
1118 		}
1119 
1120 		depth++;
1121 		list_add_tail(&rq->queuelist, &ctx_list);
1122 	}
1123 
1124 	/*
1125 	 * If 'this_ctx' is set, we know we have entries to complete
1126 	 * on 'ctx_list'. Do those.
1127 	 */
1128 	if (this_ctx) {
1129 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1130 				       from_schedule);
1131 	}
1132 }
1133 
1134 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1135 {
1136 	init_request_from_bio(rq, bio);
1137 
1138 	if (blk_do_io_stat(rq))
1139 		blk_account_io_start(rq, 1);
1140 }
1141 
1142 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1143 {
1144 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1145 		!blk_queue_nomerges(hctx->queue);
1146 }
1147 
1148 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1149 					 struct blk_mq_ctx *ctx,
1150 					 struct request *rq, struct bio *bio)
1151 {
1152 	if (!hctx_allow_merges(hctx)) {
1153 		blk_mq_bio_to_request(rq, bio);
1154 		spin_lock(&ctx->lock);
1155 insert_rq:
1156 		__blk_mq_insert_request(hctx, rq, false);
1157 		spin_unlock(&ctx->lock);
1158 		return false;
1159 	} else {
1160 		struct request_queue *q = hctx->queue;
1161 
1162 		spin_lock(&ctx->lock);
1163 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1164 			blk_mq_bio_to_request(rq, bio);
1165 			goto insert_rq;
1166 		}
1167 
1168 		spin_unlock(&ctx->lock);
1169 		__blk_mq_free_request(hctx, ctx, rq);
1170 		return true;
1171 	}
1172 }
1173 
1174 struct blk_map_ctx {
1175 	struct blk_mq_hw_ctx *hctx;
1176 	struct blk_mq_ctx *ctx;
1177 };
1178 
1179 static struct request *blk_mq_map_request(struct request_queue *q,
1180 					  struct bio *bio,
1181 					  struct blk_map_ctx *data)
1182 {
1183 	struct blk_mq_hw_ctx *hctx;
1184 	struct blk_mq_ctx *ctx;
1185 	struct request *rq;
1186 	int rw = bio_data_dir(bio);
1187 	struct blk_mq_alloc_data alloc_data;
1188 
1189 	if (unlikely(blk_mq_queue_enter(q))) {
1190 		bio_endio(bio, -EIO);
1191 		return NULL;
1192 	}
1193 
1194 	ctx = blk_mq_get_ctx(q);
1195 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1196 
1197 	if (rw_is_sync(bio->bi_rw))
1198 		rw |= REQ_SYNC;
1199 
1200 	trace_block_getrq(q, bio, rw);
1201 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1202 			hctx);
1203 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1204 	if (unlikely(!rq)) {
1205 		__blk_mq_run_hw_queue(hctx);
1206 		blk_mq_put_ctx(ctx);
1207 		trace_block_sleeprq(q, bio, rw);
1208 
1209 		ctx = blk_mq_get_ctx(q);
1210 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1211 		blk_mq_set_alloc_data(&alloc_data, q,
1212 				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1213 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1214 		ctx = alloc_data.ctx;
1215 		hctx = alloc_data.hctx;
1216 	}
1217 
1218 	hctx->queued++;
1219 	data->hctx = hctx;
1220 	data->ctx = ctx;
1221 	return rq;
1222 }
1223 
1224 /*
1225  * Multiple hardware queue variant. This will not use per-process plugs,
1226  * but will attempt to bypass the hctx queueing if we can go straight to
1227  * hardware for SYNC IO.
1228  */
1229 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1230 {
1231 	const int is_sync = rw_is_sync(bio->bi_rw);
1232 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1233 	struct blk_map_ctx data;
1234 	struct request *rq;
1235 
1236 	blk_queue_bounce(q, &bio);
1237 
1238 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1239 		bio_endio(bio, -EIO);
1240 		return;
1241 	}
1242 
1243 	rq = blk_mq_map_request(q, bio, &data);
1244 	if (unlikely(!rq))
1245 		return;
1246 
1247 	if (unlikely(is_flush_fua)) {
1248 		blk_mq_bio_to_request(rq, bio);
1249 		blk_insert_flush(rq);
1250 		goto run_queue;
1251 	}
1252 
1253 	/*
1254 	 * If the driver supports defer issued based on 'last', then
1255 	 * queue it up like normal since we can potentially save some
1256 	 * CPU this way.
1257 	 */
1258 	if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1259 		struct blk_mq_queue_data bd = {
1260 			.rq = rq,
1261 			.list = NULL,
1262 			.last = 1
1263 		};
1264 		int ret;
1265 
1266 		blk_mq_bio_to_request(rq, bio);
1267 
1268 		/*
1269 		 * For OK queue, we are done. For error, kill it. Any other
1270 		 * error (busy), just add it to our list as we previously
1271 		 * would have done
1272 		 */
1273 		ret = q->mq_ops->queue_rq(data.hctx, &bd);
1274 		if (ret == BLK_MQ_RQ_QUEUE_OK)
1275 			goto done;
1276 		else {
1277 			__blk_mq_requeue_request(rq);
1278 
1279 			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1280 				rq->errors = -EIO;
1281 				blk_mq_end_request(rq, rq->errors);
1282 				goto done;
1283 			}
1284 		}
1285 	}
1286 
1287 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1288 		/*
1289 		 * For a SYNC request, send it to the hardware immediately. For
1290 		 * an ASYNC request, just ensure that we run it later on. The
1291 		 * latter allows for merging opportunities and more efficient
1292 		 * dispatching.
1293 		 */
1294 run_queue:
1295 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1296 	}
1297 done:
1298 	blk_mq_put_ctx(data.ctx);
1299 }
1300 
1301 /*
1302  * Single hardware queue variant. This will attempt to use any per-process
1303  * plug for merging and IO deferral.
1304  */
1305 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1306 {
1307 	const int is_sync = rw_is_sync(bio->bi_rw);
1308 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1309 	unsigned int use_plug, request_count = 0;
1310 	struct blk_map_ctx data;
1311 	struct request *rq;
1312 
1313 	/*
1314 	 * If we have multiple hardware queues, just go directly to
1315 	 * one of those for sync IO.
1316 	 */
1317 	use_plug = !is_flush_fua && !is_sync;
1318 
1319 	blk_queue_bounce(q, &bio);
1320 
1321 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1322 		bio_endio(bio, -EIO);
1323 		return;
1324 	}
1325 
1326 	if (use_plug && !blk_queue_nomerges(q) &&
1327 	    blk_attempt_plug_merge(q, bio, &request_count))
1328 		return;
1329 
1330 	rq = blk_mq_map_request(q, bio, &data);
1331 	if (unlikely(!rq))
1332 		return;
1333 
1334 	if (unlikely(is_flush_fua)) {
1335 		blk_mq_bio_to_request(rq, bio);
1336 		blk_insert_flush(rq);
1337 		goto run_queue;
1338 	}
1339 
1340 	/*
1341 	 * A task plug currently exists. Since this is completely lockless,
1342 	 * utilize that to temporarily store requests until the task is
1343 	 * either done or scheduled away.
1344 	 */
1345 	if (use_plug) {
1346 		struct blk_plug *plug = current->plug;
1347 
1348 		if (plug) {
1349 			blk_mq_bio_to_request(rq, bio);
1350 			if (list_empty(&plug->mq_list))
1351 				trace_block_plug(q);
1352 			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1353 				blk_flush_plug_list(plug, false);
1354 				trace_block_plug(q);
1355 			}
1356 			list_add_tail(&rq->queuelist, &plug->mq_list);
1357 			blk_mq_put_ctx(data.ctx);
1358 			return;
1359 		}
1360 	}
1361 
1362 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1363 		/*
1364 		 * For a SYNC request, send it to the hardware immediately. For
1365 		 * an ASYNC request, just ensure that we run it later on. The
1366 		 * latter allows for merging opportunities and more efficient
1367 		 * dispatching.
1368 		 */
1369 run_queue:
1370 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1371 	}
1372 
1373 	blk_mq_put_ctx(data.ctx);
1374 }
1375 
1376 /*
1377  * Default mapping to a software queue, since we use one per CPU.
1378  */
1379 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1380 {
1381 	return q->queue_hw_ctx[q->mq_map[cpu]];
1382 }
1383 EXPORT_SYMBOL(blk_mq_map_queue);
1384 
1385 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1386 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1387 {
1388 	struct page *page;
1389 
1390 	if (tags->rqs && set->ops->exit_request) {
1391 		int i;
1392 
1393 		for (i = 0; i < tags->nr_tags; i++) {
1394 			if (!tags->rqs[i])
1395 				continue;
1396 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1397 						hctx_idx, i);
1398 			tags->rqs[i] = NULL;
1399 		}
1400 	}
1401 
1402 	while (!list_empty(&tags->page_list)) {
1403 		page = list_first_entry(&tags->page_list, struct page, lru);
1404 		list_del_init(&page->lru);
1405 		__free_pages(page, page->private);
1406 	}
1407 
1408 	kfree(tags->rqs);
1409 
1410 	blk_mq_free_tags(tags);
1411 }
1412 
1413 static size_t order_to_size(unsigned int order)
1414 {
1415 	return (size_t)PAGE_SIZE << order;
1416 }
1417 
1418 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1419 		unsigned int hctx_idx)
1420 {
1421 	struct blk_mq_tags *tags;
1422 	unsigned int i, j, entries_per_page, max_order = 4;
1423 	size_t rq_size, left;
1424 
1425 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1426 				set->numa_node,
1427 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1428 	if (!tags)
1429 		return NULL;
1430 
1431 	INIT_LIST_HEAD(&tags->page_list);
1432 
1433 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1434 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1435 				 set->numa_node);
1436 	if (!tags->rqs) {
1437 		blk_mq_free_tags(tags);
1438 		return NULL;
1439 	}
1440 
1441 	/*
1442 	 * rq_size is the size of the request plus driver payload, rounded
1443 	 * to the cacheline size
1444 	 */
1445 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1446 				cache_line_size());
1447 	left = rq_size * set->queue_depth;
1448 
1449 	for (i = 0; i < set->queue_depth; ) {
1450 		int this_order = max_order;
1451 		struct page *page;
1452 		int to_do;
1453 		void *p;
1454 
1455 		while (left < order_to_size(this_order - 1) && this_order)
1456 			this_order--;
1457 
1458 		do {
1459 			page = alloc_pages_node(set->numa_node,
1460 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1461 				this_order);
1462 			if (page)
1463 				break;
1464 			if (!this_order--)
1465 				break;
1466 			if (order_to_size(this_order) < rq_size)
1467 				break;
1468 		} while (1);
1469 
1470 		if (!page)
1471 			goto fail;
1472 
1473 		page->private = this_order;
1474 		list_add_tail(&page->lru, &tags->page_list);
1475 
1476 		p = page_address(page);
1477 		entries_per_page = order_to_size(this_order) / rq_size;
1478 		to_do = min(entries_per_page, set->queue_depth - i);
1479 		left -= to_do * rq_size;
1480 		for (j = 0; j < to_do; j++) {
1481 			tags->rqs[i] = p;
1482 			if (set->ops->init_request) {
1483 				if (set->ops->init_request(set->driver_data,
1484 						tags->rqs[i], hctx_idx, i,
1485 						set->numa_node)) {
1486 					tags->rqs[i] = NULL;
1487 					goto fail;
1488 				}
1489 			}
1490 
1491 			p += rq_size;
1492 			i++;
1493 		}
1494 	}
1495 
1496 	return tags;
1497 
1498 fail:
1499 	blk_mq_free_rq_map(set, tags, hctx_idx);
1500 	return NULL;
1501 }
1502 
1503 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1504 {
1505 	kfree(bitmap->map);
1506 }
1507 
1508 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1509 {
1510 	unsigned int bpw = 8, total, num_maps, i;
1511 
1512 	bitmap->bits_per_word = bpw;
1513 
1514 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1515 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1516 					GFP_KERNEL, node);
1517 	if (!bitmap->map)
1518 		return -ENOMEM;
1519 
1520 	bitmap->map_size = num_maps;
1521 
1522 	total = nr_cpu_ids;
1523 	for (i = 0; i < num_maps; i++) {
1524 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1525 		total -= bitmap->map[i].depth;
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1532 {
1533 	struct request_queue *q = hctx->queue;
1534 	struct blk_mq_ctx *ctx;
1535 	LIST_HEAD(tmp);
1536 
1537 	/*
1538 	 * Move ctx entries to new CPU, if this one is going away.
1539 	 */
1540 	ctx = __blk_mq_get_ctx(q, cpu);
1541 
1542 	spin_lock(&ctx->lock);
1543 	if (!list_empty(&ctx->rq_list)) {
1544 		list_splice_init(&ctx->rq_list, &tmp);
1545 		blk_mq_hctx_clear_pending(hctx, ctx);
1546 	}
1547 	spin_unlock(&ctx->lock);
1548 
1549 	if (list_empty(&tmp))
1550 		return NOTIFY_OK;
1551 
1552 	ctx = blk_mq_get_ctx(q);
1553 	spin_lock(&ctx->lock);
1554 
1555 	while (!list_empty(&tmp)) {
1556 		struct request *rq;
1557 
1558 		rq = list_first_entry(&tmp, struct request, queuelist);
1559 		rq->mq_ctx = ctx;
1560 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1561 	}
1562 
1563 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1564 	blk_mq_hctx_mark_pending(hctx, ctx);
1565 
1566 	spin_unlock(&ctx->lock);
1567 
1568 	blk_mq_run_hw_queue(hctx, true);
1569 	blk_mq_put_ctx(ctx);
1570 	return NOTIFY_OK;
1571 }
1572 
1573 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1574 {
1575 	struct request_queue *q = hctx->queue;
1576 	struct blk_mq_tag_set *set = q->tag_set;
1577 
1578 	if (set->tags[hctx->queue_num])
1579 		return NOTIFY_OK;
1580 
1581 	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1582 	if (!set->tags[hctx->queue_num])
1583 		return NOTIFY_STOP;
1584 
1585 	hctx->tags = set->tags[hctx->queue_num];
1586 	return NOTIFY_OK;
1587 }
1588 
1589 static int blk_mq_hctx_notify(void *data, unsigned long action,
1590 			      unsigned int cpu)
1591 {
1592 	struct blk_mq_hw_ctx *hctx = data;
1593 
1594 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1595 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1596 	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1597 		return blk_mq_hctx_cpu_online(hctx, cpu);
1598 
1599 	return NOTIFY_OK;
1600 }
1601 
1602 static void blk_mq_exit_hctx(struct request_queue *q,
1603 		struct blk_mq_tag_set *set,
1604 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1605 {
1606 	unsigned flush_start_tag = set->queue_depth;
1607 
1608 	blk_mq_tag_idle(hctx);
1609 
1610 	if (set->ops->exit_request)
1611 		set->ops->exit_request(set->driver_data,
1612 				       hctx->fq->flush_rq, hctx_idx,
1613 				       flush_start_tag + hctx_idx);
1614 
1615 	if (set->ops->exit_hctx)
1616 		set->ops->exit_hctx(hctx, hctx_idx);
1617 
1618 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1619 	blk_free_flush_queue(hctx->fq);
1620 	kfree(hctx->ctxs);
1621 	blk_mq_free_bitmap(&hctx->ctx_map);
1622 }
1623 
1624 static void blk_mq_exit_hw_queues(struct request_queue *q,
1625 		struct blk_mq_tag_set *set, int nr_queue)
1626 {
1627 	struct blk_mq_hw_ctx *hctx;
1628 	unsigned int i;
1629 
1630 	queue_for_each_hw_ctx(q, hctx, i) {
1631 		if (i == nr_queue)
1632 			break;
1633 		blk_mq_exit_hctx(q, set, hctx, i);
1634 	}
1635 }
1636 
1637 static void blk_mq_free_hw_queues(struct request_queue *q,
1638 		struct blk_mq_tag_set *set)
1639 {
1640 	struct blk_mq_hw_ctx *hctx;
1641 	unsigned int i;
1642 
1643 	queue_for_each_hw_ctx(q, hctx, i)
1644 		free_cpumask_var(hctx->cpumask);
1645 }
1646 
1647 static int blk_mq_init_hctx(struct request_queue *q,
1648 		struct blk_mq_tag_set *set,
1649 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1650 {
1651 	int node;
1652 	unsigned flush_start_tag = set->queue_depth;
1653 
1654 	node = hctx->numa_node;
1655 	if (node == NUMA_NO_NODE)
1656 		node = hctx->numa_node = set->numa_node;
1657 
1658 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1659 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1660 	spin_lock_init(&hctx->lock);
1661 	INIT_LIST_HEAD(&hctx->dispatch);
1662 	hctx->queue = q;
1663 	hctx->queue_num = hctx_idx;
1664 	hctx->flags = set->flags;
1665 
1666 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1667 					blk_mq_hctx_notify, hctx);
1668 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1669 
1670 	hctx->tags = set->tags[hctx_idx];
1671 
1672 	/*
1673 	 * Allocate space for all possible cpus to avoid allocation at
1674 	 * runtime
1675 	 */
1676 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1677 					GFP_KERNEL, node);
1678 	if (!hctx->ctxs)
1679 		goto unregister_cpu_notifier;
1680 
1681 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1682 		goto free_ctxs;
1683 
1684 	hctx->nr_ctx = 0;
1685 
1686 	if (set->ops->init_hctx &&
1687 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1688 		goto free_bitmap;
1689 
1690 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1691 	if (!hctx->fq)
1692 		goto exit_hctx;
1693 
1694 	if (set->ops->init_request &&
1695 	    set->ops->init_request(set->driver_data,
1696 				   hctx->fq->flush_rq, hctx_idx,
1697 				   flush_start_tag + hctx_idx, node))
1698 		goto free_fq;
1699 
1700 	return 0;
1701 
1702  free_fq:
1703 	kfree(hctx->fq);
1704  exit_hctx:
1705 	if (set->ops->exit_hctx)
1706 		set->ops->exit_hctx(hctx, hctx_idx);
1707  free_bitmap:
1708 	blk_mq_free_bitmap(&hctx->ctx_map);
1709  free_ctxs:
1710 	kfree(hctx->ctxs);
1711  unregister_cpu_notifier:
1712 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1713 
1714 	return -1;
1715 }
1716 
1717 static int blk_mq_init_hw_queues(struct request_queue *q,
1718 		struct blk_mq_tag_set *set)
1719 {
1720 	struct blk_mq_hw_ctx *hctx;
1721 	unsigned int i;
1722 
1723 	/*
1724 	 * Initialize hardware queues
1725 	 */
1726 	queue_for_each_hw_ctx(q, hctx, i) {
1727 		if (blk_mq_init_hctx(q, set, hctx, i))
1728 			break;
1729 	}
1730 
1731 	if (i == q->nr_hw_queues)
1732 		return 0;
1733 
1734 	/*
1735 	 * Init failed
1736 	 */
1737 	blk_mq_exit_hw_queues(q, set, i);
1738 
1739 	return 1;
1740 }
1741 
1742 static void blk_mq_init_cpu_queues(struct request_queue *q,
1743 				   unsigned int nr_hw_queues)
1744 {
1745 	unsigned int i;
1746 
1747 	for_each_possible_cpu(i) {
1748 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1749 		struct blk_mq_hw_ctx *hctx;
1750 
1751 		memset(__ctx, 0, sizeof(*__ctx));
1752 		__ctx->cpu = i;
1753 		spin_lock_init(&__ctx->lock);
1754 		INIT_LIST_HEAD(&__ctx->rq_list);
1755 		__ctx->queue = q;
1756 
1757 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1758 		if (!cpu_online(i))
1759 			continue;
1760 
1761 		hctx = q->mq_ops->map_queue(q, i);
1762 		cpumask_set_cpu(i, hctx->cpumask);
1763 		hctx->nr_ctx++;
1764 
1765 		/*
1766 		 * Set local node, IFF we have more than one hw queue. If
1767 		 * not, we remain on the home node of the device
1768 		 */
1769 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1770 			hctx->numa_node = cpu_to_node(i);
1771 	}
1772 }
1773 
1774 static void blk_mq_map_swqueue(struct request_queue *q)
1775 {
1776 	unsigned int i;
1777 	struct blk_mq_hw_ctx *hctx;
1778 	struct blk_mq_ctx *ctx;
1779 
1780 	queue_for_each_hw_ctx(q, hctx, i) {
1781 		cpumask_clear(hctx->cpumask);
1782 		hctx->nr_ctx = 0;
1783 	}
1784 
1785 	/*
1786 	 * Map software to hardware queues
1787 	 */
1788 	queue_for_each_ctx(q, ctx, i) {
1789 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1790 		if (!cpu_online(i))
1791 			continue;
1792 
1793 		hctx = q->mq_ops->map_queue(q, i);
1794 		cpumask_set_cpu(i, hctx->cpumask);
1795 		ctx->index_hw = hctx->nr_ctx;
1796 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1797 	}
1798 
1799 	queue_for_each_hw_ctx(q, hctx, i) {
1800 		/*
1801 		 * If no software queues are mapped to this hardware queue,
1802 		 * disable it and free the request entries.
1803 		 */
1804 		if (!hctx->nr_ctx) {
1805 			struct blk_mq_tag_set *set = q->tag_set;
1806 
1807 			if (set->tags[i]) {
1808 				blk_mq_free_rq_map(set, set->tags[i], i);
1809 				set->tags[i] = NULL;
1810 				hctx->tags = NULL;
1811 			}
1812 			continue;
1813 		}
1814 
1815 		/*
1816 		 * Initialize batch roundrobin counts
1817 		 */
1818 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1819 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1820 	}
1821 }
1822 
1823 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1824 {
1825 	struct blk_mq_hw_ctx *hctx;
1826 	struct request_queue *q;
1827 	bool shared;
1828 	int i;
1829 
1830 	if (set->tag_list.next == set->tag_list.prev)
1831 		shared = false;
1832 	else
1833 		shared = true;
1834 
1835 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1836 		blk_mq_freeze_queue(q);
1837 
1838 		queue_for_each_hw_ctx(q, hctx, i) {
1839 			if (shared)
1840 				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1841 			else
1842 				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1843 		}
1844 		blk_mq_unfreeze_queue(q);
1845 	}
1846 }
1847 
1848 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1849 {
1850 	struct blk_mq_tag_set *set = q->tag_set;
1851 
1852 	mutex_lock(&set->tag_list_lock);
1853 	list_del_init(&q->tag_set_list);
1854 	blk_mq_update_tag_set_depth(set);
1855 	mutex_unlock(&set->tag_list_lock);
1856 }
1857 
1858 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1859 				     struct request_queue *q)
1860 {
1861 	q->tag_set = set;
1862 
1863 	mutex_lock(&set->tag_list_lock);
1864 	list_add_tail(&q->tag_set_list, &set->tag_list);
1865 	blk_mq_update_tag_set_depth(set);
1866 	mutex_unlock(&set->tag_list_lock);
1867 }
1868 
1869 /*
1870  * It is the actual release handler for mq, but we do it from
1871  * request queue's release handler for avoiding use-after-free
1872  * and headache because q->mq_kobj shouldn't have been introduced,
1873  * but we can't group ctx/kctx kobj without it.
1874  */
1875 void blk_mq_release(struct request_queue *q)
1876 {
1877 	struct blk_mq_hw_ctx *hctx;
1878 	unsigned int i;
1879 
1880 	/* hctx kobj stays in hctx */
1881 	queue_for_each_hw_ctx(q, hctx, i)
1882 		kfree(hctx);
1883 
1884 	kfree(q->queue_hw_ctx);
1885 
1886 	/* ctx kobj stays in queue_ctx */
1887 	free_percpu(q->queue_ctx);
1888 }
1889 
1890 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1891 {
1892 	struct blk_mq_hw_ctx **hctxs;
1893 	struct blk_mq_ctx __percpu *ctx;
1894 	struct request_queue *q;
1895 	unsigned int *map;
1896 	int i;
1897 
1898 	ctx = alloc_percpu(struct blk_mq_ctx);
1899 	if (!ctx)
1900 		return ERR_PTR(-ENOMEM);
1901 
1902 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1903 			set->numa_node);
1904 
1905 	if (!hctxs)
1906 		goto err_percpu;
1907 
1908 	map = blk_mq_make_queue_map(set);
1909 	if (!map)
1910 		goto err_map;
1911 
1912 	for (i = 0; i < set->nr_hw_queues; i++) {
1913 		int node = blk_mq_hw_queue_to_node(map, i);
1914 
1915 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1916 					GFP_KERNEL, node);
1917 		if (!hctxs[i])
1918 			goto err_hctxs;
1919 
1920 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1921 						node))
1922 			goto err_hctxs;
1923 
1924 		atomic_set(&hctxs[i]->nr_active, 0);
1925 		hctxs[i]->numa_node = node;
1926 		hctxs[i]->queue_num = i;
1927 	}
1928 
1929 	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1930 	if (!q)
1931 		goto err_hctxs;
1932 
1933 	/*
1934 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1935 	 * See blk_register_queue() for details.
1936 	 */
1937 	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1938 			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1939 		goto err_mq_usage;
1940 
1941 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1942 	blk_queue_rq_timeout(q, 30000);
1943 
1944 	q->nr_queues = nr_cpu_ids;
1945 	q->nr_hw_queues = set->nr_hw_queues;
1946 	q->mq_map = map;
1947 
1948 	q->queue_ctx = ctx;
1949 	q->queue_hw_ctx = hctxs;
1950 
1951 	q->mq_ops = set->ops;
1952 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1953 
1954 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
1955 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1956 
1957 	q->sg_reserved_size = INT_MAX;
1958 
1959 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1960 	INIT_LIST_HEAD(&q->requeue_list);
1961 	spin_lock_init(&q->requeue_lock);
1962 
1963 	if (q->nr_hw_queues > 1)
1964 		blk_queue_make_request(q, blk_mq_make_request);
1965 	else
1966 		blk_queue_make_request(q, blk_sq_make_request);
1967 
1968 	if (set->timeout)
1969 		blk_queue_rq_timeout(q, set->timeout);
1970 
1971 	/*
1972 	 * Do this after blk_queue_make_request() overrides it...
1973 	 */
1974 	q->nr_requests = set->queue_depth;
1975 
1976 	if (set->ops->complete)
1977 		blk_queue_softirq_done(q, set->ops->complete);
1978 
1979 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1980 
1981 	if (blk_mq_init_hw_queues(q, set))
1982 		goto err_mq_usage;
1983 
1984 	mutex_lock(&all_q_mutex);
1985 	list_add_tail(&q->all_q_node, &all_q_list);
1986 	mutex_unlock(&all_q_mutex);
1987 
1988 	blk_mq_add_queue_tag_set(set, q);
1989 
1990 	blk_mq_map_swqueue(q);
1991 
1992 	return q;
1993 
1994 err_mq_usage:
1995 	blk_cleanup_queue(q);
1996 err_hctxs:
1997 	kfree(map);
1998 	for (i = 0; i < set->nr_hw_queues; i++) {
1999 		if (!hctxs[i])
2000 			break;
2001 		free_cpumask_var(hctxs[i]->cpumask);
2002 		kfree(hctxs[i]);
2003 	}
2004 err_map:
2005 	kfree(hctxs);
2006 err_percpu:
2007 	free_percpu(ctx);
2008 	return ERR_PTR(-ENOMEM);
2009 }
2010 EXPORT_SYMBOL(blk_mq_init_queue);
2011 
2012 void blk_mq_free_queue(struct request_queue *q)
2013 {
2014 	struct blk_mq_tag_set	*set = q->tag_set;
2015 
2016 	blk_mq_del_queue_tag_set(q);
2017 
2018 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2019 	blk_mq_free_hw_queues(q, set);
2020 
2021 	percpu_ref_exit(&q->mq_usage_counter);
2022 
2023 	kfree(q->mq_map);
2024 
2025 	q->mq_map = NULL;
2026 
2027 	mutex_lock(&all_q_mutex);
2028 	list_del_init(&q->all_q_node);
2029 	mutex_unlock(&all_q_mutex);
2030 }
2031 
2032 /* Basically redo blk_mq_init_queue with queue frozen */
2033 static void blk_mq_queue_reinit(struct request_queue *q)
2034 {
2035 	WARN_ON_ONCE(!q->mq_freeze_depth);
2036 
2037 	blk_mq_sysfs_unregister(q);
2038 
2039 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2040 
2041 	/*
2042 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2043 	 * we should change hctx numa_node according to new topology (this
2044 	 * involves free and re-allocate memory, worthy doing?)
2045 	 */
2046 
2047 	blk_mq_map_swqueue(q);
2048 
2049 	blk_mq_sysfs_register(q);
2050 }
2051 
2052 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2053 				      unsigned long action, void *hcpu)
2054 {
2055 	struct request_queue *q;
2056 
2057 	/*
2058 	 * Before new mappings are established, hotadded cpu might already
2059 	 * start handling requests. This doesn't break anything as we map
2060 	 * offline CPUs to first hardware queue. We will re-init the queue
2061 	 * below to get optimal settings.
2062 	 */
2063 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2064 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2065 		return NOTIFY_OK;
2066 
2067 	mutex_lock(&all_q_mutex);
2068 
2069 	/*
2070 	 * We need to freeze and reinit all existing queues.  Freezing
2071 	 * involves synchronous wait for an RCU grace period and doing it
2072 	 * one by one may take a long time.  Start freezing all queues in
2073 	 * one swoop and then wait for the completions so that freezing can
2074 	 * take place in parallel.
2075 	 */
2076 	list_for_each_entry(q, &all_q_list, all_q_node)
2077 		blk_mq_freeze_queue_start(q);
2078 	list_for_each_entry(q, &all_q_list, all_q_node)
2079 		blk_mq_freeze_queue_wait(q);
2080 
2081 	list_for_each_entry(q, &all_q_list, all_q_node)
2082 		blk_mq_queue_reinit(q);
2083 
2084 	list_for_each_entry(q, &all_q_list, all_q_node)
2085 		blk_mq_unfreeze_queue(q);
2086 
2087 	mutex_unlock(&all_q_mutex);
2088 	return NOTIFY_OK;
2089 }
2090 
2091 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2092 {
2093 	int i;
2094 
2095 	for (i = 0; i < set->nr_hw_queues; i++) {
2096 		set->tags[i] = blk_mq_init_rq_map(set, i);
2097 		if (!set->tags[i])
2098 			goto out_unwind;
2099 	}
2100 
2101 	return 0;
2102 
2103 out_unwind:
2104 	while (--i >= 0)
2105 		blk_mq_free_rq_map(set, set->tags[i], i);
2106 
2107 	return -ENOMEM;
2108 }
2109 
2110 /*
2111  * Allocate the request maps associated with this tag_set. Note that this
2112  * may reduce the depth asked for, if memory is tight. set->queue_depth
2113  * will be updated to reflect the allocated depth.
2114  */
2115 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2116 {
2117 	unsigned int depth;
2118 	int err;
2119 
2120 	depth = set->queue_depth;
2121 	do {
2122 		err = __blk_mq_alloc_rq_maps(set);
2123 		if (!err)
2124 			break;
2125 
2126 		set->queue_depth >>= 1;
2127 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2128 			err = -ENOMEM;
2129 			break;
2130 		}
2131 	} while (set->queue_depth);
2132 
2133 	if (!set->queue_depth || err) {
2134 		pr_err("blk-mq: failed to allocate request map\n");
2135 		return -ENOMEM;
2136 	}
2137 
2138 	if (depth != set->queue_depth)
2139 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2140 						depth, set->queue_depth);
2141 
2142 	return 0;
2143 }
2144 
2145 /*
2146  * Alloc a tag set to be associated with one or more request queues.
2147  * May fail with EINVAL for various error conditions. May adjust the
2148  * requested depth down, if if it too large. In that case, the set
2149  * value will be stored in set->queue_depth.
2150  */
2151 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2152 {
2153 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2154 
2155 	if (!set->nr_hw_queues)
2156 		return -EINVAL;
2157 	if (!set->queue_depth)
2158 		return -EINVAL;
2159 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2160 		return -EINVAL;
2161 
2162 	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2163 		return -EINVAL;
2164 
2165 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2166 		pr_info("blk-mq: reduced tag depth to %u\n",
2167 			BLK_MQ_MAX_DEPTH);
2168 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2169 	}
2170 
2171 	/*
2172 	 * If a crashdump is active, then we are potentially in a very
2173 	 * memory constrained environment. Limit us to 1 queue and
2174 	 * 64 tags to prevent using too much memory.
2175 	 */
2176 	if (is_kdump_kernel()) {
2177 		set->nr_hw_queues = 1;
2178 		set->queue_depth = min(64U, set->queue_depth);
2179 	}
2180 
2181 	set->tags = kmalloc_node(set->nr_hw_queues *
2182 				 sizeof(struct blk_mq_tags *),
2183 				 GFP_KERNEL, set->numa_node);
2184 	if (!set->tags)
2185 		return -ENOMEM;
2186 
2187 	if (blk_mq_alloc_rq_maps(set))
2188 		goto enomem;
2189 
2190 	mutex_init(&set->tag_list_lock);
2191 	INIT_LIST_HEAD(&set->tag_list);
2192 
2193 	return 0;
2194 enomem:
2195 	kfree(set->tags);
2196 	set->tags = NULL;
2197 	return -ENOMEM;
2198 }
2199 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2200 
2201 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2202 {
2203 	int i;
2204 
2205 	for (i = 0; i < set->nr_hw_queues; i++) {
2206 		if (set->tags[i])
2207 			blk_mq_free_rq_map(set, set->tags[i], i);
2208 	}
2209 
2210 	kfree(set->tags);
2211 	set->tags = NULL;
2212 }
2213 EXPORT_SYMBOL(blk_mq_free_tag_set);
2214 
2215 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2216 {
2217 	struct blk_mq_tag_set *set = q->tag_set;
2218 	struct blk_mq_hw_ctx *hctx;
2219 	int i, ret;
2220 
2221 	if (!set || nr > set->queue_depth)
2222 		return -EINVAL;
2223 
2224 	ret = 0;
2225 	queue_for_each_hw_ctx(q, hctx, i) {
2226 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2227 		if (ret)
2228 			break;
2229 	}
2230 
2231 	if (!ret)
2232 		q->nr_requests = nr;
2233 
2234 	return ret;
2235 }
2236 
2237 void blk_mq_disable_hotplug(void)
2238 {
2239 	mutex_lock(&all_q_mutex);
2240 }
2241 
2242 void blk_mq_enable_hotplug(void)
2243 {
2244 	mutex_unlock(&all_q_mutex);
2245 }
2246 
2247 static int __init blk_mq_init(void)
2248 {
2249 	blk_mq_cpu_init();
2250 
2251 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2252 
2253 	return 0;
2254 }
2255 subsys_initcall(blk_mq_init);
2256